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1. Introduction
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Special case: n =4
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A Kokotsakis mesh is a polyhedral
structure consisting of an n-sided
central polygon Py surrounded by a
belt of polygons.

Each side a;, @ = 1,...,n, of Py
is shared with a polygon P,. Each
vertex V; of Py is the meeting point
of four faces.

Each face is seen as a rigid body;
only the dihedral angles can vary.
Under which conditions a Kokotsakis
mesh is continuously flexible ?
A



1. Introduction

He was born on the island Crete in Greece.
As a precocious child, he was accepted at the
Department of Civil Engineering of Technical
University of Athens already in the age of 16.

After graduation he was appointed a lecturer
in the Department of Descriptive and Projective
Geometry. He finished his PhD-thesis entitled
“About flexible polyhedra” under the supervision
of K. CARATHEODORI in Munich/Germany.

His list of publications contains not more than 5

R titles.
Antonios KOKOTSAKIS

1899-1964
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1. Introduction

W

Special case: n =3
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Kokotsakis mesh for n =4

= Vierflach [German]| (Kokotsakis
1931, Sauer 1932)

= four-flat [English]

For n = 3 the Kokotsakis mesh is
equivalent to an octahedron with
ViVoVs and W1W5W3 as opposite
triangular faces.

This offers an alternative approach
to R. Bricard’s flexible octahedra.

A



1. Introduction

Kinematic interpretation:

The polygons represent different
systems g, ..., 2, .

The sides a; of Py are
instantaneous axes I;p of the
relative motions 33, /3 .

The relative motions ;.1 /3;
between consecutive systems are
spherical four-bars.

The polygons need not be planar

Sept. 21, XVI Geometrical Seminar 2010, Vrnjatka Banja/Serbia % 5



1. Introduction
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To recall:

A spherical four-bar transmits the
rotation about the center Ay by the
coupler AB non-uniformly to the
rotation about By.

The arms AgA and ByB represent
consecutive systems >J;, 241 .

g



1. Introduction
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The edge lengths V1 V5, ..., V4V
of the central polygon Py have no
influence on the flexibility =—

Theorem: A Kokotsakis-mesh
for n = 4 is flexible if and only if
the composition of the two four-
bar (V1,V5) on the right hand
side is the same as via (V3, Vy)
on the left hand side.

(... provided, a self-intersection of the
quadrangle in 33 is admitted)

A



In discrete differential geometry there is a
interest on polyhedral structures composed
of quadrilaterals (quadrilateral surfaces).
When all quadrilaterals are planar, they
constitute a discrete conjugate net.

Theorem: [BOBENKO, HOFFMANN,
SCHIEF 2008]

A discrete conjugate net in general position
is continuously flexible <= all its 3 x 3

H. PorT™MANN, Y. Liu, J. WALLNER,
A. BoOoBENKO, W. WANG:

complexes are continuously flexible. Geometry of Multi-layer Freeform Structures for
Architecture. ACM Trans. Graphics 26 (3) (2007),
BOBENKO et al., 2008: SIGGRAPH 2007

i

the complete classification of flexible discrete conjugate nets has not been
achieved yet”
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2. Flexible Kokotsakis meshes

~
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~
ountain folds full  ~~ _

valley folds dashed

. frommmmmmmee a Miura-ori is a Japanese folding
: technique named after Prof. Koryo
Miura, The University of Tokyo.

~
~
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It is used for solar panels because it
can be unfolded into its rectangular
shape by pulling on one corner only.
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On the other hand it is used as kernel

Unfolded miura-ori; to stiffen sandwich structures.

dashs are valley folds,
full lines are mountain folds
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2. Flexible Kokotsakis meshes
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Tomihiro TAcHI (The University of
Tokyo) designed an algorithm to
compute numerically flexible quad-
meshes with a flat initial pose.

Freeform Variations of Origami
Proc. 14th Internat. Conf. on Geometry
and Graphics, Kyoto 2010, no. 221

N



2. Flexible Kokotsakis meshes
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Miura-ori is a special case of

Theorem: [KOKOTSAKIS 1932]
A Kokotsakis mesh is flexible if at each
vertex V; opposite angles are either equal
or supplementary, i.e.,
a; = Pi, Yi=0; or
a;=m—0i Yi=T—0.

A discrete conjugate net where all vertices
are of this type is called Voss surface:

e |ts folds are geodesics,

e it is continuously flexible.

N



2. Flexible Kokotsakis meshes

Any arbitrary plane quadrangle is a
tile for a regular tessellation of the
plane.

It is obtained by applying iterated
180°-rotations about the midpoints
of the sides of an initial quadrangle

P.

A. KOKOTSAKIS, 1932
Athens
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2. Flexible Kokotsakis meshes

A. KOKOTSAKIS, 1932
Athens
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Any plane quadrangle is a tile for a
regular tessellation of the plane.

It is obtained by applying iterated
180°-rotations about the midpoints

of the sides of an initial quadrangle
P.

For convex P this polyhedral
structure is continuously flexible

N



2. Flexible Kokotsakis meshes

I. Planar-symmetric type (KOKOTSAKIS 1932):

The reflection in the plane of symmetry of V; and
V4 maps each horizontal fold onto itself while the
two vertical folds are exchanged.

Il. Translational type:

There is a translation V; — V; and Vo, — V5
mapping the three faces on the right hand side
onto the triple on the left hand side.
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2. Flexible Kokotsakis meshes

I11. Isogonal type (KOKOTSAKIS 1932):

At each vertex opposite angles are congruent =
3 x 3 complex of a Voss surface.

IV. Orthogonal type (GRAF, SAUER 1931):

Here the horizontal folds are located in parallel
(say: horizontal) planes, the vertical folds in
vertical planes. Py is a trapezoid.
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2. Flexible Kokotsakis meshes

V. Line-symmetric type (H.S. 2009):

A line-reflection maps the pyramide at 1}
onto that of Vj; another one exchanges
the pyramides at V5 and V3.

This includes Kokotsakis' example of a
flexible tessellation.
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3. Transmission by one spherical four-bar

Four-bar motion ¥5/%; and its
spherical image
0 < alaﬁlaf}/l)&l < 180°
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3. Transmission by one spherical four-bar

We set

P1
t1 ;= tan — o = tan — .
1 5 3 2 al 5

P2

t1, to are projective coordinates on the
path circles a1, b1 of A7 and By, resp.,
and obtain

ngt%t% + Cgot% + Cogt% + c11t1to +cogo = 0 with ¢ = f(ozl, . ,51)
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3. Transmission by one spherical four-bar

The transmission by the four-bar motion
defines a 2-2-correspondance between
the circles a; and bq:

ngt%tg + Cgot% + Cogt% + C1 1t1t2 + Coo — 0

(t1 := tan %, to = tan% )
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3. Transmission by one spherical four-bar

Coefficients in the biquadratic equation ngt%t% -+ ngt% -+ COQt% + c11t1to + coo = 0

Coo — sin a1_51;71+51 sin 041—512—71+51 7
C2p = SIn O‘1+51;71+51 sin Oé1+ﬂ12—71+51 ’
c11 = —2 sinaq sin (31 # 0

Cp2 = SN O‘1+51;71—51 sin 0é1+51;71—61 ,
Cop = SIn 041—51;71—51 sin Oé1—512—71—61

The coefficients c¢;;. are algebraically dependent. c¢q; is a root of a 6th-degree
polynomial with coefficients depending on cyg, cg2, c20, C29.
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Particular cases of the transmission

The 2-2-correspondance between a; and b; splits into two projectivities <= the
quadrangle is a spherical isogram, i.e., 81 = a1 and 91 = 1 (cop = ca2 = 0).

In this case (. . . isogonal type)
sin a1 £ sin vy

sin(a; — 1)

t — 1y = t1 with 0— 0, co— o0 for ay # v1, ™ — V1.
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Particular cases of the transmission

Under the condition
cos aip cos 31 = cos~y; cosdy

(equivalent to det(c;x) = 0) each
quadrangle has orthogonal diagonals
(... orthogonal type).

The 2-2-correspondance maps pairs
of points on a; aligned with I55 onto
pairs of points on by located on the
orthogonal line through I .
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3. Transmission by two spherical four-bars

four-bar motions 5 /31 and >3/
and their spherical images
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3. Transmission by two spherical four-bars

ngt%t% -+ Cgot% + Cogt% + c11t1ta +coo =0
doot?t2 + dogt? + doots + diitite + dog = 0

The four-bar transmissions are equi-
valent to these two bilinear equations.

We eliminate t; by computing the
resultant with respect to ts.

We obtain a biquartic equation in

t1 = tan 5 and 3 = tan 52,

l.e., a 4-4-correspondance between
Ai € ay and By € bs.
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Twofold decomposition of 4-4-correspondance

Continuous flexibility of a Kokotsakis
mesh for n = 4 means:

The 4-4-correspondance or — in the
reducable case — one component can
be decomposed in two different ways.

KOKOTSAKIS (GRAF, SAUER):
In the isogram case (n > 4)

a1 =01, 1=01, ag=LF2, 12=02
the composition of two projectivities is
a projectivity with 0 — 0 and oo — 0.
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Twofold decomposition of 4-4-correspondance

Under the conditions

Ccos i cosS 31 = cosyy cosdi, Qo =

COS (g COS B3 = COS Y2 COS Oy, 09 =

both four-bars share the orthogonal
diagonals.

Due to GRAF and SAUER (1931)
there is a second decomposition
of the same kind: all four-bars
share one diagonal (spherical DixoN
mechanism).
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Twofold decomposition of 4-4-correspondance

The 4-4-correspondance is the square
of a 2-2-correspondance

Cglt%tg -+ Clgtltg -+ 010t1 -+ C()ltg =0

with  coefficients depending on
tan o , tand; , tan 3o, only.

In all known non-trivial examples
(111, 1V, V) the 4-4-correspondance
between t; and t3 is reducible.
There is a new example of a reducible
composition:
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4. Reducible compositions of spherical four-bars

BURMESTER's focal mechanism

Right hand figure: Reducible spherical
composition obeying DIXON's angle
condition for ),
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4. Reducible compositions of spherical four-bars

For the composition of two spherical four-bars Dixon's angle condition
J [10A1B1 = £ < I30B2A5 is equivalent to the statement that the discriminants

D1 = (011t2)2 — 4(622t% -+ 620)(002t% -+ C()o) and
Dy = (dy1t2)? — 4(daat3 + do2)(daots + doo)

are proportional.
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4. Reducible compositions of spherical four-bars

Theorem: (G. NAWRATIL, 2010)

There are 4 cases where the biquartic polynomial splits into two biquartic
polynomials:

1. Isogonal case: One of the spherical quadrangles is isogonal.
2. Dixon case: The two spherical four-bars obey DIXON's angle condition.
3. Orthogonal case: Identical with the orthogonal type (GRAF, SAUER).

4: A new condition; its geometrical meaning hasn't been figured out, yet.
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4. Reducible compositions of spherical four-bars

Conjecture:

Apart from the trival translatory and planar-symmetrical types there is no
continuously flexible Kokotsakis-mesh with irreducible 4-4-correspondance.

If this is true then the only candidates for flexible Kokotsakis-meshes are the four
cases. This would enable a classification of all flexible types.
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