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IntroductionAn important and powerful te
hnique for solving 
ombinatorial enumeration problems is thegenerating fun
tion approa
h. A generating fun
tion is a formal power series in one or moreindeterminates where the 
oeÆ
ients equal the number of obje
ts in a given 
ombinatorial
lass having 
ertain 
hara
teristi
s (e.g., the 
oeÆ
ient of zn in B(z) de�ned by B(z) =

1 + zB(z)2 equals the number of binary trees having n internal nodes). The generatingfun
tion approa
h 
an be summarised as follows. Using 
ombinatorial arguments we derivebije
tions between or de
ompositions of 
ertain sets of 
omposite 
ombinatorial stru
tures.These bije
tions are then redu
ed to fun
tional relationships between formal power series.Our enumeration problem 
an now be solved by extra
ting the 
oeÆ
ients of the formalpower series o

urring. In the 
ase of simple relationships between known power series we
an immediately �nd the solution to our problem and in some other 
ases we 
an apply theInversion Theorem of Lagrange. But most often the situation is not so easy and we have toresort to other methods.In Chapter 1 we give a short overview on how to transform 
ertain given types of de
om-positions into relations between formal power series. For a detailed dis
ussion of this step werefer to the books of Goulden and Ja
kson [GJ04℄, Wilf [Wil90℄ and Flajolet and Sedgewi
k[FS℄.Fortunately many formal power series o

urring in 
ombinatorial enumeration 
an beidenti�ed with analyti
 fun
tions. Hen
e we 
an use methods from 
omplex analysis for ex-tra
ting the 
oeÆ
ients. This fa
t also makes it possible to �nd asymptoti
 expressions forthe 
oeÆ
ients sin
e we 
an express them by means of 
omplex 
ontour integrals and asymp-toti
ally evaluate these integrals. In Chapter 2 we dis
uss two methods yielding asymptoti
expressions for the 
oeÆ
ients in question, namely singularity analysis and the saddlepointmethod. The third method presented in this 
hapter is the analyti
 version of Lagrange'sInversion Theorem.The 
entral analyti
 method in this work is the saddlepoint method. It 
an be su

ess-fully applied to fun
tions whi
h are large for positive real arguments and satisfy suÆ
ientde
ay 
onditions for nonreal arguments. Hayman [Hay56℄ de�ned 
lasses of analyti
 fun
tionswhi
h satisfy all requirements ne
essary for su

essfully applying the saddlepoint method andproved an asymptoti
 expression for the 
oeÆ
ients of su
h fun
tions. In a

ordan
e to theliterature these fun
tions will be 
alled H-admissible fun
tions. In his work Hayman alsoproved 
ertain 
losure properties satis�ed by the 
lasses of H-admissible fun
tions. And inview of the de
ompositions mentioned above it is exa
tly the existen
e of these 
losure prop-erties whi
h makes Hayman's 
on
ept a very 
omfortable tool for 
ombinatorial enumeration.1



CONTENTS 2A detailed presentation of Hayman's results is given in Chapter 3.In Chapter 4 we dis
uss some generalisations of Hayman's work. Harris and S
hoenfeld[HS68℄ tightened Hayman's 
onditions and obtained 
omplete asymptoti
 expansions for the
oeÆ
ients but did not provide any 
losure properties. Some simple 
losure properties havelater been provided by Odlyzko and Ri
hmond [OR85℄ and M�uller [M�ul97℄.Mutaf
hiev [Mut92℄ proposed a univariate generalisation of H-admissibility, 
alled GH-admissibility, where the asymptoti
s required by H-admissibility are repla
ed with weaker
onditions. Mutaf
hiev's goal was a 
on
ept that 
an be used to establish lo
al limit theo-rems in 
ombinatorial 
lasses. Unfortunately none of the examples presented in his paper[Mut92℄ 
onstitute valid appli
ations of GH-admissibility as will be shown in this work. Validappli
ations of this 
on
ept 
an be found in [Mut97℄ where Mutaf
hiev proved some weak
onvergen
e results for the number of distin
t 
omponent sizes.We also present two multivariate extensions of Hayman's work whi
h give answer toquestions dealing with the distribution of some parameters on 
ombinatorial 
lasses (e.g. thedistribution of the number of 
lasses of a partition of a set of size n as n → ∞). Bender andRi
hmond [BR96℄ presented a multivariate generalisation whi
h yields lo
al limit theoremsfor the parameters 
onsidered. They also proved some 
losure properties satis�ed by their
lasses. In this work we present an additional simple 
losure property whi
h seems to benew (see Se
tion 4.3.1). Drmota, Gittenberger, and Klausner [DGK05℄ stated a 
on
ept forbivariate fun
tions in the spirit of Hayman's 
on
ept and obtained 
entral limit theorems forthe parameter 
onsidered. An important fa
t to note on this last 
on
ept is the existen
eof many simple algebrai
 
losure properties. This makes their 
on
ept (besides Hayman's
on
ept itself) the only 
on
ept amenable to automated membership testing.In Chapter 5 we apply the methods of Chapters 3 and 4 to some 
ombinatorial problems
on
erning the number of 
omponents a randomly 
hosen 
ombinatorial stru
ture 
onsistsof. Some general remarks on this 
lass of 
ombinatorial problems 
an be found in [BBCR00℄and [BCOR99℄.Besides Can�eld's [Can77℄ results, we present some examples taken from [BR96℄, [DGK05℄,and [GJ04℄. The examples are 
hosen su
h as to show appli
ability as well as limitations ofthese methods.



Chapter 1

Generating FunctionsCombinatorial stru
tures 
onsist of a �nite set of atoms together with some relations betweenthem (e.g. graphs 
onsist of nodes that are related to others via edges). In some 
ases allatoms are 
onsidered equal while in others they are 
onsidered distinguishable by atta
hedlabels. In the former 
ase the stru
tures are 
alled unlabelled 
ombinatorial stru
tures whilein the latter 
ase they are 
alled labelled 
ombinatorial stru
tures. It proves 
onvenient touse ordinary generating fun
tions (ogf) in the unlabelled 
ase and exponential generatingfun
tions (egf) in the labelled 
ase.The de
ompositions of 
ombinatorial stru
tures 
onsidered here 
an all be redu
ed toa number of disjoint-sum-operations and produ
t-operations. While the disjoint-sum is es-sentially the same for labelled and unlabelled stru
tures the produ
t is a di�erent one inthese 
ases. The reason for this is that in the labelled 
ase we have to 
onsider all possibledistributions of the set of labels over the fa
tors.In this 
hapter we show how to redu
e given de
ompositions of the type des
ribed aboveto fun
tional relationships between generating fun
tions. This step is also known as \thesymboli
 method" and is extensively dis
ussed in [FS℄, [GJ04℄ and [Wil90℄ using a verydi�erent notation. We have adopted the notation of [FS℄.In Se
tions 1 and 2 we present the symboli
 method for unlabelled and labelled 
ombina-torial stru
tures assuming that we are only interested in the total number of stru
tures of agiven size. If we want to keep tra
k of more than one parameter we have to use multivariategenerating fun
tions (mgf). In this situation we 
an use a simple modi�
ation of the symboli
method des
ribed in the �rst two se
tions whi
h is presented in Se
tion 3. The last se
tion
ontains some de�nitions 
on
erning limiting distributions needed in later 
hapters.All power series 
onsidered in this 
hapter will be treated as formal power series andall operations are performed in the ring of formal power series (see [GJ04℄ for ne
essaryde�nitions).
1.1 Unlabelled ConstructionsAn example of a 
lass of unlabelled stru
tures is the 
lass of all binary trees where the nodesin ea
h tree are indistinguishable. The size of a tree 
an for example be de�ned as the number3



CHAPTER 1. GENERATING FUNCTIONS 4of its internal nodes. This example is an instan
e of
Definition 1.1. A pair (A, |�|A) is 
alled an unlabelled 
ombinatorial 
lass if and only if(i) |�|A is a fun
tion |�|A : A → N and(ii) for ea
h n 2 N the set {

α 2 A�� |α|A = n
} is �nite.For ea
h α 2 A the nonnegative integer |α|A is 
alled the size of α. The sequen
e�
ard{

α 2 A�� |α|A = n
}�

n2N
is 
alled the 
ounting sequen
e of (A, |�|A).

Remark. As a 
onsequen
e of (i) and (ii), the set A is at most denumerable.
Remark. The following naming 
onvention will be adopted: If the unlabelled 
ombina-torial 
lass is 
alled (A, |�|A), then its 
ounting sequen
e is denoted by (an)n2N

and the
orresponding ordinary generating fun
tion is denoted by a(z) =
∑

n�0anzn (analogousfor (B, |�|B), (bn)n2N
and b(z)).

Definition 1.2. Two unlabelled 
ombinatorial 
lasses (A, |�|A) and (B, |�|B) are said tobe isomorphi
 if and only if their 
ounting sequen
es are identi
al:
(A, |�|A) ∼= (B, |�|B) ⇐⇒ (an)n2N

= (bn)n2N
.

Definition 1.3. For a given unlabelled 
ombinatorial 
lass (A, |�|A) , the sub
lass 
on-sisting of all elements of size � n, n 2 N, is denoted by (A, |�|A)[n] =
�A[n], |�|A[n]

�:
α 2 A[n] ⇐⇒ α 2 A ∧ |α|A � n.

Definition 1.4. Given two unlabelled 
ombinatorial 
lasses (A, |�|A) and (B, |�|B), theCartesian produ
t (C, |�|C) = (A, |�|A)� (B, |�|B) is de�ned as the 
lassC = A� B 8(α,β) 2 A� B : |(α,β)|C = |α|A + |β|B .The Cartesian produ
t 
onstitutes a 
ombinatorial 
onstru
tion sin
e the resulting setis an unlabelled 
ombinatorial 
lass. It is asso
iative in the sense that (for any possiblepla
ement of the parenthesis) all resulting 
lasses are isomorphi
.For n � 1, the n-th power of a 
lass (A, |�|A) (Cartesian produ
t of n 
opies of (A, |�|A))is denoted by (A, |�|A)n = (An, |�|An ). The 0-th power is de�ned as the 
lass 
onsisting of onestru
ture of size 0.
Definition 1.5. Given two unlabelled 
ombinatorial 
lasses (A, |�|A) and (B, |�|B) and twodi�erent stru
tures ǫ1 and ǫ2 of size 0, the disjoint sum (D, |�|D) = (A, |�|A) + (B, |�|B) isde�ned as the 
lass D =

0� [
α2A{ǫ1}� {α}

1A [0� [
β2B{ǫ2}� {β}

1A .The size of the obje
ts remains un
hanged.



CHAPTER 1. GENERATING FUNCTIONS 5The disjoint sum is an asso
iative 
ombinatorial 
onstru
tion in the same sense as theCartesian produ
t.
Theorem 1.1. Let (A, |�|A) and and (B, |�|B) denote two unlabelled 
ombinatorial 
lasses.Then the following holds:(i) (C, |�|C) ∼= (A, |�|A)� (B, |�|B) if and only if c(z) = a(z)b(z).(ii) (D, |�|D) ∼= (A, |�|A) + (B, |�|B) if and only if d(z) = a(z) + b(z).Proof. (i) For any n 2 N, the number of stru
tures of size n in (A, |�|A)� (B, |�|B) is givenby

cn =
∑

n1+n2=n

an1
bn2whi
h is equal to [zn]

�
a(z)b(z)

�.(ii) Any obje
t of size n in (A, |�|A) + (B, |�|B) has either the form (ǫ1, α) or (ǫ2, β) where
α 2 A and β 2 B are stru
tures of size n. Thus, the total number of elements of size
n in (A, |�|A) + (B, |�|B) is given by an + bn whi
h is equal to [zn]

�
a(z) + b(z)

�.The 
lass of all �nite sequen
es of a given unlabelled 
ombinatorial 
lass (A, |�|A) satis�esDe�nition 1.1 if and only if A does not 
ontain any stru
tures of size 0. In 
ase of existen
e,this stru
ture is denoted by seq� (A, |�|A)
�.Under the same restri
tion, the 
lass of all �nite subsets and the 
lass of all �nite multisetsof (A, |�|A) exist as unlabelled 
ombinatorial 
lasses and are denoted by set� (A, |�|A)

� andmultiset� (A, |�|A)
�, respe
tively.As a 
onsequen
e of the last theorem, one gets

Theorem 1.2. Let (A, |�|A) denote an unlabelled 
ombinatorial 
lass not 
ontaining anyobje
ts of size 0. Then the following holds(i) (B, |�|B) ∼= seq� (A, |�|A)
� if and only if

b(z) =
∑

n2N

�
a(z)

�n
=

1

1 − a(z)
.(ii) (C, |�|C) ∼= set� (A, |�|A)

� if and only if
c(z) = exp0�∑

k�1

(−1)k+1a(zk)

k

1A .(iii) (D, |�|D) ∼= multiset� (A, |�|A)
� if and only if

d(z) = exp0�∑

k�1

a(zk)

k

1A .



CHAPTER 1. GENERATING FUNCTIONS 6Proof. (i) Sin
e all elements of (A, |�|A) have size � 1, all sequen
es of length k � 0 ofelements of (A, |�|A) have size � k. Therefore (B, |�|B) ∼= seq� (A, |�|A)
� implies for any

m � 0

[zm]b(z) = [zm]

m∑

n=0

a(z)n = [zm]
1

1 − a(z)
.(ii) Sets of elements of (A, |�|A) of size k � 0 have 
ardinality of at most k. Let ǫ denote astru
ture of size 0. The 
lass of all �nite subsets of (A, |�|A) satis�es�set (A, |�|A)

�[k] ∼=

0� ∏

α2A[k]

({ǫ}� {α}, |�|1A[k]for all k � 0. Therefore (C, |�|C) ∼= set� (A, |�|A)
� implies for all m � 0

[zm]c(z) = [zm]

m∏

n=0

(1 + zn)an = [zm] exp0� m∑

n=0

an ln (1 + zn)

1A
= [zm] exp0�∑

j�1

m∑

n=0

an
zjn

j
(−1)j+1

1A =

a0=0
= [zm] exp0�∑

j�1

∞∑

n=1

an
zjn

j
(−1)j+1

1A =

= [zm] exp0�∑

j�1

(−1)j+1a(zj)

j

1A .(iii) The 
lass of all multisets of (A, |�|A) satis�es�multiset (A, |�|A)
�[k] ∼=

0� ∏

α2A[k]

seq�{α}, |�| �1A[k]for all k � 0. Therefore (D, |�|D) ∼= multiset (A, |�|A) implies for all m � 0

[zm]d(z) = [zm]

m∏

n=0

(1 − zn)−an = [zm] exp0�−

m∑

n=1

an log(1 − zn)

1A
= [zm] exp0�∑

n�1

a�m(zn)

n

1A = [zm] exp0�∑

n�1

a(zn)

n

1A .The next example demonstrates the appli
ation of the results in this se
tion. On
e the
lass of interest is de�ned in terms of simple 
lasses 
ombined using Cartesian produ
ts anddisjoint sums, the 
orresponding 
ounting sequen
e is obtained in a rather me
hani
al way.



CHAPTER 1. GENERATING FUNCTIONS 7
Example 1. The 
lass (B, |�|B) of binary trees. A binary tree is either an external nodeor it 
onsists of an internal node with two binary trees (the left and the right subtree)atta
hed. The size of a tree is de�ned as the number of internal nodes.This 
an be formalised using the 
lass (E , |�|E) 
onsisting of one stru
ture, the exter-nal node, of size 0 and the 
lass (N , |�|N ) 
onsisting of one stru
ture, the internal node,of size 1. The 
lass of all binary trees is then given by

(B, |�|B) ∼= (E , |�|E ) +
�
(N , |�|N )� (B, |�|B)� (B, |�|B)

�
.Sin
e E(z) = 1 and N(z) = z, the ogf B(z) of the 
ounting sequen
e of the 
lass of binarytrees satis�es

B(z) = 1 + zB(z)2.One root of the equation above involves a negative power of z. Therefore, B(z) isuniquely determined by
B(z) =

1 −
p

1 − 4z

2z
= −

1

2z

∑

j�1

 
1/2

j

!
(−4z)j =

=
1

2z

∑

j�1

2

j

 
2(j − 1)

j − 1

!
zj =

∑

j�0

1

j + 1

 
2j

j

!
zj.Thus, the number bn of binary trees of size n is equal to 1

n+1

�2n
n

�.
1.2 Labelled ConstructionsThis se
tion deals with stru
tures 
onsisting of a �nite number of di�erent atoms ea
h ofwhi
h bears a label di�erent from all others. Examples are labelled graphs (or trees) andpermutations. For simpli
ity, all labels are assumed to be integers.Sin
e the disjoint sum and the labelled produ
t (as de�ned below) do not depend on theway the labels are 
onne
ted, the following de�nition 
an be used:
Definition 1.6. A pair (S, f) is 
alled labelled 
ombinatorial stru
ture of size n, n 2 N, ifand only if(i) S is a set of 
ardinality n (the set of atoms) and(ii) f : S → Z is an inje
tive fun
tion (the labelling).For ea
h a 2 S, the number f(a) is 
alled the label of a. The size of (S, f) is denoted by
|(S, f)|.

(S, f) is 
alled well labelled if and only if f(S) = {0, 1, . . . n − 1}.
Definition 1.7. Let (S, f) be a labelled 
ombinatorial stru
ture and let g : S → Z be aninje
tive fun
tion. Then the pair (S, g) is a labelled 
ombinatorial stru
ture, too, andthe fun
tion g Æ f−1 is 
alled relabelling.The relabelling gÆf−1 : Z → Z is 
alled admissible if and only if it is order preserving.
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Remark 1.1. For any labelled 
ombinatorial stru
ture (S, f) and a set L � N of 
ardi-nality |(S, f)| there exists exa
tly one fun
tion g : S → L su
h that gÆf−1 is an admissiblerelabelling.
Definition 1.8. A set C is 
alled a labelled 
ombinatorial 
lass if and only if(i) C is a set 
onsisting of well labelled 
ombinatorial stru
tures only and(ii) for every n 2 N the set Cn =

{
γ 2 C

��|γ| = n
} is �nite.The sequen
e (cn)n2N

satisfying cn = 
ard(Cn) is 
alled the 
ounting sequen
e of C.
Remark 1.2. For any sequen
e (an)n2N

the 
orresponding exponential generating fun
-tion is denoted by â(z) =
∑

anzn/n!.As in the last se
tion, two labelled 
ombinatorial 
lasses C and D are said to be isomorphi
,
C ∼= D, if and only if their 
ounting sequen
es are identi
al.The disjoint sum 
an be de�ned similar as in the 
ase of unlabelled stru
tures:

C + D ∼=
�
C ⋆ {ǫ0}

� [ �D ⋆ {ǫ1}
� (1.1)where ǫ0 and ǫ1 denote two di�erent stru
tures of size 0.

Definition 1.9. Let α = (Sα, fα) and β = (Sβ, fβ) denote two labelled stru
tures where
Sα\ Sβ = ;.Then α ⋆ β is de�ned as the set of well labelled stru
tures satisfying

(Sα[ Sβ, g) 2 α ⋆ β ⇐⇒ g Æ f−1
α and g Æ f−1

β are admissible relabellings.The set α ⋆ β is 
alled the labelled produ
t of α and β.As a 
onsequen
e of Remark 1.1 the fun
tion g in the last de�nition is uniquely de�nedif g(Sα) � {0, 1, . . . , |α| + |β| − 1} is known. This set 
an be 
hosen in �|α|+|β|

|α|

� ways, thus
ard(α ⋆ β) =

 
|α| + |β|

|α|

!
. (1.2)The labelled produ
t 
onstitutes an asso
iative and 
ommutative operation. Equation(1.2) 
an be extended to 
ard(α1 ⋆ α2 ⋆ � � � ⋆ αm) =

�|α1 |+|α2 |+���+|αm |

|α1 |,|α2 |,...,|αm |

�.The labelled produ
t of two labelled 
ombinatorial 
lasses A and B is de�ned as
A ⋆ B =

[
α2A

[
β2B

α ⋆ β.

Theorem 1.3. Let A,B and C denote labelled 
ombinatorial 
lasses with 
orresponding
ounting sequen
es (an)n2N
, (bn)n2N

and (cn)n2N
. Then the following holds:(i) C ∼= A + B if and only if ĉ(z) = â(z) + b̂(z).



CHAPTER 1. GENERATING FUNCTIONS 9(ii) C ∼= A ⋆ B if and only if ĉ(z) = â(z)b̂(z).Proof. (i) This is true sin
e the 
ounting sequen
es satisfy
(cn)n2N

= (an)n2N
+ (bn)n2N

.(ii) From (1.2) it follows that the number of elements of size n in A ⋆ B is given by∑n
k=0

�n
k

�
akbn−k whi
h is equal to [zn/n!]â(z)b̂(z):

â(z)b̂(z) =
∑

n�0

n∑

k=0

ak

k!

bn−k

(n − k)!
zn =

∑

n�0

0� n∑

k=0

 
n

k

!
akbn−k

1A zn

n!
.For any labelled 
ombinatorial 
lass A 
ontaining no stru
ture of size 0 the sets of all�nite sequen
es and �nite sets of A exist as labelled 
ombinatorial 
lasses and are denotedby seq(A) and set(A), respe
tively.Let ǫ denote the empty sequen
e. The 
lass of all 
y
les of elements of A is denoted by
y
(A) and is de�ned as 
y
(A) ∼=

�seq(A) − {ǫ}
�Æ� (1.3)where β � γ, β, γ 2 �seq(A) − {ǫ}

�, if and only if β 
an be transformed into γ using a 
y
li
shift.
Theorem 1.4. Let A denote a labelled 
ombinatorial 
lass that 
ontains no element ofsize 0. Then the following holds(i) B ∼= seq(A) if and only if

b̂(z) =
1

1 − â(z)(ii) C ∼= 
y
(A) if and only if
ĉ(z) = log� 1

1 − â(z)

�(iii) D ∼= set(A) if and only if
d̂(z) = exp �â(z)

�Proof. (i) All elements of seq(A) of size � k must be sequen
es of length � k sin
e A doesonly 
ontain elements of size � 1. Therefore B ∼= seq(A) implies for all m � 0

[zm/m!]b̂(z) = [zm/m!]

m∑

k=0

â(z)k = [zm/m!]
1

1 − â(z)
.



CHAPTER 1. GENERATING FUNCTIONS 10(ii) Every sequen
e of length k � 1 of elements of A 
onsists of k di�erent 
omponents sin
etheir set of labels are pairwise disjoint. Therefore ea
h 
y
le of length k � 1 
an beasso
iated with exa
tly k di�erent sequen
es (of length k). Hen
e C ∼= 
y
(A) impliesfor all m � 0

[zm/m!]ĉ(z) = [zm/m!]

m∑

n=1

â(z)n

n
= [zm/m!] ln 1

1 − â(z)
.(iii) Every set of size k � 0 
an be arranged in k! ways and thus 
an be asso
iated with k!sequen
es of length k. Therefore, D ∼= set(A) implies for all m � 0

[zm/m!]d̂(z) = [zm/m!]

m∑

n=0

â(z)n

n!
= [zm/m!] exp �â(z)

�
.

Example 2. The Bell numbers. The n-th Bell number bn, n � 0, is de�ned as thenumber of partitions of a set of 
ardinality n (b0 = 1).Sin
e the interesting parameter of a given set is its 
ardinality, the size of the set,viewed as labelled stru
ture, should be equal to its 
ardinality. Thus in this 
ontext the
lass S of all �nite sets (viewed as labelled stru
tures) 
an be modelled as
S ∼= set�{α}

�where α is a stru
ture of size 1. The egf of its 
ounting sequen
e is given by
ŝ(z) =

∑

n�0

zn

n!
= exp(z).Let ǫ denote the empty set. Every partition 
an be viewed as a set of non-emptyset. Therefore the 
lass B of all partitions satis�es

B ∼= set�S − {ǫ}
�

∼= set�set�{α}
�
− {ǫ}

�
.This is readily translated into the language of exponential power series:

b̂(z) = exp �ez − 1
�Di�erentiation yields

d

dz
b̂(z) = ezb̂(z).and 
omparison of the 
oeÆ
ients of zn/n! on both sides results in the well-knownre
urren
e relation

bn+1 =

n∑

k=0

 
n

k

!
bk n � 0.
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1.3 ParametersOften, one is not only interested in the number of obje
ts of size n, but would also like to keeptra
k of 
ertain other parameters (e.g. the number of 
omponents) and obtain probabilisti
information on these parameters.
Definition 1.10. Let A denote a 
ombinatorial 
lass. A parameter on A is a mapA → N

d, d � 1.The symboli
 approa
h des
ribed in the last two se
tions 
an be ni
ely adapted in orderto ful�l these needs for a 
ertain type of parameter:
Definition 1.11. Let A, B and C denote 
ombinatorial 
lasses (labelled or unlabelled)with parameters χ, ξ and ζ, resp., all of whi
h have the same dimension. Then, theparameter χ is said to be inherited from ξ,ζ in the following 
ases:� A = B + C and

χ(α) =

{
ξ(α) if α 2 B
ζ(α) if α 2 C 8α 2 A� A = B 
 C and

χ(hα,βi) = ξ(α) + ζ(β) 8 hα,βi 2 Awhere 
 and hα,βi denote either ⋆ and α ⋆ β (labelled 
ase) or � and (α,β)(unlabelled 
ase).This is extended for all �nite sums and produ
ts and 
ombinations thereof.
Remark 1.3. For simpli
ity, we will adopt the following 
onventions: Ve
tors will bedenoted by bold variables (e.g. v). If z and u denote two ve
tors of dimension d + 1,we use the abbreviation

zu := z
u0

0 z
u1

1 � � � zud

d .If z is a ve
tor of dimension d + 1 and r an arbitrary 
omplex number then we set
rz = (rz0 , rz1 , . . . , rzd ) .

Remark 1.4. For the 
ombinatorial 
lass A with parameter ξ, we de�ne
An,k :=

{
α 2 A �� |α|A = n ∧ ξ(α) = k

}and
an,k := 
ard(An,k).(For the 
lass B, it would be Bn,k and bn,k.)

Definition 1.12. (i) For the unlabelled 
ombinatorial 
lass A with parameter ξ, the(formal) power series ∑

α2A z|α|Auξ(α),where u is a ve
tor of indeterminates of same dimension as ξ, is 
alled the mul-tivariate generating fun
tion for the 
ombinatorial 
lass A with parameter ξ.



CHAPTER 1. GENERATING FUNCTIONS 12(ii) For the labelled 
ombinatorial 
lass B with parameter ζ, the (formal) power series
∑

β2B z|β|B
|β|B!

uζ(β)is 
alled the multivariate generating fun
tion for the 
ombinatorial 
lass B with pa-rameter ζ.With this de�nitions, one 
an prove the same translation rules as stated in the Theorems1.2 and 1.4 using analogous arguments.As 
an be seen in the following example, one has to �nd an appropriate symboli
 des
rip-tion of the 
lass(es) in question before translating it into an equation between multivariatepower series.
Example 3. The 
ombinatorial 
lass G of planar unlabelled trees is de�ned byG ∼= N � seq(G)where N denotes the 
lass 
onsisting of one element of size 1 (a node).If we want to introdu
e the parameter ξ on G whi
h 
ounts the number of leafs, there
ursive de�nition above 
annot be used. But the de�nition above 
an be rephrased asG ∼= N + Z � �seq(G) − ǫ

�where ǫ denotes the empty sequen
e and Z any 
lass satisfying Z ∼= N . Now, N playsthe role of an external node and Z that of an internal node.It is found, that the parameter ξ is identi
al with the parameter inherited from theparameter on N with 
onstant value 1 and the parameter on Z with 
onstant value 0.The 
lasses N and Z thus have the mgf uz and z, resp.This leads to the equation
G(z, u) = zu +

zG(z, u)

1 − G(z, u)where G(z, u) denotes the mgf of the 
lass G with u marking the number of leafs.
1.4 Limiting DistributionsGiven a 
ombinatorial 
lass A (labelled or unlabelled) with parameter ξ of dimension d �
1. The 
orresponding multivariate generating fun
tion F(z,u) 
an be dire
tly related to asequen
e of random variables (Xn : n 2 I), I � N, on N

d de�ned by
P{Xn = k} =

[znuk]F(z,u)

[zn]F(z,1)
8n 2 I, 8k 2 N

dwhere I 
onsists of those numbers for whi
h [zn]F(z,1) > 0.
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ase d = 1, the m-th fa
torial moment of Xn 
an simply be expressed as
E
�
Xn(Xn − 1) � � � (Xn − m + 1)

�
=

1

[zn]F(z, 1)
[zn]

∂m

∂um
F(z, u)

����
u=1whi
h gives, denoting the partial derivatives w.r.t u with Fu and Fuu, the expressions

EXn =
[zn]Fu(z, 1)

[zn]F(z, 1)

VXn =
[zn]Fuu(z, 1)

[zn]F(z, 1)
+

[zn]Fu(z, 1)

[zn]F(z, 1)
−

�
[zn]Fu(z, 1)

[zn]F(z, 1)

�2for the mean and varian
e, resp.For appli
ations in later 
hapters, we give the following de�nitions.
Definition 1.13. A sequen
e (Xn : n � 0) of random variables is 
alled asymptoti
ally
on
entrated if and only if there exists a sequen
e (µn) su
h that8 ε > 0 : lim

n→∞
P

{
1 − ε <

Xn

µn
< 1 + ε

}
= 1.

Definition 1.14. A sequen
e (Xn : n � 0) of random variables satis�es a 
entral limittheorem if and only if there exist sequen
es (µn) and (σn) su
h thatlim
n→∞

sup
x

�������P {
Xn − µn

σn
� x

}
−

1p
2π

x∫

−∞

e−t2/2dt

������� = 0.

Definition 1.15. A sequen
e (Xn : n � 0) of random variables satis�es a lo
al limittheorem on S if and only if there exist sequen
es (µn) and (σn) su
h thatlim
n→∞

sup
x2S

����σnP

{
Xn − µn

σn
= bσnx + µn
} −

1p
2π

e−x2/2

���� = 0.



Chapter 2

Asymptotic MethodsThe methods of the last 
hapter result in equations satis�ed by the generating fun
tion inquestion. For 
ertain types of equations one 
an immediately extra
t the desired informationabout the 
oeÆ
ients of the gf (see Example 1). But this is not always possible.It is often the 
ase that the generating fun
tion 
onsidered is analyti
 in some domain.One 
an then use methods of 
omplex analysis in order to obtain exa
t or asymptoti
 repre-sentations for the 
oeÆ
ients in question.The Lagrange Inversion Theorem 
an be applied to 
ertain equations and results in anexa
t representation. We note that an analogous theorem holds for the larger 
lass of formalpower series (see [GJ04℄ for details).A sour
e of asymptoti
 information about the 
oeÆ
ients are the singularities on the
ir
le of 
onvergen
e of the generating fun
tion. The asymptoti
 behaviour 
an then oftenbe determined by an appli
ation of Cau
hy's theorem using an appropriate path and esti-mating the resulting integral. In the 
ase of small singularities of an algebrai
-logarithmi
type Flajolet and Odlyzko's [FO90℄ so-
alled singularity analysis applies. If the dominantsingularities are large singularities, that is the fun
tion is growing exponentially near thesesingularities, or in the 
ase of entire fun
tions one 
an often apply the saddle point method.
2.1 Lagrange InversionConsider a 
lass T of trees with generating fun
tion F(z). T is 
alled simply generated if andonly if there exists a power series Φ(u) su
h that

F(z) = zΦ(F(z)), Φ(0) > 0. (2.1)Lagrange proved a theorem that gives the power series expansion of F(z) in terms of z. Thefollowing formulation is taken from [WW96, p.133℄ where one 
an also �nd a proof for it.
Theorem 2.1 (Lagrange Inversion Theorem). Let Φ(z) be analyti
 on and inside a
ontour γ surrounding a point a. If t 2 C is su
h that |tΦ(z)| < |z − u| for all z 2 γ,then we have: 14



CHAPTER 2. ASYMPTOTIC METHODS 15(i) The equation
ζ = u + tΦ(ζ)has exa
tly one root ζ(t) in the interior of γ.(ii) If f(z) is analyti
 on and inside γ, we have the expansion

f(ζ(t)) = f(u) +
∑

n�1

tn

n!

dn−1

dzn−1

�
f 0(z)Φ(z)n

������
z=u

. (2.2)A reformulation of equation (2.2) gives
[tn]f(ζ(t)) =

1

n
[(z − u)n−1]

�
f 0(z)Φ(z)n

� (2.3)for n � 1.Theorem 2.1 
an be applied to the inversion problem (2.1) using f(z) = z and u = 0. Weapply formula (2.3) to the generating fun
tions of some families of trees.
Example 4 (plane rooted trees). The family T of plane rooted trees is de�ned by theequation T = N � seq(T ).Thus, the ordinary generating fun
tion F(z) and the exponential generating fun
tion
G(z) satisfy

F(z) =
z

1 − F(z)
and G(z) = zeG(z).An appli
ation of Theorem 2.1 using Φ(z) = (1 − z)−1 and u = 0 gives

[zn]F(z) =
1

n
[tn−1](1 − t)−n =

(−1)n−1

n

 
−n

n − 1

!
=

1

n

 
2n − 2

n − 1

!and setting Φ(z) = ez and u = 0 yields
[zn]G(z) =

1

n
[tn−1]ent =

nn−1

n!
.Sin
e G(z) is an egf, the a
tual number of labelled trees of size n is given by nn−1.

Example 5 (t-ary trees). The family T of t-ary trees is de�ned byT = E +N � T t.Thus, the ordinary generating fun
tion F(z) satis�es
F(z) = 1 + F(z)t.By Langrange's Theorem, the number of t-ary trees of size n � 1 is given by (setting

φ(z) = zt and u = 1)
[zn]F(z) =

1

n
[(w − 1)n−1]

�
(w − 1) + 1

�nt
=

1

n

 
nt

n − 1

!
.
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2.2 Singularity AnalysisWe 
onsider fun
tions having a unique dominant algebrai
-logarithmi
 singularity on their
ir
le of 
onvergen
e. By normalisation, we may always assume that this singularity o

ursat z = 1.Flajolet and Odlyzko [FO90℄ 
onsidered a spe
ial 
lass S of fun
tions as des
ribed aboveand proved an asymptoti
 expansion for their Taylor 
oeÆ
ients (Theorem 2.3). Having this
lass at hand, they obtained asymptoti
 expansions for the Taylor 
oeÆ
ients of fun
tions
f(z) of the form

f(z) = h0(z) + h1(z) + � � � + hk(z) + O(g(z)), z → 1, (2.4)where h0(z), . . . , hk(z), g(z) 2 S and h0(z) � � � � � hk(z) � g(z) as z → 1. Moreover, theso-
alled transfer-theorems (Theorem 2.2) proved in [FO90℄ whi
h guarantee that
[zn]O(g(z)) = O([zn]g(z)), g(z) 2 S,show that the 
oeÆ
ients 
orresponding to (2.4) satisfy

fn = h0,n + � � � + hk,n + O(gn)and that h0,n � � � � � hk,n � gn.We 
ontinue by stating the results mentioned above. The proofs are mainly based onCau
hy's theorem using a Hankel-
ontour as integration path and 
an be found in [FO90℄.
Theorem 2.2. Assume that f(z) is analyti
 in

∆ = ∆(φ, η) =
{
z
��� |z| � 1 + η and | arg(z − 1)| � φ

}where η > 0 and 0 < φ < π
2
and that z = 1 is a singularity of f(z). Set L(z) =

(log z)β(log log z)δ. If
f(z) = O

�
(1 − z)αL

�
1

1 − z

��
, z 2 ∆, z → 1for some real numbers α,β, δ then

[zn]f(z) = O
�
n−α−1L(n)

�
, n → ∞.Analogous results hold for o and ∼ instead of O.

Theorem 2.3. Let α,β, δ 2 C − {0, 1, 2, . . .} and de�ne
f(z) = (1 − z)α

�
1

z
log 1

1 − z

�β�1

z
log�1

z
log 1

1 − z

��δ

. (2.5)Then we have
[zn]f(z) ∼

n−α−1

Γ(−α)
(logn)β(log logn)δ

0�1 +
∑

k�1

ek(log logn)

(logn log logn)k

1A (2.6)
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ek(z) = Γ(−α)Ek(z)

dk

dsk

1

Γ(−s)

�����
s=αwith

∑

k�0

Ek(z)uk = (1 − uz)β
�

1 −
1

z
log(1 − uz)

�δ

.

Remark 2.1. Note that the fun
tions 
onsidered in Theorems 2.2 and 2.3 di�er by z−1.The reason for introdu
ing this fa
tor is the fa
t that �−z−1 log(1 − z)
�β is analyti
 at

z = 0 even for non-integral β. Noting that
1

z
log 1

1 − z
= log 1

1 − z
+ O

�
(1 − z) log 1

1 − z

�and applying Theorem 2.2 we see that
[zn]

�
1

z
log 1

1 − z
− log 1

1 − z

�
= O

� logn

n2

�
.Hen
e we may repla
e −z−1 log(1 − z) with − log(1 − z) in (2.5) without destroying thetruth of (2.6).

Example 6. The generating fun
tion for the harmoni
 numbers (Hn)n�1 is known tobe
H(z) =

∑

n�1

Hnzn =
1

1 − z
log 1

1 − z
.Adopting the notation of Theorem 2.3 we have α = −1,β = 1 and δ = 0 as well as

Ek(z) =

{
−z k = 1

0 k > 1
ek(z) =

{
γ k = 1

0 k > 1where γ = 0.577 . . . is Euler's 
onstant and therefore obtain
Hn = logn + γ + o(1) n → ∞.

Example 7. An undire
ted labelled graph is said to be 2-regular if and only if all itsnodes have degree 2. All 
onne
ted 2-regular graphs are given by undire
ted 
y
leshaving at least 3 nodes. Hen
e, the egf for 
onne
ted 2-regular graphs is
c(z) =

∑

n�3

(n − 1)!

2

zn

n!
=

1

2

 log 1

1 − z
− z −

z2

2

!
.Applying Theorem 1.4 we see that the egf for 2-regular graphs is

f(z) = ec(z) =
e−z/2−z2/4p

1 − z

= e−3/4

�
1p

1 − z
+
p

1 − z + O(1 − z)3/2

�
, z → 1.
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[zn]O(1 − z)3/2 = O(n−5/2), n → ∞,and from Stirling's formula for Γ(z) we obtain

[zn](1 − z)−1/2 =

�
1

nπ

�1/2�
1 +

1

8n
+ O(n−2))

�
[zn](1 − z)1/2 = −

1

2

�
1

n3π

�1/2�
1 + O(n−1)

�as n → ∞ (note that Theorem 2.3 would have given only the main term of the last twoexpansions).The number fn of 2-regular graphs having n nodes therefore satis�es
fn =

e−3/4p
π

�
1p
n

−
3

8n3/2
+ O(n−5/2)

�
, n → ∞.

2.3 The Saddle Point MethodThe saddle point method is a heuristi
, that often yields good approximations to integrals ofthe form ∫

γ(t)

F(z, t)dz as t → ∞ (2.7)where t is a real parameter, F is analyti
 w.r.t. z in some domain G(t) � C and γ(t) is apath that entirely lays in G(t).In this se
tion, we will only give a rough sket
h and a sample appli
ation of the saddlepoint method and refer to [dB81, 
h.5,6℄ for a thorough dis
ussion.Essentially, the method relies on the Theorem of Cau
hy and the Method of Lapla
e (see[dB81, 
h.4℄ for details) and 
an roughly be summarised as follows:(i) Substitute the path of integration γ(t) with another one, σ(t) say, without 
hangingthe value of the integral su
h that along σ(t) |F(z, t)| has some sharp peaks and is smalleverywhere else and(ii) apply the Method of Lapla
e:(a) 
hoose neighbourhoods of these peaks so large that the main 
ontribution to thevalue of the integral is being 
aptured,(b) in these neighbourhoods, substitute the integrand with simpler fun
tions and(
) asymptoti
ally estimate the resulting integrals.The name \saddle point method" stems from the way of obtaining an appropriate path:By the maximum modulus theorem, |F(z, t)| does not have any maxima or minima in theinterior of G(t) (ex
ept for zeros). Thus, the only points where d
dz

|F(z, t)| = 0 and F(z, t) 6= 0are saddle points.



CHAPTER 2. ASYMPTOTIC METHODS 19Suppose that ζ 2 G(t) is a saddle point of F(z) = F(z, t), that is F(ζ) 6= 0, F 0(ζ) = � � � =

F(k−1)(ζ) = 0 and F(k)(ζ) 6= 0 for some k � 2.Suppose that k = 2. Then, for |z−ζ| small enough, the fun
tion log F(z) 
an be expandedas log F(z) = log F(ζ) +
F 00(ζ)

F(ζ)

(z − ζ)2

2
+ O((z − ζ)3). (2.8)Sin
e |F(z)| = eℜlog F(z), |F(z)| is of fastest de
rease for

z = ζ + t exp� i

2

�
π − arg F 00(ζ)

F(ζ)

��
, t 2 R (2.9)where the se
ond addend of (2.8) is real and negative. The straight line (2.9) is 
alled theaxis of the saddle point or the dire
tion of steepest des
ent.In the 
ase k > 2 there are several dire
tions of steepest de
ent. See [FS℄ for some remarkson this.So, for appropriate fun
tions, the path σ in step (i) should be 
hosen su
h that the highestpoints of |F(z)| along σ are also saddle points of |F(z)| and in small neighbourhoods of thesesaddle points, σ approximates its axis.

2.3.1 An Illustrating ExampleThe goal of this se
tion is an estimation of the number of permutations of n elements havingonly 
y
les of length � 2 as n → ∞. The 
orresponding egf will be denoted by F.Ea
h permutation 
an be represented as a set of (labelled) 
y
les. In this 
ase, all 
y
lesare of length 1 or 2 (
orresponding to �xed points and transpositions, resp.). Thus, the egfis given by
F(z) =

∑

n�0

Fn
zn

n!
= exp z +

z2

2

!
.The starting point for the asymptoti
 analysis is the residue theorem whi
h reads

Fn

n!
=

1

2πi

∮
ez+z2/2

zn+1
dz, n � 0, (2.10)where the path of integration en
ir
les the origin exa
tly on
e (
ounter
lo
kwise).Rewriting the integrand of (2.10) as

eh(z) := exp z +
z2

2
− (n + 1) log z

!we see that there are two saddle points, determined by the equation z2 + z = n + 1, namely
−

1

2
�s5

4
+ n = −

1

2
�pn

�
1 +

5

8
n−1 + O(n−2)

�
.
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onsider the saddle point at
ζn = −

1

2
+

s
5

4
+ n, n � 0. (2.11)The power series expansion of h 
entred in ζn is given by

h(z) = h(ζn) +

�
1 +

n + 1

ζ2
n

�
(z − ζn)2

2
+

∑

k�3

(−1)k
n + 1

k

�
z − ζn

ζn

�k (2.12)whi
h is 
onvergent for |z − ζn| < ζn. The 
oeÆ
ient of (z − ζ)2 is real and therefore the axisof the saddle point ζn is perpendi
ular to the real line.The other saddle point is negligible as will be seen below. Furthermore, we will showthat the path γ = γ1 + γ2 given by
γ1 :=

{
z : z = ζn + it, −δ � t � δ

}

γ2 :=
{
z : |z|2 = ζ2

n + δ2, arg(ζn + iδ) � arg(z) � 2π − arg(ζn + iδ)
}
,where δ 2 R

+ has yet to be 
hosen, 
an be used to estimate the integral (2.10).For su

essfully repla
ing ∫
γ1

eh(z)dz by a 
omplete Gaussian integral, δ has to be 
hosensu
h that for z 2 γ1 we have(i) h(z) ∼ h(ζn) + h 00(ζn)(z − ζn)2 and(ii) h 00(ζn)δ2 → ∞as n → ∞.The last sum of (2.12) 
an be rewritten as
−(n + 1)

�
z − ζn

ζn

�3 ∑

k�0

(−1)k

k + 2

�
z − ζn

ζn

�k

.Sin
e ζn ∼
p

n we have
(n + 1)(z − ζn)3ζ−3

n ∼ (n−1/2 + n−3/2)(z − ζn)3and therefore 
ondition (i) is satis�ed if δ is 
hosen so small that
δ3 = o(

p
n) as n → ∞. (2.13)The quantity h 00(ζn) = 1

2
+ n+1

ζ2
n

tends to 1
2
from above as n → ∞ sin
e ζ2

n ∼ n. Thus, inoder to satisfy 
ondition (ii), δ has to be 
hosen su
h that
δ2 → ∞ as n → ∞. (2.14)A possible 
hoi
e satisfying (2.13) and (2.14) is

δ = n1/8
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h will be used in the sequel.For z 2 γ1, we have
1

i

∫

γ1

eh(z)dz =

∫δ

−δ

eh(ζn+it)dt

=

∫δ

−δ

eh(ζn)−h00(ζn)t2/2
�
1 + O(nδ3ζ−3

n )
�
dt

=
eh(ζn)

�
1 + O(n−1/8)

�p
h 00(ζn)

δ
p

h00(ζn)∫

−δ
p

h00(ζn)

e−u2/2du

=
eh(ζn)

�
1 + O(n−1/8)

�p
h 00(ζn)

 ∫∞

−∞
e−u2/2du + O

�
e−δ2/2

�!
=

eh(ζn)
p

2πp
h 00(ζn)

�
1 + O(n−1/8)

�For z 2 γ2, we have���eh(z)
��� = eℜh(z) � exp ζn +

ζ2
n

2
− (n + 1) log ζn

!
= exp (n + 1)(1 − log ζn) −

ζ2
n

2

!
=

�
e

ζn

�n+1

e−ζ2
n/2and therefore �����∫

γ2

eh(z)dz

����� � 2π
q

ζ2
n + δ2

�
e

ζn

�n+1

e−ζ2
n/2

= 2π

s
1 +

�
δ

ζn

�2� e

ζn

�n

e−ζ2
n/2+1whi
h tends to zero as n → ∞.From (2.11) we get ζ2

n = n −
p

n + 3
2

+ O(n−1/2) and sin
e
ζn+1

n = (n + 1) log �pn

�
1 −

1

2

p
n +

5

8
n−1 + O(n−2)

��
= (n + 1) logpn − (n + 1)

�
1

2
p

n
−

5

8n
+ O(n−2) +

1

2

�
1

4n
+ O(n−3/2)

��
= (n + 1) logpn −

 p
n

2
−

1

2
+ O(n−1)

!we have
eh(ζn) = eζn+ζ2

n/2ζ
−(n+1)
n =

en/2+
p

n/2+1/4+O(n−1/2)

n(n+1)/2e−
p

n/2+1/2+O(n−1)

=
p

n
n+1 exp�n

2
+
p

n −
1

4

� �
1 + O(n−1/2)

�
.
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Figure 2.1: Surfa
e of |ez+z2/2z−16| with the dominant saddlepoint at z = −1
2

+
q

5
4

+ 15This gives the intermediate result
Fn

n!
∼

1

2π

eh(ζn)
p

2πp
h 00(ζn)

∼
1

2
p

πnn+1
exp�n

2
+
p

n −
1

4

�Using Stirling's formula we �nally obtain
Fn ∼

nn/2p
2

exp�−
n

2
+
p

n −
1

4

� as n → ∞.



Chapter 3

Hayman-admissible Functions

3.1 H-admissibilityHayman [Hay56℄ stated 
onditions of power series ∑
n�0 fnzn,cn 2 C, whi
h ensure thedetermination of the behaviour of fn as n → ∞ (in the sense of ∼) using the saddle pointmethod.A notable fa
t about these fun
tions is the existen
e of 
ertain 
losure properties. Thisoften simpli�es the task of establishing these 
onditions (see below) for a given fun
tion and
an also be used for an automation of this pro
ess.

Definition 3.1 (H-Admissibility). Let f(z) denote a fun
tion regular for |z| < R, 0 <

R � ∞. Assume further that there exists R0 < R su
h that f(r) > 0 for all r 2 [R0, R).De�ne for r 2 [R0, R) the two fun
tions
a(r) = r

f 0(r)
f(r)and

b(r) = ra 0(r) = r
f 0(r)
f(r)

+ r2f 00(r)
f(r)

− r2

�
f 0(r)
f(r)

�2

.Then f is said to be Hayman-admissible in |z| < R (or H-admissible) if and only if itsatis�es(i) b(r) → ∞ as r → R andthere exists a fun
tion δ : [R0, r) → (0, π) su
h that the following holds(ii) Uniformly for φ � δ(r) we have
f(reiφ) ∼ f(r) exp�iφa(r) −

1

2
φ2b(r)

� (3.1)as r → R and 23



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 24(iii) uniformly for δ(r) � φ we have
f(reiφ) =

o(f(r))p
b(r)

(3.2)as r → R.
Remark 3.1. As a 
onsequen
e of 
onditions (ii) and (iii) we have for δ = δ(r)

|f(reiδ)|

f(r)
∼ e−δ2b(r) = o(b(r))−1/2whi
h is o(1) as r → R by 
ondition (i). Thus, we have

δ2b(r) → ∞ as r → R. (3.3)
Remark 3.2. Without loss of generality, we may assume that

δ(r) � s2
log b(r)

b(r)
(3.4)sin
e otherwise we have for p2 log b(r)/b(r) � |φ| � δ(r), applying (3.1),

|f(reiφ)|

f(r)
∼ exp −b(r)

φ2

2

! � 1

b(r)whi
h implies (3.2).
Theorem 3.1. Let f(z) =

∑
n�0 fnzn be H-admissible in |z| < R and de�ne fn = 0 for

n < 0. Then we have
fnrn =

f(r)p
2πb(r)

0�exp0�−

�
a(r) − n

�2
2b(r)

1A+ o(1)

1A (3.5)uniformly for all integers n as r → R.Proof. The 
laim 
an be proved by an estimation of Cau
hy's Integral
fnrn =

1

2π

0B� δ∫

−δ

+

2π−δ∫

δ

1CA f(reiφ)

einφ
dφwhere δ = δ(r).From (3.2), we have�������2π−δ∫

δ

f(reiφ)

einφ
dφ

������� � 2(π − δ) max
δ�φ�2π−δ

���f(reiφ)
��� =

o(f(r))p
b(r)



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 25uniformly in n as r → R.Equations (3.1) and (3.3) give
δ∫

−δ

f(reiφ)

einφ
dφ = f(r)

δ∫

−δ

(1 + o(1)) exp�iφ(a(r) − n) −
1

2
φ2b(r)

�
dφ

= f(r)

0B� δ∫

−δ

eiφ(a(r)−n)−1
2
φ2b(r)dφ + o

0B� ∞∫

−∞

e−1
2
b(r)φ2

dφ

1CA1CA
= f(r)

0B� δ∫

−δ

eiφ(a(r)−n)−1
2
φ2b(r)dφ + o(b(r))−1/2

1CAas r → R.An appli
ation of Cau
hy's Theorem gives
∞+iW∫

−∞+iW

e−t2/2dt =

∞∫

−∞

e−t2/2dt =
p

2π, W 2 R,and thus, by noting that
iφ(a(r) − n) −

1

2
b(r)φ2 = −

1

2

 
φ
q

b(r) − i
a(r) − np

b(r)

!2

−
(a(r) − n)2

2b(r)
,we get

δ∫

−δ

eiφ(a(r)−n)−1
2
φ2b(r)dφ =

1p
b(r)

exp −
(a(r) − n)2

2b(r)

! δ
p

b(r)∫

−δ
p

b(r)

e−t2/2dt

=

s
2π

b(r)
exp −

(a(r) − n)2

2b(r)

!
(1 + o(1))where the last equality follows from (3.3).Combining the two estimates gives

fnrn =
f(r)

2π

s
2π

b(r)
exp −

(a(r) − n)2

2b(r)

!
(1 + o(1)) +

o(f(r))p
b(r)

=
f(r)p
2πb(r)

0�exp0�−

�
a(r) − n

�2
2b(r)

1A+ o(1)

1A .
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Corollary 3.1. We have

a(r) → ∞, as r → R. (3.6)Furthermore, there exists an R1 < R su
h that a(r) is stri
tly monotoni
 in
reasing in
[R1, R).As a 
onsequen
e thereof, we have

b(r) = o(a(r))2, as r → R. (3.7)Proof. Sin
e b(r) = ra 0(r) → ∞ as r → R, we know that a(r) is stri
tly monotoni
 in
reasingin some range R1 < r < R, R1 < R.Putting n = −1 in equation 3.5 yieldsexp −
(a(r) + 1)2

b(r)

!
= o(1), as r → R,and as a 
onsequen
e we get

(a(r) + 1)2

b(r)
→ ∞, as r → R,whi
h proves (3.6) sin
e b(r) → ∞ as r → R.In parti
ular, the last 
orollary shows, that for n 2 N large enough the equation a(r) = nhas a unique solution rn that satis�es rn → R as n → ∞. This observation leads to

Corollary 3.2. Let f(z) =
∑

n�0 fnzn be H-admissible in |z| < R and let rn denote theunique solution of a(r) = n. The 
oeÆ
ients satisfy
fn ∼

f(rn)

rn
n

p
2πb(r)

, as n → ∞. (3.8)
Corollary 3.3. Assume that f(z) =

∑
n�0 fnzn is H-admissible in |z| < R.For any n 2 Z, we have

f(r)

rn
→ ∞, as r → R (3.9)and for any ε > 0, we have

a(r) = O(f(r))ε and b(r) = O(f(r))ε, as r → R. (3.10)Proof. From (3.5) it follows that fn > 0 if n is suÆ
iently large. Also, if r is suÆ
iently nearto R, (3.5) gives
f(r)

rn
>

1

2
fn

q
2πb(r).Sin
e b(r) → ∞ as r → R we obtain 3.9.Clearly, b(r) = O(f(r))ε follows from a(r) = O(f(r))ε/2 and (3.7).
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laim, we suppose on 
ontrary that there exists ε > 0 su
hthat
a(r) = r

f 0(r)
f(r)

� f(r)εfor r 2 [R1, R) and some 0 � R1 < R. This gives, for R1 < ρ < R,
∫ρ

R1

f 0(r)
f(r)1+ε

dr � ∫ρ

R1

dr

rand therefore
f(R1)

−ε − f(ρ)−ε

ε
� log ρ

R1
.If R = ∞, we obtain a 
ontradi
tion by letting ρ → ∞ sin
e the left hand side of the lastequation remains �nite. The proof for R < ∞ involves some additional te
hni
alities and willbe omitted (see [Hay56℄).The next lemma gives suÆ
ient 
onditions for (3.1).

Lemma 3.1. Let f(z) be analyti
 and not zero in |z − r| < 2ηr for some r 2 R
+ and

0 < η � 1
2
and set

a(z) = z
f 0(z)
f(z)

and b(z) = za 0(z).If b(z) satis�es
|b(z)| < Cb(r), |z − r| < 2ηr, (3.11)for some 
onstant C 2 R

+ then we have the expansionlog f(reζ) = log f(r) + a(r)ζ + b(r)
ζ2

2
+ ǫ(r, ζ)where

|ǫ(r, ζ)| <
Cb(r)|ζ|3

2ηfor |ζ| < η.Proof. The fun
tion b(reζ) = ∂2

∂ζ2 log f(reζ) is analyti
 for |ζ| < η sin
e we have���reζ − r
��� = r

���eζ − 1
��� � r

�
e|ζ| − 1

� � r(eη − 1) < 2ηrfor η � 1
2
and thus has a power series development

b(reζ) =
∑

n�0

cnζn.Cau
hy's inequality together with (3.11) yields
|cn| � Cb(r)

ηn
.
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e w.r.t. ζ giveslog f(reζ) = log f(r) + a(r)ζ + b(r)
ζ2

2
+

∑

n�1

cn

(n + 1)(n + 2)
ζn+2and noting that

∑

n�1

cn

(n + 1)(n + 2)
ζn+2 � Cb(r)|ζ|3

η

∑

n�1

1

(n + 1)(n + 2)
=

Cb(r)|ζ|3

2η
ompletes the proof.The remaining part of this se
tion is devoted to the study of the behaviour of H-admissiblefun
tions. Theorem 3.2 shows how H-admissible fun
tions and their derivatives behave forreal arguments, Lemma 3.2 gives a better approximation than (3.1) for arguments near thereal line and �nally, Theorem 3.3 shows that H-admissible fun
tions attain their maximumon {z 2 C : |z| = r}, r properly 
hosen, at z = r. The te
hni
al proofs for the Theorems 3.2and 3.3 will be omitted and 
an be found in [Hay56℄.
Theorem 3.2. Let f(z) be H-admissible in |z| < R. Then� for any �xed positive 
onstant K and |h| < K/a(r) we have

a(reh) ∼ a(r) (3.12)uniformly as r, reh tend to R from below;� for any �xed κ 2 R

f

�
r +

κr

a(r)

�
∼ ekf(r), as r → R; (3.13)� for any �xed k 2 N,k > 0,

f(k)(r) ∼ f(r)

�
a(r)

r

�k

, as r → R; (3.14)
Lemma 3.2. Assume that f(z) is H-admissible in |z| < R.We have, uniformly for |φ| < a(r)−1,

f(reiφ) = f(r) + iφf 0(r) −
φ2

2

�
rf 0(r) + r2f 00(r)� + O

�
φ3f(r)a(r)3

� (3.15)as r → R.Proof. We obtain the result by applying Lemma 3.1 to the fun
tion F(z) = exp(f(z)). Set
A(z) = z

F 0(z)
F(z)

= zf 0(z) and B(z) = zA 0(z) = zf 0(z) + z2f 00(z).
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B(r) ∼ f(r)a(r)2, as r → R.

B(z) has, by de�nition, only a �nite number of negative 
oeÆ
ients in its power series ex-pansion. Therefore,
|B(ζ)| � B

�
r +

2r

a(r)

�
+ O(rN)for |ζ − r| � 2r

a(r)
and some N � 0. Now we have, by (3.12) and (3.13),
B

�
r +

2r

a(r)

�
∼ f

�
r +

2r

a(r)

�
a

�
r +

2r

a(r)

�2

∼ e2f(r)a(r)2.Thus, if r is suÆ
iently near to R, we may apply Lemma 3.1 to F(z):
f(reiφ) = f(r) + iφA(r) −

φ2

2
B(r) + ǫ(r,φ)where, for |φ| < a(r)−1 and some C > 0,

ǫ(r,φ) < Cf(r)a(r)3|φ|3.

Theorem 3.3. Suppose that f(z) is H-admissible in |z| < R.There exists R1 < R su
h that for R1 < r < R and f(r)−2/5 � |φ| � π we have
|f(reiφ)| � f(r) − f(r)1/7 (3.16)and there exists R0 < R su
h that for R0 < r < R and 0 < |φ| < π we have

|f(reiφ) < f(r). (3.17)
Example 8. The fun
tion ez is H-admissible in C with δ(r) = r−2/5 and the fun
tionsof De�nition 3.1 asso
iated with ez are given by

a(r) = b(r) = r, r 2 R+.Thus, the unique positive real solution to a(r) = n is given by rn = n. Corollary 3.2now yields the main term of Stirling's approximation to n!, viz.
[zn]ez =

1

n!
∼

�
e

n

�n

(2πn)−1/2.
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3.2 Classes of H-admissible FunctionsFor given R > 0 de�ne the 
lassHR := {f : C → C | f(z) is H-admissible in |z| < R} .In this se
tion we will prove 
ertain 
losure properties satis�ed by HR: Theorems 3.5 and 3.4show how to 
onstru
t new H-admissible fun
tions from given ones and Theorems 3.6 and3.7 show that \small perturbations" do not destroy H-admissibility.These fa
ts 
an often be used to simplify the task of establishing H-admissibility for agiven fun
tion. Starting from a basi
 set of H-admissible fun
tions, one 
an establish H-admissibility for many fun
tions by use of the theorems below without having to 
he
k the
onditions of De�nition 3.1.
Theorem 3.4. f1(z), f2(z) 2 HR =⇒ f1(z)f2(z) 2 HR.Proof. Set f(z) = f1(z)f2(z). The 
orresponding fun
tions δ(r), a(r), b(r) of De�nition 3.1will be denoted using no subs
ript, subs
ript 1 or 2, resp. These fun
tions satisfy a(r) =

a1(r) + a2(r) and b(r) = b1(r) + b2(r).We show that the fun
tion f(z) satis�es the 
onditions for H-admissibility with
δ(r) = min �δ1(r), δ2(r)

�
.The only thing that needs to be shown is 
ondition (iii)(b) of H-admissibility all otherproperties immediately follow from H-admissibility of f1 and f2.Suppose that in R0 < r < R we have b1(r) > e and b2(r) > e and that with ε < 1

2
wehave

|f1(re
iφ)|

f1(r)
� ε

b1(r)1/2
, δ1(r) � |φ| � π, (3.18)

|f2(re
iφ)|

f2(r)
� ε

b2(r)1/2
, δ2(r) � |φ| � π. (3.19)Now, 
onsider those r for whi
h b1(r) � b2(r). We have to show that (3.18) is valid for

δ(r) � |φ| � π. If δ1(r) � δ2(r) there is nothing to prove. If δ2(r) < δ1(r) then we have by(3.1)
|f1(re

iφ)|

f1(r)
∼ e−b1(r)φ2/2 � e−b1(r)δ2(r)2/2, r → R, (3.20)as well as

|f2(re
iδ2(r))|

f2(r)
∼ e−b2(r)δ2(r)2/2, r → R.This gives for r suÆ
iently near to R

e−b2(r)δ2(r)2/2 <
2ε

b2(r)1/2
.
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tion pte−at is de
reasing for a > 0 and t 2 h 1
2a

,∞
�. Thus, for b2(r) � δ2(r)

−2, thelast equation implies
e−b1(r)δ2(r)2/2 <

2ε

b1(r)1/2
.Hen
e (3.20) yields for r suÆ
iently near to R

|f1(re
iφ)|

f1(r)
<

3ε

b1(r)1/2
. (3.21)Note that by (3.16) we have for r suÆ
iently near to R

|f2(re
iφ)|

f2(r)
< 1, 0 < |φ| < π. (3.22)Sin
e b(r) = b1(r) + b2(r) � 2b1(r) we �nally obtain (3.2) for f by multiplying the relations(3.21) and (3.22).

Theorem 3.5. f(z) 2 HR =⇒ exp(f(z)) 2 HR.Proof. We show that F(z) = exp(f(z)) is H-admissible with δ(r) = f(r)−2/5. The fun
tionsof De�nition 3.1 read
A(z) = z

F 0(z)
F(z)

= zf 0(z) and B(z) = zA 0(z) = zf 0(z) + z2f 00(z).First, note that, by (3.14),
B(r) ∼ f(r)a(r)2 → ∞, r → R.We have f(r)−2/5 = o(a(r)−1) as r → R by (3.10) and may therefore apply Lemma 3.2 for

|φ| � f(r)−2/5 to F(z) whi
h yieldslog F(reiφ) = log F(r) + iφA(r) −
φ2

2
B(r) + O(f(r))−1/5a(r)3whi
h gives (3.1) be
ause of (3.10). Finally, for f(r)−2/5 � |φ| � π we have by (3.16) and(3.10) for r suÆ
iently near R

|F(reiφ)| � F(r) exp �−f(r)−1/7
� � F(r) exp �−B(r)1/8

�whi
h gives (3.2).
Theorem 3.6. If f(z) 2 HR and p(z) = bmzm + � � �+ b0 2 R[z] is a polynomial satisfying� p(R) > 0 if R < ∞ or� bm > 0 if R = ∞then we have p(z)f(z) 2 HR.



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 32Proof. Set a(r) = rf 0(r)/f(r) and b(r) = ra 0(r) and let f(z) satisfy (3.1) and (3.2) with afun
tion δ(r) that satis�es (3.4).Sin
e δ(r) → 0 as r → R we have, for any R,
P(reiφ)

P(r)
∼ 1, r → R,uniformly for |φ| � δ(r). Hen
e, we get

f(reiφ)

f(r)

P(reiφ)

P(r)
∼ eiφa(r)−φ2b(r)/2, r → R, (3.23)uniformly for |φ| � δ(r).For any R, we have

P(riφ)

P(r)
= O(1), r → Rfor any φ and thus, we dedu
e

f(reiφ)

f(r)

P(reiφ)

P(r)
= o(b(r))−1/2, r → R, (3.24)uniformly for δ(r) � |φ| � π.In order to 
omplete the proof we have to show that we may repla
e a(r), b(r) by

a(r) + r
P 0(r)
P(r)

, b(r) + r
d

dr
r
P 0(r)
P(r)in (3.23) and (3.24). But this follows immediately sin
e rP 0(r)/P(r) and its derivative remainsbounded, while a(r),b(r) tend to in�nity as r → R.

Theorem 3.7. If f(z) 2 HR and h(z) is a fun
tion, regular in |z| < R and real for real z,su
h that for some η > 0 we havemax
|z|=r

|h(z)| = O(f(r))1−η as r → Rthen we have f(z) + h(z) 2 HR.Proof. Again, let a(r), b(r), δ(r) denote the fun
tions of De�nition 3.1 
orresponding to f(z).Assuming that δ(r) satis�es (3.4) we dedu
e that
|f(reiφ)| ∼ f(r)e−φ2b(r)/2 � f(r)

b(r)
> f(r)1−

η
2uniformly for |φ| � δ(r) as r → R. Hen
e we have, for |φ| � δ(r),

(f + h)(reiφ) ∼ (f + h)(r)eiφa(r)−φ2b(r)/2, r → R (3.25)
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(f + h)(reiφ) =

o((f + h)(r))

b(r)−1/2
. (3.26)Set

A(r) = f
(f + h) 0(r)
(f + h)(r)

, B(r) = rA 0(r).We have to show that A(r) = a(r) + o(1) and B(r) = b(r) + o(1) sin
e we may then repla
e
a(r),b(r) by A(r),B(r) in (3.25) and (3.26). Suppose that |r − z| < ra(r)−1. Then we have

h(z) = O

�
f(

�
r +

r

a(r)

��
= O(f(r))1−ηby (3.13). Thus for every �xed k 2 N

|h(k)(r)| � k!

�
a(r)

r

�k max
|z−r|�r/a(r)

|h(z)| =
O(f(r))1−η/2

rkby Cau
hy's inequality. Hen
e
A(r) = r

(f 0 + h 0)(r)
(f + h)(r)

= r
f 0(r)
h 0(r) �1 + O

�
h(r)

f(r)

���
1 + O

�
h 0(r)
f 0(r) ��

= a(r)
�
1 + O(f(r))−η/2

�
, r → R.Similarly, B(r) = b(r) + o(1).

3.3 ExamplesWithout proof we quote three theorems that give a basi
 set of H-admissible fun
tions and
lose this 
hapter with some simple examples.
Theorem 3.8. Let P(z) = bkz

k + . . . + b1z + b0, bk 6= 0, k � 1, be a real polynomial andset
f(z) =

∑

k�0

fnzn = eP(z).Then the following four 
onditions are equivalent.(i) f(z) is H-admissible in C.(ii) For all suÆ
iently large r we have
|f(reiφ)| < f(r), 0 < |φ| � π.(iii) For every integer d > 1, there exists an integer m, su
h that d is not a fa
tor of

m and bm 6= 0. Further if m = m(d) is the largest su
h integer, then bm(d) > 0.
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iently large positive integers n.
Theorem 3.9. Suppose that f(z) is an integral fun
tion of genus zero, positive for largepositive z, having for some positive δ at most a �nite number of zeros in the angle
| arg z| � π/2 + δ, and su
h that

b(r) = r
d

dr
r

d

dr
log f(r) → ∞, r → R.Then f(z) is admissible in the plane.

Theorem 3.10. Suppose that f(z) =
∑

n�0 fnzn is regular in |z| < 1. Furthermore, thereexist positive 
onstants α, β < 1 and R0 < 1 and a positive fun
tion C(r), 0 < r < 1su
h that� as r → 1 we have
(1 − r)

C 0(r)
C(r)

→ 0;� uniformly for | arg z| � β(1 − r) we havelog f(z) ∼ C(|z|)(1 − z)−α, z → 1;� for r suÆ
iently near 1 we have
|f(reiφ)| � |f(reiβ(1−r))|, β(1 − r) � |φ| � π.Then f(z) is H-admissible in |z| < 1.

Example 9. (i) ez;(ii) The fun
tion of Se
tion 2.3.1, ez+z2/2, is H-admissible by Theorem 3.8.(iii) The fun
tion ez − 1 is H-admissible by Theorem 3.7 and Theorem 3.5 shows thatthe generating fun
tion for the Bell numbers, exp(ez − 1), is H-admissible, too.



Chapter 4

Generalisations and Related

ConceptsWe 
onsider some 
on
epts strongly related to H-admissibility.Harris and S
hoenfeld [HS68℄ de�ned a 
lass of fun
tions f : C → C, 
alled HS-admissible,and proved an asymptoti
 expansion for their 
oeÆ
ients. Their method is 
losely relatedto Hayman's but unfortunately their result is rather hard to apply. Odlyzko and Ri
hmond[OR85℄ and M�uller [M�ul97℄ provided theorems whi
h establish HS-admissibility for 
ertain
lasses of fun
tions.Mutaf
hiev [Mut92℄ generalised the lo
al limit result implied by H-admissibility (Corollary3.2) by weakening the restri
tions on the asymptoti
 behaviour of H-admissible fun
tions.While Hayman requires that only the terms up to order 2 are signi�
ant, Mutaf
hiev onlyassumes that the fun
tion o

urring in the asymptoti
 is the 
hara
teristi
 fun
tion of anin�nitely divisible and absolutely integrable distribution with �nite varian
e.Bender and Ri
hmond [BR96℄ stated a rather general analogue of H-admissibility forfun
tions f : C
n → C, n � 1, and proved an asymptoti
 formula for the 
oeÆ
ients ofsu
h fun
tions. Their 
on
ept is useful for establishing lo
al limit theorems for various
ombinatorial stru
tures. In their paper they also proved some theorems whi
h simplify thetask of establishing this so-
alled BR-admissibility. Unfortunately it is not easy to use this
on
ept for automati
ally obtaining asymptoti
 formulae for the 
oeÆ
ients in question andproving limit theorems for 
ombinatorial stru
tures.In view of this, Drmota, Gittenberger, and Klausner [DGK05℄ stated an analogue of H-admissibility for fun
tions f : C

2 → C and proved a 
entral limit theorem for their 
oeÆ
ients.These so-
alled e-admissible 
lasses satisfy various 
losure properties of an algebrai
 type.With this 
on
ept at hand, 
omputers 
an, given a des
ription of the 
ombinatorial 
lass asin Chapter 1, automati
ally prove 
entral limit theorems. In their paper they also presenteda Maple-implementation demonstrating this 
on
ept.
35
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4.1 HS-admissibility

Definition 4.1. Let f(z) =
∑

n�0 fnzn be a fun
tion analyti
 in |z| < R,0 < R � ∞ andreal for real z.
f is said to be HS-admissible if and only if(i) There exists R0 2 (0, R) and a fun
tion d : (R0, R) → (0, 1) su
h that for r 2 (R0, R)we have

1 + d(r) <
R

rand
|z − r| � rd(r) =⇒ f(z) 6= 0.(ii) For k � 1 and r 2 (R0, R) set

A(z) =
f 0(r)
f(r)

, Bk(z) =
zk

k!

�
d

dz

�k−1

A(z), B(z) =
z

2
B 0

1(z).We have B(r) > 0 for r 2 (R0, R) and B1(r) → ∞ as r → R−.(iii) For R1 < R and n 2 N suitably large the equation B1(r) = n + 1 has a uniquesolution un 2 (R1, R). De�ne
Cj(z, r) = −

Bj+2(z) +
(−1)j

j+2
B1(r)

B(r)and suppose that for a 
ertain �xed N � 0 there exist non-negative numbers Dn,Enand n0 su
h that for all n � n0 and for 1 � j � 2N + 1 we have
|Cj(un, un)| � EnDj

n.In addition, we have for all n � n0 that either(a) |Cj(un, un)| � EnD
j
n for all j � 2N + 2 or(b) |C2N+2(un + iρun, un)| � EnD2N+2

n for ρ 2 [−d(un), d(un)].(iv) As n → ∞, we have
B(un)d(un)2 → ∞, DnEnB(un)d(un)3 → 0, Dnd(un) → 0.We 
an now state the main theorem for HS-admissible fun
tions. Using the abbreviations� βn = B(un);� γj(n) = Cj(un, un);� Q(r) is the path 
onsisting of the line segment L from r+ ird(r) to r

q
1 − d(r)2+ ird(r)and the 
ir
ular ar
 C from the last point to ir to −r (see �gure 4.1).



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 37� λ(r; d) is the maximum value of |f(z)/f(r)| on Q(r);�
µ(r; d) = max0�λ(r; d)

q
B(r),

exp �−B(r)d(r)2
�

d(r)
p

B(r)

1A ;� E 0n = min(1, En) and E 00n = max(1, En);� hN(n; d) = max �µ(un; d), E 0n(DnE 00n/
p

βn)2N+2
�;�

Fk(n) =
(−1)kp

π

2k∑

m=1

Γ(m + k + 1
2
)

m!

∑

j1 + � � � + jm = 2k

j1, . . . jm � 1

γj1 (n) � � � γjm (n)we have
Theorem 4.1. Let f(z) =

∑
n�0 fnzn be HS-admissible (with either (iii)(a) or (iii)(b)).Then for the given N we have, as n → ∞, the expansion

fn =
f(un)

un
n

p
πβn

0�1 +

N∑

k=1

Fk(n)

βk
n

+ O(hN(n; d))

1A (4.1)In 
ase of (iii)(a) equation (4.1) is valid for all N � 0.
Remark 4.1. The detailed proof 
an be found in [HS68℄. It mainly 
onsists of anappli
ation of the saddle point-method to the fun
tion f(z)z−n−1 whi
h has the dominantsaddle point at un. The path of integration used in the proof of Theorem 4.1 is depi
tedin Figure 4.1. It 
onsists of a verti
al line running through the dominant saddle pointof the integrand, a 
ir
ular ar
 of radius un and 
entre 0 and two horizontal lines with
onstant imaginary part und(un).Harris and S
hoenfeld [HS68℄ gave two reasons for preferring the integration pathdes
ribed above over the 
ir
le |z| = un−1 as used in Hayman's proof:� The quantities Bk(z) arising in De�nition 4.1 are usually easier to determine thanthe quantities (z d

dz
)kA(z) whi
h would arise when using the 
ir
le |z| = un−1.� In appli
ations 
onsidered by Harris and S
hoenfeld it turns out that the 
on
eptas presented above produ
es better numeri
al results than the alternative 
on
eptbased on the 
ir
le |z| = un−1.

Remark 4.2. Theorem 4.1 does not ne
essarily give a meaningful asymptoti
 result forevery N. If we apply the Theorem as stated above to f(z) = ez and make the (optimal)
hoi
e d(r) =
p

2 log r/
p

r, then for all N � 0 we merely obtain hN(n; d) = O(logn/
p

n)whi
h is independent of N. Noting that Fk(n)/βk
n � n−k as n → ∞ for any �xed k � 1
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−un un

un + iund(un)

un

ℜ

ℑ

Figure 4.1: The integration path used in the proof of Theorem 4.1.we see that for N > 0 Theorem 4.1 does not give a better approximation to 1/n! thanfor N = 0.For this reason, Harris and S
hoenfeld [HS68℄ stated an alternative form of Theorem4.1 based on the 
ir
le |z| = un−1. Details 
an be found in [HS68℄.
Example 10. Let Tn denote the set of fun
tions mapping the set {1, 2, . . . , n} into itselfand let Æ denote the 
omposition of fun
tions. Then, hTn, Æi is a semigroup. We areinterested in the number Un of idempotent elements in hTn, Æi, i.e., fun
tions f 2 Tnsu
h that f Æ f = f. Harris and S
hoenfeld [HS67℄ showed that

1 +
∑

n�1

Un
zn

n!
= ezezand in [HS68℄ they showed that this fun
tions is HS-admissible. In this 
ase, R = ∞,

A(z) = (z + 1)ez, Bk(z) =
zk

k!
(z + k)ez, B(z) =

z

2
(z2 + 3z + 1)ez,and the fun
tion d(r) is 
hosen su
h that d(r) = e−2r/5. A 
al
ulation yields

hN(n; d) = O

� logn

n

�N+1

, n → ∞,and
Fk(n)

βk
n

=
Pk(un)

C3k
n (n + 1)k



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 39where un is the positive solution of u(u + 1)eu = n + 1, Cn = u2
n + 3un + 1, and Pk(u)is a polynomial of degree 7k. Hen
e, by Theorem 4.1,

Un =

s
un + 1

2π(n + 1)Cn

n!

un
n

e(n+1)/(un+1)

0�1 +

N∑

k=1

Pk(un)

C3k
n (n + 1)k

+ O

� logn

n

�N+1
1Aas n → ∞ for any �xed N � 0.In general it is quite hard to 
he
k the 
onditions of HS-admissibility. However, Odlyzkoand Ri
hmond[OR85℄ showed that for a spe
ial type of fun
tion HS-admissibility 
an beestablished using H-admissibility only:

Theorem 4.2. If f(z) is H-admissible in |z| < R then exp(f(z)) is HS-admissible in
|z| < R. Furthermore, the error term hN(n; d) of equation (4.1) is o(β−N

n ) as n → ∞ forevery �xed N � 0.M�uller[M�ul97℄ proved HS-admissibility for exponentials of 
ertain polynomials whi
h hasan interesting impli
ation on the relation between HS-admissibility and H-admissibility (seenext remark).
Theorem 4.3. Let P(z) =

∑m
k=1 pkzk be a polynomial of degree m � 1 with 
omplex
oeÆ
ients pk and let f(z) = exp(P(z)). Then the following assertions are equivalent:(i) f(z) is HS-admissible in C.(ii) P(z) 2 R[z] and cm > 0.M�uller[M�ul97℄ also gave an upper bound for the error term for a more spe
ial 
lass ofpolynomials.

Theorem 4.4. Suppose that P(z) =
∑m

k=1 pkzk is a polynomial of degree � 2 and that
p1 > 0 and pk � 0 for 1 < k � m.Then the fun
tion f(z) = exp(P(z)) is HS-admissible and the auxiliary fun
tion d(r)
an be 
hosen in su
h a way that for ea
h �xed N � 0

hN(r, d) = O
�
n−N−1

�
, n → ∞.

Remark 4.3. Theorem 4.3 shows that HS-admissibility does not imply H-admissibility.In fa
t, Theorem 4.3 shows that the fun
tion ez(z−1) is HS-admissible. But the fun
tionis not H-admissible by Theorem 3.8 sin
e its power series expansion at z = 0 hasin�nitely many negative 
oeÆ
ients.Note that the fun
tions of Theorem 4.4 are H-admissible.
Example 11. The fun
tion of Se
tion 2.3.1,

F(z) =
∑

n�0

Fn
zn

n!
= exp z +

z2

2

!



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 40is HS-admissible in C by Theorem 4.3 with the auxiliary fun
tions
A(z) = 1 + z, Bk(z) =






z + z2 if k = 1
z2

2
if k = 2

0 else ,

B(z) = z
2

+ z2, Cj(z, r) =
(−1)j+1

j+2

�
1 + 1

1+2z

�
.The unique positive solution of B1(u) = n + 1 is given by

un =
−1 +

p
4n + 5

2
=

p
n

0�−
1

2
p

n
+

s
1 +

5

4n

1A
=

p
n

�
1 −

1

2
n−1/2 +

5

8
n−1 −

25

128
n−2 + O(n−3)

�
.Hen
e

Cj(un, un) =
(−1)j+1

j + 2

�
1 +

1p
4n + 5

�
=

(−1)j+1

j + 2

�
1 +

1

2
n−1/2 −

5

16
n−3/2 + O(n−2)

�
B(un) =

un

2
+ u2

n = n + 1 −
un

2

= n + 1 +

p
n

2

�
1 −

1

2
p

n
+

5

8n
+ O(n−2)

�
= n

�
1 +

1

2
n−1/2 +

3

4
n−1 +

5

16
n−3/2 + O(n−2)

�Theorems 4.1 and 4.4 now give (putting N = 1) after some simpli�
ations
Fn

n!
=

eun+u2
n/2

2un
n

p
πB(un)

�
1 +

7

24
n−1 +

5

96
n−3/2 + O(n−2))

�
.Cal
ulating

u−n
n = n−n/2 exp�−n log�1 −

1

2
p

n
+

5

8n
−

25

128
n−2 + O(n−3)

��
= nn/2 exp pn

2
−

1

2
−

13

48
n−1/2 −

13

128
n−1 + O(n−2)

!
un +

u2
n

2
= n + 1 −

u2
n

2

= n + 1 −
n

2

�
1 − n−1/2 +

3

2
n−1 −

5

8
n−3/2 +

25

128
n−5/2 + O(n−3)

�
=

n +
p

n

2
+

1

4
+

5

8
p

n
−

25

256
n−3/2 + O(n−2).
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un

2
+ u2

n = n + 1 −
un

2

= n

�
1 −

1

2
n−1/2 +

5

4
n−1 −

5

16
n−3/2 + O(n−2)

��
un

2
+ u2

n

�−1/2

=
1p
n

�
1 +

1

4
n−1/2 −

17

32
n−1 −

35

128
n−3/2 + O(n−2)

�we obtain
Fn

n!
=

exp �n
2

+
p

n − 1
4

�
2
p

πnn−1

�
1 +

55

48
n−1/2 +

2245

4608
n−1 + O(n−3/2)

�and an appli
ation of Stirling's formula gives the �nal result
Fn =

nn/2p
2

exp�−
n

2
+
p

n −
1

4

����1 +
55

48
n−1/2 +

2629

4608
n−1 +

19061

663552
n−3/2 + O(n−2)

�
. (4.2)

4.2 GH-admissibilityMutaf
hiev [Mut92℄ proposed a generalisation of Hayman's 
on
ept of admissibility, 
alledGH-admissibility, with the asymptoti
s (3.1) and (3.2) of De�nition 3.1 repla
ed by weaker
onditions.In the following we present Mutaf
hiev's de�nition and results but follow Hayman more
losely and prove an analogue of Theorem 3.1 for GH-admissible fun
tions. We will �rst listsome important fa
ts 
on
erning 
hara
teristi
 fun
tions of distribution fun
tions. Then westate a slightly modi�ed de�nition of GH-admissibility followed by some remarks. We thenpro
eed stating the main results of this se
tions and show how GH-admissibility 
an be usedto infer lo
al limit theorems for the number of 
omponents of 
ombinatorial stru
tures.Mutaf
hiev [Mut92℄ also applied his 
on
ept to three 
ombinatorial problems alreadyknown to satisfy a lo
al limit theorem. Unfortunately, as we will show in this se
tion, thegenerating fun
tions of the problems 
onsidered by Mutaf
hiev are not GH-admissible andtherefore his paper [Mut92℄ does not 
ontain any valid appli
ations of the 
on
ept of GH-admissibility.
Remark 4.4. We summarise some important properties of absolutely integrable andin�nitely divisible 
hara
teristi
 fun
tions h(t). Details and proofs of these fa
ts 
an befound in [Luk70℄. Let H(x) denote the probability distribution fun
tion 
orrespondingto h(t). We have� H(x) is absolutely 
ontinuous w.r.t. the Lebesgue-measure with 
ontinuous density

H 0(x);
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H 0(x) =

1

2π

∞∫

−∞

e−itxh(t)dt, −∞ < x < ∞. (4.3)
Definition 4.2. Suppose that f(z) is analyti
 in |z| < R, R > 0, and real for real z.Assume further that there exists R0, 0 � R0 < R, su
h that f(r) > 0 for R0 � r < R. Forthis range de�ne the fun
tions

a(r) = r
f 0(r)
f(r)

and b(r) = ra 0(r) = r
f 0(r)
f(r)

+ r2f 00(r)
f(r)

−

�
r
f 0(r)
f(r)

�2

.Then f(z) is said to be GH-admissible in |z| < R if and only if there exists a fun
tion δ :

[0, R) → [0, π] and an absolute integrable and in�nitely divisible 
hara
teristi
 fun
tion
h(t) de�ned by a non-degenerate probability distribution with �nite varian
e su
h that(i) b(r) → ∞ as r → R;(ii) the probability density fun
tion H 0(x) 
orresponding to h(t) satis�es H 0(0) > 0;(iii) f(reiφ) ∼ f(r)eiφa(r)h(φ

q
b(r)) as r → ∞ uniformly for |φ| < δ(r);(iv) ∫

δ(r)�|φ|�π

s(r,φ)f(reiφ)dφ =
o(f(r))p

b(r)
as r → R for any 
omplex valued fun
tion

s(r,φ) satisfying s(r,φ) = O(1) as r → R uniformly for δ(r) � |φ| � π.
Remark 4.5. Instead of Condition (iv) in De�nition 4.2 Mutaf
hiev originally requiredthat(iv') ∫

δ(r)�|φ|�π

s(r,φ)f(reiφ)e−iZφ
p

b(r)dφ =
o(f(r))p

b(r)
as r → R for any real Z 6= 0 and any
omplex valued fun
tion s(r,φ) satisfying s(r,φ) = O(1) as r → R uniformly for

δ(r) � |φ| � π.Conditions (iv) and (iv') are equivalent sin
e s(r,φ)e−iZφ
p

b(r) also satis�es the assump-tions imposed on s(r,φ). Hen
e the fa
tor e−iZφ
p

b(r) need not be mentioned expli
itly.
Remark 4.6. We adopt the notation of the last de�nition.Consider the power-series distributed random variable ξ(r) whose distribution isdetermined by

P
�
ξ(r) = k

�
=

fkrk

f(r)
, k � 0, 0 < r < R.Then we have Eξ(r) = a(r) and Vξ(r) = b(r) and the 
hara
teristi
 fun
tion of thenormalised random variable (ξ(r) − a(r))/
p

b(r) is seen to be
α(t; r) =

f
�
reit/

p
b(r)
�

f(r)
exp −it

a(r)p
b(r)

!
.
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p

b(r) in De�nition 4.2, Condition (iii), we see that
α(t; r) → h(t), r → R,whenever |t| � δ(r)

p
b(r).H-admissible fun
tions are GH-admissible with h(t) = e−t2/2, i.e., the 
oeÆ
ients ofH-admissible fun
tions satisfy a normal limit law (see Corollary 3.2.).As for H-admissible fun
tions, we have

Lemma 4.1. We adopt the notation of De�nition 4.2. Then
δ(r)

q
b(r) → ∞, r → R.The proof of Lemma 4.1 
an be found in [Mut92℄. We only note that

Theorem 4.5. Suppose that f(z) =
∑

n�0 fnzn is GH-admissible in |z| < R with 
har-a
teristi
 fun
tion h(t) and 
orresponding probability distribution fun
tion H(x) andde�ne fn = 0 for n 2 Z−. Then we have uniformly for all integers n

fn =
f(r)

rn
p

b(r)

 
H 0 −

a(r) − np
b(r)

!
+ o(1)

!
, r → R. (4.4)Proof. The starting point is Cau
hy's formula, viz.

fnrn =
1

2π

π∫

−π

f(reiφ)
dφ

einφ
.We set

I1 :=
1

2π

δ(r)∫

−δ(r)

f(reiφ)
dφ

einφ
and I2 :=

1

2π

2π−δ(r)∫

δ(r)

f(reiφ)
dφ

einφ
.Putting s(r,φ) = exp (−inφ) in Condition (iv) of De�nition 4.2 we see that

I2 =
o(f(r))p

b(r)
, r → R,and Condition (iii) together with the absolute integrability of h(t) gives uniformly in n

I1 =
f(r)

2π

0B� δ(r)∫

−δ(r)

h

�
φ
q

b(r)

�
eiφ(a(r)−n) dφ + o(b(r))−1/2

1CA .
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p

b(r) and using Condition (i) as well as the absolute integrabilityof h(t) and (4.3) we obtain as r → R

δ(r)∫

−δ(r)

h

�
φ
q

b(r)

�
eiφ(a(r)−n) dφ =

1 + o(1)p
b(r)

∞∫

−∞

h(t) exp it
a(r) − np

b(r)

!
dt

=
2πf(r)p

b(r)
H 0 −

a(r) − np
b(r)

!
+

o(f(r))p
b(r)whi
h 
ompletes the proof.

Corollary 4.1. We have
a(r) → ∞, r → R. (4.5)Furthermore, there exists R1 < R su
h that a(r) is stri
tly monotoni
ally in
reasing for

R1 � r < R and
b(r) = O(a(r))2, r → R. (4.6)Proof. We have b(r) = ra 0(r) → ∞ as r → R whi
h shows that a(r) is �nally stri
tlymonotoni
ally in
reasing as r → R.Putting n = −1 in (4.4) yields

H 0 −
a(r) + 1p

b(r)

!
= o(1), r → R.Sin
e H 0(x) is 
ontinuous and H 0(0) 6= 0 by De�nition 4.2 there exists M 2 R+ su
h that�����a(r) − 1p

b(r)

����� � M, r → R.From this and the fa
t that b(r) → ∞ as r → R it follows that a(r) → ∞ as r → R and
b(r) = O(a(r))2.
Corollary 4.2. For n large enough the equation a(r) = n has a unique solution rn whi
hsatis�es rn → R as n → ∞. Furthermore

fn ∼
f(rn)H 0(0)
rn
n

p
b(rn)

, n → ∞. (4.7)Proof. From (4.5) and the fa
t that a(r) is �nally stri
tly monotoni
 in
reasing we see thatthe equation a(r) = n has, at least for n large enough, a unique positive solution rn. Thissolution satis�es rn → R as n → ∞. Putting r = rn in (4.4) proves the asymptoti
 for fn.We now turn to the problem of determining the distribution of the number of 
omponentsin 
ombinatorial 
lasses.
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ombinatorial 
lasses related via G = setF . The
orresponding exponential generating fun
tions
g(z) =

∑

n�0

gnzn/n! and f(z) =
∑

n�1

fnzn/n!then satisfy
g(z) = ef(z). (4.8)Now let ξ1(r), ξ2(r), . . . denote a sequen
e of i.i.d. random variables generated by f(z), thatis

P {ξ1 = k} =
fkrk

f(r)k!
, 0 < r < R, k = 0, 1, . . . , (4.9)where R denotes the radius of 
onvergen
e of f(z), de�ne the sequen
e of random variables

SN(r) = ξ1(r) + � � � + ξN(r), N = 1, 2, . . . (4.10)and let X = X(ω) denote the number of 
omponents of ω 2 G. Finally, let Pn and En denotethe uniform probability measure and expe
tation de�ned on the set of stru
tures of size n ofG. Then we have
Pn {X = N} =

f(r)Nn!

gnrnN!
P {SN(r) = n} , N = 1, 2, . . . , n, n = 1, 2, . . .and ∑

n�0

(EnX)
gnzn

n!
= f(z)g(z).Proofs for these fa
ts 
an be found in [Kol86℄ and [Com87℄.We 
an now state Mutaf
hiev's results 
on
erning the distribution of X.

Theorem 4.6. Suppose that f(z) and g(z) are power series with nonnegative 
oeÆ
ientssatisfying (4.8) and let R > 0 denote their 
ommon radius of 
onvergen
e. Moreover,let g(z) be GH-admissible with distribution fun
tion H(x) and fun
tions a(r) and b(r)as de�ned in De�nition 4.2 su
h thatq
b(r) ∼ dg(r), r → R,for some 0 < d < ∞.Then(i) If N = f(r)(1 + o(1)) as r → R, then the distribution of the sums SN(r) de�ned by(4.10) satisfy

P {SN(r) = k} =
H 0(γ) + o(1)p

b(r)
, r → R,where γ = (a(r) − k)/

p
b(r). This 
onvergen
e is uniform w.r.t. γ belonging to anarbitrary 
ompa
t set.
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Pn {X = N} ∼

1p
2πf(rn)

exp −
(N − f(rn))2

2f(rn)

!
, n → ∞,uniformly w.r.t. N su
h that (N− f(rn))/f(rn)7/12 belongs to an arbitrary 
ompa
tset.

Remark 4.7. The last theorem 
an be applied to all GH-admissible fun
tions whi
h arenot H-admissible (see [Mut92, Remark 2.2℄ for details).
Theorem 4.7. Suppose that f(z) and g(z) are analyti
 for |z| < R and satisfy (4.8). If
g(z) is GH-admissible then

EnX ∼ f(rn), n → ∞,where rn is de�ned by a(rn) = n.Proofs for the last two theorems 
an be found in [Mut92℄.We 
lose this se
tion with a 
omment on the examples given by Mutaf
hiev in his paper[Mut92℄.
Remark 4.8. Mutaf
hiev [Mut92℄ 
onsidered the egf for the number of permutations oflength n � 0 given by

f(z) = e− log(1−z) =
1

1 − z
.We have

a(r) =
r

1 − r
, b(r) =

r

(1 − r)2
.Let δ : [0, 1) → [0, π] be su
h that

(1 − r)2/3 � δ(r) � (1 − r)1/2, r → 1.Then we have, uniformly for |φ| � δ(r), as r → 1

f(reiφ)

f(r)
=

1 − r

1 − reiφ
=

1

1 − a(r) (eiφ − 1)

∼
1

1 − iφa(r)
∼ eiφa(r) e−iφ

p
b(r)

1 − iφ
p

b(r)
.If f(z) would be GH-admissible in |z| < 1 then the 
orresponding 
hara
teristi
 fun
-tion would be given by

h(t) =
e−it

1 − it
, −∞ < t < ∞,whi
h 
orresponds to a shifted Gamma density, viz.

H 0(x) =

{
e−x−1 if x � −1

0 if x < −1.The fun
tion f(z) 
annot be GH-admissible for two reasons:
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tion H 0(x) 
orresponding to h(t) = e−it/(1 − it) has adis
ontinuity at x = −1. Hen
e h(t) 
annot be absolutely integrable (see [Luk70,Theorem 3.2.2℄).� Condition (iv) of De�nition 4.2 is not satis�ed by f(z). To see this, we 
hoose thefun
tion s(r; φ) = exp �−i arg f(riφ)
�. Then

∫

δ(r)�|φ|�π

s(r; φ)f(reiφ)dφ =

∫

δ(r)�|φ|�π

|f(reiφ)|dφ

=

∫

δ(r)�|φ|�π

dφp
1 + r2 − 2r 
osφ� ∫

δ(r)�|φ|�π

dφp
1 + r2whi
h is not o(1) as r → 1.The generating fun
tions

g(z) =
1 + zp
1 − zand

G(z) =
1

1 − T(z)
where T(z) = zeT(z)
onsidered in the remaining two examples of [Mut92℄, again, lead to 
hara
teristi
 fun
-tions whi
h are not absolutely integrable sin
e the 
orresponding probability distributionshave got dis
ontinuities. Hen
e, the fun
tions g(z) and G(z) 
annot be GH-admissible.

Remark 4.9. Mutaf
hiev [Mut97℄ 
onsidered the distribution of the parameter 'num-ber of distin
t 
omponent sizes' on the set of 
ombinatorial stru
tures of size n in
ertain 
ombinatorial 
lasses as n → ∞. Using the 
on
ept of GH-admissibility Mu-taf
hiev [Mut97℄ established weak 
onvergen
e results to a 
onvolution of two distribu-tions, where one of them is always Gaussian.In his paper [Mut97℄ he also presented three examples. In 
ase of the �rst twoexamples, namely set-partitions and integer-partitions, the generating fun
tion is notonly GH-admissible but even H-admissible. Unfortunately, the third example 
onstitutesan invalid appli
ation of his results sin
e the generating fun
tion for the number offun
tions from {1, 2, . . . , n} into itself is given by G(z) of Remark 4.8 whi
h is not GH-admissible.
4.3 BR-admissibilityIn this se
tion we 
onsider a multivariate generalisation of the notion of H-admissibility whi
his due to Bender and Ri
hmond [BR96℄. They proved a theorem analogous to Theorem 3.1whi
h 
an be used to obtain lo
al limit theorems for a variety of 
ombinatorial problems.
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on
erning the notation:
Definition 4.3. For the d-variable fun
tion f(z) =

∑
n�0 anzn we de�ne:� Λf is the Z-module spanned by di�eren
es of those n for whi
h an 6= 0.� d(Λf) denotes the absolute value of the determinant of a Z-basis of Λf.� Λ�

f is the polar latti
e of Λf,
Λ�

f =
{

x 2 R
d : 8n 2 Λf we have x � n 2 Z

}where x � n denotes the usual s
alar produ
t.� Let {v1, . . . ,vd} be a Z-basis of Λ�
f. Then we de�ne the fundamental region of f asthe parallelepiped

Φf = {c1v1 + . . . + cdvd | 8 1 � k � d : −π � ck � π} . (4.11)We will also make use of the following asymptoti
 notation:
Definition 4.4. We write f(z) = ou(z)(g(z)) for z in some set S, if there exists a fun
tion
λ(t) su
h that λ(t) → 0 as t → ∞ and |f(z)/g(z)| � λ(|u(z)|) for z 2 S.Now, we 
an state the 
entral de�nition and the main theorem of [BR96℄. Remarks willbe given right after the proof of this theorem.
Definition 4.5 (BR-Admissibility). Let f(z) be a d-variable fun
tion analyti
 at theorigin having a fundamental region Φf. If Λf is d-dimensional, then we say that f(z)is BR-admissible in R � R

d
+ with angles Θ if there exist fun
tions� Θ : R → {S � Φf | 0 2 S and S is an open set},� a : C

d → C
d and� B : C

d → C
d�dsu
h that (we write oB for odetB(r)))(i) f(z) is analyti
 whenever r 2 R and |zi| � ri for 1 � i � d,(ii) B(r) is positive de�nite for r 2 R,(iii) the diameter of Θ(r) is oB(1),(iv) for r 2 R and θ 2 Θ(r), we have

f(reiθ) = f(r)(1 + oB(1)) exp �ia(r) 0θ − θ 0B(r)θ/2
� (4.12)
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f(reiθ) =

oB(f(r))p
|B(r)|

. (4.13)The fun
tion f(z) is 
alled BR-super-admissible if 
ondition (4.13) 
an be repla
edby
f(reiθ) =

oB(f(r))

|B(r)|t
(4.14)for arbitrary t 2 R, where oB(f(r)) may depend on t.

Theorem 4.8. Let f(z) =
∑

n�0 anzn be a d-variable fun
tion that is BR-admissible inR with angles Θ and let k 2 N
d be su
h that [zk]f(z) 6= 0 and set v = a(r) − n. Then wehave

[zn]f(z) =
d(Λf)f(r)r−n

(2π)d/2
pdetB(r)

�exp �−v 0B−1(r)v/2
�

+ oB(1)
� (4.15)for r 2 R and n − k 2 Λf.Proof. For brevity, we omit the arguments of B(r) and Θ(r).By Cau
hy's theorem, we have

anrn =
1

(2π)d

∫

[−π,π]d

f(reiθ)e−in0θdθ. (4.16)Assume that an 6= 0 and c 2 Λ�
f. By de�nition of Λ�

f, the integrand remains un
hanged if θis repla
ed with θ + 2πc. Thus, we 
an write
anrn =

d(Λf)

(2π)d

∫

Φf

f(reiθ)e−in0θdθ. (4.17)Now, let Θ⋆ = Θ⋆(r) denote the greatest star-shaped region 
ontained in Θ, that is
θ 2 Θ⋆ ⇐⇒ 8 0 < ρ < 1 : ρθ 2 Θ.We 
an work with Θ⋆ instead of Θ sin
e� The interior of Θ⋆ is 
ontained in Θ.� The boundary of Θ⋆ is 
ontained in Φf − Θ and therefore we haveexp(−θ 0Bθ/2) =

oB(1)pdetBon the boundary of Θ⋆.� For every θ, there is a κ = κ(r) su
h that κθ 2 Θ⋆ be
ause 0 2 Θ⋆.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 50� B is positive de�nite, that is (ρθ) 0B(ρθ) > θ 0Bθ for ρ > 1. Therefore we haveexp �−θ 0Bθ/2
�

=
oB(1)pdetB

for all θ 62 Θ⋆. (4.18)Now, the integral (4.17) 
an be rewritten as
anrn =

d(Λf)

(2π)d

∫

Θ⋆

f(reiθ) exp �−in 0θ�dθ +
oB(f(r))pdetB

.

B is a positive de�nite matrix and thus, there exists a real d�d matrix S su
h that B = S 0S.Using the abbreviations y = Sθ and w2 = w 0w, we have
iv 0θ − θ 0Bθ/2 = iv 0S−1y − y2/2 =

= −(S 0−1v)2/2 − (y − iS 0−1v)2/2 =

= −v 0B−1v/2 − (y − iS 0−1v)2/2.Hen
e, using equation (4.12), we get
∫

Θ⋆

eiv0θ−θ0Bθ/2dθ =
e−v0B−1v/2pdetB

∫

SΘ⋆

e−(y−iS0−1v)2/2dy =

=
e−v0B−1v/2pdetB

∫

Rd

e−(y−iS0−1v)2/2dy +

+
O(1)e−v0B−1v/2pdetB

∫

T

e−x2/2dx.As in the proof of Theorem 3.1 we get
∫

Rd

e−(y−iS0−1v)2/2dy =

0B�∫

R

e−(x−ic)2/2dx

1CAd

= (2π)d/2.For x 2 T we have, by equation (4.18), e−x2
= oB(1)/

pdetB and therefore, we get
∫

T

e−x2/2dx = oB(1)by essentially the same argument as in the proof of Theorem 3.1. Combining these resultswe obtain equation (4.15).
Remark 4.10. (i) Usually, one 
an let a(z) and B(z) be the �rst and se
ond logarith-mi
 derivatives of f(z).



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 51(ii) De�nition 4.5 does not demand the unboundedness of detB(r) in R. So, the oB-terms in the equations (4.12) and (4.13) need not be small anywhere in R. Hen
e,if f is BR-admissible in some set R, then f is BR-admissible in every set R1 � R,too.In appli
ations, however, one is usually interested in maximal regions or at leastregions large enough for detB being unbounded.(iii) If the fun
tion f(z) is H-admissible for |z| < R, then f(z) is BR-admissible in everyset R � (0, R).(iv) Let f(z) be BR-admissible in R. For every k 2 N,ki � 1, the fun
tion g(z) := f(zk)is BR-admissible, too.As a simple example take ez, whi
h is H-admissible and thus BR-admissible in
R. This fun
tion has a fundamental region [−π, π] and we 
an set Θ(r) = [0, δ(r)]where δ(r) is the fun
tion of De�nition 3.1 (in this 
ase, we 
an use δ(r) = r−2/5).The fun
tion ez2 is BR-admissible (but not H-admissible) with fundamental region
[−π/2, π/2] and Θ(r) = [0, δ(r)/2].(v) Besides R � R

d
+, De�nition 4.5 does not impose any restri
tion on the set R.Thus, one has to verify that BR-admissibility holds in a region R having the rightshape before applying this 
on
ept. In Se
tion 5.2.3, we 
onsider a fun
tion whi
his BR-admissible only in regions whi
h 
annot be used for proving an asymptoti
normal distribution.(vi) Theorem 4.8 allows one to 
ompute asymptoti
s for the 
oeÆ
ients of BR-admissiblefun
tions if one has got suÆ
iently good estimates for the solution rn of a(r) = nas well as f(rn) and rn

n.(vii) In many 
ases, BR-admissibility 
an be used to establish lo
al limit theorems:Suppose that f(z,u) is BR-admissible and ordinary in u. Partition all ve
torsand matri
es into blo
k form a

ording to the two sets of variables x and y. Solve
a(r,1) = (n,k�) for r asymptoti
ally in terms of n and use this to 
ompute k� and
B(r,1) asymptoti
ally in terms of n. Let n → ∞ in a way su
h that (r,1) 2 R anddetB(r,1) → ∞. It follows that [znuk]f(z,u) satis�es a lo
al limit theorem withmeans ve
tor asymptoti
 to k� and 
ovarian
e matrix asymptoti
 to�

B2,2 − B 0
1,2(B1,1)

−1B1,2

�−1where
B(z,u) =

 
B1,1 B1,2

B 0
1,2 B2,2

!is the blo
k form a

ording to the variable sets x and y.If z and u are 1-dimensional then the varian
e is given by detB/B1,1.Note, that BR-admissibility does not ne
essarily entail a lo
al limit theorem. Seese
tion 5.2.3 for a 
ounter example.
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ombine fun
tions having di�erent sets of variables, we have to extend thesefun
tions and the de�nitions of R, Θ, a and B to in
lude all o

urring variables.
Remark 4.11. Let f(z) be BR-admissible in R with angles Θ and let y be a variablenot appearing in f. Set�R = R� (0,∞) and �Θ(r, ρ) = Θ(r)� [−π, π]for r 2 R and ρ 2 (0,∞). The fun
tions a and B are extended to �a and �B by addingentries of zeroes. Note that det �B = 0.Generalisation to more variables is straight forward.From now on, we will always assume that the fun
tions are properly extended as des
ribedabove.
Theorem 4.9. Let f and g be BR-super-admissible in Rf with angles Θf and in Rg withangles Θg, resp. Assume that det(�Bf + �Bg) is unbounded in R = �Rf \ �Rg.If there are 
onstants C and k su
h thatdet(�Bf(r) + �Bg(r)) � Cmin(det(Bf(r))k,det(Bg(r))k), r 2 R, (4.19)then fg is BR-super-admissible in R with angles Θ = �Θf \ �Θg and we may take

afg = �af + �ag and Bfg = �Bf + �Bg.Furthermore, we have Λ = �Λf + �Λg.
Theorem 4.10. Let f be BR-(super-)admissible in R with angles Θ. If the fun
tion
g(reiθ) is analyti
 for r 2 R and for some fun
tions ag and Bg, g satis�es(i) Λg � Λf;(ii) for r 2 R and θ 2 Θ

(reiθ) = g(r) exp �ia 0gθ − θ 0Bgθ + oB(1)
�

;(iii) there is a 
onstant C su
h that |g(reiθ| � Cg(r) for r 2 R;(iv) there is a 
onstant K su
h that det(Bf + �Bg) � KdetBf for r 2 R.Then fg is BR-(super-)admissible in R with angles Θ and we may take
afg = af + ag and Bfg = Bf + Bg.

Theorem 4.11. Let f(z) =
∑

anzn be BR-(super-)admissible. For any sublatti
e Λ of
Λf de�ne

g(z) =
∑

n2Λ

ak+nzk+nwhere k is su
h that ak 6= 0. Then the fun
tion g is BR-(super-)admissible with
Λg = Λ, ag = af, Bg = Bf, Rg = Rf, and Θg = Θf.
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Theorem 4.12. Assume that� f(z) =

∑
n�1 anzn is H-admissible in |z| < R;� S is a subset of {0, 1, . . . ,m − 1};� for 0 � k < m, 
hoose λk 2 R+ su
h that λk > 0 if and only if k 2 S;� for n > m, de�ne λn = λk whenever n � k mod m;� de�ne

g(z) =

∞∑

n=0

λnanznand �λ = m−1
∑m−1

k=0 λk.Then(i) For some R0 < R, the fun
tion h(z) = eg(z) is BR-super-admissible in R = (R0, R)with angles Θ(r) = {θ : |θ| < g(r)−1/3−ε} and the fun
tions a and B, provided ε > 0is suÆ
iently small.(ii) For some R0 < R and all δ > 0, the fun
tion h(x, y) = eyg(x) is BR-super-admissiblein R =
{

(r, s)
���R0 < r < R and g(r)δ−1 < s < g(r)1/δ

}with angles
Θ(r, s) =

{
θ
���|θk| < (sg(r))−1/3−ε

}and fun
tions a and B, provided ε > 0 is suÆ
iently small.
Example 12. Consider the fun
tion

F(z, u,w) = eu(
osh z−1)ewsinhz.The 
oeÆ
ient of znukwm/n! in F(z, u,w) equals the number of partitions of a set ofsize n having k blo
ks of even size and m blo
ks of odd size. We show that F(z, u,w) isBR-admissible.We 
onsider the two fun
tions
f(z, u) = eu(
osh z−1) and h(z,w) = ewsinhz.Theorem 4.12, applied to the H-admissible fun
tion ez − 1 with m = 2, S = {0} and

λ0 = 1 shows that f(z, u) is BR-super-admissible inRf =
{

(r, s)
��� R0 < r and (
osh r − 1)δ−1 < s < (
osh r − 1)1/δ

}with angles
Θf(r, s) =

{
(θ1, θ2)

��� |θk| < (s(coshr − 1))−ǫ1−1/3 , k = 1, 2
}
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Bf(r, s) = s

 
r2 
osh r + r sinh r r sinh r

r sinh r 
osh r − 1

!for any δ > 0, any R0 > 0 and ǫ1 suÆ
iently small. Putting S = {1} and λ1 = 1 instead,we see that h(z,w) is BR-super-admissible inRh =
{
(r, t)

��� R0 < r and (sinh r)δ−1 < t < (sinh r)1/δ
}with angles

Θh(r, t) =
{
(θ1, θ2)

��� |θk| < (t sinh r)−ǫ2−1/3 , k = 1, 2
}and matrix

Bh(r, t) = t

 
r2 sinh r + r 
osh r r 
osh r

r 
osh r sinh r

!for any δ > 0, any R0 > 0 and ǫ2 suÆ
iently small.We now extend the fun
tions f and h and the 
orresponding matri
es to in
lude allvariables o

urring as des
ribed in Remark 4.11 and set B(r, s, t) = �Bf(r, s, t)+ �Bh(r, s, t),that is
B(r, s, t) =

0B� r(rs + t) 
osh r + r(rt + s) sinh r rs sinh r rt 
osh r

rs sinh r s(
osh r − 1) 0

rt 
osh r 0 t sinh r

1CA .Furthermore, we set R = �Rf \ �Rh.The determinants of the matri
es Bf, Bh and B are given bydetBf(r, s) = rs(sinh r − r)(
osh r − 1)detBh(r, t) = rt(
osh r sinh r − r)detB(r, s, t) = (sinh r)detBf(r, s) + (
osh r − 1)detBh(r, t).For brevity we set detBf = detBf(r, s) and detBh = detBh(r, t). We havedetBf ∼ s
re2r

4
and detBh ∼ t

re2r

4
as r → ∞and therefore detBfdetBh

∼
s

t
, t 6= 0, r → ∞.Now if (r, s, t) 2 R then

(
osh r − 1)δ−1

(sinh r)1/δ
<

s

t
<

(
osh r − 1)1/δ

(sinh r)δ−1whi
h gives
e−r(1−δ+1/δ)

21−δ
(1 + o(1)) <

s

t
<

er(1−δ+1/δ)

21/δ
(1 + o(1)), r → ∞.
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e−r(1−δ+1/δ)

22−δ
<

s

t
<

er(1−δ+1/δ)

21/δ−1
, r � R0,as well as

s
re2r

8
< detBf < s

re2r

2
and t

re2r

8
< detBh < t

re2r

2we see that there exist 
onstants C > 0 and η > 1 su
h thatdetBf < K(detBh)η and detBh < K(detBf)
η.Sin
e sinh r ∼ 
osh r − 1 ∼ er/2 as r → ∞ we getdetB � K ((detBf)

κ, (detBh)κ)for some 
onstants K > 0 and κ > 1.Hen
e, by noting that detB(r, s, t) is unbounded in R we see that all assumptions ofTheorem 4.9 are satis�ed and we 
on
lude that F(z, u,w) is BR-super-admissible in Rwith angles
Θ(r, s, t) = �Θf(r, s) \ �Θh(r, t)

=
h
−(s(
osh r − 1))−ǫ1−1/3, (s(
osh r − 1))−ǫ1−1/3

i2�� h−(t sinh r)−ǫ2−1/3, (t sinh r)−ǫ2−1/3
iand matrix B(r, s, t).

4.3.1 Perturbation of BR-admissible FunctionsIf f(z2) is BR-admissible then g(z) = f(z2)+z is not. The reason for this lies in the de�nitionof the 
orresponding latti
es. We have Λf = 2Z and Λg = Z, but 
learly [z2k+1]g(z) = 0 for
k > 0. Bender and Ri
hmond [BR96℄ remarked that the de�nition of BR-admissibility 
ouldbe modi�ed to in
lude g(z). But then the produ
t rules for BR-admissible fun
tions wouldnot hold anymore.In this se
tion we show that if f(z) is BR-admissible then (f+g)(z) is BR-admissible, too,provided that g(z) is suÆ
iently small and that Λf+g � Λf. Our reasoning will essentially bethe same as in the proof of Theorem 3.7 for H-admissible fun
tions. As a matter of fa
t theproof for this theorem is a bit shorter than the 
orresponding one for H-admissible fun
tions.For details see the remark following the proof.
Remark 4.12. Suppose that f : C

n → C is BR-admissible in R with angles Θ andfun
tions a = a(r) and B = B(r).We may suppose that for r 2 R
Θ(r) � {

θ 2 [−π, π]n
�� θ 0Bθ � 2 logm(r)

} (4.20)
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m(r) = max(1,detB)sin
e otherwise we should have for θ 0Bθ > 2 logm(r)exp �−θ 0Bθ/2

�
< exp (− logm(r)) = m(r)−1whi
h implies implies (4.13) for f(z).

Theorem 4.13. Let f(z) be BR-super-admissible in R with angles Θ and fun
tions aand B and let g(z) be a fun
tion su
h that(i) g(z) is analyti
 for |z| 2 R;(ii) Λg � Λf.(iii) for any t > 0 we have max
|z|=r

|g(z)| =
oB(f(r))

(detB(r))t
, r 2 R; (4.21)Then f + g is BR-super-admissible in R with angles Θ and fun
tions a and B.If f is BR-admissible and g satis�es 
ondition (iii) with t = 1, then f + g is BR-admissible.Proof. We adopt the notation of Remark 4.12 and assume that Θ(r) satis�es (4.20).First, we note that

f(r) = f(r) + g(r) − g(r) = (f + g)(r)(1 + oB(1)) (4.22)by (4.21).Suppose now that θ 62 Θ(r). Sin
e f(z) is BR-super-admissible we have
f(reiθ) =

oB(f(r))

(detB(r))tfor any t > 0. Now we get from this, (4.21) and (4.22)
(f + g)

�
reiθ

�
=

oB(f(r))

(detB(r))t
+

oB(f(r))

(detB(r))t

=
oB(f(r))

(detB(r))t
=

oB((f + g)(r))

(detB(r))tuniformly for θ 62 Θ(r) whi
h implies (4.14) for f + g. In the same way we obtain (4.13) forBR-admissible f.If θ 2 Θ(r) then we get from (4.20)���f�reiθ
���� = f(r)(1 + oB(1))e−θ0Bθ/2 � f(r)

m(r)
(1 + oB(1))
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onsequen
e of this and (4.21) we obtain
g(reiθ)

f(reiθ)
� g

�
reiθ

�m(r)

f(r)
(1 + oB(1)) = oB(1)uniformly for θ 2 Θ(r). Hen
e by BR-admissibility of f and (4.22) we get

(f + g)
�
reiθ

�
= f(reiθ)(1 + oB(1)) = f(r)(1 + oB(1))eia(r)θ−θ0Bθ/2

= (f + g)(r)(1 + oB(1))eia(r)θ−θ0Bθ/2uniformly for θ 2 Θ(r). This proves (4.12) for f + g.
Remark 4.13. De�nition 4.5 does only require the existen
e of fun
tions a(r) and B(r)but does not assume that these are equal to the �rst and se
ond logarithmi
 derivativesof f(z).This results in a shorter proof 
ompared to the proof of Theorem 3.7 where wealso had to show that the asymptoti
s hold with the appropriate fun
tions (namely thelogarithmi
 derivatives).
Example 13. Consider the fun
tion

G(z, u,w) =
�
eu(
osh z−1) − 1 − u(
osh z − 1)

�
ewsinhzwhi
h is a simple modi�
ation of the fun
tion F(z, u,w) 
onsidered in Example 12.

G(z, u,w) is the exponential generating fun
tion for set partitions having at least 2blo
ks of even 
ardinality and the 
oeÆ
ient of znukwm/n! in G(z, u,w) equals thenumber of partitions of size n having k blo
ks of even 
ardinality and m blo
ks of odd
ardinality.We adopt the notation of Example 12 and set
f(z, u) = eu(
osh z−1) and g(z, u) = 1 + u(
osh z − 1)We have max

|z|=r,|u|=s
g(z, u) = g(r, s) = 1 + s(
osh r − 1) < 1 + s

er

2and for r � R0

f(r, s)detBf(r, s)
> 2

f(r, s)

rse2r
> 2

erser/2

rse2rwhi
h gives
g(r, s)

f(r, s)/ detBf
<

rs

2

e2r + se3r/2

erser/2
= o(1), r → ∞.The last asymptoti
 is suÆ
ient for proving (4.21) sin
e detBf remains bounded in Rif r remains bounded. The other 
onditions of Theorem 4.13 are satis�ed, too, andtherefore we may 
on
lude that G(z, u,w) is BR-super-admissible in R with angles Θas de�ned in Example 12.
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4.4 E-admissibilityIn this se
tion we present a bivariate analogon of H-admissibility developed by Drmota,Gittenberger, and Klausner [DGK05℄. In their paper [DGK05℄ they de�ned 
lasses of bivariatefun
tions f(z, u), 
alled extended-admissibility (e-admissible) fun
tions, su
h that the randomvariable X de�ned by

Pn{X = k} =
[znuk]f(z, u)

[zn]f(z, 1)
, k � 0, (4.23)satis�es a 
entral limit theorem. An important property of these 
lasses of e-admissiblefun
tions is the existen
e of many simple 
losure properties whi
h simplify the task of es-tablishing e-admissibility and 
an be used to automati
ally prove a 
entral limit theorem for

X given only a de
onstru
tion of the 
ombinatorial 
lass 
onsidered. For details 
on
erningthis automation we refer to their paper [DGK05℄ where they also present an implementationof this 
on
ept using Maple.Roughly speaking, a bivariate gf f(z, u) is e-admissible if it is� H-admissible w.r.t. z for u in some real interval around u = 1 and� satis�es Lemma 3.1 w.r.t. u for z 2 R
+.Some additional requirements are needed in order to have simple algebrai
 
losure properties.We have

Definition 4.6 (e-admissibility). Let f(z, u) =
∑

n,k�0 ankznuk be a bivariate fun
tionanalyti
 in the domain
∆R,η =

{
(z, u) 2 C

2 : |z| < R, |u| < 1 + η
}for some R > 0 and η > 0. Assume further that there exists R0 < R su
h that

f(r, 1) > 0, R0 < r < R.Let a, �a, b, �b, c denote the derivatives of log f(z, u) w.r.t. log z and log u, that is
a(z, u) = z

fz(z, u)

f(z, u)
, �a(z, u) = u

fu(z, u)

f(z, u)
,

b(z, u) = zaz(z, u) = z
fz(z, u)

f(z, u
+ z2fzz(z, u)

f(z, u)
− z2

�
fz(z, u)

fz, u

�2

,�b(z, u) = u�au(z, u), c(z, u) = uau(z, u).The fun
tion f(z, u) is 
alled e-admissible in ∆R,η if and only if(i) Let K > 0 be an arbitrary 
onstant and set
ǫ(r) = K

 �b(r, 1) −
c(r, 1)2

b(r, 1)

!−1/2

. (4.24)
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h 
hoi
e of K there exists a fun
tion δ(r) : (R0, R) → (0, π) su
h thatuniformly for |φ| < δ(r) and 1 − ǫ(r) � u � 1 + ǫ(r) we have
f(reiφ, u) ∼ f(r, u) exp iφa(r, u) −

φ2

2
b(r, u)

!
, as r → R, (4.25)and uniformly for δ(r) � |φ| � π and 1 − ǫ(r) � u � 1 + ǫ(r) we have

f(reiφ, u) =
o(f(r, u))p

b(r, u)
, as r → R. (4.26)(ii) b(r, 1) → ∞ as r → R;(iii) Uniformly for 1 − ǫ(r) � u � 1 + ǫ(r) we have b(r, u) ∼ b(r, 1) as r → R.(iv) For r 2 (R0, R) and u 2 [1 − ǫ(r), 1 + ǫ(r)] we have

a(r, u) = a(r, 1) + c(r, 1)(u − 1) + O(c(r, 1)(u − 1)2). (4.27)(v) For all r < R and u in some arbitrary but �xed 
omplex neighbourhood of 1 wehave �a(r, u) = O(�a(r, 1)) and �b(r, u) = O(�b(r, 1)). (4.28)(vi) �b(r, 1) −
c(r,1)2

b(r,1)
→ ∞ as r → R;(vii) ǫ(r)3�b(r, 1) → 0 as r → R;(viii) For every λ > 0 we have, as r → R,�a(r, 1) = O(f(r, 1)λ) and �b(r, 1) = O(f(r, 1)λ).

Remark 4.14. The 
lass of fun
tions that are e-admissible in a domain ∆R,η will bedenoted by ER.
Remark 4.15. The de�nition of e-admissibility implies that for every f(z, u) 2 ER wehave f(z, 1) 2 HR.
Theorem 4.14. Let f(z, u) be e-admissible for |z| < R. Then we have

[zn]f(z, u) =
f(r, u)

rn
p

2πb(r, u)

 exp −
(a(r, u) − n)2

2b(r, u)

!
+ o(1)

!uniformly in n and u 2 [1 − ε(r), 1 + ε(r)] as r → R.The same arguments as in the proof of Theorem 3.1 
an be used to prove Theorem 4.14.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 60
Theorem 4.15. Let f(z, u) be e-admissible in ∆R,η su
h that for suÆ
iently large n all
oeÆ
ients ank are nonnegative. Let (Xn) be the sequen
e of random variables relatedto f(z, u) via (4.23). The positive solution of a(r, 1) = n will be denoted by rn.For n � 0 set

µn = �a(rn, 1),

σ2
n =

|detB(rn, 1)|

b(rn, 1)
= �b(rn, 1) −

c(rn, 1)2

b(rn, 1)

Yn =
Xn − µn

σn
.Then the following 
entral limit theorem holds:

Yn
w→ N (0, 1), n → ∞. (4.29)Furthermore, we have, as n → ∞,

EXn = µn + o(σn)2 (4.30)and
VXn = σn(1 + o(1)). (4.31)Proof. First note that f(z, 1) is H-admissible and therefore rn is uniquely determined at leastfor n suÆ
iently large and rn → R as n → ∞.Next, 
onsider the moment generating fun
tion of Xn,

mn(t) =
[zn]f(z, et)

[zn]f(z, 1)
, |t| < ǫ(rn).We note that t → 0 as n → ∞. An appli
ation of Theorem 4.14 gives

[zn]f(z, 1) =
f(rn, 1)

rn
n

p
2πb(rn, 1)

(1 + o(1))

[zn]f(z, et) =
f(rn, et)(1 + o(1))

rn
n

p
2πb(rn, et)

exp −
(a(rn, et) − a(rn, 1))2

2b(rn, et)

!as n → ∞. (4.28) ensures appli
ability of Lemma 3.1 to the se
ond argument of f(r, et), viz.
f(r, et) = f(r, 1) exp t�a(r, 1) +

t2

2
�b(r, 1) + O(�b(r, 1)t3)

!
, r → R.Conditions (iii) and (iv) of De�nition 4.6 give, as n → ∞ (and so t → 0),

(a(rn, et) − a(rn, 1))2

2b(rn, et)
=

c(rn, 1)(et − 1)2 + O(c(rn, 1)(et − 1)3)

2b(rn, 1)(1 + O(t))

=
c(rn, 1)t2

2b(rn, 1)

 
1 + O

 
c(rn, 1)2

b(rn, 1)
t3

!!
.
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mn(t) = exp tµn +

t2

2
σ2

n + O

 
c(rn, 1)2

b(rn, 1)
t3

!
+ o(1)

!for |t| < ǫ(rn) as n → ∞. Condition (vi) shows that c(r, 1) < �b(r, 1)b(r, 1) and therefore
ondition (vii) �nally gives
mn(t) = exp tµn +

t2

2

 �b(rn, 1) −
c(rn, 1)2

b(rn, 1)

!!
(1 + o(1)) (4.32)for |t| < ǫ(rn) as n → ∞.Hen
e the moment generating fun
tion of Yn is given by

Mn(s) = e−sµn/σnmn

�
s

σn

�
= es2/2(1 + o(1)) (4.33)for |s| < K whi
h proves (4.29).The 
onvergen
e Mn(s) → et2/2, n → ∞, is uniform in every 
ompa
t set and thereforethe sequen
e (Yn) has an exponential tail (see [Flajolet,Soria,Se
.4℄ for details). This impliesthe 
onvergen
e of all moments. In parti
ular we have

EXn = µn + σnEYn = µn + o(σn)

VXn = σ2
nVYn = σ2

n(1 + o(1)).Without proof we state the following two theorems whi
h establish various 
losure prop-erties satis�ed by ER. The proofs 
an be found in [DGK05℄.
Theorem 4.16. The following 
lasses of fun
tions are e-admissible:� Let P(z, u) =

∑
npnzknuln be a polynomial in z and u with real 
oeÆ
ients andset P(z, 1) =

∑
mbmzm. De�ne

K = maxE = max{

ki + kj : det ki li
kj lj

! 6= 0

}

I = {(i, j) : ki + kj = K}.Then eP(z,u) 2 E∞ if and only if the following 
onditions are satis�ed:(i) For every d > 1 there exists an m 6� 0 mod d su
h that bm 6= 0. Moreover,for md = max{m 6� 0 mod d : bm 6= 0} we have bmd
> 0.(ii) E 6= ; and

∑

(i,j)2I

pipj

 det ki li
kj lj

!!2

> 0.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 62(iii) max{kj : pj 6= 0} < 3K/5.� If f(z) 2 HR and g(u) is analyti
 for |u| � 1 + ζ and satis�es g(1) > 0 as well as
g 0(1) + g 00(1) >

g0(1)2

g(1)
, then exp �g(u)f(z)

� 2 ER.
Theorem 4.17. Suppose that f(z, u), g(z, u) 2 ER, h(z) 2 HR and P(z, u) is a polynomialwith positive real 
oeÆ
ients. Then the following fun
tions are in ER, too:� f(z, u)g(z, u)� h(z)f(z, u)� P(z, u)f(z, u)� ef(z,u)� eP(z,u)h(z) if P(z, u) is not independent of u� eP(z,u)+h(z) if R = ∞ and P(z, u) is not independent of u� f(z, u) + Q(z, u) where Q(z, u) is an arbitrary polynomial.
Example 14. Consider the bivariate gf for permutations having 
y
les of length � ℓonly with u marking the number of 
y
les, viz.

g(z, u) = exp0�u

ℓ∑

k=1

zk

k

1A .In order to establish e-admissibility for g(z, u) we have to 
he
k the 
onditions of The-orem 4.16:We see that K is well-de�ned if and only if ℓ � 2. In this 
ase K = 2ℓ − 1 and
I = {(ℓ − 1, ℓ), (ℓ, ℓ − 1)}. Conditions (i) and (ii) are 
learly satis�ed and from 
ondition(iii) we see that g(z, u) is e-admissible if and only if ℓ > 3.The same argumentation shows that all fun
tions of the formexp0�u

ℓ∑

k=1

αkzk

1A , αk > 0,are e-admissible if and only if ℓ > 3.



Chapter 5

Number of ComponentsLet C and S denote two labelled 
ombinatorial 
lasses with exponential generating fun
tions
C(z) =

∑
n�1 Cnzn and S(z) =

∑
n�0 Snzn respe
tively. We assume that C does not 
ontainobje
ts of size zero and that every obje
t of S 
an be uniquely represented as a disjoint unionof obje
ts in C. The elements of C will be referred to as 
onne
ted obje
ts. Theorem 1.4 tellsus that C(z) and S(z) are related via

S(z) = eC(z). (5.1)Bell, Bender, Cameron, and Ri
hmond [BBCR00℄ investigated the possible behaviour ofthe sequen
e Cn/Sn and proved the following theorem.
Theorem 5.1. Let S, C, S(z) and C(z) be as des
ribed above. Furthermore, assume that
C(z) is analyti
 in |z| < R, 0 � R < ∞.Consider the sequen
e {ρn : n 2 I} where ρn = Cn/Sn and I = {n 2 N : Sn 6= 0} andset

ρinf = lim inf
n2I

ρn, ρsup = lim sup
n2I

ρn.Then(i) If R = 0 then 0 � ρinf � ρsup = 1;(ii) If R > 0 and C(R) diverges then 0 = ρinf � ρsup � 1;(iii) If R > 0 and C(R) 
onverges then (ρinf, ρsup) 2 [0, 1]2 − {(0, 0), (1, 1)}.If S(z) is an H-admissible fun
tion then the se
ond impli
ation of the last theorem applies.But in this 
ase, we 
an say even more as was shown by Bender, Cameron, Odlyzko, andRi
hmond [BCOR99℄.
Theorem 5.2. We adopt the notation of the last theorem. If S(z) is H-admissible in
|z| < R, 0 < R � ∞, then C(R) diverges and we have ρn → 0 as n → ∞. That is, theprobability of 
onne
tedness tends to zero as the size of the stru
tures 
onsidered tendsto in�nity. 63



CHAPTER 5. NUMBER OF COMPONENTS 64Proof. The H-admissibility of S(z) implies that S(r) → ∞ as r → R and this implies that
C(R) = ∞ whi
h means divergen
e.Set b(r) =

�
d

dlog r

�2 log S(r). Then we have for any 0 < ε < 1 and M = (1 − ε)2/2

Sn ∼
eC(rn)

rn
n

p
2πb(rn)

>
e(1−ε)C(rn)

rn
n

> MC(rn)
C(rn)

rn
n

� MC(rn)Cn.Hereby, the �rst relation is a 
onsequen
e of H-admissibility (Corollary 3.2) and the se
ondone follows from the fa
t that b(r) = S(r)ε for all ε > 0 (Corollary 3.3). The remaininginequalities hold sin
e the sum of nonnegative terms is at least as large as a single term.The proof is 
ompleted by noting that C(rn) → ∞ as n → ∞.In the remaining of this se
tion we 
onsider some instan
es of the general setting des
ribedabove.
5.1 The Polynomial CaseCan�eld [Can77℄ established the normal limit law for polynomials C(z) having real nonneg-ative 
oeÆ
ients.Although all fun
tions (ex
ept the degenerated 
ase) 
onsidered in this se
tion are BR-admissible, too, Can�eld's assumptions 
an be 
he
ked more easily and a 
entral limit theo-rem follows without mu
h work.Can�eld's method of proof is similar to the one establishing the normal limit law fore-admissible fun
tions (see Theorem 4.15): using Hayman's ideas, Can�eld proved the limitlaw via pointwise 
onvergen
e of the 
orresponding moment generating fun
tions. The proofswill be omitted 
an 
an be found in [Can77℄.
Theorem 5.3. Let C(z) =

∑m
k=1 ckzk be a polynomial having real nonnegative 
oeÆ
ientsand set

S(z, u) = euC(z).Further de�ne the fun
tions
A(z) = zC 0(z) and B(z) = zA 0(z)and let r(z) denote the inverse fun
tion of A(z). Without loss of generality, we assumethat g
d{k : ck 6= 0} = 1 and m > 1.Then the random variable Xn de�ned by

P{Xn = k} =
[znuk]S(z, u)

[zn]S(z, 1)
8n 2 I, 8k 2 N

dwhere I 
onsists of those numbers for whi
h [zn]S(z, 1) > 0 is asymptoti
ally normalwith mean
µn = C(r(n))
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e
σ2

n =

s
C(r(n)) − A(r(n))2

B(r(n)
.

Remark 5.1. (i) If g
d{k : ck 6= 0} = d > 1 then we have Cn = 0 if d 6 |n and thepolynomial C(z1/d) satis�es the requirements of the last theorem.(ii) The 
ase m = 1 
onstitutes a degenerate 
ase sin
e then the whole probabilitymass is 
on
entrated at µn.We 
ontinue with the example of Se
tion 2.3.1. Note that this fun
tion is not e-admissible(see Se
tion 4.4, Example 14).
Example 15. Re
all the egf P(z, u) for the permutations having only 
y
les of length 1and 2 (u marking the number of 
y
les):

P(z, u) = eu(z+z2/2).Thus, we have
C(z) = z +

z2

2
, A(z) = z + z2, B(z) = z + 2z2.The inverse fun
tion r(x) of A(x) for x 2 [−1/4,∞) is given by

r(x) = −
1

2
+

s
1

4
+ x.Therefore, one sees, using Theorem 5.3, that the number of 
y
les is asymptoti
allynormal with mean

µn =
n

2
+

1

2

s
1

4
+ n −

1

4and varian
e (setting y = n + 1
4
)

σ2
n =

s
y2 + y(1 − 2

p
y)

4(2y −
p

y)
=

r
y

8

vuut1 +
1 − 3

2

p
y

y − 1
2

p
y

∼

s
n

8
+

1

32
.This shows that the distribution is asymptoti
ally 
on
entrated.

5.2 Set PartitionsThe exponential generating fun
tion for the number of partitions of a set of size n is givenby
F(z) =

∑

n�0

̟n
zn

n!
= exp (ez − 1) . (5.2)The number ̟n is known as the n-th Bell number.Applying the 
on
epts of Hayman [Hay56℄ and Harris and S
hoenfeld [HS68℄ we obtainasymptoti
s for ̟n as n → ∞. We will then study some parameters on the set of partitionsas n → ∞ and obtain limit laws for these parameters.
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5.2.1 Total NumberThe fun
tion F(z) is seen to be H-admissible in C with the fun
tions

a(r) = rer and b(r) = (r + 1)rer.Thus, we get a �rst approximation to ̟n by an appli
ation of Corollary 3.2, viz.
̟n ∼

n! exp (ern − 1)

rn
n

p
2πnrn

(5.3)where rn is the unique positive solution of the equation
rer = n. (5.4)De Bruijn [dB81, se
. 2.4℄ shows that, for n large enough, the solution of (5.4) 
an berepresented as

rn = logn − log logn +
∑

k�0

∑

m�0

ckm
(log logn)m+1

(log n)k+m+1
, ckm 2 C. (5.5)As F(z) is the exponential of an H-admissible fun
tion it is HS-admissible, too, and we
an get a full asymptoti
 expansion by an appli
ation of Theorem 4.1. The quantities ofDe�nition 4.1 now read

A(z) = ez − 1

Bk(z) =

{
z(ez − 1) if k = 1
zk

k!
ez else

B(z) =
zez

2

�
1 + z − e−z

�
Cm(un, un) = −

2um+1
n

(m + 2)! (1 + un − e−un )
−

(−1)m (1 − e−un )

(m + 2) (1 + un − e−un )where un is the unique positive solution of
u(eu − 1) = n + 1. (5.6)Thus we get the re�nement

̟n =
n!eeun −1

2un
n

p
πB(un)

 
1 +

1

8

u2
n

eun
+

5

24

u3
n + 2un(1 − e−un )

eun (1 + un − e−un )
+ o(e−un )

!
. (5.7)We 
lose this se
tion by showing that the expressions (5.7) and (5.3) are indeed asymp-toti
ally equal. For brevity set u = un and r = rn. Setting u = r + w in (5.6) yields

n(ew − 1) + wer+w = u + 1. (5.8)
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u + 1 ∼ logn − log logn, n → ∞and therefore we know that w → 0 as n → ∞. Moreover, sin
e er

∼ n/ logn as n → ∞ wehave
n(ew − 1) + wer+w

∼ n

�
ew − 1

wewlogn

�
∼ nw.Combining these results we obtain

w = wn ∼
logn

n
, n → ∞.Hen
e un admits the same asymptoti
 expansion (5.5) as rn. Now we have

un = (r + w)n = rn

�
1 +

w

r

�n

= rn

�
1 +

1

n
+ o(n−1)

�n

∼ ern

eu − er = er (ew − 1) ∼
nlogn

logn

n
= 1

B(u) ∼
u2eu

2
∼

r2er

2
∼

nrn

2whi
h shows that (5.7) and (5.3) are asymptoti
ally equal.
5.2.2 Stirling Numbers of the Second KindWe determine the behaviour of the number of subsets of a randomly 
hosen partition of aset of size n 
onsists of as n → ∞.The bivariate exponential generating fun
tion with u marking the parameter \number ofsubsets" is given by

G(z, u) = exp (u (ez − 1)) =
∑

n�0

∑

k�0

Sn,kukzn

n!where the Sn,k denote the Stirling numbers of the se
ond kind. The �rst and se
ond loga-rithmi
 derivatives read
a(z, u) =

 
a(z, u)�a(z, u)

!
=

 
uzez

u(ez − 1)

!
B(z, u) =

 
b(z, u) c(z, u)

c(z, u) �b(z, u)

!
=

 
u(z + z2)ez uzez

uzez u(ez − 1)

!
.Setting m = 0 and λ0 = 1 in theorem 4.11 we see that G(z, u) is BR-admissible inR =

{
(r, s)

���R0 < r and er(δ−1) < s < er/δ
}
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Θ(r, s) =

{
θ
���|θ| < (s(er − 1))−1/3−ε

}for some R0 > 0, any δ > 0 and ε > 0 suÆ
iently small.Let (rn,k, sn,k) 2 R denote the solution to a(r, s) = (n, k). The solution of reκr = n,
κ > 0, satis�es κr = logn − log logn + log κ + o(1) as n → ∞ and we therefore see that� rn,k satis�es, as n → ∞,

1 + o(1)

δ
logn � rn,k � δ(1 + o(1))

1 + δ
lognand� we have

n

k
=

rn,k

1 − e−rn,k
∼ rn,k, n → ∞.Hen
e, for any positive 
onstants c and C, Theorem 4.8 provides uniform asymptoti
s for

Sn,k when
cnlogn

< k <
Cnlogn

.The equation a(r, 1) = (n, k�) leads to
rer = n

er − 1 = k�. (5.9)The solutions rn and k�n of (5.9) satisfy
rn ∼ log n − log logn ∼ logn,

k�n ∼
nlognas n → ∞. Cal
ulatingdetB(rn, 1)

b(rn, 1)
= (ern − 1) −

(rnern )2

(r2
n + rn)ern

∼
ern

rn
∼

n

(log n)2
, n → ∞,we see that Sn,k satis�es a lo
al limit law with mean and varian
e asymptoti
 to n/ logn and

n/(log n)2, respe
tively.The fun
tion G(z, u) is seen to be e-admissible, too, by Theorem 4.17 and the Sn,ktherefore satisfy a 
entral limit law with mean and varian
e�a(rn, 1) = k�n ∼
nlogn

, n → ∞,detB(rn, 1)

b(rn, 1)
∼

n

(logn)2
, n → ∞.
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5.2.3 Singleton BlocksNow, we determine the asymptoti
 behaviour of the parameter \number of singleton blo
ks"as n → ∞.The bivariate gf f(z, u), exponential w.r.t. z, with u marking the subsets of 
ardinality 1is given by

f(z, u) = exp (ez − 1 − z + uz) . (5.10)The �rst and se
ond logarithmi
 derivatives are given by
a(z, u) =

 
a(z, u)�a(z, u)

!
=

�
zez − z + uz

�
B(z, u) =

 
b(z, u) c(z, u)

c(z, u) �b(z, u)

!
=

 
z + z2)ez − z + uz uz

uz uz

!and we have detB(z, u) = uz2ez(z + 1 − e−z). (5.11)Write
f(z, u) = exp (ez − 1) euz−z. (5.12)Theorem 3.5 shows that exp (ez − 1) is H-admissible in C with δ(r) = (er − 1)−2/5.Now, let k1 and k2 denote arbitrary reals satisfying 0 < k1 < k2 < ∞ and setR =

{
(r, s) 2 R

2
+

���� k1 � s

r
� k2

}
,

Θ(r, s) = [0, δ(r)]2 , (r, s) 2 R.In the following, we will also use the abbreviation α = (φ, θ) 0. Let (r, s) 2 R. For α 2 Θ(r, s)we have, as r → ∞,
f
�
reiφ, seiθ

�
= f(r, s)(1 + o(1))eia(r,s)0α−α0B(r,s)α/2. (5.13)If α 2 [−π, π]2 − Θ(r, s) then���exp �rsei(φ+θ) − reiφ

���� � ers−rer (5.14)and from the proof of Theorem 3.5 we obtain���exp �ereiφ

− 1
���� � exp (er − 1) exp �−r1/4e3r/8

� (5.15)as r → ∞. Combining (5.15) and (5.14) yields
f
�
reiφ, seiθ

�
= f(r, s)o

�exp �−er/4
��

, r → ∞. (5.16)
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B(r, s) � r3er, r → ∞. (5.17)Hen
e (5.13) and (5.16) imply (4.12) and (4.13) respe
tively and therefore f(z, u) is BR-admissible in R with angles Θ(r, s) and fun
tions a(r, s) and B(r, s). We may therefore applyTheorem 4.8 to f(z, u). The 
ombinatorial interpretation of f(z, u) reveals that Λf = Z

2, thatis d(Λf) = 1, and the equation a(r, s) = (n, k) 0 reads
rer − r + rs = n,

rs = k.
(5.18)This leads to

rer
�
1 − e−r

�
= n − k (5.19)and therefore we see that the solution rn,k has got the same asymptoti
 expansion as rn−kin (5.5).Let (rn,k, sn,k) 2 R denote the solution to (5.18). Theorem 4.8 now yields

[znuk]f(z, u) =
f(rn,k, sn,k)r−n

n,ks−k
n,k

2π
q

r3
n,ke

rn,k

(1 + oB(1)) (5.20)and from (5.18) we see that (5.20) is valid for (n, k) satisfying
k1(1 + o(1)) � k

(logn)2
� k2(1 + o(1)), n → ∞.An interesting fa
t to note is that normality 
annot be established using the 
on
ept ofBR-admissibility. Adopting the notation of De�nition 4.5, we have

Proposition 5.1. If f(z, u) is BR-admissible in R � R
2
+ with angles Θ, then detB(r, 1)is bounded in R.Proof. If r is bounded away from 0, it follows from (5.11) thatdetB(r, s) � r3ser.Therefore, we haveqdetB(r, s)

|f(r, seiθ)|

f(r, s)
� s1/2r3/2 exp�r(s 
os θ − s +

1

2
)

�
. (5.21)Observing that the exponent of (5.21) is nonnegative for
os θ � 1 −

1

2s
(5.22)and using the inequality 
os x � 1 − x2

2
, x 2 R, we see thatdiamΘ(r, s) � 1p

s
. (5.23)
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f(z, u) is BR-admissible and thus, we know thatdiamΘ(r, s) = oB(1), (r, s) 2 R. (5.24)Combining (5.23) and (5.24) we see that detB(r, s) is bounded in R if s remains bounded.The fun
tion (5.10) is seen to be e-admissible by Theorem 4.17 and thus the parameter
onsidered is asymptoti
ally normal distributed. The solution rn of a(r, 1) = rer = n satis�es
rn ∼ logn − log logn as n → ∞ and therefore the asymptoti
 mean and varian
e are givenby �a(rn, 1) ∼ logndetB(rn, 1)

b(rn, 1)
=

(r3
n + r2

n)ern − r2
n

rn(rn + 1)ern
∼ lognrespe
tively.

5.2.4 A Multivariate Limit LawIn Se
tion 4.3, Example 12 we showed that the fun
tion
F(z, u,w) = eu(
osh z−1)ewsinhzis BR-admissible inR =

{
(r, s, t)

��� R0 � r, (
osh r − 1)δ−1 < s < (
osh r − 1)1/δ, (sinh r)δ−1 < t < (sinh r)1/δ
}with matrix

B(r, s, t) =

0B� r(rs + t) 
osh r + r(rt + s) sinh r rs sinh r rt 
osh r

rs sinh r s(
osh r − 1) 0

rt 
osh r 0 t sinh r

1CA .The 
orresponding fun
tion a(r, s, t) is given by
a(r, s, t) =

0B� r(s sinh r + t 
osh r)

s(
osh r − 1)

t sinh r

1CA .In order to determine the lo
al limit we pro
eed as des
ribed in Se
tion 4.3, Remark 4.10.The equation
a(r, 1, 1) =

0B� rer
osh r − 1sinh r

1CA =

0B� n

k�
m� 1CA
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n asymptoti
ally given by

rn ∼ logn − log logn

k�n ∼
n

2 log n

m�
n ∼

n

2 log nas n → ∞. Furthermore, we have
B(r, 1, 1) ∼

0B� n logn n
2

n
2

n
2

n
2logn

0
n
2

0 n
2 logn

1CA , n → ∞.In this 
ase we have
B1,1 = n log n, B1,2 =

1

2

 
n

n

!
, B2,2 =

1

2

 
nlogn

0

0 nlogn

!whi
h gives
D = B2,2 − B1,2(B1,1)

−1B 0
1,2 =

1

2

 
n

2 logn
− n

2logn

− n
2logn

n
2 logn

!
.Now, let (Xn : n � 0) denote the sequen
e of random variables asso
iated with F(z, u,w)as des
ribed in Se
tion 1.4. If π is a partition of a set of size n, then Xn(π) = (k,m) where

k is the number of blo
ks of π of even 
ardinality and m is the number of blo
ks of odd
ardinality. Furthermore,
P{Xn = (k,m)} =

[znukwm/n!]F(z, u,w)

[zn]F(z, 1, 1)
.It follows from the BR-admissibility of F(z, u,w) that Xn satis�es a lo
al limit theoremwith means ve
tor asymptoti
ally equal to (k�n,m�

n) and 
ovarian
e matrix asymptoti
allyequal to D as n → ∞. So we 
an expe
t that a randomly 
hosen partition has about equallymany blo
ks of even and odd size.
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