
On the Flexibility of Kokotsakis Meshes

Hellmuth Stachel, Vienna University of Technology

stachel@dmg.tuwien.ac.at — http://www.geometrie.tuwien.ac.at/stachel

XVI Geometrical Seminar, Sept. 20–25, 2010, Vrnjačka Banja/Serbia
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1. Introduction
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Special case: n = 4

A Kokotsakis mesh is a polyhedral
structure consisting of an n-sided
central polygon P0 surrounded by a
belt of polygons.

Each side ai , i = 1, . . . , n, of P0

is shared with a polygon Pi . Each
vertex Vi of P0 is the meeting point
of four faces.

Each face is seen as a rigid body;
only the dihedral angles can vary.
Under which conditions a Kokotsakis
mesh is continuously flexible ?
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1. Introduction

Antonios Kokotsakis
1899–1964

He was born on the island Crete in Greece.
As a precocious child, he was accepted at the
Department of Civil Engineering of Technical
University of Athens already in the age of 16 .

After graduation he was appointed a lecturer
in the Department of Descriptive and Projective
Geometry. He finished his PhD-thesis entitled
“About flexible polyhedra” under the supervision
of K. Caratheodori in Munich/Germany.

His list of publications contains not more than 5
titles.
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1. Introduction
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Special case: n = 3

Kokotsakis mesh for n = 4
= Vierflach [German] (Kokotsakis
1931, Sauer 1932)
= four-flat [English]

For n = 3 the Kokotsakis mesh is
equivalent to an octahedron with
V1V2V3 and W1W2W3 as opposite
triangular faces.

This offers an alternative approach
to R. Bricard’s flexible octahedra.
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1. Introduction
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The polygons need not be planar

Kinematic interpretation:

The polygons represent different
systems Σ0, . . . ,Σn .

The sides ai of P0 are
instantaneous axes Ii0 of the
relative motions Σi/Σ0 .

The relative motions Σi+1/Σi
between consecutive systems are
spherical four-bars.
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1. Introduction
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To recall:

A spherical four-bar transmits the
rotation about the center A0 by the
coupler AB non-uniformly to the
rotation about B0.

The arms A0A and B0B represent
consecutive systems Σi , Σi+1 .
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1. Introduction
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The edge lengths V1V2, . . . , V4V1

of the central polygon P0 have no
influence on the flexibility =⇒

Theorem: A Kokotsakis-mesh
for n = 4 is flexible if and only if
the composition of the two four-
bar (V1, V2) on the right hand
side is the same as via (V3, V4)
on the left hand side.

(. . . provided, a self-intersection of the

quadrangle in Σ3 is admitted)
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1. Introduction

In discrete differential geometry there is a
interest on polyhedral structures composed
of quadrilaterals (quadrilateral surfaces).
When all quadrilaterals are planar, they
constitute a discrete conjugate net.

Theorem: [Bobenko, Hoffmann,
Schief 2008]

A discrete conjugate net in general position
is continuously flexible ⇐⇒ all its 3 × 3
complexes are continuously flexible.

Bobenko et al., 2008:

H. Pottmann, Y. Liu, J. Wallner,
A. Bobenko, W. Wang:

Geometry of Multi-layer Freeform Structures for

Architecture. ACM Trans. Graphics 26 (3) (2007),
SIGGRAPH 2007

“. . . the complete classification of flexible discrete conjugate nets has not been

achieved yet”
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2. Flexible Kokotsakis meshes
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Unfolded miura-ori;
dashs are valley folds,

full lines are mountain folds

Miura-ori is a Japanese folding
technique named after Prof. Koryo
Miura, The University of Tokyo.

It is used for solar panels because it
can be unfolded into its rectangular
shape by pulling on one corner only.

On the other hand it is used as kernel
to stiffen sandwich structures.
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2.FlexibleKokotsakismeshes
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2. Flexible Kokotsakis meshes

Tomihiro Tachi (The University of
Tokyo) designed an algorithm to
compute numerically flexible quad-
meshes with a flat initial pose.

Freeform Variations of Origami

Proc. 14th Internat. Conf. on Geometry
and Graphics, Kyoto 2010, no. 221
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2. Flexible Kokotsakis meshes

αi
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Miura-ori is a special case of

Theorem: [Kokotsakis 1932]
A Kokotsakis mesh is flexible if at each
vertex Vi opposite angles are either equal
or supplementary, i.e.,

αi = βi, γi = δi or

αi = π − βi, γi = π − δi .

A discrete conjugate net where all vertices
are of this type is called Voss surface:

• Its folds are geodesics,

• it is continuously flexible.
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2. Flexible Kokotsakis meshes

P

A. Kokotsakis, 1932
Athens

Any arbitrary plane quadrangle is a
tile for a regular tessellation of the
plane.

It is obtained by applying iterated
180◦-rotations about the midpoints
of the sides of an initial quadrangle
P.

For convex P this polyhedral
structure is flexible
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2. Flexible Kokotsakis meshes

I. Planar-symmetric type (Kokotsakis 1932):

The reflection in the plane of symmetry of V1 and
V4 maps each horizontal fold onto itself while the
two vertical folds are exchanged.

V1

V2V3

V4

II. Translational type:

There is a translation V1 7→ V4 and V2 7→ V3

mapping the three faces on the right hand side
onto the triple on the left hand side.

V1

V2

V3

V4

a4
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2. Flexible Kokotsakis meshes

III. Isogonal type (Kokotsakis 1932):

At each vertex opposite angles are congruent =
3 × 3 complex of a Voss surface.

IV. Orthogonal type (Graf, Sauer 1931):

Here the horizontal folds are located in parallel
(say: horizontal) planes, the vertical folds in
vertical planes. P0 is a trapezoid.

V1 V2

V3V4
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2. Flexible Kokotsakis meshes

V. Line-symmetric type (H.S. 2009):

A line-reflection maps the pyramide at V1

onto that of V4; another one exchanges
the pyramides at V2 and V3.

This includes Kokotsakis’ example of a
flexible tessellation.
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3. Transmission by one spherical four-bar
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spherical image

0 < α1, β1, γ1, δ1 < 180◦
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3. Transmission by one spherical four-bar

ϕ1ϕ1/2 0

1

∞
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We set

t1 := tan
ϕ1

2
, t2 := tan

ϕ2

2
.

t1, t2 are projective coordinates on the
path circles a1, b1 of A1 and B1, resp.,
and obtain
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c22t
2
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2
2 + c20t

2
1 + c02t

2
2 + c11t1t2 + c00 = 0 with cik = f(α1, . . . , δ1)
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3. Transmission by one spherical four-bar

The transmission by the four-bar motion
defines a 2-2-correspondance between
the circles a1 and b1:

c22t
2
1t

2
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2
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2
2+c11t1t2+c00 = 0

(t1 := tan
ϕ1

2
, t2 := tan
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2
.)
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3. Transmission by one spherical four-bar

Coefficients in the biquadratic equation c22t
2
1t

2
2 + c20t

2
1 + c02t

2
2 + c11t1t2 + c00 = 0 :

c22 = sin α1−β1+γ1+δ1
2 sin α1−β1−γ1+δ1

2 ,

c20 = sin α1+β1+γ1+δ1
2 sin α1+β1−γ1+δ1

2 ,

c11 = −2 sinα1 sinβ1 6= 0

c02 = sin α1+β1+γ1−δ1
2 sin α1+β1−γ1−δ1

2 ,

c00 = sin α1−β1+γ1−δ1
2 sin α1−β1−γ1−δ1

2

The coefficients cik are algebraically dependent. c11 is a root of a 6th-degree
polynomial with coefficients depending on c00, c02, c20, c22.
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Particular cases of the transmission

The 2-2-correspondance between a1 and b1 splits into two projectivities ⇐⇒ the
quadrangle is a spherical isogram, i.e., β1 = α1 and δ1 = γ1 (c00 = c22 = 0).

In this case (. . . isogonal type)

t 7→ t2 =
sinα1 ± sin γ1

sin(α1 − γ1)
t1 with 0 7→ 0, ∞ 7→ ∞ for α1 6= γ1, π − γ1.
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Particular cases of the transmission

Under the condition

cosα1 cosβ1 = cos γ1 cos δ1

(equivalent to det(cik) = 0 ) each
quadrangle has orthogonal diagonals
(. . . orthogonal type).

The 2-2-correspondance maps pairs
of points on a1 aligned with I20 onto
pairs of points on b2 located on the
orthogonal line through I10 .
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3. Transmission by two spherical four-bars

c22t
2
1t

2
2 + c20t

2
1 + c02t

2
2 + c11t1t2 + c00 = 0

d22t
2
1t

2
2 + d20t

2
1 + d02t

2
2 + d11t1t2 + d00 = 0

The four-bar transmissions are equi-
valent to these two bilinear equations.

We eliminate t2 by computing the
resultant with respect to t2.

We obtain a biquartic equation in

t1 = tan ϕ1
2 and t3 = tan ϕ3

2 ,

i.e., a 4-4-correspondance between
A1 ∈ a1 and B2 ∈ b2 .
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Twofold decomposition of 4-4-correspondance

Continuous flexibility of a Kokotsakis
mesh for n = 4 means:
The 4-4-correspondance or – in the
reducable case – one component can
be decomposed in two different ways.

Kokotsakis (Graf, Sauer):
In the isogram case (n ≥ 4)

α1=β1, γ1=δ1, α2=β2, γ2=δ2

the composition of two projectivities is
a projectivity with 0 7→ 0 and ∞ 7→ ∞.
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V3

V4

P0 = Σ0
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Σ3

Σ4

I10

I20

I30

I40
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Twofold decomposition of 4-4-correspondance

Under the conditions

cosα1 cosβ1 = cos γ1 cos δ1 , α2 = β1 ,

cosα2 cosβ2 = cos γ2 cos δ2 , δ2 = −δ1 ,

both four-bars share the orthogonal
diagonals.

Due to Graf and Sauer (1931)
there is a second decomposition
of the same kind; all four-bars
share one diagonal (spherical Dixon
mechanism).
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Twofold decomposition of 4-4-correspondance

The 4-4-correspondance is the square
of a 2-2-correspondance

c21t
2
1t3 + c12t1t

2
3 + c10t1 + c01t3 = 0

with coefficients depending on
tanα1 , tan δ1 , tanβ2 , only.

In all known non-trivial examples
(III, IV, V) the 4-4-correspondance
between t1 and t3 is reducible.
There is a new example of a reducible
composition:
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4. Reducible compositions of spherical four-bars
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Burmester’s focal mechanism

Right hand figure: Reducible spherical
composition obeying Dixon’s angle
condition for ψ1
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4. Reducible compositions of spherical four-bars

For the composition of two spherical four-bars Dixon’s angle condition
<) I10A1B1 = ± <) I30B2A2 is equivalent to the statement that the discriminants

D1 = (c11t2)
2 − 4(c22t

2
2 + c20)(c02t

2
2 + c00) and

D2 = (d11t2)
2 − 4(d22t

2
2 + d02)(d20t

2
2 + d00)

are proportional.
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4. Reducible compositions of spherical four-bars

Theorem: (G. Nawratil, 2010)

There are 4 cases where the biquartic polynomial splits into two biquartic
polynomials:

1. Isogonal case: One of the spherical quadrangles is isogonal.

2. Dixon case: The two spherical four-bars obey Dixon’s angle condition.

3. Orthogonal case: Identical with the orthogonal type (Graf, Sauer).

4: A new condition; its geometrical meaning hasn’t been figured out, yet.
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4. Reducible compositions of spherical four-bars

Conjecture:

Apart from the trival translatory and planar-symmetrical types there is no

continuously flexible Kokotsakis-mesh with irreducible 4-4-correspondance.

If this is true then the only candidates for flexible Kokotsakis-meshes are the four
cases. This would enable a classification of all flexible types.
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