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Abstract 
This is a geometric approach to spatial involute 

gearing which has recently been developed by Jack 
Phillips [4]. Due to Phillips' fundamental theorems 
helical involute gears for parallel axes (Fig. 2) serve also 
as tooth flanks for a uniform transmission between skew 
axes, and the transmission ratio is even independent of 
the relative position of the axes.    

 
1. Introduction 

    The function of a gear set is usually to transmit a rotary 
motion of the input wheel 1Σ  about the axis 10p  with 
angular velocity 10ω  to the output wheel 2Σ  rotating 
about 20p  with 20ω  in a uniform way, i.e., with a 
constant transmission ratio 

 20 10: const ./i ω ω= =                                              (1) 

According to the relative position of the gear axes 10p  
and 20p  we distinguish the following types; 
a) Planar gearing (spur gears) for parallel axes 10 20, ,p p  
b) spherical gearing (bevel gears) for intersecting axes 

10 ,p 20p , and 
c) spatial gearing for skew axes 10 ,p 20 ,p in particular 
worm gears for orthogonal 10 ,p 20p .  

1.1 Planar gearing: In the case of parallel axes 10 ,p  
20p  we confine us to a perpendicular plane where two 

systems 1Σ , 2Σ  are rotating against the gear box 0Σ  
about centers 10, 20 with velocities 10 ,ω 20 ,ω  
respectively. Two curves 1 1c ⊂ Σ  and 2 2c ⊂ Σ  are 
conjugate profiles when they are in permanent contact 
during the transmission, i.e., 2 1( , )c c is a pair of 
enveloping curves under the relative motion 2 1/ .Σ Σ  
Due to a standard theorem from plane kinematics (see, 
e.g., [2,8]) the common normal at the point E  of contact 
must pass through the pole 12 of this relative motion (Fig. 
1). Due to the planar Three-Pole-Theorem this point 12 
divides the segment 01 02 at the constant ratio i  and is 
therefore fixed in 0.Σ  We summarize: 
Theorem 1 (Fundamental law of planar gearing): The 
profiles 1 1c ⊂ Σ  and 2 2c ⊂ Σ  are conjugate if and only 
if the common normal e  (= meshing normal) at the point 
E  of contact (= meshing point) passes through the 
relative pole 12. 
 
 Due to L. Euler (1765) planar involute gearing (see Fig. 
1, cf. [2,8]) is characterized by the property that with 

Fig. 1  Planar involute gearing 
 
respect to 0Σ  all meshing normals e  are coincident. 
This implies 
(i) The profiles are involutes of the base circles. 
(ii) For constant driving velocity 10ω  the meshing point 
E  traverses e  relative to 0Σ  with constant velocity. 
(iii) The transmitting force has a fixed line e  of action. 
(iv) The transmission ratio i  depends only on the 
dimension of the curves 2 1,c c  and not on their relative 
position. Therefore this planar gearing remains 
independent of errors upon assembly. 
It will turn out that all these properties are still valid for 
spatial involute gears. Helical gears over involute spur 
gears (Fig. 2) have helical torses (developables) (see Fig. 
3) as tooth flanks. 

 

 
  Fig. 2: Helical gears 

    
1.2 Basics of spatial gearing: In the sequel we present a 
geometric way to spatial gearing. Readers who prefer the 



analytic approach are referred to [6] where the same 
topic is treated using dual vectors [7,3,5].  
 

 

 
Fig. 3: Helical involute (torse) swept by tangent lines  

of a helix; the cross section 1c  is a planar involute 
 
We start with an important 
 
Lemma 1: Let the tooth flanks 1 1Φ ⊂ Σ  and 2 2Φ ⊂ Σ  
transmit the rotation of wheel 1Σ  about 10p  to the 
rotation of  wheel 2Σ  about 20p . Then one single point 
E  of contact between 1Φ  and 2Φ  defines the 
instantaneous transmission ratio 20 10/i ω ω=  uniquely. 
i depends only on the meshing normal e  by 

 20 1 1
10 2 2

ˆ sin .ˆ sin
i ω α α

ω α α
= =                                           (2) 

Here jα  and ˆ jα (see Fig. 6) denote the signed distance 
and the angle between e  and each axis 0jp . 
 
Proof: Let 0E v  denote the instantaneous velocity vector 
of E  against 0Σ  (Fig. 4). Then this vector is the sum of 
the guiding velocity 0E jv  of E  under the rotation 

0/jΣ Σ    and the relative velocity E jv  of E  with 
respect to the tooth flank jΦ . This gives 
     0 10 1 20 2E E E E E= + = +v v v v v .                          (3) 
Since 1E v  and 2E v  are parallel to the common tangent 
plane ε , the components of 1E v  and 2E v  in direction 
of the meshing normal e  must be equal. 
In order to obtain these components, we inspect the first 
wheel and choose e  and 10p  parallel to the image plane 
of the front view (Fig. 4). If ϕ  denotes the angle 
between 10E v  and the front plane, then the front view 

10''E v  has the length 
     10 10 1 10ˆcos ( cos )r rω ϕ ϕ ω α ω= =   
with the distance 10r E p= . We note that the length of 

10''E v  is the same for all points of e . Its component in 
the specified direction of  e  reads  10 1 1ˆ sinω α α− . This 
yields 
    10 1 1 20 2 2ˆ ˆsin sinω α α ω α α− = −                            (4)                       
which is equivalent to (2) .  
  

 
 Fig. 4: Proof of Lemma 1 

It should be noted that for any two directed lines g  and 
h  (Fig. 5) a signed distance ϕ̂  and angle ϕ  according 
to the right-hand-rule is defined, provided the common 
normal  n  is directed, too. When the orientation of n  is 
reversed then ϕ  and ϕ̂  change their sign. When the 
orientation either of g  or of h  is reversed then ϕ  has to 
be replaced by (mod 2 ).ϕ π π+  
In analogy to the planar case we obtain from Lemma 1 

 
Fig. 5: Distance ϕ̂  and angle ϕ  between g  and h  
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Theorem 2 (Fundamental law of spatial gearing): The 
tooth flanks 1 1Φ ∈Σ  and 2 2Φ ∈Σ  are  conjugate if and  
only if at each meshing point E  the meshing  normal e  
obeys eq. (2). 

Remark: Eq. (2) as well as (4) characterizes the linear 
line complex of instantaneous path normals of the 
relative motion 2 1/Σ Σ . The spatial Three-Pole-Theorem 
states (cf. [1,5]):  If for three given systems 0 ,Σ 1,Σ 2Σ  
the dual vectors 10 ,q 20q  are the instantaneous screws 
of  1 0 ,/Σ Σ  2 0 ,/Σ Σ  resp., then  
 21 20 10= −q q q           

is the instantaneous screw of the relative motion 2 1./Σ Σ  

As a consequence, if a line n which intersects the ISAs 

10p  of 1 0/Σ Σ  and 20p  of  2 0/Σ Σ  orthogonally, then it 

does the same with the axis 21p  of 2 1,/Σ Σ  provided 

21 0ω ≠  (note the three axes in Fig. 11). 

 
Fig. 6: Relative position of the meshing normal e   

 
2. Spatial involute gearing 

Spatial involute gearing is characterized in analogy to the 
planar case as follows (cf. Phillips [6]): All meshing  
normals e  are coincident in 0Σ  – and skew to 10p  and 

20p . We exclude also perpendicularity between e  and 
one of the axes. 
According to (2) a constant contact normal e  implies 
already a constant transmission ratio i . 

2.1 Slip tracks: First we focus on the paths of the 
meshing point E  relative to the wheels 1,Σ 2.Σ  These 
paths are called slip tracks 1s , 2s . 

1 0/Σ Σ  is a rotation about 10 ,p  and with respect to 0Σ  
point E  is placed on the fixed line e . Therefore – 
conversely – the slip track 1s   is located on the one-sheet 
hyperboloid 1Π  of revolution through e  with axis 10.p  
On the other hand, the slip track 1s  is located on the 
tooth flank 1,Φ and for each posture of 1Φ  line 0e ⊂ Σ  
is orthogonal to the tangent plane ε  at the instantaneous 

point E  of contact (see Fig. 6). 
Therefore the line tangent to the slip track 1s  is 
orthogonal to e . This gives the result: 
Lemma 2: The path 1s  of  E  relative to 1Σ  is an 
orthogonal trajectory of the e-regulus on the one-sheet 
hyperboloid 1Π  through  e  with axis 10.p  

 

 
 Fig. 7: The slip track 1s  as an orthogonal trajectory of 

one regulus on the one-sheet hyperboloid 1Π    
 

 
 

Fig. 8: Slip track 1s  as „bed-spring curve“ 



A parameter representation of 1s  can be found in [6]. 
  
2.2 The tooth flanks: Phillips’ spatial involute gearing 
offers only single point contact between the teeth. So, 
only the portion of the tooth flank close to the slip track is 
of relevance. The simplest tooth flank is the envelope 1Φ  
of the plane ε  of contact in 1Σ , while the meshing point 
E  is traversing the slip track 1s . We prove in the sequel 
that this is a helical torse (see Fig. 10): 
 

 
 

Fig. 9: Proving that the envelope of ε  along the 
 slip track 1s  is a helical torse 1Φ  (Lemma 3) 

 

Let the wheel 1Σ  with 1Φ  rotate with constant angular 
velocity 10ω , while simultaneously the meshing point 
E  traverses 1s  in such a way that with respect to to 0Σ  
point E  remains on e . Then E  moves along e  with 
the constant velocity  
 0|1 10 1 1ˆ sin const .Ev ω α α= − =                                 (5)          

relatively to 0Σ  (see Fig. 9). This implies that also the 
tangent plane ε  moves with this constant velocity along 
e . Hence, ist point S  of intersection with the axis 10p   
has a constant velocity, too, namely  

 0 10 1 1ˆ tanS v ω α α= −                                                (6)          
How is the movement of ε  relative to 1Σ ? The plane 
rotates about 10p  with angular velocity 10ω−  and 
translates at the same time with velocity 0S v  along 10p . 
The envelope is a helical torse 1Φ . Its cuspical edge, a 
helix (see Fig. 3), has the radius 1 1ˆ:r α=  and the pitch 

 0
1 1 1

10
ˆ tanS vh α α

ω
= =
−

.                                            (7) 

 
Fig. 10: Helical torse 1Φ  with slip track 1s   

and generator 1g   
 
This proves that 1Φ  is uniquely defined by one single 
meshing normal e  − up to rotations about 10p . Thus we 
got 
Lemma 3: The slip track 1s  is located on a helical torse 

1Φ  with the pitch 1 1ˆ tan .α α  At each meshing point 
1E s∈  there is an orthogonal intersection between 1Φ  

and the one-sheet hyperboloid 1Π  of Lemma 2 (note Fig. 
7). 
 
2.3 Fundamental theorems: We summarize:  

Theorem 3 (Phillips' 1st Fundamental Theorem): The 
helical torses 1Φ , 2Φ  are conjugate tooth flanks for a 
spatial gearing with single point contact such that all 
meshing normals coincide with a line e   fixed in 0.Σ  
 
The following theorem completes the confirmation that 
the advantages (ii) – (iv) of planar involute gearing as 
listed above are still valid for spatial involute gearing: 

Theorem 4 (Phillips' 2nd Fundamental Theorem): If  two 
given helical torses 1,Φ 2Φ  are placed in  mutual 
contact at point E  and if their axes are kept fixed in this 
position, then 1Φ  and 2Φ  serve as tooth flanks for a 
uniform transmission whether the axes are parallel, 
intersecting or skew. According to (2) the transmission 
ratio i depends only on the dimensions 1r , 1h , 2r , 2h  of 

1Φ  and 2Φ  and not on their relative position. Therefore 
this spatial gearing remains independent of errors upon 
assembly.  



Proof: We start in a pose where the two flanks 1,Φ 2Φ  
are in contact at point E . If then the two flanks 1,Φ 2Φ  
rotate with constant angular velocities 10ω , 20ω  about 
their axes 10 ,p  20p  and point E  traverses relatively the 
slip tracks 1s , 2s  with appropriate velocities (see Fig. 9), 
then with respect to 0Σ  point E  traces e  with the 
velocities 
 0|1 10 1 1ˆ sinEv ω α α= −   and  0|2 20 2 2ˆ sinEv ω α α= − , 

due to (5). By (2) or (4) these velocities are equal at any 
moment if and only if the transmission ratio i remains 
constant. Hence the initial contact between 1Φ  and 2Φ  
at E  is preserved under the simultaneous rotations of 
both wheels with the ratio (2). 
 

Theorem 5 ([6]): During the uniform transmission by  
two given helical involutes 1,Φ 2Φ  the angle θ  
between the generators 1 1g ⊂ Φ  and 2 2g ⊂ Φ  at the 
meshing  point E  remains constant (Fig. 13). This angle 
is congruent to the angle made by the normal lines 1n , 

2n  between the meshing normal e  and the axes 10p , 
20p , respecitively (see Fig. 6). 

 
Proof: Both generators 1g , 2g  as well the common 
normals 1n , 2n  are perpendicular to the meshing normal 
e , which is fixed in 0Σ  (Fig. 6). In addition, 1g  is 
orthogonal to 1n  (Fig. 9) and 2g  orthogonal to 2n . So 
we get congruent angles 1 2 1 2g g n nθ = ∠ = ∠ .  
 
In the special case 0θ =  we obtain: If according to 
Theorem 4 the two helical torses are placed such that 
they are in contact along a straight line g , then this line 
contact is preserved during the transmission.   

 

7. Conclusion 
     It is proved in a geometric way that helical torses 
(developables) surprisingly serve as tooth flanks not only 
for spur gears but also for skew gears. And in the skew 
case they have still the important property that the 
transmission ratio is not sensitive against errors of 
assembly.  
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Fig. 11: Spatial involute gearing together with the effective slip tracks on the flanks. List of dimensions: 
Transmission ratio 2 / 3,i = −  numbers of teeth: 1 18,z =  2 27z = ; contact ratio 1.095; dual angle 
between 10p  and 20p : 0 21.35 ,α = ° 0ˆ 117.01;α = dual angles between 0ip and the fixed contact 
normal 1: 60.0 ,e α = − °  1ˆ 45.0,α =  2 76.98 ,α = °  2ˆ 60.0,α =  and (compare Fig. 3) angle 14.0 .θ = °  



 
  
 
  
 
 
 

   

 

 

         10 0ϕ = °                 10 3.6ϕ = °                   10 7.2ϕ = °                   10 10.8ϕ = °               10 14.4ϕ = °              10 18.0ϕ = °  
Fig. 12: Different postures of meshing involute teeth for inspecting the backlash. e is the line of contact. 

Interval of the input angle 10 3.6Δϕ = ° , interval of the output angle 20 2.4Δϕ = − ° . 
 

  
 

 Fig. 13: Different postures of meshing involute gear flanks together with the effective slip tracks, seen 
in direction of the contact normal e. The second wheel is displayed as a wireframe. 
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