# Spatial involute gearing - a new type of skew gears

Hellmuth Stachel Institute of Discrete Mathematics and Geometry Vienna University of Technology Wiedner Hauptstr. 8-10/104, A 1040 Wien, AUSTRIA stachel@dmg.tuwien.ac.at

## Abstract

This is a geometric approach to spatial involute gearing which has recently been developed by Jack Phillips [4]. Due to Phillips' fundamental theorems helical involute gears for parallel axes (Fig. 2) serve also as tooth flanks for a uniform transmission between skew axes, and the transmission ratio is even independent of the relative position of the axes.

## 1. Introduction

The function of a gear set is usually to transmit a rotary motion of the input wheel  $\Sigma_1$  about the axis  $p_{10}$  with angular velocity  $\omega_{10}$  to the output wheel  $\Sigma_2$  rotating about  $p_{20}$  with  $\omega_{20}$  in a uniform way, i.e., with a constant transmission ratio

$$i \coloneqq \omega_{20} / \omega_{10} = \text{const.} \tag{1}$$

According to the relative position of the gear axes  $p_{10}$ and  $p_{20}$  we distinguish the following types;

a) Planar gearing (spur gears) for parallel axes  $p_{10}, p_{20}$ ,

b) spherical gearing (bevel gears) for intersecting axes  $p_{10}$ ,  $p_{20}$ , and

c) spatial gearing for skew axes  $p_{10}$ ,  $p_{20}$ , in particular worm gears for orthogonal  $p_{10}$ ,  $p_{20}$ .

**1.1 Planar gearing:** In the case of parallel axes  $p_{10}$ ,  $p_{20}$  we confine us to a perpendicular plane where two systems  $\Sigma_1$ ,  $\Sigma_2$  are rotating against the gear box  $\Sigma_0$  about centers 10, 20 with velocities  $\omega_{10}$ ,  $\omega_{20}$ , respectively. Two curves  $c_1 \subset \Sigma_1$  and  $c_2 \subset \Sigma_2$  are conjugate profiles when they are in permanent contact during the transmission, i.e.,  $(c_2, c_1)$  is a pair of enveloping curves under the relative motion  $\Sigma_2 / \Sigma_1$ . Due to a standard theorem from plane kinematics (see, e.g., [2,8]) the common normal at the point *E* of contact must pass through the pole 12 of this relative motion (Fig. 1). Due to the planar Three-Pole-Theorem this point 12 divides the segment 01 02 at the constant ratio *i* and is therefore fixed in  $\Sigma_0$ . We summarize:

**Theorem 1** (Fundamental law of planar gearing): *The* profiles  $c_1 \subset \Sigma_1$  and  $c_2 \subset \Sigma_2$  are conjugate if and only if the common normal e (= meshing normal) at the point E of contact (= meshing point) passes through the relative pole 12.

Due to L. Euler (1765) planar involute gearing (see Fig. 1, cf. [2,8]) is characterized by the property that with



Fig. 1 Planar involute gearing

respect to  $\Sigma_0$  all meshing normals *e* are coincident. This implies

(i) The profiles are involutes of the base circles.

(ii) For constant driving velocity  $\omega_{10}$  the meshing point *E* traverses *e* relative to  $\Sigma_0$  with constant velocity.

(iii) The transmitting force has a fixed line e of action.

(iv) The transmission ratio i depends only on the dimension of the curves  $c_2$ ,  $c_1$  and not on their relative position. Therefore this planar gearing remains independent of errors upon assembly.

It will turn out that all these properties are still valid for spatial involute gears. Helical gears over involute spur gears (Fig. 2) have helical torses (developables) (see Fig. 3) as tooth flanks.



Fig. 2: Helical gears

**1.2 Basics of spatial gearing:** In the sequel we present a geometric way to spatial gearing. Readers who prefer the

analytic approach are referred to [6] where the same topic is treated using dual vectors [7,3,5].



Fig. 3: Helical involute (torse) swept by tangent lines of a helix; the cross section  $c_1$  is a planar involute

We start with an important

**Lemma 1:** Let the tooth flanks  $\Phi_1 \subset \Sigma_1$  and  $\Phi_2 \subset \Sigma_2$ transmit the rotation of wheel  $\Sigma_1$  about  $p_{10}$  to the rotation of wheel  $\Sigma_2$  about  $p_{20}$ . Then one single point E of contact between  $\Phi_1$  and  $\Phi_2$  defines the instantaneous transmission ratio  $i = \omega_{20}/\omega_{10}$  uniquely. i depends only on the meshing normal e by

$$i = \frac{\omega_{20}}{\omega_{10}} = \frac{\hat{\alpha}_1 \sin \alpha_1}{\hat{\alpha}_2 \sin \alpha_2}.$$
 (2)

Here  $\alpha_j$  and  $\hat{\alpha}_j$  (see Fig. 6) denote the signed distance and the angle between e and each axis  $p_{j0}$ .

Proof: Let  $_E \mathbf{v}_0$  denote the instantaneous velocity vector of E against  $\Sigma_0$  (Fig. 4). Then this vector is the sum of the guiding velocity  $_E \mathbf{v}_{j0}$  of E under the rotation  $\Sigma_j / \Sigma_0$  and the relative velocity  $_E \mathbf{v}_j$  of E with respect to the tooth flank  $\Phi_j$ . This gives

 ${}_{E}\mathbf{v}_{0} = {}_{E}\mathbf{v}_{10} + {}_{E}\mathbf{v}_{1} = {}_{E}\mathbf{v}_{20} + {}_{E}\mathbf{v}_{2}$ . (3) Since  ${}_{E}\mathbf{v}_{1}$  and  ${}_{E}\mathbf{v}_{2}$  are parallel to the common tangent plane  $\varepsilon$ , the components of  ${}_{E}\mathbf{v}_{1}$  and  ${}_{E}\mathbf{v}_{2}$  in direction of the meshing normal *e* must be equal.

In order to obtain these components, we inspect the first wheel and choose e and  $p_{10}$  parallel to the image plane of the front view (Fig. 4). If  $\varphi$  denotes the angle between  $_E \mathbf{v}_{10}$  and the front plane, then the front view  $_E \mathbf{v}_{10}$ " has the length

 $r\omega_{10}\cos\varphi = (r\cos\varphi)\omega_{10} = \hat{\alpha}_1\omega_{10}$ 

with the distance  $r = E p_{10}$ . We note that the length of  ${}_E \mathbf{v}_{10}$ " is the same for all points of e. Its component in the specified direction of e reads  $-\omega_{10}\hat{\alpha}_1 \sin \alpha_1$ . This yields

 $-\omega_{10}\hat{\alpha}_1 \sin \alpha_1 = -\omega_{20}\hat{\alpha}_2 \sin \alpha_2$ (4) which is equivalent to (2).



Fig. 4: Proof of Lemma 1

It should be noted that for any two directed lines g and h (Fig. 5) a signed distance  $\hat{\varphi}$  and angle  $\varphi$  according to the right-hand-rule is defined, provided the common normal n is directed, too. When the orientation of n is reversed then  $\varphi$  and  $\hat{\varphi}$  change their sign. When the orientation either of g or of h is reversed then  $\varphi$  has to be replaced by  $\varphi + \pi \pmod{2\pi}$ .

In analogy to the planar case we obtain from Lemma 1



Fig. 5: Distance  $\hat{\varphi}$  and angle  $\varphi$  between g and h

**Theorem 2** (Fundamental law of spatial gearing): *The* tooth flanks  $\Phi_1 \in \Sigma_1$  and  $\Phi_2 \in \Sigma_2$  are conjugate if and only if at each meshing point *E* the meshing normal *e* obeys eq. (2).

Remark: Eq. (2) as well as (4) characterizes the linear line complex of instantaneous path normals of the relative motion  $\Sigma_2/\Sigma_1$ . The spatial Three-Pole-Theorem states (cf. [1,5]): If for three given systems  $\Sigma_0$ ,  $\Sigma_1$ ,  $\Sigma_2$ the dual vectors  $\underline{\mathbf{q}}_{10}$ ,  $\underline{\mathbf{q}}_{20}$  are the instantaneous screws of  $\Sigma_1/\Sigma_0$ ,  $\Sigma_2/\Sigma_0$ , resp., then

$$\mathbf{q}_{21} = \mathbf{q}_{20} - \mathbf{q}_{10}$$

is the instantaneous screw of the relative motion  $\Sigma_2/\Sigma_1$ . As a consequence, if a line n which intersects the ISAs  $p_{10}$  of  $\Sigma_1/\Sigma_0$  and  $p_{20}$  of  $\Sigma_2/\Sigma_0$  orthogonally, then it does the same with the axis  $p_{21}$  of  $\Sigma_2/\Sigma_1$ , provided  $\omega_{21} \neq 0$  (note the three axes in Fig. 11).



Fig. 6: Relative position of the meshing normal e

### 2. Spatial involute gearing

Spatial involute gearing is characterized in analogy to the planar case as follows (cf. Phillips [6]): All meshing normals *e* are coincident in  $\Sigma_0$  – and skew to  $p_{10}$  and  $p_{20}$ . We exclude also perpendicularity between *e* and one of the axes.

According to (2) a constant contact normal e implies already a constant transmission ratio i.

**2.1 Slip tracks:** First we focus on the paths of the meshing point *E* relative to the wheels  $\Sigma_1$ ,  $\Sigma_2$ . These paths are called slip tracks  $s_1$ ,  $s_2$ .

 $\Sigma_1/\Sigma_0$  is a rotation about  $p_{10}$ , and with respect to  $\Sigma_0$  point *E* is placed on the fixed line *e*. Therefore – conversely – the slip track  $s_1$  is located on the one-sheet hyperboloid  $\Pi_1$  of revolution through *e* with axis  $p_{10}$ .

On the other hand, the slip track  $s_1$  is located on the tooth flank  $\Phi_1$ , and for each posture of  $\Phi_1$  line  $e \subset \Sigma_0$  is orthogonal to the tangent plane  $\varepsilon$  at the instantaneous

point E of contact (see Fig. 6).

Therefore the line tangent to the slip track  $s_1$  is orthogonal to e. This gives the result:

**Lemma 2:** The path  $s_1$  of E relative to  $\Sigma_1$  is an orthogonal trajectory of the e-regulus on the one-sheet hyperboloid  $\Pi_1$  through e with axis  $p_{10}$ .



Fig. 7: The slip track  $s_1$  as an orthogonal trajectory of one regulus on the one-sheet hyperboloid  $\Pi_1$ 



Fig. 8: Slip track s<sub>1</sub> as ,,bed-spring curve"

A parameter representation of  $s_1$  can be found in [6].

**2.2 The tooth flanks**: Phillips' spatial involute gearing offers only single point contact between the teeth. So, only the portion of the tooth flank close to the slip track is of relevance. The simplest tooth flank is the envelope  $\Phi_1$  of the plane  $\varepsilon$  of contact in  $\Sigma_1$ , while the meshing point *E* is traversing the slip track  $s_1$ . We prove in the sequel that this is a helical torse (see Fig. 10):



Fig. 9: Proving that the envelope of  $\varepsilon$  along the slip track  $s_1$  is a helical torse  $\Phi_1$  (Lemma 3)

Let the wheel  $\Sigma_1$  with  $\Phi_1$  rotate with constant angular velocity  $\omega_{10}$ , while simultaneously the meshing point *E* traverses  $s_1$  in such a way that with respect to to  $\Sigma_0$ point *E* remains on *e*. Then *E* moves along *e* with the constant velocity

$$_{E}v_{01} = -\omega_{10}\,\hat{\alpha}_{1}\sin\alpha_{1} = \text{const.}$$
(5)

relatively to  $\Sigma_0$  (see Fig. 9). This implies that also the tangent plane  $\varepsilon$  moves with this constant velocity along e. Hence, ist point *S* of intersection with the axis  $p_{10}$  has a constant velocity, too, namely

$${}_{S}v_0 = -\omega_{10}\hat{\alpha}_1 \tan \alpha_1 \tag{6}$$

How is the movement of  $\varepsilon$  relative to  $\Sigma_1$ ? The plane rotates about  $p_{10}$  with angular velocity  $-\omega_{10}$  and translates at the same time with velocity  ${}_{S}\mathbf{v}_{0}$  along  $p_{10}$ . The envelope is a helical torse  $\Phi_1$ . Its cuspical edge, a helix (see Fig. 3), has the radius  $r_1 := \hat{\alpha}_1$  and the pitch

$$h_1 = \frac{s v_0}{-\omega_{10}} = \hat{\alpha}_1 \tan \alpha_1 . \tag{7}$$



Fig. 10: Helical torse  $\Phi_1$  with slip track  $s_1$ and generator  $g_1$ 

This proves that  $\Phi_1$  is uniquely defined by one single meshing normal e – up to rotations about  $p_{10}$ . Thus we got

**Lemma 3:** The slip track  $s_1$  is located on a helical torse  $\Phi_1$  with the pitch  $\hat{\alpha}_1 \tan \alpha_1$ . At each meshing point  $E \in s_1$  there is an orthogonal intersection between  $\Phi_1$  and the one-sheet hyperboloid  $\Pi_1$  of Lemma 2 (note Fig. 7).

#### 2.3 Fundamental theorems: We summarize:

**Theorem 3** (Phillips' 1st Fundamental Theorem): *The helical torses*  $\Phi_1$ ,  $\Phi_2$  *are conjugate tooth flanks for a spatial gearing with single point contact such that all meshing normals coincide with a line e fixed in*  $\Sigma_0$ .

The following theorem completes the confirmation that the advantages (ii) - (iv) of planar involute gearing as listed above are still valid for spatial involute gearing:

**Theorem 4** (Phillips' 2nd Fundamental Theorem): If two given helical torses  $\Phi_1$ ,  $\Phi_2$  are placed in mutual contact at point E and if their axes are kept fixed in this position, then  $\Phi_1$  and  $\Phi_2$  serve as tooth flanks for a uniform transmission whether the axes are parallel, intersecting or skew. According to (2) the transmission ratio i depends only on the dimensions  $r_1$ ,  $h_1$ ,  $r_2$ ,  $h_2$  of  $\Phi_1$  and  $\Phi_2$  and not on their relative position. Therefore this spatial gearing remains independent of errors upon assembly. Proof: We start in a pose where the two flanks  $\Phi_1$ ,  $\Phi_2$ are in contact at point *E*. If then the two flanks  $\Phi_1$ ,  $\Phi_2$ rotate with constant angular velocities  $\omega_{10}$ ,  $\omega_{20}$  about their axes  $p_{10}$ ,  $p_{20}$  and point *E* traverses relatively the slip tracks  $s_1$ ,  $s_2$  with appropriate velocities (see Fig. 9), then with respect to  $\Sigma_0$  point *E* traces *e* with the velocities

 $_E v_{0|1} = -\omega_{10} \hat{\alpha}_1 \sin \alpha_1$  and  $_E v_{0|2} = -\omega_{20} \hat{\alpha}_2 \sin \alpha_2$ ,

due to (5). By (2) or (4) these velocities are equal at any moment if and only if the transmission ratio *i* remains constant. Hence the initial contact between  $\Phi_1$  and  $\Phi_2$  at *E* is preserved under the simultaneous rotations of both wheels with the ratio (2).

**Theorem 5** ([6]): During the uniform transmission by two given helical involutes  $\Phi_1$ ,  $\Phi_2$  the angle  $\theta$ between the generators  $g_1 \subset \Phi_1$  and  $g_2 \subset \Phi_2$  at the meshing point E remains constant (Fig. 13). This angle is congruent to the angle made by the normal lines  $n_1$ ,  $n_2$  between the meshing normal e and the axes  $p_{10}$ ,  $p_{20}$ , respectively (see Fig. 6).

Proof: Both generators  $g_1$ ,  $g_2$  as well the common normals  $n_1$ ,  $n_2$  are perpendicular to the meshing normal e, which is fixed in  $\Sigma_0$  (Fig. 6). In addition,  $g_1$  is orthogonal to  $n_1$  (Fig. 9) and  $g_2$  orthogonal to  $n_2$ . So we get congruent angles  $\theta = \angle g_1 g_2 = \angle n_1 n_2$ .

In the special case  $\theta = 0$  we obtain: If according to Theorem 4 the two helical torses are placed such that they are in contact along a straight line g, then this line contact is preserved during the transmission.

### 7. Conclusion

It is proved in a geometric way that helical torses (developables) surprisingly serve as tooth flanks not only for spur gears but also for skew gears. And in the skew case they have still the important property that the transmission ratio is not sensitive against errors of assembly.

#### References

[1] Husty, M., Karger, A., Sachs, H., and Steinhilper, W., Kinematik und Robotik, Springer-Verlag, Berlin Heidelberg (1997).

[2] Litvin, F. L., Gear Geometry and Applied Theory, Prentice Hall, Englewood Cliffs, N.J. (1994).

[3] McCarthy, J. M., Geometric Design of Linkages,

Springer-Verlag, New York (2000).

[4] Phillips, J., General Spatial Involute Gearing, Springer Verlag, New York (2003).

[5] Stachel, H., "Instantaneous spatial kinematics and the invariants of the axodes", Proceedings Ball 2000 Symposium, Cambridge (2000), no. 23.

[6] Stachel, H., "On Jack Phillips' Spatial Involute Gearing", Proc. 11th ICGG, Guangzhou, China (2004).

[7] Veldkamp, G. R., "On the Use of Dual Numbers,

Vectors, and matrices in Instantaneous Spatial

Kinematics", Mech. and Mach. Theory 11, 141-156 (1976).

[8] Wunderlich, W., Ebene Kinematik, Bibliographisches Institut, Mannheim (1970).



Fig. 11: Spatial involute gearing together with the effective slip tracks on the flanks. List of dimensions: Transmission ratio i = -2/3, numbers of teeth:  $z_1 = 18$ ,  $z_2 = 27$ ; contact ratio 1.095; dual angle between  $p_{10}$  and  $p_{20}$ :  $\alpha_0 = 21.35^\circ$ ,  $\hat{\alpha}_0 = 117.01$ ; dual angles between  $p_{i0}$  and the fixed contact normal e:  $\alpha_1 = -60.0^\circ$ ,  $\hat{\alpha}_1 = 45.0$ ,  $\alpha_2 = 76.98^\circ$ ,  $\hat{\alpha}_2 = 60.0$ , and (compare Fig. 3) angle  $\theta = 14.0^\circ$ .



 $\varphi_{10} = 0^{\circ} \qquad \varphi_{10} = 3.6^{\circ} \qquad \varphi_{10} = 7.2^{\circ} \qquad \varphi_{10} = 10.8^{\circ} \qquad \varphi_{10} = 14.4^{\circ} \qquad \varphi_{10} = 18.0^{\circ}$ Fig. 12: Different postures of meshing involute teeth for inspecting the backlash. e is the line of contact.

Interval of the input angle  $\Delta \varphi_{10} = 3.6^{\circ}$ , interval of the output angle  $\Delta \varphi_{20} = -2.4^{\circ}$ .



Fig. 13: Different postures of meshing involute gear flanks together with the effective slip tracks, seen in direction of the contact normal e. The second wheel is displayed as a wireframe.