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Introduction

An important and powerful technique for solving combinatorial enumeration problems is the
generating function approach. A generating function is a formal power series in one or more
indeterminates where the coefficients equal the number of objects in a given combinatorial
class having certain characteristics (e.g., the coefficient of z™ in B(z) defined by B(z) =
1 + zB(z)? equals the number of binary trees having n internal nodes). The generating
function approach can be summarised as follows. Using combinatorial arguments we derive
bijections between or decompositions of certain sets of composite combinatorial structures.
These bijections are then reduced to functional relationships between formal power series.
Our enumeration problem can now be solved by extracting the coefficients of the formal
power series occurring. In the case of simple relationships between known power series we
can immediately find the solution to our problem and in some other cases we can apply the
Inversion Theorem of Lagrange. But most often the situation is not so easy and we have to
resort to other methods.

In Chapter 1 we give a short overview on how to transform certain given types of decom-
positions into relations between formal power series. For a detailed discussion of this step we
refer to the books of Goulden and Jackson [GJ04]|, Wilf [Wil90] and Flajolet and Sedgewick
[FS].

Fortunately many formal power series occurring in combinatorial enumeration can be
identified with analytic functions. Hence we can use methods from complex analysis for ex-
tracting the coefficients. This fact also makes it possible to find asymptotic expressions for
the coefficients since we can express them by means of complex contour integrals and asymp-
totically evaluate these integrals. In Chapter 2 we discuss two methods yielding asymptotic
expressions for the coefficients in question, namely singularity analysis and the saddlepoint
method. The third method presented in this chapter is the analytic version of Lagrange’s
Inversion Theorem.

The central analytic method in this work is the saddlepoint method. It can be success-
fully applied to functions which are large for positive real arguments and satisfy sufficient
decay conditions for nonreal arguments. Hayman [Hay56| defined classes of analytic functions
which satisfy all requirements necessary for successfully applying the saddlepoint method and
proved an asymptotic expression for the coefficients of such functions. In accordance to the
literature these functions will be called H-admissible functions. In his work Hayman also
proved certain closure properties satisfied by the classes of H-admissible functions. And in
view of the decompositions mentioned above it is exactly the existence of these closure prop-
erties which makes Hayman's concept a very comfortable tool for combinatorial enumeration.
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A detailed presentation of Hayman'’s results is given in Chapter 3.

In Chapter 4 we discuss some generalisations of Hayman’s work. Harris and Schoenfeld
[HS68| tightened Hayman’s conditions and obtained complete asymptotic expansions for the
coefficients but did not provide any closure properties. Some simple closure properties have
later been provided by Odlyzko and Richmond [OR85] and Miiller [Miil97].

Mutafchiev [Mut92] proposed a univariate generalisation of H-admissibility, called GH-
admissibility, where the asymptotics required by H-admissibility are replaced with weaker
conditions. Mutafchiev’s goal was a concept that can be used to establish local limit theo-
rems in combinatorial classes. Unfortunately none of the examples presented in his paper
[Mut92] constitute valid applications of GH-admissibility as will be shown in this work. Valid
applications of this concept can be found in [Mut97] where Mutafchiev proved some weak
convergence results for the number of distinct component sizes.

We also present two multivariate extensions of Hayman’s work which give answer to
questions dealing with the distribution of some parameters on combinatorial classes (e.g. the
distribution of the number of classes of a partition of a set of size n as n — oo). Bender and
Richmond [BR96| presented a multivariate generalisation which yields local limit theorems
for the parameters considered. They also proved some closure properties satisfied by their
classes. In this work we present an additional simple closure property which seems to be
new (see Section 4.3.1). Drmota, Gittenberger, and Klausner [DGKO05] stated a concept for
bivariate functions in the spirit of Hayman’s concept and obtained central limit theorems for
the parameter considered. An important fact to note on this last concept is the existence
of many simple algebraic closure properties. This makes their concept (besides Hayman’s
concept itself) the only concept amenable to automated membership testing.

In Chapter 5 we apply the methods of Chapters 3 and 4 to some combinatorial problems
concerning the number of components a randomly chosen combinatorial structure consists
of. Some general remarks on this class of combinatorial problems can be found in [BBCROO]
and [BCOR99].

Besides Canfield’s [Can77| results, we present some examples taken from [BR96], [DGKO05],
and [GJ04]. The examples are chosen such as to show applicability as well as limitations of
these methods.



Chapter 1

Generating Functions

Combinatorial structures consist of a finite set of atoms together with some relations between
them (e.g. graphs consist of nodes that are related to others via edges). In some cases all
atoms are considered equal while in others they are considered distinguishable by attached
labels. In the former case the structures are called unlabelled combinatorial structures while
in the latter case they are called labelled combinatorial structures. It proves convenient to
use ordinary generating functions (ogf) in the unlabelled case and exponential generating
functions (egf) in the labelled case.

The decompositions of combinatorial structures considered here can all be reduced to
a number of disjoint-sum-operations and product-operations. While the disjoint-sum is es-
sentially the same for labelled and unlabelled structures the product is a different one in
these cases. The reason for this is that in the labelled case we have to consider all possible
distributions of the set of labels over the factors.

In this chapter we show how to reduce given decompositions of the type described above
to functional relationships between generating functions. This step is also known as “the
symbolic method” and is extensively discussed in [F'S], [GJ04] and [Wil90] using a very
different notation. We have adopted the notation of [FS].

In Sections 1 and 2 we present the symbolic method for unlabelled and labelled combina-
torial structures assuming that we are only interested in the total number of structures of a
given size. If we want to keep track of more than one parameter we have to use multivariate
generating functions (mgf). In this situation we can use a simple modification of the symbolic
method described in the first two sections which is presented in Section 3. The last section
contains some definitions concerning limiting distributions needed in later chapters.

All power series considered in this chapter will be treated as formal power series and
all operations are performed in the ring of formal power series (see [GJ04] for necessary
definitions).

1.1 Unlabelled Constructions

An example of a class of unlabelled structures is the class of all binary trees where the nodes
in each tree are indistinguishable. The size of a tree can for example be defined as the number
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of its internal nodes. This example is an instance of

Definition 1.1. A pair (A,|-|,) 15 called an unlabelled combinatorial class if and only if
(i) || 4 s a function || 4, : A — N and
(ii) for each n € N the set {x € Al|a|, =n} is finite.

For each « € A the nonnegative integer |x|, 15 called the size of . The sequence

(card{oc € A| lodf 4 = n})nEN 15 called the counting sequence of (A, | 4).

Remark. As a consequence of (i) and (i), the set A is at most denumerable.

Remark. The following naming convention will be adopted: If the unlabelled combina-
torial class 1s called (A,|-|4), then its counting sequence is denoted by (an),cy and the
corresponding ordinary generating function is denoted by a(z) =) ,-,anz" (analogous
for (B,|-lg), (bn),ey and b(z)).

Definition 1.2. Two unlabelled combinatorial classes (A,|-| ) and (B,|-|z) are said to
be isomorphic if and only if their counting sequences are identical:

(A l-La) = (B,[g) <= (an)nen = (bn)pen:

Definition 1.3. For a giwen unlabelled combinatorial class (A,|-|,) , the subclass con-
sisting of all elements of size <n, n € N, s denoted by (A, |-|A)[n] = (A[“], |-|A[n]>:

xe AW — ac A A loe 4 <.

Definition 1.4. Gwen two unlabelled combinatorial classes (A,l||,) and (B,|-z), the
Cartesian product (C,|-|o) = (A, || 1) x (B,|-|g) 1s defined as the class

C=AxB Vi, ) € AxB: [(&,B)le = lo 4+ [Blg-

The Cartesian product constitutes a combinatorial construction since the resulting set
is an unlabelled combinatorial class. It is associative in the sense that (for any possible
placement of the parenthesis) all resulting classes are isomorphic.

For n > 1, the n-th power of a class (A, |:|4) (Cartesian product of n copies of (A, |- 4))
is denoted by (A,[-[ )™ = (A™,|-| 4n ). The 0-th power is defined as the class consisting of one
structure of size 0.

Definition 1.5. Given two unlabelled combinatorial classes (A,|-|,) and (B, ||g) and two
different structures €1 and e, of size 0, the disjoint sum (D, |-|p) = (A, |1 4) + (B, |g) s
defined as the class

D= (U{€1}><{oc}> U (U{ez}x{ﬁ})-

xcA peB

The size of the objects remains unchanged.
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The disjoint sum is an associative combinatorial construction in the same sense as the
Cartesian product.

Theorem 1.1. Let (A,|-|4) and and (B, ||z) denote two unlabelled combinatorial classes.
Then the following holds:

(1) (C,1e) = (A, 4) x (B,|lg) if and only 1f c(z) = a(z)b(z).
(1) (D,llp) = (A, 4) + (B,|lg) #f and only if d(z) = a(z) + b(z).
Proof. (i) For any n € N, the number of structures of size n in (A, [-| 4) x (B, |-5) is given

by
Cn= Z Qn, b,

n +ny=n

which is equal to [z"](a(z)b(z)).

(ii) Any object of size n in (A, [4) + (B,||z) has either the form (eq, @) or (e2, ) where
x € A and 3 € B are structures of size n. Thus, the total number of elements of size
nin (A,[-[4) + (B, |lg) is given by an + b, which is equal to [z"](a(z) + b(z)).

O

The class of all finite sequences of a given unlabelled combinatorial class (A, |-| ,) satisfies
Definition 1.1 if and only if A does not contain any structures of size 0. In case of existence,
this structure is denoted by seq( (A, | 4)).

Under the same restriction, the class of all finite subsets and the class of all finite multisets
of (A,|-|) exist as unlabelled combinatorial classes and are denoted by set( (A, 4)) and
multiset ( (A, -] ,) ), respectively.

As a consequence of the last theorem, one gets

Theorem 1.2. Let (A,|-|,) denote an unlabelled combinatorial class not containing any
objects of size 0. Then the following holds

(i) (B,llg) =seq((A,l14)) if and only if

b(Z) = Z (a(Z))n = m

neN

(1) (C,|'le) =set((A,|14)) if and only if

c(z) = exp (Z(—])kJr]%]c)) )

K>1

(111) (D,||p) = multiset ( (A, |4)) of and only if

k
d(z) = exp (Z a(]j )> .

k>1
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Proof. (i) Since all elements of (A,|-|4) have size > 1, all sequences of length k > 0 of
elements of (A,|:|,) have size > k. Therefore (B,|-|g) = seq( (A, |4)) implies for any
m >0

1

zMb(z) = [zM] Z a(z)" = [Zm]m-

n=0

(ii) Sets of elements of (A, |-| 4) of size k > 0 have cardinality of at most k. Let e denote a
structure of size 0. The class of all finite subsets of (A, |-| ;) satisfies

[
(set (A, 11,0)) ™ = ( T ({e}x{cx},|-|)

ac Alkl

Kl

for all k > 0. Therefore (C,||,) = set((A,||,)) implies for all m > 0

zMe(z) = EM]J0+zM*™ = [zMexp (Zanln(1+zn)>
n=0 n=0
= [z™exp Zzani( 1)’“) =
i>1 n=0
a=0 | m = z +1
[z™] exp ZZan (—1) )
i>1 n=1
— Z™exp Z(—U”‘M)
i>1 )

(iii) The class of all multisets of (A, || ,) satisfies

xc Alk

k]
(multiset (A, [-| 4)) ( H seq({a, 1) )

for all k > 0. Therefore (D, |-|) = multiset (A, |-| ,) implies for all m > 0

zZ™d(z) = [z™] H(] 2k I — ™ exp ( Z anlog(1 —z" >
n=0
<m(,m n
= [z™]exp (Z S e n(z )> = [z™exp (Z a(:,l )> )
n>1 n>1

O

The next example demonstrates the application of the results in this section. Once the
class of interest is defined in terms of simple classes combined using Cartesian products and
disjoint sums, the corresponding counting sequence is obtained in a rather mechanical way.



CHAPTER 1. GENERATING FUNCTIONS 7

Example 1. The class (B,|-|z) of binary trees. A binary tree is either an external node
or it consists of an internal node with two binary trees (the left and the right subtree)
attached. The size of a tree 1s defined as the number of internal nodes.

This can be formalised using the class (£,|/|g) consisting of one structure, the exter-
nal node, of size 0 and the class (N, |:|y;) consisting of one structure, the internal node,
of size 1. The class of all binary trees 1s then given by

(B, llg) = (&, lg) + (N, [[y) x (B,[11g) x (B, ||g)).

Since E(z) =1 and N(z) = z, the ogf B(z) of the counting sequence of the class of binary
trees satisfies
B(z) =1+ 2zB(z)%

One root of the equation above involves a negative power of z. Therefore, B(z) s
uniquely determined by

1—+/1—14 1 1/2 .
B(z) = TZ = _ZZ<§>(_4Z)] =
i>1
_ Py 2(2-D), (3,
22%)’()’—1 >7‘ jZZOj—H<j>Z'

Thus, the number by, of binary trees of size n 1s equal to %H(ZTTI‘)

1.2 Labelled Constructions

This section deals with structures consisting of a finite number of different atoms each of
which bears a label different from all others. Examples are labelled graphs (or trees) and
permutations. For simplicity, all labels are assumed to be integers.

Since the disjoint sum and the labelled product (as defined below) do not depend on the
way the labels are connected, the following definition can be used:

Definition 1.6. A pair (S,f) s called labelled combinatorial structure of size n, n € N, if
and only f

() S is a set of cardinality n (the set of atoms) and
(1) f:S — Z 1s an injective function (the labelling).

For each a € S, the number f(a) 1s called the label of a. The size of (S,f) s denoted by
(S, )l
(S,f) is called well labelled if and only +f f(S) ={0,1,...n—1}.

Definition 1.7. Let (S,f) be a labelled combinatorial structure and let g: S — Z be an
injective function. Then the pair (S,g) 1s a labelled combinatorial structure, too, and
the function go ' is called relabelling.

The relabelling gof~' : Z — 7 is called admissible if and only if it is order preserving.
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Remark 1.1. For any labelled combinatorial structure (S,f) and a set L C N of cardi-
nality |(S, f)| there exists ezactly one function g:S — L such that gof~! is an admissible
relabelling.

Definition 1.8. A set € 1s called a labelled combinatorial class :f and only if
(1) € is a set consisting of well labelled combinatorial structures only and
(ii) for every n € N the set €, = {y € €|ly| =n} is finite.
The sequence (cn), ¢y Satisfying cn = card(€,) 18 called the counting sequence of €.

Remark 1.2. For any sequence (an),cy the corresponding exponential generating func-
tion is demoted by G(z) = ) anz™/nl.

As in the last section, two labelled combinatorial classes € and ® are said to be isomorphic,
¢ =, if and only if their counting sequences are identical.
The disjoint sum can be defined similar as in the case of unlabelled structures:

C+D = (Cxleo}) U (D xfer)) (1.1)
where €p and €7 denote two different structures of size 0.

Definition 1.9. Let o = (S«,fs) and B = (Sp,fp) denote two labelled structures where
SN SB =0.
Then a3 s defined as the set of well labelled structures satisfying

(SaUSp,g) EaxxP & go f;1 and go f? are admaissible relabellings.
The set oo x p 25 called the labelled product of o and f3.

As a consequence of Remark 1.1 the function g in the last definition is uniquely defined

if g(So) C€{0,1,...,|lx| +|B| — 1} is known. This set can be chosen in ('“I‘jd‘ﬁl) ways, thus
card(acx B) = <'“'|Z|”5'>. (1.2)

The labelled product constitutes an associative and commutative operation. Equation

(1.2) can be extended to card (o * xp % - -+ * otm) = ('ﬂﬁ‘fg;ﬁﬂﬁ ).

The labelled product of two labelled combinatorial classes 2l and B is defined as

AxB = U U o*B.

xcA PEDB

Theorem 1.3. Let AU,B and € denote labelled combinatorial classes with corresponding
counting sequences (an),cn, (bn)nen and (cn)cn- Then the following holds:

(1) € =A+ DB if and only if €(z) = a(z) +b(2).
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(i1) € = A B if and only if ¢(z) = G(z)b(2).
Proof. (i) This is true since the counting sequences satisfy

(ii) From (1.2) it follows that the number of elements of size n in 2 x B is given by
> o (1) axbn_x which is equal to [z"/nlla(z)b(z2):

n n

ST Sy (8 (o) 3

n>0 k= o n>0 \ k=0

O

For any labelled combinatorial class 2 containing no structure of size 0 the sets of all
finite sequences and finite sets of 2 exist as labelled combinatorial classes and are denoted
by seq(2() and set(2A), respectively.

Let € denote the empty sequence. The class of all cycles of elements of 2 is denoted by
cyc(2) and is defined as

cyc(A) = (seq(A) —{e})/_ (1.3)

where 3 =y, B,V € (seq(2) —{e}), if and only if B can be transformed into y using a cyclic
shift.

Theorem 1.4. Let 2 denote a labelled combinatorial class that contains no element of
size 0. Then the following holds

(1) B =seq(A) if and only if

(11) € = cyc(A) of and only if

¢(z) =log <]—]W>

d(z) = exp (a(z))

Proof. (i) All elements of seq(2() of size < k must be sequences of length < k since 2 does
only contain elements of size > 1. Therefore B = seq(2l) implies for all m > 0

(112) © = set(2A) of and only if

m /b — Zm - moan L
z™/m1]b(z) /ml] é =" m 5
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(ii) Every sequence of length k > 1 of elements of 2 consists of k different components since
their set of labels are pairwise disjoint. Therefore each cycle of length k > 1 can be
associated with exactly k different sequences (of length k). Hence € = cyc(2() implies
forallm >0

Z™/mlle(z) = [z™/m!] Z " = [z™/m!]ln ]

n T—az)

D)

—_

n—

(iii) Every set of size k > 0 can be arranged in k! ways and thus can be associated with k!
sequences of length k. Therefore, © = set(2) implies for all m > 0

/mld(z) = m/vaA(Zn = [z™/ml]exp (a(z).
n=0

n!

O

Example 2. The Bell numbers. The n-th Bell number b, n > 0, s defined as the
number of partitions of a set of cardinality n (bo=1).

Since the interesting parameter of a given set is its cardinality, the size of the set,
mewed as labelled structure, should be equal to its cardinality. Thus in this context the
class & of all finite sets (viewed as labelled structures) can be modelled as

S = set({a})
where o 18 a structure of size 1. The egf of its counting sequence 1s given by
ZTI
sz) = ) o = expla)

n>0

Let € denote the empty set. Every partition can be viewed as a set of non-empty
set. Therefore the class B of all partitions satisfies

B = set(6G—{e}) = set (set ({a}) — {e}>‘
This 1s readily translated into the language of exponential power series:
b(z) = exp(e*—1)

Differentiation yields

d z
d—zﬁ(z) =  e*b(z).

and comparison of the coefficients of z"/n! on both sides results in the well-known

recurrence relation n
n
buit = ) <k>bk n>0.
k=0
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1.3 Parameters

Often, one is not only interested in the number of objects of size n, but would also like to keep
track of certain other parameters (e.g. the number of components) and obtain probabilistic
information on these parameters.

Definition 1.10. Let A denote a combinatorial class. A parameter on A is a map
A—N4 d>1.

The symbolic approach described in the last two sections can be nicely adapted in order
to fulfil these needs for a certain type of parameter:

Definition 1.11. Let A, B and C denote combinatorial classes (labelled or unlabelled)
with parameters X, & and (, resp., all of which have the same dimension. Then, the
parameter X s said to be inherited from &, in the following cases:

e A=B+C and

[ &) ifxeB
xog = { go TaEL vaea

e A=B®C and
x({x,B)) = &(x) +C(B)  V(x,B)€EA
where ® and (x,B) denote either x and « x 3 (labelled case) or x and («,f3)
(unlabelled case).

Thas 1s extended for all finite sums and products and combinations thereof.

Remark 1.3. For simplicity, we will adopt the following conventions: Vectors will be
denoted by bold variables (e.g. v). If z and u denote two vectors of dimension d + 1,

we use the abbreviation

Z4 = zp%zt ezl

If z 15 a vector of dimension d + 1 and r an arbitrary compler number then we set

7= (v®, 17 ... 17,

Remark 1.4. For the combinatorial class A with parameter &, we define
Ank = {a€A|lxla=n A E(x) =k}

and
ankx = card(Anx).
(For the class B, it would be By and by k.)

Definition 1.12. (i) For the unlabelled combinatorial class A with parameter &, the
(formal) power series
3 Zlolayde),

xcA
where u 1s a vector of indeterminates of same dimension as &, 1s called the mul-
tivariate generating function for the combinatorial class A with parameter &.
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(1) For the labelled combinatorial class B with parameter (, the (formal) power series

>

peB

2IBls

¢(B)
u
IB]B!

15 called the multivariate generating function for the combinatorial class B with pa-
rameter (.

With this definitions, one can prove the same translation rules as stated in the Theorems
1.2 and 1.4 using analogous arguments.

As can be seen in the following example, one has to find an appropriate symbolic descrip-
tion of the class(es) in question before translating it into an equation between multivariate
power series.

Example 3. The combinatorial class G of planar unlabelled trees is defined by
g = N xseq(G)

where N' denotes the class consisting of one element of size 1 (a node).
If we want to introduce the parameter & on G which counts the number of leafs, the
recursive definition above cannot be used. But the definition above can be rephrased as

G = N+ 2Zx(seq(G)—¢)

where € denotes the empty sequence and Z any class satisfying Z = N. Now, N plays
the role of an external node and Z that of an internal node.

It 1s found, that the parameter & is identical with the parameter inherited from the
parameter on N with constant value 1 and the parameter on Z with constant value 0.
The classes N and Z thus have the mgf uz and z, resp.

Thas leads to the equation

zG(z,u)

G(z,u) = zu—l-i] Gz u)

where G(z,u) denotes the mgf of the class G with uw marking the number of leafs.

1.4 Limiting Distributions

Given a combinatorial class A (labelled or unlabelled) with parameter & of dimension d >
1. The corresponding multivariate generating function F(z,u) can be directly related to a
sequence of random variables (X,,:n € I), I C N, on N9 defined by

o o [Znuk]F(Z>u) d

where I consists of those numbers for which [z™]F(z,1) > 0.
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In the case d =1, the m-th factorial moment of X,, can simply be expressed as

EXnXn—=1) Xpn—m+1) = ] [z“]am

[z"F(z,1) aumF(Z’ W

u=1

which gives, denoting the partial derivatives w.r.t u with F, and F,,,;, the expressions

N [Zn]Fu(Zy])
BXn = TRz

MRz 1) | YRz ]) YRz 1)
VX = TR T RRE ) ([zﬂ]F(z,n)

for the mean and wvariance, resp.
For applications in later chapters, we give the following definitions.

Definition 1.13. A sequence (X, : n > 0) of random variables is called asymptotically
concentrated if and only if there exists a sequence (u,) such that

X
Ve>0: 1imP{1—£<—n<1—|—£} = 1.
n— oo un

Definition 1.14. A sequence (X, : m > 0) of random variables satisfies a central limit
theorem if and only if there exist sequences (1n) and (o) such that

lim sup P{w < x} b J e P24t = 0.
n—00 On

Definition 1.15. A sequence (X, : n > 0) of random wvariables satisfies a local limit
theorem on S if and only «f there exist sequences (un) and (o) such that

lim sup
n—oo xES

Xn — 1
onP {“Tu“ = |onx + unJ} - Ee_"z/z
n V



Chapter 2

Asymptotic Methods

The methods of the last chapter result in equations satisfied by the generating function in
question. For certain types of equations one can immediately extract the desired information
about the coefficients of the gf (see Example 1). But this is not always possible.

It is often the case that the generating function considered is analytic in some domain.
One can then use methods of complex analysis in order to obtain exact or asymptotic repre-
sentations for the coefficients in question.

The Lagrange Inversion Theorem can be applied to certain equations and results in an
exact representation. We note that an analogous theorem holds for the larger class of formal
power series (see [GJ04] for details).

A source of asymptotic information about the coefficients are the singularities on the
circle of convergence of the generating function. The asymptotic behaviour can then often
be determined by an application of Cauchy’s theorem using an appropriate path and esti-
mating the resulting integral. In the case of small singularities of an algebraic-logarithmic
type Flajolet and Odlyzko’s [FFO90] so-called singularity analysis applies. If the dominant
singularities are large singularities, that is the function is growing exponentially near these
singularities, or in the case of entire functions one can often apply the saddle point method.

2.1 Lagrange Inversion

Consider a class 7 of trees with generating function F(z). 7 is called simply generated if and
only if there exists a power series @ (u) such that

F(z) = z®(F(z)), @(0) > 0. (2.1)

Lagrange proved a theorem that gives the power series expansion of F(z) in terms of z. The
following formulation is taken from [WW96, p.133] where one can also find a proof for it.

Theorem 2.1 (Lagrange Inversion Theorem). Let ®(z) be analytic on and inside a
contour vy surrounding a point a. If t € C is such that |[tD(z)| < |z— u| for all z € v,
then we have:

14
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(1) The equation
C=u+td(7)

has exactly one root ((t) in the interior of y.

(1) If f(z) 1s analytic on and inside v, we have the erpansion

n n—1
f(g(t)) =f(u) + Z % % (f'(2)®(z)™) . (2.2)
n>1 " z=u
A reformulation of equation (2.2) gives
() = iz~ W™ ) (P20 ()" (2.9)

forn > 1.
Theorem 2.1 can be applied to the inversion problem (2.1) using f(z) =z and u =0. We
apply formula (2.3) to the generating functions of some families of trees.

Example 4 (plane rooted trees). The family T of plane rooted trees is defined by the
equation

T =N xseq(T).
Thus, the ordinary generating function F(z) and the erponential generating function

G(z) satisfy
z

T 1-F(2)
An application of Theorem 2.1 using ®(z) = (1 —2z)~! and u =0 gives

2MF(z) = L - g = 0 ( - > _1 (2n— 2)

n n n—1 n\in—1

and G(z) = zeC?,

F(z)

and setting @(z) = e* and uw =0 yzelds

n—1
26 () = Tt =

Since G(z) is an egf, the actual number of labelled trees of size n is given by n™ ',
Example 5 (t-ary trees). The family T of t-ary trees is defined by
T=E+NxTH
Thus, the ordinary generating function F(z) satisfies
F(z) =1+ F(z2)".

By Langrange’s Theorem, the number of t-ary trees of size n > 1 1s given by (setting
b(z) =z andu=1)

ZYF(z) = —[(w— 1) ((w—=1) +1)™ = l( nt >

n nin—1
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2.2 Singularity Analysis

We consider functions having a unique dominant algebraic-logarithmic singularity on their
circle of convergence. By normalisation, we may always assume that this singularity occurs
at z=1.

Flajolet and Odlyzko [FO90] considered a special class S of functions as described above
and proved an asymptotic expansion for their Taylor coefficients (Theorem 2.3). Having this
class at hand, they obtained asymptotic expansions for the Taylor coefficients of functions
f(z) of the form

f(z) =ho(z) + hi(z) +--- + h(z) + O(g(z)), z— 1, (2.4)

where ho(z),...,hk(z),g(z) € S and hy(z) > --- > hi(z) > g(z) as z — 1. Moreover, the
so-called transfer-theorems (Theorem 2.2) proved in [FO90] which guarantee that

z"0(g(z)) = O(lz"g(z)),  9(z) €S,
show that the coefficients corresponding to (2.4) satisfy
fn - hO,n+ -t hk,nTL O(gn)

and that hO,n > > hk,n > On.
We continue by stating the results mentioned above. The proofs are mainly based on
Cauchy’s theorem using a Hankel-contour as integration path and can be found in [FO90].

Theorem 2.2. Assume that f(z) is analytic in

A=Ab,7) = {‘|z|<1—|—nand|arg(z—1)|>q)}

s

where n > 0 and 0 < ¢ < 5 and that z = 1 is a singularity of f(z). Set L(z) =
(log z)P(log log z)®. If

f(z)zO((]—z)“L<1lz)>, z€A, z—1

for some real numbers «, 3,0 then
2(z) =0 (R L)),  n— oo
Analogous results hold for o and ~ instead of O.

Theorem 2.3. Let o, 3,6 € C—{0,1,2,...} and define

f(z)—(]—z)“(llo ] >B<llo (110 ] ))5 (2.5)
- z g1—z z & z g1—z ’ '
Then we have

—o—1 1 1
[2f(z) ~ Tr‘(_(x) (log n)P(log log n)® ( +y loeg“n‘;fgcl’fg“i) > (2.6)
k>1
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where
. dk 1

with
1 13
ZEk(Z)uk = (1—uz)k (1 — —log(1 —uz)> .
k>0 z
Remark 2.1. Note that the functions considered in Theorems 2.2 and 2.3 differ by z~'.
The reason for introducing this factor is the fact that (—Z_] log(1 — z)) P 15 analytic at

z =0 even for non-integral 3. Noting that

1 1 1
~1 =1
~log og

—|—O<(1—z)10g]12>

1—2z 1—2z

and applying Theorem 2.2 we see that

1 1 1 logn
n (1 -1 = .
[Z](20g1—z 0g1—z> O(nz)
Hence we may replace —z 'log(1 — z) with —log(1 — z) in (2.5) without destroying the
truth of (2.6).

Example 6. The generating function for the harmonic numbers (Hn)n>1 18 known to

be
1 1
H(z) = Z Hpz™ = ——log

1—z
n>1

1—z2°

Adopting the notation of Theorem 2.3 we have x = —1, =1 and 6 =0 as well as

—z k=1 vy k=1
E == =
k(z) {o K> 1 ex(z) {o K> 1

where vy = 0.577 ... 1s Euler’s constant and therefore obtain
H, = logn+vy+o(l) n — oo.

Example 7. An undirected labelled graph is said to be 2-reqular if and only if all its
nodes have degree 2. All connected 2-regular graphs are given by undirected cycles
having at least 3 nodes. Hence, the egf for connected 2-regular graphs s

(n—1z™ 1 1 2?2
c@=) —5—g=al\ley ;=7 )

n>3

Applying Theorem 1.4 we see that the egf for 2-reqular graphs is
o—2/2—2% /4
Vv1i—z

= 3/ (—% +/T—2z+0(1 —1)3/2) , z— 1.

f(z) = @ =
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Now, Theorem 2.2 shows that
ZMO(1—2)¥?=0(n">?), n— oo,

and from Stirling’s formula for T'(z) we obtain

ZM(1—2)7V? = (1 )]/2 <1+l+o(n—2)))

nmn 8n
Z(1—2)"2 = _% (#)W (1+0m™)

as 1 — oo (note that Theorem 2.8 would have given only the main term of the last two
erpansions).
The number f,, of 2-reqular graphs having n nodes therefore satisfies

fn = LS/4<L—i—l-0(715/2)> n — 00.
Vi \y/n  8n3/2 ’

2.3 The Saddle Point Method

The saddle point method is a heuristic, that often yields good approximations to integrals of
the form

J F(z,t)dz ast — oo (2.7)
()

where t is a real parameter, F is analytic w.r.t. z in some domain G(t) C C and y(t) is a
path that entirely lays in G(t).

In this section, we will only give a rough sketch and a sample application of the saddle
point method and refer to [dB81, ch.5,6] for a thorough discussion.

Essentially, the method relies on the Theorem of Cauchy and the Method of Laplace (see
[dB81, ch.4] for details) and can roughly be summarised as follows:

(i) Substitute the path of integration y(t) with another one, o(t) say, without changing
the value of the integral such that along o(t) |F(z,t)| has some sharp peaks and is small
everywhere else and

(ii) apply the Method of Laplace:

(a) choose neighbourhoods of these peaks so large that the main contribution to the
value of the integral is being captured,

(b) in these neighbourhoods, substitute the integrand with simpler functions and
(c) asymptotically estimate the resulting integrals.
The name “saddle point method” stems from the way of obtaining an appropriate path:
By the maximum modulus theorem, |F(z,t)| does not have any maxima or minima in the

interior of G(t) (except for zeros). Thus, the only points where d%lF(z,t)l =0and F(z,t) #0
are saddle points.
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Suppose that ¢ € G(t) is a saddle point of F(z) = F(z,t), that is F({) #0, F/({) =--- =
F=1)(¢) = 0 and F¥({) # 0 for some k > 2.
Suppose that k = 2. Then, for |z— (| small enough, the function log F(z) can be expanded

as
n 2
log F(z) =log F(C) + FF((;) z ZC) +0((z—0)3). (2.8)
Since [F(z)] = e™18F(@) |F(z)| is of fastest decrease for
B i F'(()
z = (+texp (z (n—arg F(C)))’ teR (2.9)

where the second addend of (2.8) is real and negative. The straight line (2.9) is called the
azis of the saddle point or the direction of steepest descent.

In the case k > 2 there are several directions of steepest decent. See [F'S] for some remarks
on this.

So, for appropriate functions, the path o in step (i) should be chosen such that the highest
points of |F(z)| along o are also saddle points of |F(z)| and in small neighbourhoods of these
saddle points, o approximates its axis.

2.3.1 An Illustrating Example

The goal of this section is an estimation of the number of permutations of n elements having
only cycles of length < 2 as n — oo. The corresponding egf will be denoted by F.

Each permutation can be represented as a set of (labelled) cycles. In this case, all cycles
are of length 1 or 2 (corresponding to fixed points and transpositions, resp.). Thus, the egf

is given by
zn z?
F(z) = ZF“E = exp <z+ ?> .
n>0 ’

The starting point for the asymptotic analysis is the residue theorem which reads

: | [ets
n f]g ¢ dz,  n>0, (2.10)

nl 2m [ znt!

where the path of integration encircles the origin exactly once (counterclockwise).
Rewriting the integrand of (2.10) as

2
e®@ = exp(z—l—%—(n—l—ﬂlogz)

we see that there are two saddle points, determined by the equation z2 4+ z =n + 1, namely

——dy/-+n = —%i\/ﬂ(1+gn1+0(nz)).
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First, consider the saddle point at

1 /5
tn = —3 7t n>0. (2.11)

The power series expansion of h centred in (,, is given by

k
h(z) = h(Cn) + <1 s 1) z _ZC“)Z + Z(—l)kn—+1 (Z_ C“) (2.12)

2
& e

which is convergent for |z — (.| < {n. The coefficient of (z — ¢)? is real and therefore the axis
of the saddle point (,, is perpendicular to the real line.
The other saddle point is negligible as will be seen below. Furthermore, we will show
that the path v =y + v given by
Y1 o= {z D z=(n +1it, —6§t§6}
y2 = {z ¢ [2* =2+ 8% arg(Cn+i8) < arg(z) < 2m— arg(Gn +18)},
where § € R™ has yet to be chosen, can be used to estimate the integral (2.10).

For successfully replacing fw eM#)dz by a complete Gaussian integral, & has to be chosen
such that for z € y; we have

(i) (z) ~ h(Cn) + h"(Cn)(z — Cn)? and
(i) h"(Gn)8% — oo

as n — oo.
The last sum of (2.12) can be rewritten as

men () L ()

k>0

Since (n ~ 4/ we have
m+Nz-w’G> ~ (2 4n )z - )’
and therefore condition (i) is satisfied if 6 is chosen so small that
8 = o(v/n) as n — co. (2.13)

The quantity h'"((,.) = %—I— nc—? tends to % from above as n — oo since (% ~ n. Thus, in
oder to satisfy condition (ii), & has to be chosen such that

52 - o as n — oo. (2.14)

A possible choice satisfying (2.13) and (2.14) is
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which will be used in the sequel.
For z € vy, we have

)
1 J chEq, — J G+t gy
tw —d

5
- J eMEIIEIE/2(1 4 O(ms3c %)) dt
-5

34/ (Cn)
a1+ 0m 18 J /24y
V" (Cn)
=54/ (n)
— e J_oo e du+ O (e )
ehlin)y /770 B
= T+0mn "8
SRy o Hom )

For z € y,, we have

2
‘eh(z] — %h(2) < exp <Cn + % —(n+1)log Cn>
2 n41
= exp <(n+ 1)(1 —log Cn) — %) (Ci) e /2

and therefore

n+1
< 2m/CE + 82 (;) e /2

n

S\2/ e \"™ 2
a1 (L) (&) e
Cn Cn
which tends to zero as n — oo.
From (2.11) we get (2 =n —/n+ 3 + O(n""/2) and since

S (n+1)10g<\/ﬂ(1_%\/ﬁ+gn_1+0(n_z)))

J ehl@az
Y2

= (m+1)logyn—(n+1) (2% - % +0(n7?) +% (% +0m 32
= (m+1)logv/n— (? — % + O(n1)>
we have
eMan)  — el t@/2 (it T/ 24/T/241/4+0(n"1/2)

nm+1)/26—/M/2+1/240(n"1)

— /n"exp (% +4v/n— 411> (1+0(n~"2).

))

21
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Figure 2.1: Surface of |e*+%/22=16| with the dominant saddlepoint at z = —3+4/2+15

This gives the intermediate result

Fn 1 eMe)y/2n

1
T 2 NG 2dmmnt exp(

Using Stirling's formula we finally obtain

n 1
F+v—7)

n/2 1
F, ~ n\/z exp(—%—l—\/ﬂ—Z) as N — o0o.



Chapter 3

Hayman-admissible Functions

3.1 H-admissibility

Hayman [Hay56] stated conditions of power series } ., fnz",cn € C, which ensure the
determination of the behaviour of f,, as n — oo (in the sense of ~) using the saddle point
method.

A notable fact about these functions is the existence of certain closure properties. This
often simplifies the task of establishing these conditions (see below) for a given function and
can also be used for an automation of this process.

Definition 3.1 (H-Admissibility). Let f(z) denote a function regular for |z|] < R, 0 <
R < oo. Assume further that there exists Ry < R such that f(r) > 0 for all v € [Rp, R).
Define for r € [Ro,R) the two functions

and

b(r) =rd'(r) =7

f(r) |, of"() o (f())?
f T T (f(r)) '

Then f s said to be Hayman-admissible in |z| < R (or H-admissible) if and only f it
satisfies

(1) b(r) = 00 as r — R and
there exists a function d: [Ro, 1) — (0,71) such that the following holds

(11) Uniformly for ¢ < 6(r) we have

f(re'®) ~ (1) exp (i(ba(r) _ %(bzb(r)) (3.1)

as Tt — R and

23
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(112) uniformly for 5(r) < & we have
o(f(r))

f(ret®) = 3.2
fret) = 220 (32)
as T — R.
Remark 3.1. As a consequence of conditions (12) and (111) we have for & = ()
b
|1:(Te1L )| ~ efézb(r) _ O(b(r))f'l/z
f(r)
which s o(1) as v — R by condition (i). Thus, we have
52b(r) — oo as T — R. (3.3)
Remark 3.2. Without loss of generality, we may assume that
log b(r)
o(r) <4/2 3.4

since otherunse we have for 1/2logb(r)/b(r) < |Pp| < &(r), applying (3.1),

i 2
If(;(er) ) ~ exp <—b(r)£> < 1

which implies (3.2).

Theorem 3.1. Let f(z) = )} | ,fnz" be H-admissible in [z| < R and define f,, =0 for
n < 0. Then we have B

) (a(r) —)*
fnr = W (exp <_T(f)> —l—o(l)) (3.5)

uniformly for all integers n as r — R.

Proof. The claim can be proved by an estimation of Cauchy’s Integral

5  2m—-d
id
fnTn = l J + J f ( re ) dd)

eind
—& )

where 6 = &(1).
From (3.2), we have

anéf( iﬁb)
TEe o 1¢ o
J T d¢| < 2m 6)6§41§1§212}7ct_6‘f(re )‘ =
5
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uniformly in n as r — R.
Equations (3.1) and (3.3) give

8 ) 8
f(rel®) 15
J g a0 = f(r)J(Ho( Dexp (1(alr) ) = 5%() ) do
-5 -5
5 %)
— f(r) Jemu(a( M=n=5 b 4 1 o J e~ b g
S —00
5
— ) Jeiqa(a( == 6260 4y 4 o(b(r)) /2
-5
as T — R.
An application of Cauchy’s Theorem gives
oo +H1W 00
e V24t = J e P24t = V2m,  WER,
—oo0 +HW —00
and thus, by noting that
2
1 2 ] a(r) —n (a(r) —=n)?
ip(a(r) —m) - 5bMe? = —3 <¢ b(r) — i~ ) -
we get
3 | 5 84/b(7)
Jeiqa(a(r)—n)—%qazb(r)dd) — exp< ‘1(2)(_)“) > J e ¥/2qt
=5 —54/b(1)

=
2
_ / <_ )“) >(1+o(1))

where the last equality follows from (3.3).
Combining the two estimates gives

far™ = o [
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Corollary 3.1. We have
a(r) = oo, ast—R. (3.6)

Furthermore, there exists an R1 < R such that a(r) is strictly monotonic increasing in
[R1,R).
As a consequence thereof, we have

b(r) =o(a(r))?, asrt—R. (3.7)

Proof. Since b(r) = ra’(r) — oo as v — R, we know that a(r) is strictly monotonic increasing
in some range Ry < v <R, Ry <R.
Putting n = —1 in equation 3.5 yields

exp <—%> =o(1), asr—R,

and as a consequence we get

(a(r) +1)?

() — 00, asrt— R,

which proves (3.6) since b(r) — oo as r — R. O

In particular, the last corollary shows, that for n € N large enough the equation a(r) =n
has a unique solution r,, that satisfies 1, — R as n — oco. This observation leads to

Corollary 3.2. Let f(z) = ) | ~,fnz™ be H-admissible in |z| < R and let r,, denote the
unique solution of a(r) =n. The coefficients satisfy

fn ~ _ M) as n — oo. (3.8)

/27 (1)’

Corollary 3.3. Assume that f(z) =) <, fnz™ s H-admissible in |z| < R.
For any n € Z, we have B

— 500, asr—R (3.9)

and for any ¢ > 0, we have
a(r) =0O(f(r))® and b(r)=0(f(r))*, asr—R. (3.10)

Proof. From (3.5) it follows that f, > 0 if n is sufficiently large. Also, if r is sufficiently near

to R, (3.5) gives
f(r) 1 I

Since b(r) — oo as r — R we obtain 3.9.
Clearly, b(r) = O(f(r))¢ follows from a(r) = O(f(r))*/? and (3.7).
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For proving the remaining claim, we suppose on contrary that there exists ¢ > 0 such
that

for r € [Ry,R) and some 0 < Ry < R. This gives, for Ry < p <R,
P! P d
[ s [ &
] (r) R T

f(R1)~ — f(p) ¢
£

and therefore

p
> log —.

If R = oo, we obtain a contradiction by letting p — oo since the left hand side of the last
equation remains finite. The proof for R < co involves some additional technicalities and will
be omitted (see [Hay56]). O

The next lemma gives sufficient conditions for (3.1).

Lemma 3.1. Let f(z) be analytic and not zero in |z — r| < 2nr for some r € RT and
0<n< % and set

a(z) = zil((zz)) and b(z) = za'(z)
If b(z) satisfies
b(z)| < Cb(r),  |z—1| <2, (3.11)

for some constant C € R" then we have the ezpansion

2
log f(re®) = logf(r) + a(r)C+ b(r) S +elr, )
where 5
o) < SOUNED
n
for |C] <.

Proof. The function b(re¢) = aa—éz log f(re¢) is analytic for |(| < 1 since we have

‘rec—r‘ :T‘ec— 1‘ < T(elc| — 1) <re"—1)<2nr
forn < % and thus has a power series development
b(re®) = Z cnl™.
n>0
Cauchy’s inequality together with (3.11) yields

Cb(r)

cnl| < o
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Integrating twice w.r.t. ¢ gives

(2 c
logf(re®) = logf(r)+a(m)i+br)=—+Yy —— > 2
2 n; m+1)(n+2)

and noting that

Cn 2 Cb(m)gf 1 ~ Cb(r)l¢
%(n+1)(n+2)c s n %(n—l—l)(n—l—Z) n

completes the proof.

28
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The remaining part of this section is devoted to the study of the behaviour of H-admissible
functions. Theorem 3.2 shows how H-admissible functions and their derivatives behave for
real arguments, Lemma 3.2 gives a better approximation than (3.1) for arguments near the
real line and finally, Theorem 3.3 shows that H-admissible functions attain their maximum
on {z € C: |z| = v}, v properly chosen, at z = r. The technical proofs for the Theorems 3.2

and 3.3 will be omitted and can be found in [Hay56].
Theorem 3.2. Let f(z) be H-admissible in |z| < R. Then

e for any fized positive constant K and |h| < K/a(r) we have
™

a(re™) ~ a(r)

uniformly as r, re™ tend to R from below;

e for any fired k €R

f (r+ i) ~ekf(r), asT— R
a(r)

e for any fized k € N,k > 0,

k
(1) ~ f(1) (@) , asT—R;

Lemma 3.2. Assume that f(z) s H-admassible in |z| < R.
We have, uniformly for |¢| < a(r) T,

2
f(re!®) = f(r) + idf'(r) — % (rf'(v) + 12" (1)) + O(p3f(r)a(r)?)

as v — R.

(3.12)

(3.13)

(3.14)

(3.15)

Proof. We obtain the result by applying Lemma 3.1 to the function F(z) = exp(f(z)). Set

= zf'(z) and  B(z) = zA'(z) = zf'(z) + 2" (2).
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By (3.14), we have
B(r) ~ f(r)a(r)?, as r — R.

B(z) has, by definition, only a finite number of negative coefficients in its power series ex-
pansion. Therefore,

B(O)| < B (r+ %) Lo

for | —1| < % and some N > 0. Now we have, by (3.12) and (3.13),

B (r + %) ~f (r + %) a <r + %)2 ~ e*f(r)a(r)?.

Thus, if r is sufficiently near to R, we may apply Lemma 3.1 to F(z):

2
f(rel®) = f(r) + ipA(r) — %B(T) + e(r, d)

where, for |$| < a(r)~" and some C > 0,

e(r,d) < Cf(r)a(r)’dl>.

U
Theorem 3.3. Suppose that f(z) is H-admissible in |z| < R.
There ezists Ry < R such that for Ry <t <R and f(r)2/° < |¢p| < 7 we have
[f(rel®)| < f(r) — f(r)"/7 (3.16)
and there exists Rp < R such that for Ro < v <R and 0 < || < ™ we have
[f(re'®) < f(r). (3.17)

Example 8. The function e is H-admissible in C with §(r) = r—2/> and the functions
of Definition 3.1 associated with e* are given by

a(r)=b(r)=r, reR..

Thus, the unique positive real solution to a(r) = n s gwen by r, = n. Corollary 3.2
now yields the main term of Stirling’s approzimation to n!, viz.

[ZVe? = l, ~ <E>n(zm)1/2.
n. n
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3.2 Classes of H-admissible Functions

For given R > O define the class
Hg:={f:C — C | f(z) is H-admissible in |z| < R}.

In this section we will prove certain closure properties satisfied by Hg: Theorems 3.5 and 3.4
show how to construct new H-admissible functions from given ones and Theorems 3.6 and
3.7 show that “small perturbations” do not destroy H-admissibility.

These facts can often be used to simplify the task of establishing H-admissibility for a
given function. Starting from a basic set of H-admissible functions, one can establish H-
admissibility for many functions by use of the theorems below without having to check the
conditions of Definition 3.1.

Theorem 3.4. f1(z),f2(z) € Hr = f1(2)f2(z) € Hr.

Proof. Set f(z) = f1(z)f2(z). The corresponding functions 6(r), a(r), b(r) of Definition 3.1
will be denoted using no subscript, subscript 1 or 2, resp. These functions satisfy a(r) =
ai(r) + az(r) and b(r) = by(r) + ba(r).

We show that the function f(z) satisfies the conditions for H-admissibility with

8(r) = min (51(r), d2(r)).

The only thing that needs to be shown is condition (iii)(b) of H-admissibility all other
properties immediately follow from H-admissibility of f; and f).

Suppose that in Ry < v < R we have by(r) > e and b,(r) > e and that with ¢ < % we
have

f1{ret®
"f(:(er) L e an<li<n (3.18)
£y (ret®

sz(zr(er) )| < bz(:)]/z, 55(r) < o] < 7. (3.19)

Now, consider those r for which b(r) > by(r). We have to show that (3.18) is valid for
o(r) < || < 7. If &1(r) < 82(r) there is nothing to prove. If 6,(r) < &1(r) then we have by
(3.1)

If1f(r(er1)“’)l et /2 B2 R (3.20)
1
as well as 5
|1C2(T‘€l 2(r))| ~ e—bz ()62 (r]Z/Z, r— R.
fa(r)
This gives for r sufficiently near to R
e—b2(oa(r2/2 _ _ 2€

by(r)1/2°
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The function v/te ! is decreasing for a > 0 and t € [%l, oo). Thus, for by(r) > 5,(r) 2, the
last equation implies

by (e (r2/2 _ _ 28
‘ by(r)/2
Hence (3.20) yields for r sufficiently near to R
[f1(rel®)] 3e
< . 3.21
fi(r) by(r)1/2 (3.21)
Note that by (3.16) we have for r sufficiently near to R
[fa(re'®)|
— <1, 0< Pl <m 3.22
fa(r) ¢ (3.22)
Since b(r) = by(r) + ba(r) < 2by(r) we finally obtain (3.2) for f by multiplying the relations
(3.21) and (3.22). O

Theorem 3.5. f(z) € Hr = exp(f(z)) € Hr.

Proof. We show that F(z) = exp(f(z)) is H-admissible with 5(r) = f(r)~%/>. The functions
of Definition 3.1 read

=zf'(z) and B(z) =zA'(z) = zf'(z) + 22" (2).

First, note that, by (3.14),

B(r) ~ f(r)a(r)? w00, TR
We have f(r)"%/> = o(a(r)"") as r — R by (3.10) and may therefore apply Lemma 3.2 for
|| < f(r)%/> to F(z) which yields

log F(re'®) = log F(r) + ipA(r) — %ZB(T) + O(f(r)) Va(r)?

which gives (3.1) because of (3.10). Finally, for f(r)=2/> < |¢| < 7 we have by (3.16) and
(3.10) for r sufficiently near R

[F(re'®)| < F(r) exp (—f(r)""/7) < F(r) exp (—B(r)"/?)
which gives (3.2). O
Theorem 3.6. If f(z) € Hr and p(z) = bz™+--- +bo € Rlz] 25 a polynomral satisfying
e p(R)>02fR< o0 or
e b, >01fR=0c0

then we have p(z)f(z) € Hr.
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Proof. Set a(r) = rf'(r)/f(r) and b(r) = ra’(r) and let f(z) satisfy (3.1) and (3.2) with a
function 5(r) that satisfies (3.4).
Since 6(r) — 0 as r — R we have, for any R,

P(rel®)
P(r)

~ 1, r — R,

uniformly for || < 6(r). Hence, we get

f(rel®) P(ret®)  elba(m)—p?b(r)/2

R 3.23
fr) P TR (3.23)
uniformly for || < 6(r).
For any R, we have
P(ri¢) B
PO =0(1), r— R
for any ¢ and thus, we deduce
i idp
e Pre™) b)) 2, r R, (3.24)

uniformly for &(r) < |¢p| <

In order to complete the proof we have to show that we may replace a(r), b(r) by
P'(r)
P(r)’

b(r) —l—rirplm

a(r) +r dr P(7)

in (3.23) and (3.24). But this follows immediately since rP’(r)/P(r) and its derivative remains
bounded, while a(r),b(r) tend to infinity as r — R. O

Theorem 3.7. If f(z) € Hr and h(z) is a function, regular in |z| < R and real for real z,
such that for some n > 0 we have

max [h(z)] = O(f(r))'™ as T — R

|z|=r

then we have f(z) + h(z) € Hk.

Proof. Again, let a(r),b(r), 5(r) denote the functions of Definition 3.1 corresponding to f(z).
Assuming that &(r) satisfies (3.4) we deduce that

[f(ret®)| ~ f(r)e ¢ P02 > 8 s (1)1 -3
b(r)

uniformly for |¢p| < &(r) as r — R. Hence we have, for |¢| < 6(r),

(f+ h)(re'®) ~ (f + h)(r)ela—o?bm/2 R (3.25)
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and similarly, for 6(r) <|¢| < m,

_ o((f+h)(r)

(f+h)(re'®) = DR (3.26)
et (F +h)/(r)
T Il
Alr) = fm> (r) =7rA%(7)

We have to show that A(r) = a(r) + o(1) and B(r) = b(r) + o(1) since we may then replace
a(r),b(r) by A(r),B(r) in (3.25) and (3.26). Suppose that [r — z| < ra(r)~'. Then we have

ma:o@(u7%ﬂ>:omm1”
by (3.13). Thus for every fixed k € N

k
h®(r) < k! (m) max |h(z)| = K
T |z—7|<r/a(r) T

by Cauchy’s inequality. Hence
(f"+h')(r) f'(r) h(r) h'(r)
A0 = e = e 0o () 00 (F)
= alr) (1+0(f(n)™?), r—R

—

Similarly, B(r) = b(r) 4+ o(1). O

3.3 Examples

Without proof we quote three theorems that give a basic set of H-admissible functions and
close this chapter with some simple examples.

Theorem 3.8. Let P(z) =byz"+ ... +biz+ by, b #0, k > 1, be a real polynomial and

set
f(z) = Z foz = ePl#,
k>0

Then the following four conditions are equivalent.
(¢) f(z) is H-admissible in C.
(1) For all suffictently large r we have

[f(ret)| < f(r), 0<Idl <.

(112) For every integer d > 1, there ezxists an integer m, such that d is not a factor of
m and by, # 0. Further of m = m(d) s the largest such integer, then by, q) > 0.
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() an >0 for all sufficiently large positive integers n.

Theorem 3.9. Suppose that f(z) s an integral function of genus zero, positive for large
positive z, having for some positive & at most a finite number of zeros in the angle
larg z| < /2 + 0, and such that

d d
b(r) = rara log f(r) =2 00, 1T —R.

Then f(z) 1s admaissible in the plane.

Theorem 3.10. Suppose that f(z) =) - ,Tnz™ s reqular in |z| < 1. Furthermore, there
exist positive constants «, B < 1 and Ry < 1 and a positive function C(r), 0 <1 < 1
such that

e ast— 1 we have
(1—-7)

e uniformly for |argz| < (1 —r) we have

log f(z) ~ C(|z)(1 —z) ™%, z—1;

e for r sufficiently near 1 we have

[f(re')] < [f(re®), B —1) <ol <.

Then f(z) 1s H-admissible in |z| < 1.
Example 9. (i) e
(11) The function of Section 2.8.1, e#t%°/2 4s H-admissible by Theorem 3.8.

(112) The function e*— 1 is H-admissible by Theorem 3.7 and Theorem 3.5 shows that
the generating function for the Bell numbers, exp(e* — 1), 1s H-admassible, too.



Chapter 4

Generalisations and Related
Concepts

We consider some concepts strongly related to H-admissibility.

Harris and Schoenfeld [HS68] defined a class of functions f : C — C, called HS-admissible,
and proved an asymptotic expansion for their coefficients. Their method is closely related
to Hayman'’s but unfortunately their result is rather hard to apply. Odlyzko and Richmond
[OR85] and Miiller [Miil97] provided theorems which establish HS-admissibility for certain
classes of functions.

Mutafchiev [Mut92] generalised the local limit result implied by H-admissibility (Corollary
3.2) by weakening the restrictions on the asymptotic behaviour of H-admissible functions.
While Hayman requires that only the terms up to order 2 are significant, Mutafchiev only
assumes that the function occurring in the asymptotic is the characteristic function of an
infinitely divisible and absolutely integrable distribution with finite variance.

Bender and Richmond [BR96| stated a rather general analogue of H-admissibility for
functions f : C™ — C, n > 1, and proved an asymptotic formula for the coefficients of
such functions. Their concept is useful for establishing local limit theorems for various
combinatorial structures. In their paper they also proved some theorems which simplify the
task of establishing this so-called BR-admissibility. Unfortunately it is not easy to use this
concept for automatically obtaining asymptotic formulae for the coefficients in question and
proving limit theorems for combinatorial structures.

In view of this, Drmota, Gittenberger, and Klausner [DGKO05] stated an analogue of H-
admissibility for functions f : C2 — C and proved a central limit theorem for their coefficients.
These so-called e-admissible classes satisfy various closure properties of an algebraic type.
With this concept at hand, computers can, given a description of the combinatorial class as
in Chapter 1, automatically prove central limit theorems. In their paper they also presented
a Maple-implementation demonstrating this concept.

35
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4.1 HS-admissibility

Definition 4.1. Let f(z) = ) ,~,fnz™ be a function analytic in |z] < R,0 < R < oo and
real for real z. -
f 1s said to be HS-admaissible if and only if

(1) There ezists Ry € (0,R) and a function d: (Rp,R) — (0,1) such that for r € (Ro,R)
we have
R

and
lz—71] <rd(r) = f(z) #0.

(11) For k> 1 and r € (Ro,R) set

(1) 2K 7 a\ k! z_,
_E<E) Alz), B(z) = 2Bi(z).

We have B(r) > 0 for r € (Ro,R) and B1(r) —» o0 as r — R—.

(112) For Ry < R and n € N suitably large the equation Bi(r) = n+ 1 has a unique
solution u, € (R1,R). Define

Bji2(z) + S4By ()
B(r)

Cj(Z,r) = -

and suppose that for a certain fired N > 0 there exist non-negative numbers Dy, En,
and ng such that for alln > ng and for 1 <j < 2N+ 1 we have

|Cj (unyun” S EnD?n-
In addition, we have for all n > ng that either

(a) |Cj(un,un)| < EnDi1 for all j > 2N +2 or
(b) 1Cant2(un + ipun, un)| < EnDENT2 for p € [—d(un), d(un)].

(tv) As n — oo, we have

B(un)d(un)z — 00, DnEnB(un)d(un)3 — 0, Dnd(un) —0.

We can now state the main theorem for HS-admissible functions. Using the abbreviations
e Bn =B(un);
® Y;j (n) = Cj(un)un);

e Q(r) is the path consisting of the line segment L from r+ird(r) to v4/1 — d(v)2+1ird(r)
and the circular arc C from the last point to ir to —r (see figure 4.1).
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e A(r;d) is the maximum value of |f(z)/f(r)| on Q(r);

exp (—B(T)d(r)2>
p(r;d) = max (Mf, d)y/B(r), A vB0) ) ;
e E/ = min(1,E,) and E;! = max(1,Ey);

hn(n;d) = max (u(un; d), EL(DnE"/\/Br) 2N+2>

1)k & Fm+k+
Fi(n) = =1 > )3 Vi ()3 (1)
ﬁ - | .
it i = 2K
e > 1

we have

Theorem 4.1. Let f(z) =) | ~,fnz"™ be HS-admissible (with either (ii1)(a) or (w1)(b)).
Then for the given N we have, as n — oo, the expansion

== W ( Z (n; d))) (4.1)

In case of (1t)(a) equation (4.1) is valid for all N > 0.

Remark 4.1. The detailed proof can be found wn [HS68]. It mainly consists of an
application of the saddle point-method to the function f(z)z— ™' which has the dominant
saddle point at un. The path of integration used in the proof of Theorem 4.1 is depicted
wn Figure 4.1. It consists of a vertical line running through the dominant saddle point
of the integrand, a circular arc of radius u, and centre 0 and two horizontal lines with
constant imaginary part u,d(un).

Harris and Schoenfeld [HS68] gave two reasons for preferring the integration path
described above over the circle |z| = un_1 as used in Hayman’s proof:

e The quantities Bx(z) arising in Definition 4.1 are usually easier to determine than
the quantities (zd%)kA(z) which would arise when using the circle |z| = un_1.

e In applications considered by Harris and Schoenfeld it turns out that the concept
as presented above produces better numerical results than the alternative concept
based on the circle |z| = un_1.

Remark 4.2. Theorem 4.1 does not necessarily give a meaningful asymptotic result for
every N. If we apply the Theorem as stated above to f(z) = e* and make the (optimal)
choice d(r) = /2logr//T, then for all N > 0 we merely obtain hn(n;d) = O(logn/y/Mm)
which 1s mdependent of N. Noting that Fi(n)/BX < n7* as n — oo for any fized k > 1
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J

—— Un + iund(un)

Un

Figure 4.1: The integration path used in the proof of Theorem 4.1.

we see that for N > 0 Theorem 4.1 does not give a better approzimation to 1/n! than
for N =0.

For this reason, Harris and Schoenfeld [HS68] stated an alternative form of Theorem
4.1 based on the circle |z] = un—1. Details can be found in [HS68].

Example 10. Let T,, denote the set of functions mapping the set {1,2,...,n} into itself
and let o denote the composition of functions. Then, (Tn, o) is a semigroup. We are
interested in the number U, of idempotent elements in (T, o), i.e., functions f € T,
such that f o f =f. Harris and Schoenfeld [HS67] showed that

Zn z
1+ U,— =e*
n!

and in [HS68] they showed that this functions 1s HS-admissible. In this case, R = oo,

k

Alz) = (z+1)%,  Bylz) = (z+Ke%, B(z) = g(zz—l—&—l— 1)e?,

and the function d(r) is chosen such that d(r) = e 2/>. A calculation yields
1 N+1
hN(n;d):O<0gn> , n — oo,
n
and
Fx(n) Py (un)

B Cln+1)*
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where u,, 1s the positive solution of w(u+ 1e* =n+1, C, = u2 +3u, + 1, and Py(u)
15 a polynomaial of degree 7k. Hence, by Theorem 4.1,

N N+1
Un + 1 n! Pr(un) logn
W —./ m/ 1) (g4 3 < )
" Zﬂ(n—l-l)CnuRe +k:1 C?Lk(n—l-])k—l_o n

as n — oo for any fited N > 0.

In general it is quite hard to check the conditions of HS-admissibility. However, Odlyzko
and Richmond[OR85] showed that for a special type of function HS-admissibility can be
established using H-admissibility only:

Theorem 4.2. If f(z) is H-admissible in |z|] < R then exp(f(z)) s HS-admaissible in
z| < R. Furthermore, the error term hn(n;d) of equation (4.1) is o(BN) as n — oo for
every fized N > 0.

Miiller[Miil97] proved HS-admissibility for exponentials of certain polynomials which has
an interesting implication on the relation between HS-admissibility and H-admissibility (see
next remark).

Theorem 4.3. Let P(z) = ka:1pkzk be a polynomzial of degree m > 1 with complez
coefficients px and let f(z) = exp(P(z)). Then the following assertions are equivalent:

(¢) f(z) 1s HS-admissible in C.
(11) P(z) € Rlz] and ¢y > 0.

Miiller[M{il97] also gave an upper bound for the error term for a more special class of
polynomials.

Theorem 4.4. Suppose that P(z) = Y [, przX is a polynomial of degree > 2 and that
P1>0and px >0 for1 <k <m.

Then the function f(z) = exp(P(z)) 1s HS-admissible and the auziliary function d(r)
can be chosen in such a way that for each fized N > 0

hn(r,d) =0 (anq) , n — oo.

Remark 4.3. Theorem 4.3 shows that HS-admzissibility does not imply H-admissibility.
In fact, Theorem 4.3 shows that the function e*1) is HS-admissible. But the function
18 not H-admissible by Theorem 3.8 since its power series erpansion at z = 0 has
nfinitely many negative coefficients.

Note that the functions of Theorem 4.4 are H-admaissible.

Example 11. The function of Section 2.3.1,

z" 2?2
F(z) = Z Fnﬁ = exp (z + ?>

n>0
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18 HS-admassible in C by Theorem 4.3 with the auziliary functions

z4+2% ifk=1

2

Alz) =142z, Bi(z) =¢ & ifk=2,
0 else
_1yi+1
Blz)=3+22,  Gzr =50 (14 %).

The unique positive solution of Bi(u) =n+1 is given by

~1+ VI +5 [i .3
un—f—\/ﬂ<2\/_ 1+—)

= +/n (1 — %n_l/z + gn_1 — %n_z + O(n_s)) )
Hence

(_])j+1

Glunwn) = S5 (14 75

= (;E]; (1 + 1n’1/2 — iTL’E’/Z + O(nz))

Un

Bun) = 7+u$1 = n+1-——

= n+1+‘/zﬁ<1—L+i+O(n—2))

T 9,3 9,5 3p z)
n<1+2n +4n +]6n +0(n )

Theorems 4.1 and 4.4 now gwe (putting N = 1) after some simplifications

F Un 1 /2 7 5
L (1 +on+ on¥ iy O(nz))> :

!l 2uny /7B (un) 24 9%
Calculating
B B 1 5 25 _ _
ut = Y exp <—“1°g (‘ “3gm e 1t tom 3)>)
1 1 1
= e (? S O(“2)>
2 2
un _Un
n 5 25
_ 11 (4 ~1/2 -1 -3/2 —5/24 0 )
n+ 5 n /e on S + 178 +0(n)
n+yn 1 5 25

40
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and
% —l—u%1 = n+1-— %
_ T 90,5 4 5 _3p )
= n|(l Zn —|-4n ]671 +0(n )>
—1/2 1 1 17 35
Un 2 _ 12 1 32 z>
o N & _ _ >
<2 —l—un) \/r_1< —|-4n 32n 128“ +0(n™)
we obtain

Fo e (3+vi-3) (1 L5 1, 2245
T 2 mnd 48 4608

and an application of Stirling’s formula gives the final result

n T+ O(n3/2))

n/2 1
Fn = nﬁ eXp(—%+\/H—Z> X
55 2629 19061
142212 1 32 2 ) 49
X ( Tt Tae08™ Teemszt | o) (4.2)

4.2 GH-admissibility

Mutafchiev [Mut92] proposed a generalisation of Hayman'’s concept of admissibility, called
GH-admissibility, with the asymptotics (3.1) and (3.2) of Definition 3.1 replaced by weaker
conditions.

In the following we present Mutafchiev's definition and results but follow Hayman more
closely and prove an analogue of Theorem 3.1 for GH-admissible functions. We will first list
some important facts concerning characteristic functions of distribution functions. Then we
state a slightly modified definition of GH-admissibility followed by some remarks. We then
proceed stating the main results of this sections and show how GH-admissibility can be used
to infer local limit theorems for the number of components of combinatorial structures.

Mutafchiev [Mut92] also applied his concept to three combinatorial problems already
known to satisfy a local limit theorem. Unfortunately, as we will show in this section, the
generating functions of the problems considered by Mutafchiev are not GH-admissible and
therefore his paper [Mut92] does not contain any valid applications of the concept of GH-
admissibility.

Remark 4.4. We summarise some important properties of absolutely integrable and
infinitely divisible characteristic functions h(t). Details and proofs of these facts can be
found in [Luk70]. Let H(x) denote the probability distribution function corresponding
to h(t). We have

e H(x) 2s absolutely continuous w.r.t. the Lebesgue-measure with continuous density
H'(x),
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e The probability density H'(x) satisfies
J e "™h(t)dt, —00 < X < 00. (4.3)

—00

1
H/(x) = —
(x) o

Definition 4.2. Suppose that f(z) 1s analytic in |z| < R, R > 0, and real for real z.
Assume further that there ezists Ry, 0 < Rp < R, such that f(r) > 0 for Ro <r < R. For

this range define the functions
f1(r) , of"() ( f’(r))z

fI(T) o -
T ) and b(r) =ra'(r) _rf(r) +r fr) rf(r)

Then f(z) is said to be GH-admassible in |z| < R if and only if there ezists a function 6 :
[0,R) — [0,71] and an absolute integrable and infinitely divisible characteristic function
h(t) defined by a non-degenerate probability distribution with finite variance such that

a(r) =

(1) b(r) = 00 as r — R;

1 e probability density function H'(x) corresponding to h(t) satisfies > 0;
1) th bability densit tion H'(x) ding to h(t) satz H’(0) >0

(v12) f(re'®) ~ f(r)e'*eMh(d,/b(r)) as T — oo uniformly for || < 5(r);

o(f(r))

(1) J s(r, d)f(re'®)dp = 0]

8(m)<IpI<T
s(r, ) satisfying s(r,d) = O(1) as r — R uniformly for 6(r) < |p| < 7.

as v — R for any compler valued function

Remark 4.5. Instead of Condition (1) in Definition 4.2 Mutafchiev originally required
that

. ) f
(w’) J s(r, ¢)f(rel®)e H#PVPM g = O(T\/% as v — R for any real Z # 0 and any
&(r)<|PpI< T
complezr valued function s(v,$) satisfying s(v,p) = O(1) as r — R uniformly for
8(r) <[l <.

Conditions (i) and (i’) are equivalent since s(r, d)e 4PV P qlso satisfies the assump-
tions imposed on s(r,d). Hence the factor e 4PV (") need not be mentioned explicitly.
Remark 4.6. We adopt the notation of the last definition.

Consider the power-series distributed random variable &(r) whose distribution 1s

determined by

k
P(E(r) = k) = fc‘z—:)

Then we have E&(r) = a(r) and VE(r) = b(r) and the characteristic function of the
normalised random variable (&(r) — a(r))/+/b(r) is seen to be

f (Teit/m> a)
T exp (—ltm> .

k>0, 0<r<R.

a(t;r) =
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Setting & = t//b(r) in Definition 4.2, Condition (111), we see that
a(t;r) = h(t), r — R,

whenever [t| < 8(r)/b(r).
H-admassible functions are GH-admassible with h(t) , t.e., the coefficients of
H-admassible functions satisfy a normal limit law (see Corollary 3.2.).

2
— 22

As for H-admissible functions, we have

Lemma 4.1. We adopt the notation of Definition 4.2. Then

5(1)4/b(r) = oo, T — R.
The proof of Lemma 4.1 can be found in [Mut92]. We only note that

Theorem 4.5. Suppose that f(z) = ) ,~,fnz™ s GH-admissible in |z| < R with char-
acteristic function h(t) and corresponding probability distribution function H(x) and
define f, =0 for n € Z_. Then we have uniformly for all integers n

1) ([ alr)—m
B

Proof. The starting point is Cauchy’s formula, viz.

1 dd
n_ idp
for™ = > J f(re )eimb
—7
We set
5(r) 27t—58(r)
] ipy d¢ _ ] ipy AP
I] = E J f(Te )echb and Iz = Z‘[ J f(Te )ele)
—8(7) (1)

Putting s(r,$) = exp (—ind) in Condition (iv) of Definition 4.2 we see that

L= g
2 b(‘r) ) )

and Condition (iii) together with the absolute integrability of h(t) gives uniformly in n

3(r)

—5(r)
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Finally, substituting t = ¢+/b(r) and using Condition (i) as well as the absolute integrability
of h(t) and (4.3) we obtain as r — R

(1) 00

/ id(a(r)—n) _ T+o(1) .afr)—n
J( )h (d) b(r)) e dp = NOoh - J h(t) exp 1t7b(r) dt
—5(r -

_ (), (el —n) | olf(r)
a b(r) b(r)

which completes the proof. O
Corollary 4.1. We have
a(r) — oo, r— R. (4.5)

Furthermore, there exists Ry < R such that a(r) is strictly monotonically increasing for
Ri <r<R and
b(r) =O(a(r)?,  r—=R (4.6)

Proof. We have b(r) = ra’(r) — oo as v — R which shows that a(r) is finally strictly
monotonically increasing as r — R.
Putting n = —1 in (4.4) yields

H’ (_a(r) +1

0 ) =o0(1), r— R.

Since H'(x) is continuous and H’(0) # 0 by Definition 4.2 there exists M € R such that

a(r) —1 > M r— R.

Vb(r) | =

From this and the fact that b(r) — oo as r — R it follows that a(r) — oo as r — R and
b(r) = O(a(r))?. O

Corollary 4.2. For n large enough the equation a(r) = n has a unique solution v which
satisfies T, — R as n — oco. Furthermore

~ LTMHI(O) n — oo. (4.7)

f ,

" Thy/b(Th)
Proof. From (4.5) and the fact that a(r) is finally strictly monotonic increasing we see that
the equation a(r) = n has, at least for n large enough, a unique positive solution r,. This
solution satisfies r, — R as n — oo. Putting r = r, in (4.4) proves the asymptotic for f,,. O

We now turn to the problem of determining the distribution of the number of components
in combinatorial classes.
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Suppose that G and F are two labelled combinatorial classes related via G = setF. The
corresponding exponential generating functions

g(z) = Z gnz"/n! and f(z) = Z faz™/n!

n>0 n>1

then satisfy

g(z) = e (4.8)
Now let &1(r),&2(r),... denote a sequence of i.i.d. random variables generated by f(z), that
is
fka
P{é1=k}=—— 0 R, k=0,1,... 4.9
{&1 }fmm’ <T<R, % I (4.9)

where R denotes the radius of convergence of f(z), define the sequence of random variables
Sn(M) =&1(r) +---+&En(T), N=12,... (4.10)

and let X = X(w) denote the number of components of w € G. Finally, let P, and E,, denote
the uniform probability measure and expectation defined on the set of structures of size n of
G. Then we have

f(r)Nn!
O () =n). N=1.2,...m n=12,...

Pn{X=N}=
ni } NI

and

Zn
> ([EnX) 2 = f(z)g(2).
n>0 ’
Proofs for these facts can be found in [Kol86] and [Com87].
We can now state Mutafchiev’s results concerning the distribution of X.

Theorem 4.6. Suppose that f(z) and g(z) are power series with nonnegative coefficients
satisfying (4.8) and let R > 0 denote their common radius of convergence. Moreover,
let g(z) be GH-admassible with distribution function H(x) and functions a(r) and b(r)
as defined in Definition 4.2 such that

\/b(r) ~ dg(r), r— R,

for some 0 < d < .
Then

(x) If N =1f(r)(1 +0(1)) as r — R, then the distribution of the sums Sn(r) defined by

(4.10) satisfy
H’ 1
P{sn(r) =k} = L) ol e
b(r)
where y = (a(r) —k)/+/b(r). This convergence is uniform w.r.t. y belonging to an
arbitrary compact set.
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(1) If v 1s defined by a(ry,) =n then

_ 1 (N — f(rn))?
P {X =N}~ ) exp <— 2] > , n — oo,

uniformly w.r.t. N such that (N —f(r))/f(rn)”/1% belongs to an arbitrary compact
set.

Remark 4.7. The last theorem can be applied to all GH-admaissible functions which are
not H-admissible (see [Mut92, Remark 2.2] for details).

Theorem 4.7. Suppose that f(z) and g(z) are analytic for |z| < R and satisfy (4.8). If
g(z) 18 GH-admissible then

EnX ~ f(rn), n — oo,
where T 1S defined by a(r,) = n.

Proofs for the last two theorems can be found in [Mut92].
We close this section with a comment on the examples given by Mutafchiev in his paper
[Mut92].

Remark 4.8. Mutafchiev [Mut92] considered the egf for the number of permutations of
length n > 0 given by

f(Z) _ e—log(]—z] —

We have

Let 5:[0,1) — [0,71] be such that
(1-1)23 < 8(r) < (1-1)"2 r— 1.

Then we have, uniformly for || < &(r), as v — 1

flre®)  1-—r _ 1
flr)  1—re® 1 —aq(r)(eid—1)
1 iba(r) e~ ib/br)
T—ipa) ~ ° TTieyB0

If f(z) would be GH-admissible in |z| < 1 then the corresponding characteristic func-
tion would be given by

et
Tt
which corresponds to a shifted Gamma density, viz.

—x—1 ; >
Wi =]¢ 1x=-]
0 if x < —1.

h(t) —0 < t< oo,

The function f(z) cannot be GH-admissible for two reasons:
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e The probability density function H'(x) corresponding to h(t) = e /(1 —it) has a
discontinuity at x = —1. Hence h(t) cannot be absolutely integrable (see [Luk70,
Theorem 3.2.2]).

e Condition (w) of Definition 4.2 1s not satisfied by f(z). To see this, we choose the
function s(r;$) = exp (—i arg f(ri‘b)). Then

J s(r;§)f(re®)dp = f(re®)/dg
s(r<Ipl<m s(r<Ipl<m
_ [ dg
J V/1+712—2rcos
s(r)<Ipl<m
> d¢
- J V1412
s(r)<|bl<

whach 1s not o(1) asr — 1.

The generating functions
14z

g(z) = 7@

and
1

T 1-T(2)
considered in the remaining two examples of [Mut92], again, lead to characteristic func-

ttons which are not absolutely integrable since the corresponding probability distributions
have got discontinuities. Hence, the functions g(z) and G(z) cannot be GH-admassible.

G(z) where T(z) = ze'™®

Remark 4.9. Mutafchiev [Mut97] considered the distribution of the parameter 'num-
ber of distinct component sizes’ on the set of combinatorial structures of size n in
certain combinatorial classes as n — oco. Using the concept of GH-admaissibility Mu-
tafchiev [Mut97] established weak convergence results to a convolution of two distribu-
tions, where one of them s always Gaussian.

In his paper [Mut97] he also presented three eramples. In case of the first two
ezamples, namely set-partitions and integer-partitions, the generating function is not
only GH-admaissible but even H-admassible. Unfortunately, the third ezample constitutes
an wnvalid application of his results since the generating function for the number of
functions from {1,2,...,n} into itself is given by G(z) of Remark 4.8 which s not GH-
admassible.

4.3 BR-admissibility

In this section we consider a multivariate generalisation of the notion of H-admissibility which
is due to Bender and Richmond [BR96]. They proved a theorem analogous to Theorem 3.1
which can be used to obtain local limit theorems for a variety of combinatorial problems.
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First, we need some definitions concerning the notation:

Definition 4.3. For the d-variable function f(z) =} ;. anz™ we define:
o As 1s the Z-module spanned by differences of those n for which an # 0.
e d(A¢) denotes the absolute value of the determinant of a Z-basis of As.

e A} 1s the polar lattice of Ay,

/\?z{XERd DVn e Ar we havex-nGZ}

where X - n denotes the usual scalar product.

o Let {vi,...,vq} be a Z-basis of \}. Then we define the fundamental region of f as
the parallelepiped

@f:{C1V1+...+Cd\?d|V1Skgdl —7'[§Ck§7'[}. (4.11)

We will also make use of the following asymptotic notation:

Definition 4.4. We write f(z) = 0y,(,)(g(z)) for z in some set S, if there ezists a function
A(t) such that A(t) — 0 as t — oo and |f(z)/g(z)| < A(Ju(z)]) for z € S.

Now, we can state the central definition and the main theorem of [BR96]. Remarks will
be given right after the proof of this theorem.

Definition 4.5 (BR-Admissibility). Let f(z) be a d-variable function analytic at the
origin having a fundamental region ®¢. If A 1s d-dimensional, then we say that f(z)
1s BR-admissible in R C Rj‘l with angles © if there exist functions

e O: R {SCDs|0€S and S 1s an open set},
e a:C4— CY and
e B:Cd— Ccdxd
such that (we write o for Oget B(+)))
(1) f(z) s analytic whenever r € R and |zi| <ri for 1 <i<d,
(1) B(r) 1s positive definite for r € R,
(112) the diameter of ©O(r) s og(1),

(w) for r € R and © € O(r), we have

f(re'®) = f(r)(1+ op(1)) exp (ia(r)'® — 6'B(r)0/2) (4.12)
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(v) and for r € R and 6 € O¢— O(r), we have

i) _ oBllr)) (4.13)

f(re
B(r)|

The function f(z) s called BR-super-admissible if condition (4.18) can be replaced

by
f(re'?) = 7()%(;()72) (4.14)

for arbitrary t € R, where og(f(r)) may depend on t.

Theorem 4.8. Let f(z) =) ,~,anz™ be a d-variable function that is BR-admissible in

R with angles ® and let k € N4 be such that [z¥|f(z) # 0 and set v = a(r) —n. Then we

have
d(Ag)f(r)r™

(z"f(z) = (27) d/z\/m

(exp (—v'B~'(r)v/2) + 08(1)) (4.15)
forreR and n—k € Ay.

Proof. For brevity, we omit the arguments of B(r) and O(r).
By Cauchy’s theorem, we have

anr“—(;w J f(re*®)e ™®qp. (4.16)

[~

Assume that a, # 0 and ¢ € A}. By definition of A}, the integrand remains unchanged if ©
is replaced with 0 + 27tc. Thus, we can write

A . L
ant™ = ?Z(W)g J f(re'®)e"™0de. (4.17)
Oy

Now, let @* = ©*(r) denote the greatest star-shaped region contained in O, that is
0cE < V0<p<l: poco.
We can work with @* instead of © since
e The interior of ®* is contained in O.

e The boundary of ©* is contained in ®¢ — @ and therefore we have

_ os(1)

exp(—0'B0O/2) N

on the boundary of ©*.

e For every 0, there is a k = k(r) such that k0 € ©* because 0 € O*.
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e B is positive definite, that is (p©)'B(p0) > 6'BO for p > 1. Therefore we have

og(1)

exp (—0'BO/2) = for all 0 ¢ ©. 4.18
Now, the integral (4.17) can be rewritten as
d(Af) J 0 ) og(f(r))
anr™ = f(re™)exp (—in'0) d6® + ——.
" (2m)d o (re) exp ( ) Vdet B

B is a positive definite matrix and thus, there exists a real d x d matrix S such that B = S'S.
Using the abbreviations y = SO and w? = w'w, we have
we—-0'Be/2 = w'Sly—y?2 =
= —(S"W)2—(y—-is"v)?*2 =
= —vB v/2—(y—iS""v)?/2.

Hence, using equation (4.12), we get

J iv/0—0'B0O/2 e VB /2 (y—is' w22
etv'o— do = —— J e U1 v dy =
Vdet B
o se*
_u/Rr—1
_ e Vv B 'v/2 J’ ei(yiislil‘))z/zdy 4
Vdet B 2
. IB—l 2
O(1)e B v/ Jexz/zdx_
v/det B
As in the proof of Theorem 3.1 we get
d
Je—(y—is"v)z/zdy _ Je—(x—ic]z/de _ (zmd/z_
Rd R

For x € T we have, by equation (4.18), e = og(1)/+/det B and therefore, we get

Je_"z/zdx = og(1)
T

by essentially the same argument as in the proof of Theorem 3.1. Combining these results
we obtain equation (4.15). O

Remark 4.10. (z) Usually, one can let a(z) and B(z) be the first and second logarith-
mic derivatives of f(z).
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(1)

(ii)

(w)

(v)

(vi)

(viz)

Definition 4.5 does not demand the unboundedness of det B(r) in R. So, the op-
terms in the equations (4.12) and (4.18) need not be small anywhere in R. Hence,
if f 1s BR-admassible in some set R, then f 1s BR-admaissible in every set R1 C R,
too.

In applications, however, one s usually interested in mazimal regions or at least
regions large enough for det B being unbounded.

If the function f(z) 1s H-admassible for |z| < R, then f(z) is BR-admassible in every
set R C (0,R).

Let f(z) be BR-admissible in R. For every k € N, k; > 1, the function g(z) := f(z¥)
1s BR-admaissible, too.

As a simple ezample take e, which is H-admaissible and thus BR-admissible in
R. This function has a fundamental region [—m, 1] and we can set O(r) = [0, d(r)]
where 5(r) is the function of Definition 3.1 (in this case, we can use 5(r) =r%/3).
The function e? is BR-admissible (but not H-admassible) with fundamental region
[—7t/2,7t/2] and ©O(r) = [0,5(r)/2].

Besides R C Rﬁ}, Definition 4.5 does not impose any restriction on the set R.

Thus, one has to verify that BR-admaissibility holds in a region R having the right
shape before applying this concept. In Section 5.2.3, we consider a function which
18 BR-admissible only in regions which cannot be used for proving an asymptotic
normal distribution.

Theorem 4.8 allows one to compute asymptotics for the coefficients of BR-admaissible
functions if one has got sufficiently good estimates for the solution r, of a(r) =n
as well as f(ry) and ry.

In many cases, BR-admaissibility can be used to establish local limit theorems:
Suppose that f(z,u) s BR-admaissible and ordinary in u. Partition all vectors
and matrices into block form according to the two sets of variables x and y. Solve
a(r,1) = (n,k*) for r asymptotically in terms of n and use this to compute k* and
B(r, 1) asymptotically in terms of n. Let n — oo wn a way such that (r,1) € R and
det B(r,1) — co. It follows that [z™uK|f(z,u) satisfies a local limit theorem with
means vector asymptotic to K* and covariance matriz asymptotic to

(B22—Bj,(B1; )7131,2)71

where
Bi1 Bip
B(z,u) = ’ ’
(=) (Bﬁ,z B2,

15 the block form according to the variable sets x and y.
If z and u are 1-dimensional then the variance is given by det B/Bq 1.

Note, that BR-admaissibility does not necessarily entail a local limit theorem. See
section 5.2.8 for a counter example.
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If we want to combine functions having different sets of variables, we have to extend these
functions and the definitions of R, ©, a and B to include all occurring variables.

Remark 4.11. Let f(z) be BR-admissible in R with angles © and let y be a variable
not appearing in f. Set

R=Rx(0,00) and O(r,p)=0(r)x [-m,

forr € R and p € (0,00). The functions a and B are eztended to @ and B by adding
entries of zeroes. Note that det B = 0.
Generalisation to more variables s straight forward.

From now on, we will always assume that the functions are properly extended as described
above.

Theorem 4.9. Let f and g be BR-super-admissible in Ry with angles O¢ and in Ry with
angles Og4, resp. Assume that det(Bf+ Bg) is unbounded in R = R¢NRy.
If there are constants C and k such that

det(B¢(r) + By(r)) < Cmin(det(B¢(r))*, det(B4(r))" ), reER, (4.19)
then fg is BR-super-admissible in R with angles © = ©¢ N @g and we may take
afg=ds+dg and By =B¢+By.
Furthermore, we have A = As + Ay.

Theorem 4.10. Let f be BR-(super-)admissible in R with angles ©. If the function
g(re'®) is analytic for r € R and for some functions ag and By, g satisfies

('L) /\9 g Af;
(it) forr € R and © € ©

(reie) — g(r) eXp ('i,alge - elBge + 03(1)> ?

(11) there is a constant C such that |g(re'®| < Cg(r) forr € R;
(1v) there is a constant K such that det(Bs+ By) < Kdet B¢ for r € R.
Then fg 1s BR-(super-)admissible in R with angles © and we may take

afg =af+ag and Bgy=B¢+ Bg.

Theorem 4.11. Let f(z) = Y anz™ be BR-(super-)admissible. For any sublattice A of
At define
g(z) = Z ak—b—nzk_'_n

where k s such that ax #0. Then the function g is BR-(super-)admaissible with
ANg=A, ag=as, Bg=Bf Rg=R¢, andBgy=0x.
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Theorem 4.12. Assume that
o f(z) = anl anz™ s H-admassible in |z| < R;
e S is a subset of {0,1,..., m—1};
e for 0 <k <m, choose A\ € Ry such that Ay > 0 if and only if K € S;
e for n > m, define Ay, = Ay whenever n =k mod m;
e define

o0
Q(Z) = Z Ananzn
=0

and A =m"' Y "' A
Then
(i) For some Ry < R, the function h(z) = e9% is BR-super-admissible in R = (Ro,R)

with angles O(r) = {0 :10] < g(r)~'/37¢} and the functions a and B, provided e > 0
15 sufficiently small.

(1) For some Ry < R and all 5 > 0, the function h(x,y) = eY9X) is BR-super-admissible
mn
R = {(r,s)‘Ro <r<Randg(r)®'T<s< g(r)”‘s}

with angles
O(r,s) = {86l < (sg(r) >~}
and functions a and B, provided ¢ > 0 is sufficiently small.

Example 12. Consider the function

F(Z, u, W) _ eu(cosh z—1 )ewsmh z

The coefficient of z™u*w™/n! in F(z,u,w) equals the number of partitions of a set of
size 1 having k blocks of even size and m blocks of odd size. We show that F(z,u,w) 1s
BR-admaissible.

We consider the two functions

(cosh z—1) wsinh z

f(z,u) =e"* and h(z,w)=¢e

Theorem 4.12, applied to the H-admaissible function e* — 1 with m =2, S ={0} and
Ao = 1 shows that f(z,u) is BR-super-admissible in

Re= {(T‘,S) ‘ Ro <1 and (cosht—1)%"1 < s < (coshr — 1)1/5}
with angles

O1(r,s) = {(61,62) | [6x] < (s(coshr — 1)) 13, k=1,2}
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and matriz

B¢(r,s) =s (

r2coshr + rsinht  rsinhr
rsinhr coshr—1

for any 6 >0, any Ry > 0 and €1 sufficiently small. Putting S ={1} and A\ = 1 instead,
we see that h(z,w) 1s BR-super-admissible in

Rn = {(T,t) ‘ Ro <1 and (sinht)® T <t < (sinhr)”é}

with angles
On(r,t) = {(01,62) | 10| < (tsinhr) =712, k=1,2}

and matriz

rcoshr sinhr

2 .
Bu(rt) =t < rosinhr+rcoshr rcoshr >
for any 6 >0, any Rp > 0 and €, suffictently small.
We now extend the functions f and h and the corresponding matrices to include all
variables occurring as described in Remark 4.11 and set B(r,s,t) = B¢(r,s,t)+Bn(r,s, t),
that s

r(rs +t)coshr + r(rt + s) sinh r rssinhr rtcoshr
B(r, s, t) = rssinhr s(coshr—1) 0
rtcoshr 0 tsinhr

Furthermore, we set R = R¢ N Rh.
The determinants of the matrices B¢, Bn and B are given by

det B¢(r,s) = rs(sinhr—r)(coshr—1)
det By,(r,t) = rt(coshrsinhr—1)
det B(r,s,t) = (sinhr)det B¢(r,s)+ (coshr — 1)det By(r,t).

For brevity we set det Bf = det B¢(r,s) and det By, = det By(r,t). We have

2r 2r
det Bs ~ srz and det Bhwtrz as T — 0o

and therefore

detBf s

detBhN¥’ t;éO,T—>oo‘
Now if (r,s,t) € R then

(cosht — 1)1 - s - (coshr—1)1/2

(sinhr)1/® t (sinh )81

which gives
e T(1-5+1/8) s er(1-5+1/8)
315 (]+0(1))<¥<T(]+0(1)), T — OQ.
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If we let Ry > 0 be so large that

e T(1=8+1/8) o or(1-5+1/5)
R I
as well as 5 5 5 5
T e’ re-’ e’
S <detBf<s 2 and t 3 <detBr <t 2

we see that there exist constants C > 0 and n > 1 such that
det Bf < K(det By)" and det By < K(det B¢)™.
Since sinhr ~ coshr—1~e"/2 as 1 — oo we get
det B < K ((det B¢)*, (det Bn)*)

for some constants K >0 and k > 1.

Hence, by noting that det B(r, s, t) s unbounded in R we see that all assumptions of
Theorem 4.9 are satisfied and we conclude that F(z,u,w) 1s BR-super-admissible in R
with angles

O(r,s,t) = O¢(r,s) NOx(r,t)
= [—(s(coshr— 1))7€ =13 (s(coshr — 1))~ 71/3]2 y

X {—(t sinht)~€2~1/3 (tsinh T)_€2_1/3]

and matriz B(r,s,t).

4.3.1 Perturbation of BR-admissible Functions

If f(z?) is BR-admissible then g(z) = f(z?) +z is not. The reason for this lies in the definition
of the corresponding lattices. We have A¢ = 2Z and Ay = Z, but clearly [z2*tg(z) = 0 for
k > 0. Bender and Richmond [BR96] remarked that the definition of BR-admissibility could
be modified to include g(z). But then the product rules for BR-admissible functions would
not hold anymore.

In this section we show that if f(z) is BR-admissible then (f+ g)(z) is BR-admissible, too,
provided that g(z) is sufficiently small and that A¢. 4 C A¢. Our reasoning will essentially be
the same as in the proof of Theorem 3.7 for H-admissible functions. As a matter of fact the
proof for this theorem is a bit shorter than the corresponding one for H-admissible functions.
For details see the remark following the proof.

Remark 4.12. Suppose that f : C* — C is BR-admassible in R with angles © and
functions a = a(r) and B = B(r).
We may suppose that for r € R

O(r) C {0 €[-mn™ | 'BO < 2logm(r)} (4.20)
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where
m(r) = max(1,det B)
since otherwise we should have for 8'BO > 2log m(r)
exp (—0'B8/2) < exp(—logm(r)) = m(r)"!
which implies itmplies (4.18) for f(z).

Theorem 4.13. Let f(z) be BR-super-admissible in R with angles ® and functions a
and B and let g(z) be a function such that

(1) g(z) s analytic for |z| € R,
(1) Ng C Ags.
(i11) for any t >0 we have

og(f(r))
= R; 4.21
max |g(z)| QB TR (4.21)
Then f 4+ g 1s BR-super-admassible in R with angles © and functions a and B.
If f is BR-admissible and g satisfies condition (i11) with t = 1, then f + g is BR-
admaissible.

Proof. We adopt the notation of Remark 4.12 and assume that O(r) satisfies (4.20).
First, we note that

flr) = fr)+gr)—glr) = (f+9g)r)(1+os(1) (4.22)
by (4.21).
Suppose now that 0 ¢ ©(r). Since f(z) is BR-super-admissible we have
f(reie) _ OB(f(r))

(det B(r))t

for any t > 0. Now we get from this, (4.21) and (4.22)

) __os(f(r)) og(f(r))

(f+ ) (re” (et B(r))t ' (det B(r))t
_ oslflr)  _ os((f+g)ir))
(det B(r))* (det B(r))t

uniformly for © ¢ ©(r) which implies (4.14) for f + g. In the same way we obtain (4.13) for
BR-admissible f.
If © € O(r) then we get from (4.20)

£(re®)| = f)0+op(1)e B2 >
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where m(r) = max(1,det B). As a consequence of this and (4.21) we obtain

g(re'®) io) mM(T)
e < 9(re®) Fy(ros) = os(l)

uniformly for © € O(r). Hence by BR-admissibility of f and (4.22) we get

(f+9) (rew) — f(re®)(14+0g(1)) = f(r)(1+ og(1))eia(re—eBe/2
= (f+9)(r)(1 + op(1))ela(ro-0'Bo/2
uniformly for © € O(r). This proves (4.12) for f + g. ]

Remark 4.13. Definition 4.5 does only require the ezistence of functions a(r) and B(r)
but does not assume that these are equal to the first and second logarithmic derivatives
of f(z).

This results in a shorter proof compared to the proof of Theorem 3.7 where we
also had to show that the asymptotics hold with the appropriate functions (namely the
logarithmic derivatives).

Example 13. Consider the function
G(z,u,w) = (eu(cosh z—1) 1 —u(coshz — ])) ewsinhz

which 1s a simple modification of the function F(z,u,w) considered in Ezample 12.
G(z,u,w) 1is the exponential generating function for set partitions having at least 2
blocks of even cardinality and the coefficient of zu*w™/n! in G(z,u,w) equals the
number of partitions of size n having k blocks of even cardinality and m blocks of odd
cardinality.

We adopt the notation of Ezample 12 and set

f(z,u) = evlcoshz=T) and g(z,u) =14+ u(coshz—1)

We have

T

max ¢(z,u) =g(r,s) =1+ s(coshr—1) <1 —|—se—

|z|=7 Jul=s 2

and for r > Ry

f(r,s) f(r,s) erse’/2
det B¢(, s) TseZr Tselr
which gives
2r 3r 2
9(r,s) rseTtse/2 ) e

f(r,s)/det By ~ 2  erse’/2

The last asymptotic 1s sufficient for proving (4.21) since det By remains bounded in R
if + remains bounded. The other conditions of Theorem 4.18 are satisfied, too, and
therefore we may conclude that G(z,u,w) i1s BR-super-admissible in R with angles ©
as defined in Example 12.
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4.4 E-admissibility

In this section we present a bivariate analogon of H-admissibility developed by Drmota,

Gittenberger, and Klausner [DGKO05]. In their paper [DGKO05] they defined classes of bivariate

functions f(z,u), called extended-admissibility (e-admissible) functions, such that the random

variable X defined by

[Z™MuMf(z, 1)
[z f(z,1)

satisfies a central limit theorem. An important property of these classes of e-admissible
functions is the existence of many simple closure properties which simplify the task of es-
tablishing e-admissibility and can be used to automatically prove a central limit theorem for
X given only a deconstruction of the combinatorial class considered. For details concerning
this automation we refer to their paper [DGKO05] where they also present an implementation
of this concept using Maple.

Roughly speaking, a bivariate gf f(z,u) is e-admissible if it is

Po{X =k} = k>0, (4.23)

e H-admissible w.r.t. z for u in some real interval around u = 1 and
e satisfies Lemma 3.1 w.r.t. uwfor z€ R™.

Some additional requirements are needed in order to have simple algebraic closure properties.
We have

Definition 4.6 (e-admissibility). Let f(z,u) =3 | 1 ankz™uk be a bivariate function
analytic in the domain -

Agn={(z,u) €C? : 2| <R, ul <1+n}
for some R >0 and n > 0. Assume further that there exists Ro < R such that
f(r,1) >0, Rop<r<R

Let a,d,b,b,c denote the deriatives of log f(z,u) w.r.t. logz and logu, that is

2
b(z,u) = zay(z,1) = Sz | afulzu) (M)

f(z,u f(z,u) fz,u
B(Z‘v u) = U.du(Z,U.), C(Z‘) u) = u(lu(Z, 'LL)
The function f(z,u) s called e-admissible in A, if and only if

(1) Let K> 0 be an arbitrary constant and set

12
clr, ”2> . (4.24)

e(r)—K(B(r,])— o0 1)
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Then, for each choice of K there exists a function 6(r) : (Ro,R) — (0,71) such that
uniformly for |b| < d(r) and 1 —€e(r) <u <1+ €(r) we have

2
f(re*® u) ~ f(r,u) exp (id)a(r,u) — ¢%b(r,u)) , as T — R, (4.25)

and uniformly for 6(v) <|p|<mand 1 —e(r) <u <1+ €(r) we have

f(rel® u) = %, as v — R. (4.26)

(1) b(r,1) — 00 as r — R;
(v12) Uniformly for 1 —e(r) <u <1+ e(r) we have b(r,u) ~b(r,1) as r — R.
(tv) For v € (Rp,R) and u € [1 —€(r),1 + €(r)] we have

a(r,u) = a(r, 1) +c(r,)(u—1) +O0(c(r, 1) (u—1)2). (4.27)

(v) For all v+ < R and u wn some arbitrary but fized complez neighbourhood of 1 we
have B B
a(r,u) =0(a(r,1)) and b(r,u) =0(b(r,1)). (4.28)

(vi) b(r,1) — Cb({;]]))z — 00 as T — R;

(vii) €(r)3b(r,1) - 0 as v = R;
(viiz) For every A > 0 we have, as v — R,
a(r,1) =0(f(r,NY) and b(r,1) =O(f(r,1)*).
Remark 4.14. The class of functions that are e-admissible in a domain Ar, will be
denoted by Er.

Remark 4.15. The definition of e-admassibility implies that for every f(z,u) € Er we
have f(z,1) € Hg.

Theorem 4.14. Let f(z,u) be e-admassible for |z| < R. Then we have

n ~ fru) (a(r,u) —n)?
[z"]f(z,u) = W <3XP <_W> + o(]))

uniformly inn and w € [1 —e(r), 1+ ¢(r)] as v — R.

The same arguments as in the proof of Theorem 3.1 can be used to prove Theorem 4.14.
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Theorem 4.15. Let f(z,u) be e-admissible in Ary, such that for sufficiently large n all
coefficients anx are nonnegative. Let (X,.) be the sequence of random variables related
to f(z,u) via (4.23). The positive solution of a(r,1) =n will be denoted by .

Forn > 0 set

Hn = a(TTU 1 ))
2 |det B(rn, 1) - c(rn, 1)?
= ———— = b 1)— ——
Tn b(tn, 1) (rm, 1) b(rn, 1)
Xn — HUn
Y, = —.
n on
Then the following central limit theorem holds:
Yo 3 N(0,1), m— oco. (4.29)
Furthermore, we have, as n — oo,
EXn = pn + 0(on)? (4.30)
and
VXn = on(1+0(1)). (4.31)

Proof. First note that f(z,1) is H-admissible and therefore r,, is uniquely determined at least
for n sufficiently large and r, » R as n — oo.
Next, consider the moment generating function of X,,,

[z"f(z, et)

Iz 1) It] < el(rn).

mp(t) =

We note that t — 0 as n — oco. An application of Theorem 4.14 gives

n __ fm)
1) = e ()
frmye)1+0(1) (_(a(rn,et) - a(rn,1>)2>

/270 (1, et) 2b(rn, et)

as n — oo. (4.28) ensures applicability of Lemma 3.1 to the second argument of f(r, et), viz.

[2Mf(z,e")

f(r,e') = f(r, 1) exp (td(r, 1) + tz—zl_)(r,ﬂ + O(B(r,1)t3)> , r—R

Conditions (iii) and (iv) of Definition 4.6 give, as n — oo (and so t — 0),

(a(rn,eY) —a(rn, 1))*_ c(rn, 1)(e" = 1)+ O(c(rn, 1)(e* —1)3)
2b(rn, et) B 2b(ry, 1)(1 + O(1))

B c(rn, 1)t2 c(rn, )2 5
= 20 1) <1+O<b(rn,1)t>>'
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Combining these results we obtain

2

2
mn(t) = exp (tpn—l- %Gﬁ—l— 0 (%ﬁ) + 0(1)>

for [t| < €(rn) as 1 — oco. Condition (vi) shows that c(r,1) < b(r,1)b(r,1) and therefore
condition (vii) finally gives

mn(t) =exp |t +ﬁ b(r 1)_M (1+0(1)) (4.32)
n - p un 2 ) b(Tn, -I) .
for [t| < €(rn) as n — oo.
Hence the moment generating function of Y,, is given by

Map(s) = e SHn/%vm <i> = e /2(1+0(1)) (4.33)
n
for |s| < K which proves (4.29).
The convergence Mn(s) — ev /4, 1 — oo, is uniform in every compact set and therefore
the sequence (Yy,) has an exponential tail (see [Flajolet,Soria,Sec.4] for details). This implies
the convergence of all moments. In particular we have

t2/2

Exn = HUn+ GnEYn = I»J-n+0(0-n)
VXn = 02VY, = o2(1+40(1)).

O

Without proof we state the following two theorems which establish various closure prop-
erties satisfied by £r. The proofs can be found in [DGKO5].

Theorem 4.16. The following classes of functions are e-admaissible:

e Let P(z,u) = annzk“ul“ be a polynomial 1n z and w with real coefficients and
set P(z,1) =3  bmz™. Define

K = maxE = max{ki+k]- : det(ki li)#O}
ko
I = {(i,j) : ki+k =K}
Then eP=W € € if and only if the following conditions are satisfied:

(1) For every d > 1 there ezxists an m Z 0 mod d such that by, # 0. Moreover,
for mg=max{m #0 mod d : by # 0} we have by, > 0.

(1) E#0 and
2
Z PiPj (det ( tl llyl >> > 0.
(i,j)el >



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 62

(411) max{k; : pj# 0} < 3K/5.

If f(z) € Hgr and g(u) s analytic for u| < 1+ ( and satisfies g(1) > 0 as well as

o'(1) +¢"(1) > £UF then exp (g(w)f(2)) € &r.

Theorem 4.17. Suppose that f(z,u),g(z,u) € Eg, h(z) € Hr and P(z,u) 1s a polynomial
with positive real coefficients. Then the following functions are in g, too:

f(z,u)g(z,u)
h(z)f(z,u)
P(z,u)f(z,u)
eflzw

ePzWh(z) 4f P(z u) is not independent of u

ePlzW+hiz) 3 R — 0o and P(z,u) s not independent of u

f(z,u) + Q(z,u) where Q(z,u) s an arbitrary polynomial.

Example 14. Consider the bivariate gf for permutations having cycles of length < (
only with u marking the number of cycles, viz.

4 ok
g(z,u) =exp (u; ?> .

In order to establish e-admaissibility for g(z,u) we have to check the conditions of The-
orem 4.16:

We see that K s well-defined if and only 1f £ > 2. In this case K = 2{ — 1 and
I={(t—1,0),((t—1)}. Conditions (1) and (1) are clearly satisfied and from condition
(111) we see that g(z,u) is e-admassible if and only if £ > 3.

The same argumentation shows that all functions of the form

¢
exp (u Z ockzk> , ok >0,
k=1

are e-admissible if and only if { > 3.



Chapter 5

Number of Components

Let C and S denote two labelled combinatorial classes with exponential generating functions
C(z) =) ,,51Cnz™and S(z) = ) 5o Snz"™ respectively. We assume that C does not contain
objects of size zero and that every object of S can be uniquely represented as a disjoint union
of objects in C. The elements of C will be referred to as connected objects. Theorem 1.4 tells
us that C(z) and S(z) are related via

S(z) = et (5.1)

Bell, Bender, Cameron, and Richmond [BBCROO] investigated the possible behaviour of
the sequence C,,/S, and proved the following theorem.

Theorem 5.1. Let S, C, S(z) and C(z) be as described above. Furthermore, assume that
C(z) 1s analytic in |z] <R, 0 <R < .

Consider the sequence {pn : n € I} where p, = C,,/Sn and I ={n € N: S, # 0} and
set

Pinf = liminf py,, Psup = lim sup pn.
nel nel

Then
(i) If R=0 then 0 < pinf < Psup = 1,
(1) If R >0 and C(R) diwverges then 0 = pinf < Psup < 1;
(111) If R >0 and C(R) converges then (pint, Psup) € [0, 11% —{(0,0), (1, 1)}

If S(z) is an H-admissible function then the second implication of the last theorem applies.
But in this case, we can say even more as was shown by Bender, Cameron, Odlyzko, and
Richmond [BCOR99].

Theorem 5.2. We adopt the notation of the last theorem. If S(z) 1s H-admaissible in
|zl < R, 0 < R < 00, then C(R) diverges and we have p, — 0 as n — oco. That 1s, the
probability of connectedness tends to zero as the size of the structures considered tends
to infinity.

63
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Proof. The H-admissibility of S(z) implies that S(r) — oo as r — R and this implies that
C(R) = co which means divergence.

2
Set b(r) = (d%gJ log S(r). Then we have for any 0 < ¢ < 1 and M = (1 —¢)%/2

S eC(rn) 6(178)(:(1‘11) C(T-n_)

~N — > ——— > MC(rqy)—— > MC(ry)Chp.

e = ()5 > MC(m)Cy

Hereby, the first relation is a consequence of H-admissibility (Corollary 3.2) and the second

one follows from the fact that b(r) = S(r)¢ for all ¢ > 0 (Corollary 3.3). The remaining

inequalities hold since the sum of nonnegative terms is at least as large as a single term.
The proof is completed by noting that C(r,) — o0 as n — co. O

In the remaining of this section we consider some instances of the general setting described
above.

5.1 The Polynomial Case

Canfield [Can77] established the normal limit law for polynomials C(z) having real nonneg-
ative coefficients.

Although all functions (except the degenerated case) considered in this section are BR-
admissible, too, Canfield’s assumptions can be checked more easily and a central limit theo-
rem follows without much work.

Canfield’s method of proof is similar to the one establishing the normal limit law for
e-admissible functions (see Theorem 4.15): using Hayman’s ideas, Canfield proved the limit
law via pointwise convergence of the corresponding moment generating functions. The proofs
will be omitted can can be found in [Can77].

Theorem 5.3. Let C(z) = ) |\, ckz® be a polynomial having real nonnegative coefficients
and set
S(z,u) = e“C®,

Further define the functions
A(z) =zC'(z) and B(z) = zA'(z)

and let v(z) denote the inverse function of A(z). Without loss of generality, we assume
that gcd{k: c Z0} =1 and m > 1.
Then the random variable X, defined by
[Znuk] S (Z> U.) d
PXn=k} = —— \ I, VkeN
where 1 consists of those numbers for which [z™]S(z,1) > 0 1s asymptotically normal
with mean

Hn = C(r(n))
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and variance

2 [Cr) —A(r(n))?

" B(r(n) '

Remark 5.1. (3) If gcd{k : cx # 0} = d > 1 then we have C, = 0 if d /n and the
polynomial C(z'/4) satisfies the requirements of the last theorem.

(1) The case m = 1 constitutes a degenerate case since then the whole probability
mass 1s concentrated at .

We continue with the example of Section 2.3.1. Note that this function is not e-admissible
(see Section 4.4, Example 14).

Example 15. Recall the egf P(z,u) for the permutations having only cycles of length 1
and 2 (uw marking the number of cycles):

P(z 1) = ewlzt7/2),

Thus, we have

22

Clz)=z+ 3, Alz) =z + 2% B(z) = z + 272

The inverse function v(x) of A(x) for x € [—1/4,0) 18 given by

r()——l—l— 1—l—
xX) =3 1T

Therefore, one sees, using Theorem 5.3, that the number of cycles 1s asymptotically
normal with mean

+3 +n—-

o1 fi
Hn=77"3V2 1

and variance (settingy =n + }1)

o3 _¢UZ+U“—2\/1§) =/3 1+71—%\/1§ ~
" 42y — V)

This shows that the distribution is asymptotically concentrated.

5.2 Set Partitions

The exponential generating function for the number of partitions of a set of size n is given
by
Zn
Flz) =) @p =exp(e*—1). (5.2)
n>0
The number @, is known as the n-th Bell number.
Applying the concepts of Hayman [Hay56] and Harris and Schoenfeld [HS68] we obtain

asymptotics for @, as n — oco. We will then study some parameters on the set of partitions
as n — oo and obtain limit laws for these parameters.
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5.2.1 Total Number

The function F(z) is seen to be H-admissible in C with the functions
a(r) =re’ and b(r) = (r+ 1)re".

Thus, we get a first approximation to @,, by an application of Corollary 3.2, viz.

nlexp (e™ — 1)
D~ 5.3
" ™/ 2mmry, (5:3)

where 1, is the unique positive solution of the equation

re’ =n. (5.4)

De Bruijn [dB81, sec. 2.4] shows that, for n large enough, the solution of (5.4) can be
represented as

(log log n)™!
Th = ].Og n— ].Og ].Og n-+ g g Cka, Ckm € C. (55)
k>0m>0

As F(z) is the exponential of an H-admissible function it is HS-admissible, too, and we
can get a full asymptotic expansion by an application of Theorem 4.1. The quantities of
Definition 4.1 now read

Alz) = e*—1
z(e*—1) ifk=1
Bulz) = {Zﬁ 1
e else
ze* _
B(Z) = 7(]+Z—e Z)
Zum+1 —1)YM (] — e Un
Cm(unyun) = - n - ( ) ( )

(m+2)!(T+up—e ™) (m+2)(1+uy,—e )
where u,, is the unique positive solution of
ule*—=1)=n+1. (5.6)

Thus we get the refinement

o nlee ™ T ( N Tup | 5up+2up(l—e ™)

- 2ul /7B (uy,) 8eun ' 24 ewn(1+uy—e Un)

We close this section by showing that the expressions (5.7) and (5.3) are indeed asymp-
totically equal. For brevity set u = u,, and r = r;,. Setting u =r+ w in (5.6) yields

+ o(e_u“)> . (5.7)

ne” —1) +we™ =u+1. (5.8)
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From (5.6) we see that
u—+1~logn —loglogn, n— oo

and therefore we know that w — 0 as n — oo. Moreover, since e" ~ n/logn as n — oo we
have

w
n(ew—1)+wer+wwn(ew—1we ) ~ nw.
logn

Combining these results we obtain
logn

W =wpn ~ , n — oo.
n

Hence u,, admits the same asymptotic expansion (5.5) as r,. Now we have
n
u* = (r+w)™ = " (1 + E)
T

] n
= <1+E+o(n1)> ~ er®

et—e’ = e"(e"—-1) ~ n_logn = 1
logn n
2,u 2,r
u‘e e nry
B ~Y ~ ~ J—
(W) 2 2 2

which shows that (5.7) and (5.3) are asymptotically equal.

5.2.2 Stirling Numbers of the Second Kind

We determine the behaviour of the number of subsets of a randomly chosen partition of a
set of size n consists of as n — oo.
The bivariate exponential generating function with u marking the parameter “number of
subsets” is given by
Kz
G(z,u) =exp(u(e*—1)) = S —
(zu) =exp(u(e—1)) = Y Y Snpus

!
n>0k>0 :

where the S,, x denote the Stirling numbers of the second kind. The first and second loga-
rithmic derivatives read

_ a(z,u) _ uze®
alzu) = d(z,u) o u(er—1)
b(z,u) c(z,u) u(z + z2%)e? uze*
Blzu) = ( c(z,u) b(z,u) ) - ( uze? u(ez—1) )

Setting m = 0 and Ap = 1 in theorem 4.11 we see that G(z,u) is BR-admissible in

R:{(r,s)‘Ro<r and er(5*1)<s<er/6}
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with angles
O(r,s) = {0|I8] < (s(e"— 1)) 72}

for some Rp > 0, any & > 0 and ¢ > O sufficiently small.
Let (rnx,snk) € R denote the solution to a(r,s) = (n, k). The solution of re" = n,
k > 0, satisfies kr = logn —loglogn + log k 4+ o(1) as n — oo and we therefore see that

e T, satisfies, as n — oo,

1+ 0(1) 5(1+0(1))

logn <r1pk < 153 logn
and
e we have n -
X = T_emw: ~ ™k Moo

Hence, for any positive constants ¢ and C, Theorem 4.8 provides uniform asymptotics for
Snx when

cn Cn
<k< .
logn logn
The equation a(r,1) = (n, k*) leads to
e’ = n

o1 -k (5.9)

The solutions r, and k} of (5.9) satisfy

™ ~ logn—loglogn ~ logn,

. n
n logn
as n — oo. Calculating
det B(r,, 1) N (rne™)? e™ n
P S S "m0l - — 0~ ~ —
b(rn, 1) (e ) (rt2 +Ttn)e™ 1 (logn)?’ oo

we see that S, i satisfies a local limit law with mean and variance asymptotic to n/logn and
n/(log n)?, respectively.

The function G(z,u) is seen to be e-admissible, too, by Theorem 4.17 and the S, x
therefore satisfy a central limit law with mean and variance

n

a(rn, 1) = ki, ~ n — oo,

logn’
det B(r, 1) n
b(rn, 1) (logn)?’
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5.2.3 Singleton Blocks

Now, we determine the asymptotic behaviour of the parameter “number of singleton blocks”
as n — oo.
The bivariate gf f(z,u), exponential w.r.t. z, with u marking the subsets of cardinality 1
is given by
f(z,u) =exp(e*—1—z+uz). (5.10)

The first and second logarithmic derivatives are given by

a(z,u) = (a(z,u%) = (zez—z—l—uz)

a(z,u
2\pz
Blzu) — b(z,u) g(z,u) _ z+z7)e*—z4+uz uz
c(z,u) b(z,u uz uz
and we have
det B(z,u) = uzZe?*(z+ 1 —e 7). (5.11)
Write

f(z,u) = exp(e*—1)e"* % (5.12)

Theorem 3.5 shows that exp (e* — 1) is H-admissible in C with 6(r) = (e" — 1)_2/5.
Now, let kq and k; denote arbitrary reals satisfying 0 < k1 < ky < oo and set

R = {(r,s) € R2 | ki S%Sb}»
e(r,s) = [0,8(r)]%,  (r,s) €R.

In the following, we will also use the abbreviation & = (¢,0)’. Let (r,s) € R. For « € O(r, s)
we have, as v — oo,

f (Tei‘b, seie) =f(r,s)(1 + o(1 ))em(r’s)/"‘*“lg(r*s)“/z‘ (5.13)
If « € [—m, 7% —O(r,s) then
‘exp (rsei(d”e) - rei‘b)‘ <eTe" (5.14)
and from the proof of Theorem 3.5 we obtain
‘exp (erew — 1)‘ <exp(e —1)exp (—r1/4e3r/8> (5.15)
as r — oo. Combining (5.15) and (5.14) yields

f (rei‘b,seie) =f(r,s)o (exp (—er/‘l)) , T — 00. (5.16)
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Finally note that for (r,s) € R

3

B(r,s) xr’e", T — 00. (5.17)

Hence (5.13) and (5.16) imply (4.12) and (4.13) respectively and therefore f(z,u) is BR-
admissible in R with angles ©(r, s) and functions a(r,s) and B(r,s). We may therefore apply
Theorem 4.8 to f(z,u). The combinatorial interpretation of f(z,u) reveals that A¢ = Z2, that
is d(Af) =1, and the equation a(r,s) = (n, k)’ reads

re'—r+1s = n,

s = k. (5.18)

This leads to
re"(1—e") =n—k (5.19)

and therefore we see that the solution v, has got the same asymptotic expansion as T«
in (5.5).
Let (T k, snk) € R denote the solution to (5.18). Theorem 4.8 now yields

f n,Ky o1 rsnk
(22, ) = T Sk TndSnde g 4oy q)) (5.20)

274/ rfkkern,k
and from (5.18) we see that (5.20) is valid for (n, k) satisfying

k-
(logn)?

ki(1+0o(1)) < <k2(1+0(1), mn— oo

An interesting fact to note is that normality cannot be established using the concept of
BR-admissibility. Adopting the notation of Definition 4.5, we have

Proposition 5.1. If f(z,u) 1s BR-admaissible in R C Ri with angles ©, then detB(r,1)
18 bounded n R.

Proof. If r is bounded away from 0, it follows from (5.11) that
det B(r,s) =< r3se’.

Therefore, we have
f 10 1
det B(r, s)% = s1/2p3/2 exp (T‘(S cos0 — s+ z)) . (5.21)
Observing that the exponent of (5.21) is nonnegative for

1
>1-— — .22
cos6 > 1 75 (5.22)

and using the inequality cosx > 1 — %, x € R, we see that

diamO(r, s (5.23)

>1
)_%-
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f(z,u) is BR-admissible and thus, we know that
diam®(r,s) = og(1), (r,s) €RR. (5.24)
Combining (5.23) and (5.24) we see that det B(r, s) is bounded in R if s remains bounded. O

The function (5.10) is seen to be e-admissible by Theorem 4.17 and thus the parameter
considered is asymptotically normal distributed. The solution r,, of a(r,1) = re™ = n satisfies
Th ~ logn —loglogm as n — oo and therefore the asymptotic mean and variance are given
by

a(rn,1) ~ logn

detBr, 1) _ [(Rtrien -
b(T‘ny 1 ) TTL(TTL + 1 )eTn

respectively.

5.2.4 A Multivariate Limit Law
In Section 4.3, Example 12 we showed that the function

F(Z, u, W) — eu(cosh z—])ewsmh z

1s BR-admissible in

R = {(r,s,t) ‘ Ro <1, (coshr— 1) < s< (coshr—1)"® (sinhr)® ' <t < (sinhr)”é}

with matrix

r(rs + t)coshr + r(rt + s) sinhr rssinhr rtcoshr
B(r, s, t) = rssinhr s(coshr—1) 0
rtcoshr 0 tsinhr

The corresponding function a(r,s,t) is given by

r(ssinhr + tcoshr)
a(r,s,t) = s(coshr —1)
tsinhr

In order to determine the local limit we proceed as described in Section 4.3, Remark 4.10.
The equation

Te’

a(r,1,1) = | coshr—1 | =| k*

sinhr m
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leads to the solutions r, and kj, m}, asymptotically given by

T™h ~ logn —loglogn

n
Ky o~
" 2logn
my L
" 2logn

as n — oo. Furthermore, we have

n n
nl(:lgn 2 5
B(T,],])N 2 2logn 0 y n — oo
n n
2 2logn

In this case we have

1/ n 1
— ]_ _ — — —
B11 =nlogn, Bi>2 7 < n > , Bz, 2

which gives

n n
D =B, —B12(B11) 'Bi,= 7 < Clogn o Zoem ) :
2logn 2logn
Now, let (X;; : n > 0) denote the sequence of random variables associated with F(z,u, w)
as described in Section 1.4. If 7t is a partition of a set of size n, then X, (1) = (k, m) where
k is the number of blocks of 7t of even cardinality and m is the number of blocks of odd
cardinality. Furthermore,

Z™ufw™/nllF(z, u, w)
[z"F(z,1,1)

P{Xn = (k,m)} =

It follows from the BR-admissibility of F(z,u,w) that X,, satisfies a local limit theorem
with means vector asymptotically equal to (k}, m},) and covariance matrix asymptotically
equal to D as n — oco. So we can expect that a randomly chosen partition has about equally

many blocks of even and odd size.
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