Black Hole Entropy, Finite Geometry and Mermin Squares

Péter Lévay

May 21, 2009
The Black Hole Analogy

QUANTUM INFORMATION THEORY ↔ STRING THEORY

Multipartite Entanglement ↔ Black Hole solutions

The main correspondence is between certain multipartite entanglement measures and the black hole entropy.

The talk is based on a recent paper

Péter Lévay1, Metod Saniga2, Péter Vrana1 and Petr Pracna3

\textbf{Physical Review D79, 084036 (2009)}

1Department of Theoretical Physics, Institute of Physics, Budapest University of Technology, Budapest, Hungary
2Astronomical Institute, Slovak Academy of Sciences Tatranská Lomnica, Slovak Republic
3J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic
Plan of the talk

1. Black hole entropy in $D = 5$ and $D = 4$.

3. The finite geometry of the $D = 5$ black hole entropy.

5. The finite geometry of the $D - 5$ lift.

6. Finite subgroups of the U-duality group.

7. Conclusions.
1. Black hole entropy in $D = 5$ and $D = 4$.
Plan of the talk

1. Black hole entropy in $D = 5$ and $D = 4$.
3. The finite geometry of the $D = 5$ black hole entropy.
Plan of the talk

1. Black hole entropy in $D = 5$ and $D = 4$.
3. The finite geometry of the $D = 5$ black hole entropy.
Plan of the talk

1. Black hole entropy in $D = 5$ and $D = 4$.
3. The finite geometry of the $D = 5$ black hole entropy.
5. The finite geometry of the $4D - 5D$ lift.
Plan of the talk

1. Black hole entropy in $D = 5$ and $D = 4$.
3. The finite geometry of the $D = 5$ black hole entropy.
5. The finite geometry of the $4D - 5D$ lift.
6. Finite subgroups of the U-duality group.
Plan of the talk

1. Black hole entropy in $D = 5$ and $D = 4$.
3. The finite geometry of the $D = 5$ black hole entropy.
5. The finite geometry of the $4D - 5D$ lift.
6. Finite subgroups of the U-duality group.
7. Conclusions.
Black Hole Entropy in $D = 4$ and $D = 5$

The Bekenstein-Hawking entropy formula

$$S = k \frac{A}{4l_D^2}, \quad l_D^2 = \frac{\hbar G_D}{c^3}$$

for Reissner-Nordström type solutions arising from M-theory/String theory compactifications are described by **cubic** ($D = 5$) and **quartic** ($D = 4$) invariants as

$$S = \pi \sqrt{|I_3|}, \quad S = \pi \sqrt{|I_4|}.$$

Here

$$48I_3 = \text{Tr}(\Omega Z \Omega Z \Omega Z)$$

$$64I_4 = \text{Tr}(Z \bar{Z})^2 - \frac{1}{4}(\text{Tr} Z \bar{Z})^2 + 4(\text{Pf} Z + \text{Pf} \bar{Z}).$$

$$Z_{AB} = -(x^{IJ} + iy_{IJ})(\Gamma^{IJ})_{AB}, \quad Z_{AB} = -Z_{BA}, \quad A, B, I, J = 1, \ldots 8.$$
In $D = 5$ we have 27 charges transforming as the 27 of $E_{6(6)}$. The groups $E_{6(6)}$ and $E_{7(7)}$ are the symmetry groups of the corresponding classical supergravities. In the quantum theory the black hole/string charges become integer-valued the U-duality groups are in this case broken to $E_{6(6)}(\mathbb{Z})$ and $E_{7(7)}(\mathbb{Z})$ accordingly.
1 In $D = 5$ we have 27 charges transforming as the 27 of $E_6(6)$.

2 In $D = 4$ we have 56 charges transforming as the 56 of $E_7(7)$.

The groups $E_6(6)$ and $E_7(7)$ are the symmetry groups of the corresponding classical supergravities. In the quantum theory the black hole/string charges become integer-valued the U-duality groups are in this case broken to $E_6(6)(\mathbb{Z})$ and $E_7(7)(\mathbb{Z})$ accordingly.
Cubic Jordan algebras and entropy formulas in $D = 5$

The charge configurations describing electric black holes and magnetic black strings of the $N = 2$, $D = 5$ ($N = 8$, $D = 5$) magic supergravities are described by cubic Jordan algebras over a division algebra \mathbf{A} (or its split cousin \mathbf{A}_s).

$$J_3(Q) = \begin{pmatrix} q_1 & Q^v & \overline{Q^s} \\ \frac{Q^v}{Q^s} & q_2 & Q^c \\ \frac{Q^s}{Q^c} & \frac{Q^c}{q_3} \end{pmatrix}, \quad q_i \in \mathbb{R}, \quad Q^{v,s,c} \in \mathbf{A}$$

The black hole entropy is given by the cubic invariant

$$I_3(Q) = q_1 q_2 q_3 - (q_1 Q^s \overline{Q^s} + q_2 Q^c \overline{Q^c} + q_3 Q^v \overline{Q^v}) + 2\Re(Q^c Q^s Q^v)$$

as

$$S = \pi \sqrt{|I_3(Q)|}.$$
The groups preserving I_3 are the ones $SL(3, \mathbb{R})$, $SL(3, \mathbb{C})$, $SU^*(6)$ and $E_6(-26)$.
For the split octonions we have

$$Q \overline{Q} = (Q_0)^2 + (Q_1)^2 + (Q_2)^2 + (Q_3)^2 - (Q_4)^2 - (Q_5)^2 - (Q_6)^2 - (Q_7)^2,$$

and the group preserving I_3 is $E_6(6)$.
The groups $E_6(-26)$ and $E_6(6)$ are the symmetry groups of the corresponding classical supergravities. In the quantum theory the black hole/string charges become integer-valued and the relevant 3×3 matrices are defined over the integral octonions and integral split octonions, respectively. Hence, the U-duality groups are in this case broken to $E_6(-26)(\mathbb{Z})$ and $E_6(6)(\mathbb{Z})$ accordingly.
Finite generalized quadrangles $GQ(s, t)$

A finite generalized quadrangle of order (s, t), is an incidence structure $S = (P, B, I)$, where P and B are disjoint (non-empty) sets of objects, called respectively points and lines, and where I is a symmetric point-line incidence relation satisfying the following axioms:

1. each point is incident with $1 + t$ lines ($t \geq 1$) and two distinct points are incident with at most one line

In what follows, we shall be uniquely concerned with generalized quadrangles having lines of size three, $GQ(2, t)$. From a theorem of Feit and Higman it follows that we have the unique possibilities $t = 1, 2, 4$.
A *finite generalized quadrangle* of order \((s, t)\), is an incidence structure \(S = (P, B, I)\), where \(P\) and \(B\) are disjoint (non-empty) sets of objects, called respectively points and lines, and where \(I\) is a symmetric point-line incidence relation satisfying the following axioms:

1. each point is incident with \(1 + t\) lines \((t \geq 1)\) and two distinct points are incident with at most one line
2. each line is incident with \(1 + s\) points \((s \geq 1)\) and two distinct lines are incident with at most one point

In what follows, we shall be uniquely concerned with generalized quadrangles having lines of size *three*, \(GQ(2, t)\). From a theorem of Feit and Higman it follows that we have the unique possibilities \(t = 1, 2, 4\).
Finite generalized quadrangles $GQ(s, t)$

A finite generalized quadrangle of order (s, t), is an incidence structure $S = (P, B, I)$, where P and B are disjoint (non-empty) sets of objects, called respectively points and lines, and where I is a symmetric point-line incidence relation satisfying the following axioms:

1. each point is incident with $1 + t$ lines ($t \geq 1$) and two distinct points are incident with at most one line
2. each line is incident with $1 + s$ points ($s \geq 1$) and two distinct lines are incident with at most one point
3. if x is a point and L is a line not incident with x, then there exists a unique pair $(y, M) \in P \times B$ for which $xI M I y I L$

In what follows, we shall be uniquely concerned with generalized quadrangles having lines of size three, $GQ(2, t)$. From a theorem of Feit and Higman it follows that we have the unique possibilities $t = 1, 2, 4$.
The Doily, $GQ(2, 2)$
The Duad construction of $GQ(2, 4)$
Summary of patterns found for $D = 5$

Generalized quadrangles
- $GQ(2, 1)$ (grid) **9 points** and **6 lines**.

Jordan algebras (Charge configurations)
- $J_3(C)$ Number of real numbers: $3 + 3 \cdot 2 = 9$.

Cubic invariants (Black Hole entropy)
- $l_3(C)$ Number of terms: **6**. (Determinant)
Summary of patterns found for $D = 5$

Generalized quadrangles
1. $GQ(2, 1)$ (grid) **9 points** and **6 lines**.
2. $GQ(2, 2)$ (doily) **15 points** and **15 lines**.

Jordan algebras (Charge configurations)
1. $J_3(C)$ Number of real numbers: $3 + 3 \cdot 2 = 9$.
2. $J_3(H)$ Number of real numbers: $3 + 3 \cdot 4 = 15$.

Cubic invariants (Black Hole entropy)
1. $I_3(C)$ Number of terms: **6**. (Determinant)
2. $I_3(H)$ Number of terms: **15**. (Pfaffian)
Summary of patterns found for $D = 5$

Generalized quadrangles
1. $GQ(2, 1)$ (grid) **9 points** and **6 lines**.
2. $GQ(2, 2)$ (doily) **15 points** and **15 lines**.
3. $GQ(2, 4)$ **27 points** and **45 lines**.

Jordan algebras (Charge configurations)
1. $J_3(C)$ Number of real numbers: $3 + 3 \cdot 2 = 9$.
2. $J_3(H)$ Number of real numbers: $3 + 3 \cdot 4 = 15$.
3. $J_3(O)$ Number of real numbers: $3 + 3 \cdot 8 = 27$.

Cubic invariants (Black Hole entropy)
1. $I_3(C)$ Number of terms: **6**. (Determinant)
2. $I_3(H)$ Number of terms: **15**. (Pfaffian)
3. $I_3(O)$ Number of terms: **45**.
The cubic invariant and the duad construction

\[E_6(6) \supset SL(2) \times SL(6) \]

under which

\[27 \rightarrow (2, 6') \oplus (1, 15). \]

This decomposition is displaying nicely its connection with the duad construction of GQ(2, 4). Under this decomposition \(I_3 \) factors as

\[I_3 = \text{Pf}(A) + u^T Av, \]

where \(u \) and \(v \) are two six-component vectors and for the \(6 \times 6 \) antisymmetric matrix \(A \) we have

\[\text{Pf}(A) \equiv \frac{1}{3!2^3} \varepsilon_{ijklmn} A^{ij} A^{kl} A^{mn}. \]
We also have the decomposition

\[E_{6(6)} \supset SL(3, \mathbb{R})_A \times SL(3, \mathbb{R})_B \times SL(3, \mathbb{R})_C \]

under which

\[27 \rightarrow (3', 3, 1) \otimes (1, 3', 3') \otimes (3, 1, 3). \]

The above-given decomposition is related to the "bipartite entanglement of three-qutrits" interpretation of the 27 of \(E_6(\mathbb{C}) \).

In this case we have

\[l_3 = \text{Det}a + \text{Det}b + \text{Det}c - \text{Tr}(abc), \]

where \(a, b, c \) are \(3 \times 3 \) matrices transforming accordingly.
The qutrit labelling of $GQ(2, 4)$
Truncations

1. Truncations to 36 possible doilies ("quaternionic magic" with 15 charges).

Perp-sets are obtained by selecting an arbitrary point and considering all the points collinear with it. A decomposition which corresponds to perp-sets is of the form

\[E_{6(6)} \supset SO(5,5) \times SO(1,1) \]

under which

\[27 \rightarrow 16_1 \oplus 10_{-2} \oplus 1_4. \]

This is the usual decomposition of the \(U \)-duality group into \(T \) duality and \(S \) duality.
Truncations

1. Truncations to 36 possible doilies ("quaternionic magic" with 15 charges).
2. Truncations to 120 possible grids ("complex magic" with 9 charges).

Perp-sets are obtained by selecting an arbitrary point and considering all the points collinear with it. A decomposition which corresponds to perp-sets is of the form

\[E_{6(6)} \supset SO(5, 5) \times SO(1, 1) \]

under which

\[27 \to 16_1 \oplus 10_{-2} \oplus 1_4. \]

This is the usual decomposition of the U-duality group into T duality and S duality.
Truncations

1. Truncations to 36 possible **doilies** ("quaternionic magic" with 15 charges).
2. Truncations to 120 possible **grids** ("complex magic" with 9 charges).
3. Truncations to 27 possible **perp sets** (with 11 charges).

Perp-sets are obtained by selecting an arbitrary point and considering all the points collinear with it. A decomposition which corresponds to perp-sets is of the form

\[E_{6(6)} \supset SO(5,5) \times SO(1,1) \]

under which

\[27 \rightarrow 16_1 \oplus 10_{-2} \oplus 1_4. \]

This is the usual decomposition of the *U*-duality group into *T* duality and *S* duality.
What happened to the signs of the terms in the cubic invariant? Indeed, our labelling only produces the terms of the cubic invariant l_3 up to a sign. One could immediately suggest that we should also include a special distribution of signs to the points of GQ(2, 4). However, it is easy to see that no such distribution of signs exists. We have a triple of grids inside our quadrangle corresponding to the three different two-qutrit states. Truncation to any of such states yields the cubic invariant $l_3(a) = \text{Det}(a)$. The structure of this determinant is encapsulated in the structure of the corresponding grid. We can try to arrange the 9 amplitudes in a way that the 3 plus signs for the determinant should occur along the rows and the 3 minus signs along the columns. But this is impossible since multiplying all of the nine signs “row-wise” yields a plus sign, but “column-wise” yields a minus one. \mapsto MERMIN SQUARES?!
The Pauli group

The real matrices of the Pauli group

\[I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

Three-qubit operations acting on \(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \) e.g.

\[ZYX \equiv Z \otimes Y \otimes X = \begin{pmatrix} Y \otimes X & 0 \\ 0 & -Y \otimes X \end{pmatrix} = \begin{pmatrix} 0 & X & 0 & 0 \\ -X & 0 & 0 & 0 \\ 0 & 0 & 0 & -X \\ 0 & 0 & X & 0 \end{pmatrix}. \]

Operators containing an even number of \(Y \)s are symmetric e.g. \(ZYY \).
The Pauli group

The real matrices of the Pauli group

\[I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

Three-qubit operations acting on \(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \) e.g.

\[ZYX \equiv Z \otimes Y \otimes X = \begin{pmatrix} Y \otimes X & 0 \\ 0 & -Y \otimes X \end{pmatrix} = \begin{pmatrix} 0 & X & 0 & 0 \\ -X & 0 & 0 & 0 \\ 0 & 0 & 0 & -X \\ 0 & 0 & X & 0 \end{pmatrix}. \]

1. Operators containing an even number of \(Y \)s are symmetric e.g. \(ZYY \).
2. Operators containing an odd number of \(Y \)s are antisymmetric e.g. \(ZYX \).
A Mermin square for two qubits

\[
\begin{array}{ccc}
I \otimes Z & Z \otimes I & Z \otimes Z \\
X \otimes I & I \otimes X & X \otimes X \\
X \otimes Z & Z \otimes X & Y \otimes Y
\end{array}
\]
The Doily with the Mermin square inside

Péter Lévay Black Hole Entropy, Finite Geometry and Mermin Squares
A labelling of $GQ(2, 4)$ with three qubit Pauli operators

Péter Lévay
Black Hole Entropy, Finite Geometry and Mermin Squares
The origin of the noncommutative labelling for $GQ(2, 4)$

Interestingly the labelling taking care of the 120 Mermin squares living inside $GQ(2, 4)$ and describing the structure of the 5D Black Hole Entropy can be understood by using results on the structure of the 4D Black Hole Entropy $S = \pi \sqrt{|I_4|}$ with

$$64|I_4| = \text{Tr} (\bar{Z} \bar{Z})^2 - \frac{1}{4} (\text{Tr} \bar{Z} \bar{Z})^2 + 4 (\text{Pf} Z + \text{Pf} \bar{Z}).$$

$$Z_{AB} = -(x^{IJ} + iy^{IJ})(\Gamma^{IJ})_{AB}, \quad Z_{AB} = -Z_{BA}, \quad A, B, I, J = 0, \ldots 7.$$ Here $\Gamma^{0k} = \Gamma_k$, and $\Gamma^{kl} = \frac{1}{2} [\Gamma_k, \Gamma_l]$ with

$$\{\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4, \Gamma_5, \Gamma_6, \Gamma_7\} = \{IIIY, ZYX, YIX, YZZ, XYX, IYZ, YXZ\}$$

$$\Gamma_j \Gamma_k + \Gamma_k \Gamma_j = -2 \delta_{jk} 1, \quad 1 \equiv III, \quad j, k = 1, 2, \ldots, 7.$$ These 7 \oplus 21 antisymmetric three-qubit operators are living within the **Split Cayley Hexagon of order two**. See: P. Lévay et.al. Phys. Rev. D78, 124022 (2008).
The split Cayley hexagon of order two
A subgeometry of the Hexagon. The Coxeter graph
A presentation of this group of order 168 related to the automorphism group of the Coxeter graph and its complement is

$$PLS_2(7) \equiv \{\alpha, \beta, \gamma \mid \alpha^7 = \beta^3 = \gamma^2 = \alpha^{-2}\beta\alpha\beta^{-1} = (\gamma\beta)^2 = (\gamma\alpha)^3 = 1\}.$$

Let us define

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then we can define an 8×8 representation acting on the three-qubit Pauli group by conjugation as follows:
An 8 × 8 representation of Klein’s group

\[D(\alpha) = (C_{12}C_{21})(C_{12}C_{31})C_{23}(C_{12}C_{31}) \equiv \begin{pmatrix} P & Q & 0 & 0 \\ 0 & 0 & Q & P \\ 0 & 0 & QX & PX \\ PX & QX & 0 & 0 \end{pmatrix} \]

\[D(\beta) = C_{12}C_{21} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \]

\[D(\gamma) = C_{21}(I \otimes I \otimes Z) = \begin{pmatrix} Z & 0 & 0 & 0 \\ 0 & 0 & 0 & Z \\ 0 & 0 & Z & 0 \\ 0 & Z & 0 & 0 \end{pmatrix} \]
The $N = 2, D = 4$ STU truncation

By virtue of the $PSL(2, 7)$ symmetry of the Coxeter graph we can identify seven subsectors with 8 charges each. These correspond to seven three-qubit states $a_\mu, b_\mu \ldots g_\mu, \quad \mu = 0, 1, \ldots 7$ with integer amplitudes. This gives rise to the tripartite entanglement of seven qubits interpretation of the 56 of E_7.

The correspondence is based on the rotation of the pattern:

$-a_7 - ia_0 \leftrightarrow IiY, \quad a_4 + ia_4 \leftrightarrow ZZY, \quad a_2 + ia_5 \leftrightarrow ZiY, \quad a_1 + ia_6 \leftrightarrow IzY$.

related to

$E_7 \supset SL(2)_a \times SL(2)_b \times \ldots SL(2)_g$

under which

$56 \rightarrow 2212111 \oplus 1221211 \oplus \cdots \oplus 2121112$.
Cayley’s hyperdeterminant, and the three qubit state of one of the seven $N = 2$ truncations

$$|a\rangle = a_0|0\rangle + a_1|1\rangle + \ldots a_7|7\rangle$$
$$= a_{000}|000\rangle + a_{001}|001\rangle + \ldots a_{111}|111\rangle$$

$$|ijk\rangle \equiv |i\rangle_A \otimes |j\rangle_B \otimes |k\rangle_C \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

$$D(a) = (a_0a_7)^2 + (a_1a_6)^2 + (a_2a_5)^2 + (a_3a_4)^2$$
$$- 2(a_0a_7)[(a_1a_6) + (a_2a_5) + (a_3a_4)]$$
$$- 2[(a_1a_6)(a_2a_5) + (a_2a_5)(a_3a_4) + (a_3a_4)(a_1a_6)]$$
$$+ 4a_0a_3a_5a_6 + 4a_1a_2a_4a_7$$

$$S = \pi \sqrt{|D(a)|}.$$
A geometric hyperplane H of a point-line incidence geometry $\Gamma(P, L)$ is a proper subset of P such that each line of Γ meets H in one or all points.

The complement of the Coxeter graph is a geometric hyperplane of the hexagon with automorphism group $PSL(2, 7)$. Are there other interesting ones?

For an 8×8 matrix we define the Wootters spin-flip operation as

$$\tilde{M} \equiv -(Y \otimes Y \otimes Y)M^T(Y \otimes Y \otimes Y).$$

If $M \in P_3$ then we can consider from the 63 operators the Wootters self-dual ones for which $\tilde{M} = M$. It turns out that we have 27 self-dual ones consisting of 12 antisymmetric and 15 symmetric operators. One can then prove that these 27 operators form a geometric hyperplane of the hexagon. $YYY \mapsto I/Y$ gives another hyperplane e.t.c. altogether 28 ones!
The hyperplane of the Hexagon with 27 points
A $D = 4$ interpretation

Note that the decomposition

$$E_{7(7)} \supset E_{6(6)} \times SO(1, 1)$$ \hspace{1cm} (1)

under which

$$56 \rightarrow 1 \oplus 27 \oplus 27' \oplus 1'$$ \hspace{1cm} (2)

describes the relation between the $D = 4$ and $D = 5$ duality groups.

Notice that Wootters self-duality in the $N = 8$ language means that

$$\text{Tr}(\Omega \mathcal{Z}) = 0, \quad \mathcal{Z} = \Omega \mathcal{Z} \Omega^T \quad \Omega = Y Y Y.$$

The usual choice for $N = 8$ supergravity is $\Omega = I I Y = \Gamma_1$. With this choice one can prove that

$$\Omega \mathcal{Z} = \mathcal{S} + i\mathcal{A} \equiv \frac{1}{2} \epsilon^{j k} \Gamma_{1 j k} + i(y_{0 j} \Gamma_{1 j} - y_{1 j} \Gamma_j),$$ \hspace{1cm} (3)

(summation for $j, k = 2, 3, \ldots, 7$).
Connecting different forms of the cubic invariant.

Hence, with the notation

\[A^{jk} \equiv x^{j+1k+1}, \quad u_j \equiv y_{0j+1}, \quad v_j \equiv y_{1j+1}, \quad j, k = 1, 2, \ldots, 6, \]

we get

\[I_3 = \frac{1}{48} \text{Tr}(\Omega Z \Omega Z \Omega Z) = \text{Pf}(A) + u^T Av. \]

Notice that the operators

\[\Gamma_j, \quad \Gamma_{1j}, \quad \Gamma_{1jk} \quad j, k = 2, 3 \ldots 7 \]

give rise to our noncommutative labelling, where

\[\{\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4, \Gamma_5, \Gamma_6, \Gamma_7\} = \{IIY, ZYX, YIX, YZZ, XYX, IYZ, YXZ\}. \]

Hence the connection between the \(D = 4 \) and \(D = 5 \) is related to a one between the structures of GQ(2, 4) and one of the geometric hyperplanes of the hexagon.
The action of $W(E_6)$ of order 51840 on $GQ(2, 4)$

Let us consider the correspondence

\[
I \mapsto (00), \quad X \mapsto (01), \quad Y \mapsto (11), \quad Z \mapsto (10).
\]

For example, XZI is taken to the 6-component vector (011000). Knowing that $W(E_6) \cong O^-(6, 2)$,

\[
O^-(6, 2) = \langle c, d | c^2 = d^9 = (cd^2)^8 = [c, d^2]^2 = [c, d^3 cd^3] = 1 \rangle.
\]

For the action of c

\[
IXI \leftrightarrow XZI, \quad ZYX \leftrightarrow YIX, \quad IZI \leftrightarrow XXI
\]

\[
ZYZ \leftrightarrow YIZ, \quad ZII \leftrightarrow YYI, \quad ZYY \leftrightarrow YIY,
\]

the remaining 15 operators are left invariant. For the action of d we get

\[
IXI \leftrightarrow YXZ \leftrightarrow YZX \leftrightarrow YIX \leftrightarrow XYZ \leftrightarrow IYZ \leftrightarrow YXX \leftrightarrow ZZI \leftrightarrow YXY \leftrightarrow
\]

\[
IZI \leftrightarrow ZYY \leftrightarrow XII \leftrightarrow YZY \leftrightarrow XYX \leftrightarrow XYY \leftrightarrow YIY \leftrightarrow YIZ \leftrightarrow IYY \leftrightarrow
\]

\[
IYX \leftrightarrow ZXI \leftrightarrow ZYZ \leftrightarrow ZYX \leftrightarrow YYI \leftrightarrow YZZ \leftrightarrow ZII \leftrightarrow XZI \leftrightarrow XXI \leftrightarrow
\]
It has been known for a long time that the maximal supergravity in D dimensions obtained by Kaluza-Klein dimensional reduction from $D = 11$ has a $E_{n(n)}(\mathbb{R})$ symmetry where $n = 11 - D$. It is conjectured that the infinite discrete subgroup $E_{n(n)}(\mathbb{Z})$ is an exact symmetry of the corresponding string theory, known as U-duality group. It is useful to identify a finite subgroup of the U-duality group that maps the fundamental quantum states of string theory among themselves. (See e.g. H. Lü, C. N. Pope and K. S. Stelle: Nucl. Phys. B476,89 1996). This group is $W(E_{n(n)})$. Here motivated by some of the techniques of quantum information theory and finite geometry we have obtained an explicit realization of $W(E_6)$ acting on the charges ($U(1)$ gauge fields. (A similar construction holds also for $W(E_7)$.) Notice that

$$C_3' = \mathbb{Z}_2^6 \rtimes W'(E_7), \quad B_3' = \mathbb{Z}_2^6 \rtimes W'(E_6).$$

Where C' and B' are the central quotients of the three-qubit Clifford and Bell groups.
The finite geometric structure $GQ(2, 4)$ of the $D = 5$ black hole entropy is revealed.
Conclusions

1. The finite geometric structure $GQ(2, 4)$ of the $D = 5$ black hole entropy is revealed.

2. Truncations in string theory are related to restriction to restriction to hyperplanes.
Conclusions

1. The finite geometric structure $GQ(2, 4)$ of the $D = 5$ black hole entropy is revealed.
2. Truncations in string theory are related to restriction to hyperplanes.
3. A noncommutative labelling based on three-qubit Pauli operators was given.
Conclusions

1. The finite geometric structure $GQ(2, 4)$ of the $D = 5$ black hole entropy is revealed.
2. Truncations in string theory are related to restriction to hyperplanes.
3. A noncommutative labelling based on three-qubit Pauli operators was given.
4. A connection to Mermin squares was established,
Conclusions

1. The finite geometric structure $GQ(2, 4)$ of the $D = 5$ black hole entropy is revealed.

2. Truncations in string theory are related to restriction to hyperplanes.

3. A noncommutative labelling based on three-qubit Pauli operators was given.

4. A connection to Mermin squares was established,

5. An interesting role of finite discrete subgroups ($W(E_n)$, $PSL(2, 7)$) of the U-duality group within the context of the Black Hole Analogy was established.
Conclusions

1. The finite geometric structure $GQ(2, 4)$ of the $D = 5$ black hole entropy is revealed.

2. Truncations in string theory are related to restriction to hyperplanes.

3. A noncommutative labelling based on three-qubit Pauli operators was given.

4. A connection to Mermin squares was established,

5. An interesting role of finite discrete subgroups ($W(E_n)$, $PSL(2, 7)$) of the U-duality group within the context of the Black Hole Analogy was established.

6. Partial success in identifying the underlying finite geometric structures of the $4D - 5D$ lift.