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Abstract. An embedding of a rooted tree S into another rooted tree T is a mapping of the
vertex set of S into the vertex set of T that is order-preserving in a certain sense, depending on
the chosen tree family. Equivalently, S and T may be interpreted as tree-like partially ordered
sets, where S is isomorphic to a subposets of T . A good embedding is an embedding where the
root of S is mapped to the root of T .

We investigate the number of good and the number of all embeddings of a rooted tree S into
the family of all trees of given size n of a certain family of trees. The tree families considered
are binary plane trees (the order of descendants matters), binary non-plane trees and rooted
plane trees. We derive the asymptotic behaviour of the number of good and the number of all
embeddings in all these cases and prove that the ratio of the number of good embeddings to that
of all embeddings is of the order Θ(1/

√
n) in all cases, where we provide the exact constants as

well. Furthermore, we prove some monotonicity properties of this ratio. Finally, we comment on
the case where S is disconnected.

1. Introduction

This paper studies the number of occurrences of a given rooted tree in the family of (plane and
non-plane) binary trees, as well as planted plane trees. We call a rooted tree plane if the descendants
of any vertex are ordered, and non-plane otherwise. Here, the notion of occurrence is wider than
just a copy. We call it an embedding and we distinguish between plane embeddings (addressed to
plane structures) and non-plane embeddings (for non-plane structures). In the non-plane case it
is convenient to explain the notion of embedding we work with in terms of partially ordered sets
(in short: posets). Recall that a partial order is a reflexive, antisymmetric and transitive relation.
Note that any rooted tree may be interpreted as a Hasse diagram of some poset. Thus in the
non-plane case we assume the investigated structures to be posets and by saying that there exists
an embedding of S into T we understand that a poset S is a subposet of T . For the plane case
assume that S and T are both rooted trees. Then a plane embedding of S into T is any subposet
of T isomorphic to S in which the order of descendants of each node of S is inherited from T .
We also distinguish between good embeddings in which the roots of S and T coincide and bad
embeddings in which they do not.

The number of good and bad embeddings of a rooted structure in a complete binary tree was
first investigated by Morayne [37]. His research was motivated by optimal stopping problems. The
ratio of the number of good embeddings to the number of all embeddings and its monotonicity
properties were used in estimates of conditional probabilities needed to obtain an optimal policy for
the best choice problem considered on a complete (balanced) binary tree. This and similar results
first served just as tools but soon became interesting questions about the structural features of
posets on their own and resulted in a series of self-standing papers [29, 30, 22]. Counting chains
and antichains in trees took a special place in this pool [33, 34, 31].

In this paper we present a follow-up and generalization of the results obtained by Kubicki et
al. [29, 30] and Georgiou [22]. We give the asymptotic behaviour of the number of good and all
embeddings of a rooted tree S in the family of plane and non-plane binary trees, as well as planted
plane trees, on n vertices. The ratio of the number of good embeddings to the number of all
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embeddings is shown to be of order Θ(1/
√
n) in all cases and the exact constants are provided.

Furthermore, we show that this ratio is asymptotically non-decreasing in S (that is, if S1 may be
embedded in S2, then the asymptotic ratio of good to all embeddings of S1 is smaller or equal
to the one for S2). Such a monotonicity property was the center of attention of the aforestated
papers. The detailed discussion on this matter is presented in Section 8. To obtain our results we
use an approach based upon analytic combinatorics, which has not been used so far in the realm
of posets.

The results of our paper may also be put into the framework of counting patterns in large
structures. This is a vast field where many different types of structures have been considered. We
only mention subgraph avoidance (and characterizing whole graph classes like series-parallel or
planar graphs in that way) or subgraph counts in random graphs (see [27, 1] for general graphs,
[12] for subcritical graphs and [38, 46] for planar graphs), pattern avoidance in permutations (see
[5]) or in trees (see [10]), or pattern avoidance in lattice paths and words, where many particular
patterns have been treated separately (see [9] or the introduction of [2] for a survey) and eventually
put under a unifying umbrella in [2].

The closest to the present work is pattern counting in trees. One of the earliest investigations of
this kind was [42], where the enumeration of given stars as subgraphs in trees (equivalently nodes
of fixed degree) was treated. Later generalizations are found in [11, 40] (multivariate setting),
in [35] (distinct patterns) or [24] (large patterns of that type). A method to deal with general
contiguous patterns in trees by means of generating functions was developed in [6], which was
partially generalized to planar maps recently [14, 7, 13]. Pattern avoidance in trees was the topic
of [43], where also the concept of Wilf equivalence was dealt with, which was adopted from pattern
avoidance in permutations.

Except for permutations, where most of the patterns that have been studied so far are non-
contiguous, the considered patterns in other domains are typically contiguous. To our knowledge,
the first work considering non-contiguous patterns in trees is [8]. In the present paper, the tree
which is embedded becomes in general a collection of (partially) non-adjacent nodes in the tree
where it is embedded. It can therefore be seen as a non-contiguous pattern occurring in that tree.
Thus, our paper deals with certain enumeration problems for non-contiguous patterns in trees.

The paper is organized as follows. Section 2 introduces basic definitions, notation and presents
tools (mainly from analytic combinatorics) used throughout the paper. Section 3 provides possible
applications of our results in optimal stopping problems. In Section 4, using the symbolic method,
we obtain generating functions for the number of good and the number of all embeddings of
a rooted tree in the family of all plane binary trees with a given number of vertices. We also
briefly discuss the case when the embedded structure is disconnected, i.e. it is a forest. Next, in
Section 5, we use singularity analysis to derive the asymptotics of the number of good and bad
embeddings when the size of the underlying tree is tending to infinity. Sections 6 and 7 present
analogous results for the families of non-plane binary trees and planted plane trees, respectively.
Moreover, in Section 8 we investigate the asymptotics and the monotonicity of the ratio of good to
all embeddings of a rooted tree in all three mentioned families, which is a continuation of work of
Kubicki et al. [29, 30] and Georgiou [22]. A discussion of the obtained results as well as an outlook
into some related future problems is given in Section 9.

2. Preliminaries, methodology and concepts

We are dealing with several tree structures that will be presented in the following subsection.
In all classes that we are studying the trees are considered as unlabelled graphs.

The subsequent subsections provide the methodology from analytic combinatorics. Here we
present only a brief account of the symbolic method and singularity analysis. For a detailed
presentation of the theory see [16].

Finally, we present the definitions of all the concepts that are central to our investigations.

2.1. Structures. By Bn we denote the family of plane binary trees with n nodes. A binary tree
is a tree in which each node has either 0 or 2 descendants and by plane we understand that the
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order of subtrees of a given node matters, i.e. we distinguish between the different embeddings
of a tree in the plane. It is commonly known that for odd n the cardinality |Bn| of Bn satisfies
|Bn| = C n−1

2
, where Ck is the k-th Catalan number given by Ck = 1

k+1

(
2k
k

)
. Note that all binary

trees have odd sizes and thus, for even n the cardinality |Bn| is zero. All plane binary trees of
size 5 are shown in Figure 1. We assume also that all edges are directed towards the descendants.
Therefore, the in-degree of the root, as well as the out-degree of each leaf, is always 0. A vertex is
said to be d-ary if its out-degree equals d. Subsequently, the root of a tree T will be denoted by
1T .

By Vn we denote the family of non-plane binary trees with n nodes. By non-plane we understand
that the subtrees of a given node are treated as a set of subtrees, i.e. there is no ordering. E.g.,
there is only one non-plane binary tree of size 5, see Figure 1. Again for even n the cardinality
|Vn| is zero. For odd n the values |Vn| are known as Wedderburn-Etherington numbers and do not
have a closed form (|V1| = 1, |V3| = 1, |V5| = 1, |V7| = 2, |V9| = 3, . . .).

Planted plane trees (also known as Catalan trees) are rooted plane trees where each internal
node can have arbitrarily many descendants. We denote the family of planted plane trees of size
n by Tn. For all n the cardinality of Tn satisfies |Tn| = Cn−1.

T1 T2

Figure 1. The family B5 = {T1, T2} of plane binary trees is of size |B5| = C2 = 2, while the
family V5 = {T1} of non-plane binary trees has the size |V5| = 1.

2.2. Tools from analytic combinatorics – the symbolic method. Let N denote the set of
natural numbers including 0. A combinatorial class A is a pair (A, | · |A) where A is a countable
set whose elements are called (combinatorial) objects and | · |A : A→ N is the size function of A.
We require that for all n ∈ N the set of all objects of size n has finite cardinality an. The counting
sequence of A is the sequence (an)n≥0.

Two combinatorial classes A and B are said to be combinatorially isomorphic (or, simply,
isomorphic) if and only if their counting sequences are identical. Then we write A ∼= B. The
generating function of a combinatorial class A is the generating function of its counting sequence
(an)n≥0, i.e. the formal power series A(z) =

∑
n≥0 anz

n. By [zn]A(z) we denote the coefficient of
zn in the formal power series A(z); thus [zn]A(z) = an.

The neutral class E is defined as the class consisting of a single object of size 0; the atomic
class containing only a single object of size 1 will be denoted by {•}. The following combinatorial
constructions for combinatorial classes are going to be used throughout the paper. We list them
together with the relations between the corresponding generating functions.

(1) Sum (disjoint union). Let B = (B, | · |B) and C = (C, | · |C) be combinatorial classes
such that B ∩C = ∅. Then A ∼= B + C if and only if A = (A, | · |A) where A = B ∪C and
|ω|A = |ω|B if ω ∈ B and |ω|A = |ω|C if ω ∈ C. If A ∼= B + C then A(z) = B(z) + C(z).

(2) Product. Let B = (B, | · |B) and C = (C, | · |C) be combinatorial classes. Then A ∼= B × C
if and only if A = (A, | · |A) where A = B × C (the Cartesian product) and |(b, c)|A =
|b|B + |c|C . If A ∼= B × C then A(z) = B(z) · C(z), where · denotes the Cauchy product.

(3) Sequence. Let A be a combinatorial class with no object of size 0. We define

B := Seq(A) = E +A+ (A×A) + (A×A×A) + . . . .

Then B(z) = 1/(1−A(z)).
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(4) Multiset of size 2. Let A be a combinatorial class. Then we define

B :=MSet2(A) = (A×A)/R,

with R being the equivalence relation defined by (α1, α2)R(β1, β2) if and only if (β1, β2) =
(α1, α2) or (β1, β2) = (α2, α1). The multiset {a, b}, a 6= b, is associated with the two
ordered pairs (a, b) and (b, a) whereas {a, a} is associated with (a, a). The set of all pairs
(a, a) is called the diagonal of A × A and denoted by ∆(A × A). The above explained
correspondence translates to the following combinatorial isomorphism,

MSet2(A) +MSet2(A) ∼= A×A+ ∆(A×A).

As the generating function of ∆(A×A) is A(z2), we get

B(z) =
1

2

(
A(z)2 +A(z2)

)
.

We remark that a similar argument works for sets. With C = Set2(A) we have

C(z) =
1

2

(
A(z)2 −A(z2)

)
. (1)

(5) Pointing. Let A be a combinatorial class. Pointing of a class A means distinguishing an
atom (atoms are objects of size 1) and objects with a distinguished atom are called pointed
objects. Precisely, the pointed class is the class of all pointed objects made from an object
of A. It is denoted by B = Θ(A) and formally defined as

Θ(A) =
∑
n≥0

An × {ε1, . . . , εn},

where {ε1, . . . , εn} is a fixed collection of distinct neutral objects of size 0. With an being
the number of objects of size n in A, the quantity nan is apparently the number of pointed
objects of size n in B, as each of the n atoms may be pointed at. In terms of generating
functions the relation reads as B(z) = zA′(z).

2.3. Trees. From now on let B denote the class of plane binary trees, V the class of non-plane
binary trees,M the class of Motzkin trees (defined below) and T the class of planted plane trees.
Let also B(z) =

∑
n≥0 bnz

n, V (z) =
∑
n≥0 vnz

n,M(z) =
∑
n≥0mnz

n and T (z) =
∑
n≥0 tnz

n

be their corresponding generating functions where z marks the number of nodes (e.g., bn is the
number of plane binary trees with n nodes), thus

B(z) = C0z + C1z
3 + C2z

5 + C3z
7 + . . . ,

V (z) = z + z3 + z5 + 2z7 + 3z9 + . . . ,

M(z) = z + z2 + 2z3 + 4z4 + 9z5 + . . . ,

T (z) = C0z + C1z
2 + C2z

3 + . . . .

Each of the classes may be specified by a recursive relation using the symbolic method: Obviously,
we have

B = {•}+ {•} × B × B,
since a plane binary tree consists either of a single vertex or of a root with two plane binary trees
attached to it. Translating into generating functions gives the quadratic equationB(z) = z+zB(z)2

with one of its solutions being a power series. Thus

B(z) =
1−
√

1− 4z2

2z
.

A Motzkin tree is a plane rooted tree in which each vertex has either zero, one or two children
that are themselves Motzkin trees. This yields the specification

M = {•}+ {•} ×M+ {•} ×M×M. (2)

Similarly, we define planted plane trees by

T = {•} × Seq(T ).
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The specifications of Motzkin trees and of planted plane trees lead to the quadratic equations
M(z) = z + zM(z) + zM(z)2 and T (z) = z/(1− T (z)), respectively, giving rise to

M(z) =
1− z −

√
1− 2z − 3z2

2z
and T (z) =

1−
√

1− 4z2

2
.

In non-plane binary trees, the two subtrees attached to the root do not form a pair, but a
multiset instead. This yields

V = {•}+ {•} ×MSet2(V)

and so
V (z) = z +

z

2
(V (z)2 + V (z2)). (3)

2.4. Singularity analysis and other auxiliary results. We will use singularity analysis to get
a relation between the behaviour of a generating function near its dominant singularities (i.e. its
singularities on the circle of convergence) and the asymptotics of its coefficients. Precisely, we take
advantage of the following lemma. (We use the standard notation f(n) ∼ g(n) if limn→n0

f(n)
g(n) = 1.)

Lemma 1 (Compare Theorems VI.4 and VI.5 in [16]). Define

∆0 = {z ∈ C||z| < ρ+ ε, z 6= ρ, |arg(z− ρ)| > ν}

for some ρ > 0, ε > 0, 0 < ν < π
2 . Let r ≥ 0, ρj = ρeiφj , for j = 0, 1, . . . , r with φ0 = 0 and

φ1, . . . , φr ∈ (0, 2π). Consider T (z) =
∑
n≥0 Tnz

n to be an analytic function in ∆ :=
⋂r
j=0 e

iφj∆0

and satisfying for each j = 0, . . . , r

T (z) ∼ Kj

(
1− z

ρj

)−αj
, as z → ρj in ∆,

where αj /∈ {0,−1,−2, . . .} and the Kj are constants. Then

[zn]T (z) ∼
r∑
j=0

Kj
nαj−1

Γ(αj)
ρ−nj , as n→∞.

Remark 1. Note that the assumptions of Lemma 1 imply that {ρ0, ρ1, . . . , ρr} is exactly the set
of all singularities of the power series

∑
n≥0 Tnz

n on its circle of convergence.

Finally, the following lemma will be helpful when investigating the asymptotic monotonicity of
ratios of good to all embeddings.

Lemma 2 (Gautschi’s inequality, [21]). Let x be a positive real number and let s ∈ (0, 1). Then

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s.

2.5. Embeddings. This paper concentrates on investigating the number of embeddings of any
rooted tree (or a forest of rooted trees - a disconnected graph whose components are rooted trees)
in all trees from either family Bn, Vn or Tn. An embedding of a rooted tree S into another rooted
tree T can be seen as a kind of generalized pattern occurrence of S in T , where we distinguish
between the plane and the non-plane case. As we are extending some results on posets, we interpret
S and T as posets and formulate the definitions in the language of posets (see e.g. [48] for basic
concepts and terminology), but give the equivalent definition in terms of trees afterwards.

Definition 1 (Non-plane embedding). Let S and T be two non-plane rooted trees. When inter-
preting T as the cover graph of a poset, rooted at the root of T , i.e. at the single maximal element
of the poset, then an embedding of S into T can be defined is any subposet of T that is isomorphic
to S.

Definition 1’ (Non-plane embedding). Let S and T be two non-plane rooted trees with vertex
sets V (S) and V (T ), respectively. Then an embedding of S into T is a subsetM ⊆ V (T ) for which
there is a bijection ϕ : M → V (S) such that x is a descendant of y in T if and only if ϕ(x) is a
descendant of ϕ(y) in S.
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Remark 2. Note that there exists a non-plane embedding of a binary tree S into a binary tree T
if and only if S is a minor of T .

Remark 3. Instead of starting from a tree as combinatorial structure and then interpreting it as a
poset, we may also start from posets and then define a tree poset as a poset P which has exactly
one maximal element and such that any Hasse diagram of P looks like a (combinatorial) tree.
This is equivalent to the definition of a tree poset given in [19].1 Likewise, an embedding of a tree
poset S into another tree poset T , as defined in [19], matches exactly the definition of a non-plane
embedding given above.

Definition 2 (Plane embedding). Let S and T be two plane rooted trees. If we interpret T to
be a Hasse diagram of a poset, then an embedding of S into T is defined as any subposet of T
isomorphic to S in which the left-to-right order of the children of each node of S is inherited from
T (one may think of it as of a plane version of a subposet).

Remark 4. So, in the plane case S and T can be interpreted as Hasse diagrams of posets, and
whenever S can be embedded in T it follows that S is a subposet of T . However, note that the
respective posets can possibly be represented as different Hasse diagrams in such a way that no
embedding of the corresponding trees is possible.

Definition 2’ (Plane embedding). Let S and T be two plane rooted trees with vertex sets V (S)
and V (T ), respectively. Then an embedding of S into T is a subset M ⊆ V (T ) for which there is
a bijection ϕ : M → V (S) meeting the following two constraints: x is a descendant of y in T if
and only if ϕ(x) is a descendant of ϕ(y) in S; if for two vertices v and w the left subtree of their
last common ancestor z contains v (and thus w is in the right subtree attachted to z), then ϕ(v)
is in the left subtree of the last common ancestor u of ϕ(v) and ϕ(w).

Note here: Usually ϕ−1(u) 6= z, yet in general we even have z /∈M .

We say that an embedding of S into T is good if it contains the root of T . Otherwise we call it a
bad embedding. If there exists at least one embedding of S into T , we write S ⊆ T . All embeddings
of a cherry, (i.e. a tree composed only of a root and its two children) in a given binary tree of size
5 are given in Figure 2. Four of them are good and the last one is bad.

S:

Figure 2. All five plane embeddings of a cherry S in a given plane binary tree of size 5. Or
all four non-plane embeddings of a cherry S in a given non-plane binary tree of size 5, since in
the non-plane case the two rightmost pictures in the upper row represent the same embedding
(they can easily be mapped onto each other via a simple automorphism that changes the order
of the two leftmost leaves).

Subsequently, the size of the tree S will always be denoted by m, while the size of T is con-
sistently denoted by n. Thus, for the asymptotic analysis of the number of embeddings of a tree
S into a class of trees of size n, the quantity m is considered to be a constant, while n tends to
infinity.

1For the sake of better distinction from a combinatorial tree, we use the term “tree poset” for what is simply
called “tree” in [19].
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For S, the structure that we embed, we define its degree distribution sequence as dS =
(d0, d1, . . . , dm−1), where di is the number of vertices in S with out-degree equal to i. Note that d0

is simply the number of leaves, which will be, interchangeably, denoted by l (i.e. l = d0). Similarly,
d1 is the number of unary nodes, which will be, interchangeably, denoted by u (i.e. u = d1). The
number of all embeddings of a given tree S in T will be denoted by aT (S) and the number of its
good embeddings in T by gT (S).

The number of all embeddings of S in a finite family F = {F1, . . . , F`} will be denoted by
aF (S) and understood as the cumulative number of embeddings of S into all elements of F ,
i.e. aF (S) =

∑`
i=1 aFi(S). Analogously, we define the number of good embeddings of S in F :

gF (S) =
∑`
i=1 gFi(S). For S being a cherry and F = B5 = {T1, T2} from Figure 1, we obtain

aT1
(S) = aT2

(S) = 5, gT1
(S) = gT2

(S) = 4, thus aB5
(S) = 10 and gB5

(S) = 8 (compare Figure 2).
Moreover, for each considered family F of trees with Fn denoting the subfamily of all trees of

size n, we define the generating functions of the numbers of all and good embeddings of a structure
S as

AS(z) =
∑
n≥0

aFn(S)zn and GS(z) =
∑
n≥0

gFn(S)zn.

3. Applications in optimal stopping problems

The most prominent problem in the area of optimal stopping is the so-called “secretary problem”
(consult [36, 15, 17, 44]), where one assumes a linear order on the applicants for a secretary position
concerning their qualifications. The applicants are interviewed in a random order and the decision
whether to hire an applicant has to be made immediately after the interview - a rejected applicant
cannot be hired at a later point. Thus, if we interview all the candidates, we have to hire the
last applicant. The goal is to find the optimal stopping strategy to hire the best applicant. Thus,
we want to stop at the time maximizing the probability that the present applicant is the best
one overall, i.e. the maximum element in the linear order. It has been proved (see for example
[36, 23]) that for a large number of applicants it is optimal to wait until approximately 37% (more
precisely 100

e %) of the applicants have been interviewed and then to select the next relatively
best one. This optimal algorithm returns the best applicant with asymptotic probability of 1/e.
The secretary problem has been extended and generalized in many different directions. One of
these is the extension to partially ordered sets, possibly with more than one maximal element,
see [45, 25]. Optimal strategies for particular posets were investigated among others in [37, 28].
Versions for unknown poset, when the selector knows in advance only its cardinality, were presented
in [41, 18, 20]. Another interesting generalization was to replace the underlying poset structure
by a directed graph. This version was first considered on directed paths by Kubicki and Morayne
in [32] and later extended to other families of graphs and different versions of the game (consult
[47, 26, 3, 4]).

In the remainder of this section we give examples of stopping problems in which either the
value aVn(S) or the ratio gVn(S)/aVn(S) (both investigated in this paper) plays a crucial role in
estimating the conditional probabilities needed to obtain the optimal policy. One can consider
analogous examples for the families Bn or Tn as well.

Let us think about elements of Vn as of Hasse diagrams of posets. Consider the following process.
Elements (i.e. nodes) of some T from Vn appear one by one in a random order (all permutations
of elements of T are equiprobable). At time t, i.e. when t elements have already appeared, the
selector can see a poset induced on those elements. He knows that the underlying structure is
drawn uniformly at random from Vn.

Example (Best choice problem for the family of binary trees). The selector’s task is to stop
the process maximizing the probability that the element that has just appeared is the root of the
underlying structure. He wins only if the chosen element is indeed 1T . Note that it neither pays off
to stop the process when the induced structure is disconnected nor when the currently observed
element is not the maximal one in the induced poset. The selector wonders whether to stop only
if the emerged element at time t is the unique maximal element in the induced structure. In order
to take a decision whether to stop at time t, he needs to know the probability of winning if he
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stops now. Let Wt denote the event of winning when stopping at time t, St the event that at time
t he observes a certain structure S with degree distribution sequence dS and Ri denote the event
that Ti has been drawn as the underlying structure, where we use the notation Vn = {T1, . . . , TN}
with N = |Vn|. Then the probability of winning if he stops at time t is given by

P[Wt|St] =

N∑
i=1

P[Wt|St ∩Ri]P[Ri|St] =

N∑
i=1

gTi(S)

aTi(S)

P[St|Ri]P[Ri]

P[St]
.

Since P[Ri] = 1/N , P[St|Ri] = aTi(S)/
(
n
t

)
(t vertices were revealed till time t; among all

(
n
t

)
equiprobable choices of t vertices from Ti, aTi(S) of them admit the embedding of S in Ti) and

P[St] =

N∑
i=1

P[St|Ri]P[Ri] =

N∑
i=1

aTi(S)(
n
t

) 1

N
=
aVn(S)

N
(
n
t

)
we get

P[Wt|St] =

N∑
i=1

gTi(S)

aTi(S)

aTi(S)(
n
t

) 1

N

N
(
n
t

)
aVn(S)

=
gVn(S)

aVn(S)
.

Example (Identifying complete balanced binary trees). The selector has to identify whether
the underlying structure is a complete balanced binary tree or not. The payoff of the game, if he
stops the process at time t, is n − t if he guesses correctly and 0 otherwise. He has to maximize
the expected payoff. At moment t he observes a structure S, which is not necessarily connected.
Again, in order to make a decision whether to stop, he needs to know what is the probability that
the currently observed structure is a subposet of a complete balanced binary tree. For a rooted
tree S this probability is given by

aTb(S)

aVn(S)
,

where Tb ∈ Vn denotes the complete balanced binary tree of size n.

4. Generating functions for the number of embeddings in Bn
4.1. Embedding rooted trees in Bn. In this subsection we derive explicit expressions for the
generating functions for the sequences aBn(S) and gBn(S), where S is a given rooted plane tree of
size m. In order to do so, we use the symbolic method as outlined in Section 2.

Theorem 1. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
The generating function AS(z) of the sequence aBn(S), which counts the number of all embeddings
of S into all trees of the family Bn, is given by

AS(z) =

(
1

1− 2zB(z)

)m+l−1

zl+u−1 B(z)l+u 2u
m−1∏
i=3

(Ci−1)di , (4)

where B(z) is the generating function of the family of plane binary trees.

Remark 5. Note that AS(z) depends only on the degree distribution sequence dS , not the particular
shape of S. Thus, as long as dS1 and dS2 are the same, AS1(z) and AS2(z) coincide even if S1 and S2

are not isomorphic. However, we use the subscript S to provide a transparent notation. Moreover,
note that AS(z) does also depend on the tree class Bn in which we embed the tree S. In order to
avoid a large number of indices we will omit to indicate this dependence and just emphasize at
this point that the generating functions AS(z) may differ according to the underlying tree classes.

Proof. Case 1: S is a Motzkin tree.
In the proof we heavily use the definitions class B of binary trees and the classM of Motzkin

trees from Section 2. We start the proof of the expression of AS(z) with the case where S is a
Motzkin tree. and thereby we must distinguish between the three cases whether S is a single node,
or the root of S is a unary node, or a binary node, and hence falling into the respective subclass of
M among the subclasses that we find as summands on the right-hand side of Eq. (2). In particular,
if the root is a unary node, then there is one Motzkin tree attached to it that we call S̃. If the
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root is a binary node, it has a left and a right subtree attached to it that we call SL and SR,
respectively.

The generating function AS(z) for the number of embeddings of S into the family Bn can then
be recursively defined by

AS(z) =


zB′(z) if S = •,

2zB(z)

1− 2zB(z)
AS̃(z) if S = (•, S̃),

z

(1− 2zB(z))2
ASL(z)ASR(z) if S = (•, SL, SR),

(5)

where the three cases correspond to the cases described above. The first case, which yields a factor
zB′(z), corresponds to marking a node in the underlying tree T (i.e. pointing at a node), because
obviously a single vertex can be embedded in every node. We can also interpret it as counting the
number of pairs (T,E) where E is an embedding of S into T .

leaf

B

zB′

unary node

S̃

AS̃ B

2zB
1−2zB

AS̃

binary node

SL SR

ASL ASR

z
(1−2zB)2

ASLASR

=

B

B

B

B

1
1−2zB

Figure 3. Sketch of the recursive construction of the generating function AS(z). If S is a
Motzkin tree (plane binary case), then the three cases above can appear. Here B each time
refers to an abstract object representing any tree from family Bn.

Now we show how an embedding of S into T can be constructed in a recursive way - see Figure 3
for a visualization of the used approach. We start with the case that the root of S is a unary node.
This root has to be embedded at some point in the tree T . The part of T that is above the
embedded root of S can be expressed as a path of left-or-right trees, which contributes a factor
1/(1 − 2zB(z)). The embedded root of S itself yields a factor z, since the generating function of
an object of size one is given by z. To the embedded root we have to attach an additional tree
T in order to create a binary structure, yielding a factor B(z), as well as the remaining tree that
contains the embedding of S̃. The factor 2 that appears in the coefficient in the second case of (5)
indicates that we work with plane trees - the substructure S̃ can be embedded either in the left
or in the right subtree of the unary vertex.

The third case of (5), where S starts with a binary node, is similar to the previous case. Thus,
the factor 1/(1 − 2zB(z))2 corresponds to two consecutive paths of left-or-right trees, which are
separated by the embedded root which itself gives the additional factor z. At some point the lower
path splits into two subtrees containing the embeddings of the subtrees SL and SR.

By simple iteration one can see that in case of embedding a Motzkin tree S, the generating
function AS(z) reads as

AS(z) =

(
z

(1− 2zB(z))2

)l−1(
2zB(z)

1− 2zB(z)

)u
(zB′(z))l, (6)



10 B. GITTENBERGER, Z. GOŁĘBIEWSKI, I. LARCHER, M. SULKOWSKA

where l denotes the number of leaves and u the number of unary nodes in S. The exponent l − 1
in (6) arises from the fact that a Motzkin tree with l leaves has l − 1 binary nodes, and for each
of these nodes we get the respective factor.

Case 2: S contains vertices with more than two children.
Finally, we consider the general case where S is an arbitrary plane tree without any restrictions

on the degree distribution sequence. Then we proceed as follows. Every d-ary node with d ≥ 3
together with its d children is replaced by a binary tree having d leaves, which are then replaced
by the successors of the original d-ary node. There are exactly Cd−1 possible ways to construct
such a binary tree. Unary and binary nodes stay unaltered. Applying this for all nodes results in
constructing a Motzkin tree, called S′, and the number of Motzkin trees that can be constructed
in that way is

∏m−1
i=3 Cdi

i−1. These Motzkin trees are then embedded with the approach described
above.

In short, the goal is now to make S correspond to a collection of Motzkin trees C = {S1, . . . , Sk}
with k =

∏m−1
i=3 Cdi

i−1 and each embedding of S into T could then be regarded as an embedding
of some S′ ∈ C and vice versa.2 This would imply

AS(z) =

k∑
i=1

ASi(z) = kAS′(z),

where the second equation is true, because ASi(z) only depends on the number of unary nodes
and the number of leaves of Si, but not on its actual shape.

In order to determine AS′ note that replacing a d-ary node v with d ≥ 3 by a binary tree
(with more than 1 internal nodes) introduced further vertices into S. In particular, v becomes a
binary node, and as there were d successors before, the binary tree arising from v must have d− 1
internal nodes, thus giving rise to d− 2 auxiliary vertices. Since S has m vertices, S′ has therefore
m+

∑m−1
i=3 (i− 2)di = 2l + u− 1 vertices.

Furthermore note that the auxiliary vertices have to be embedded into T , but they do not
belong to S. This causes a special treatment (see Figures 4 and 5 for an illustration). Consider
two subtrees S1 and S2 of S′ whose last common ancestor (in S′) is an auxiliary vertex, say w,
and let v be the last common ancestor of w and its sibling in S′ (which exists, as auxiliary nodes
only appear when dissolving vertices of arity 3 or more). Of course, any vertex on the path from
v to w may serve as auxiliary vertex instead of w. But as w does not belong to S, its actual
position is unimportant. Hence, for the sake of not overcounting, the auxiliary vertices are always
placed at the last possible position, see Figure 5 for the local picture and Figure 4 for the global
picture. This eventually yields a factor z/(1 − 2zB(z)) for each binary auxiliary node. As there
are 2l + u−m− 1 auxiliary nodes and m− l − u other binary nodes, this gives altogether

AS(z) =

(
z

1− 2zB(z)

)2l+u−m−1(
z

(1− 2zB(z))2

)m−l−u(
2zB(z)

1− 2zB(z)

)u
(zB′(z))l

m−1∏
i=3

(Ci−1)di

=
2uzl+u−1B(z)u

(1− 2zB(z))m−1
(zB′(z))l

m−1∏
i=3

(Ci−1)di .

Using the identity zB′(z) = B(z)/(1 − 2zB(z)), which holds for plane binary trees, yields the
desired result. �

Corollary 1. Let S be a rooted tree. The generating function of the sequence gBn(S), which counts
the number of good embeddings of S into all trees of the family Bn, is given by

GS(z) = (1− 2zB(z))AS(z).

Proof. The corollary follows immediately, as the only difference in the case of good embeddings is
that the root of S is always embedded in the root of the underlying tree. Thus, we have to omit

2Caveat : S′ has more vertices than S, and these must be embedded in a canonical, unique way. How this can
be achieved is discussed in the subsequent paragraphs.
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S:

· · · · · ·

B

B

B

B B

B

B B B B

B B B

B B

Figure 4. Sketch of the principle of embedding an arbitrary plane tree (plane binary case).
When embedded into a binary structure, the quarternary node is replaced by one of the five
possible plane binary trees, whereas the unary node and its child stay in their position, of course.
The last two cases, not shown here, are symmetric to the first and second one.

auxiliary binary node

SL SR ASL ASR

z
1−2zB

ASLASR

Figure 5. Extension of the recursive construction of the generating function AS(z) shown
in Figure 3 if the auxiliary binary vertex occur. It is embedded according to the picture above
and depicted as a red square.

the path of left-or-right trees in the beginning. This corresponds to a multiplication by the factor
(1− 2zB(z)). �
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5. Asymptotics of the number of embeddings in Bn
In this section we will do a singularity analysis of the generating functions obtained in the

previous section in order to crank out the coefficient asymptotics. Then we will generalize the
result to embeddings of disconnected structures.

5.1. Asymptotics of aBn(S) and gBn(S).

Theorem 2. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
Let C =

∏m−1
i=3 (Ci−1)di . The asymptotics of the number of all embeddings of S into Bn is given

by

aBn(S) ∼ C · 2 5−m−3l
2

Γ(m+l−1
2 )

· 2n · n
m+l−3

2

for n being odd and aBn(S) = 0 for n being even. The asymptotics of the number of good embeddings
of S into Bn is given by

gBn(S) ∼


C · 2 6−m−3l

2

Γ(m+l−2
2 )

· 2n · n
m+l−4

2 if m+ l − 2 > 0;

√
2 · 2n√
πn3

if m+ l − 2 = 0

for n being odd and gBn(S) = 0 for n being even.

Proof. Recall that aBn(S) = [zn]AS(z). The function AS(z) has two dominant singularities at
ρ0 = 1/2 and ρ1 = −1/2, coming from the function B(z) and from the zero in the denominator of
the expression for AS(z) given in (4). Expanding AS(z) into its Puiseux series for z → ρ0 = 1/2
gives

AS(z) = C · 2
3−m−3l

2 ·
(

1− z

ρ0

)−m+l−1
2

(
1 +O

((
1− z

ρ0

) 1
2

))
.

Note that m+ l− 1 ≥ 1, since always l ≥ 1 and m ≥ 1. Expanding AS(z) into a Puiseux series for
z → ρ1 = −1/2 gives

AS(z) = −C · 2
3−m−3l

2 ·
(

1− z

ρ1

)−m+l−1
2

(
1 +O

((
1− z

ρ1

) 1
2

))
.

By Lemma 1 we get

[zn]AS(z) ∼ C · 2 3−m−3l
2

Γ(m+l−1
2 )

· (ρ0)−n · n
m+l−3

2 − C · 2 3−m−3l
2

Γ(m+l−1
2 )

· (ρ1)−n · n
m+l−3

2

=


C · 2 5−m−3l

2

Γ(m+l−1
2 )

· 2n · n
m+l−3

2 if n is odd,

0 if n is even.

The asymptotic analysis for the number of good embeddings is analogous. Again, gBn(S) =
[zn]GS(z) and GS(z) has two dominant singularities at 1/2 and −1/2. For m + l − 2 > 0 we
obtain

[zn]GS(z) ∼


C · 2 6−m−3l

2

Γ(m+l−2
2 )

· 2n · n
m+l−4

2 if n is odd,

0 if n is even.

The case m+ l − 2 = 0 needs to be treated separately. Note that then m = 1 and l = 1, thus the
structure S that we embed is a single vertex. Therefore the number of good embeddings is just
the cardinality of Bn, i.e. gBn(S) = C n−1

2
∼
√

2·2n√
πn3

. (Note also that for S being a single vertex we

have aBn(S) = nC n−1
2
∼
√

2·2n√
πn

.) �
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5.2. Embedding disconnected structures in Bn. Now, let us briefly discuss the case of em-
bedding disconnected structures in Bn. Note that in this case all the embeddings must be bad
(the underlying structure T has only one maximal element 1T ; as long as the induced structure is
disconnected, we can be sure that it does not contain the root 1T ).

Assume that S is a forest, i.e. a set of rooted trees S1, S2, . . . , Sr (r ≥ 2) with the degree
distribution sequence dS = (l, u, d2, . . . , dm−1). The underlying structure T is connected, thus
S1, S2, . . . , Sr always have a common parent in T . Let σ = (σ1, σ2, . . . , σr) be a permutation of
the set {1, 2, . . . , r}. Define S(σ) to be a structure constructed as shown in Figure 6 - we add an
additional vertex 1S(σ) to S, which is a common parent of S1, S2, . . . , Sr appearing in the order
given by σ. Now, instead of counting the number of embeddings of S into T we can simply count
the numbers of good embeddings of S(σ) in T for all permutations σ generating non-isomorphic
structures S(σ) and sum them up. Thus,

aBn(S) =
∑
σ∈Σ

gBn(S(σ)),

where Σ is a set of permutations of {1, 2, . . . , r} such that whenever σ, τ ∈ Σ and σ 6= τ then S(σ)

and S(τ) are not isomorphic. Moreover, whenever τ is a permutation of {1, 2, . . . , r} and τ /∈ Σ
then there exists σ ∈ Σ such that S(σ) and S(τ) are isomorphic.

1S(σ)

vv || �� "" ((
Sσ1

Sσ2
. . . . . . Sσr

Figure 6. The structure of S(σ), σ = (σ1, σ2, . . . , σr).

Note that the asymptotics of gBn(S(σ)) is the same for all σ ∈ Σ since the degree distribu-
tion sequence of S(σ) is the same for all σ ∈ Σ. It is given by dS(σ) = (d̃0, d̃1, . . . , d̃m−1) =
(l, u, . . . , dr−1, dr + 1, dr+1, . . . , dm−1). Therefore, by Theorem 2

aBn(S) ∼


m!

k1!k2! . . . k`!

C̃ · 2 6−m−3l
2

Γ(m+l−2
2 )

· 2n · n
m+l−4

2 if n is odd,

0 if n is even

where ` is the number of equivalence classes of the set {S1, S2, . . . , Sr} with respect to the equiv-
alence relation of being isomorphic and k1, k2, . . . , k` are the cardinalities of those classes. Here
C̃ =

∏m−1
i=3 (Ci−1)d̃i . (Note that here we do not consider the case m+ l − 2 = 0 from Theorem 2,

because by r ≥ 2 we always have m+ l − 2 > 0.)

6. Non-plane case - embeddings in Vn
6.1. Embedding rooted trees in Vn. In this subsection we explain how to take advantage of
the results obtained for the plane case in order to infer about the asymptotics of good and all
embeddings of a rooted tree S in the family of non-plane binary trees Vn.

Theorem 3. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
The generating function AS(z) of the sequence aVn(S), counting the number of all embeddings of
S into the family Vn, is given by

AS(z) =

(
1

1− zV (z)

)m+l−1

zl+u−1 V (z)l+u CS (1 + o(1)), as z → ±ρ, (7)

where CS is a constant dependent on the structure of S, V (z) is the generating function of the
family of non-plane binary trees, cf. (3), and ρ ≈ 0.6346 is the radius of convergence of V (z).
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Remark 6. It is well known that V (z) has two dominant singularities, ±ρ, a result going back
to Otter [39]. Note that the value for ρ stated above does not coincide with the one reported
in [16, Chapter VII], since we use different size functions: There the size of a tree was defined
as the number of internal nodes, while we count the total number of nodes. This is the reason
why in our model the coefficients vn = [zn]V (z) are zero for even n, which yields a periodicity in
the generating function that results in the presence of two dominant singularities. However, the
generating function N(z) of non-plane binary trees where z solely marks the number of internal
vertices can easily be connected with our generating function V (z) via V (z) = zN(z2). Thus, with
the result from [16] that

N(z) ∼ 1

σ
− a
√

1− z

σ
, as z → σ

with σ ≈ 0.4027 and a ≈ 2.8062, we immediately know that there are two dominant singularities
of V (z) = zN(z2) at z = ±

√
σ and we get

V (z) = zN(z2) ∼ ±
√
σ

(
1

σ
− a
√

2

√
1∓ z√

σ

)
, as z → ±

√
σ.

Finally, by setting ρ =
√
σ ≈ 0.6346 and b = a

√
2σ ≈ 2.5184 we obtain

V (z) ∼ ±
(

1

ρ
− b
√

1∓ z

ρ

)
, as z → ±ρ.

Proof. This time we introduce a bivariate generating function, where z still marks the total number
of vertices of a tree, while u is associated with classes of vertices. Two vertices v, w are meant to
belong to the same class whenever there exists an isomorphism f : T → T such that f(v) = w.
From [35] we have

V (z, u) = zu+
zu

2
(V (z, u)2 − V (z2, u2) + 2V (z2, u)). (8)

This can be seen from specifying V in a different way:

V = {•}+ {•} × Set2(V) + {•} ×∆(V × V).

Indeed, if the subtrees of the root are non-isomorphic, then we simply inherit the vertex classes
from the subtrees. Translating into generating function (see the set construction presented in
Section 2 and Equation (1)) gives the first two summands of (8). Otherwise, the subtrees of the
root are identical. This doubles the number of vertices, but each vertex is in the same vertex class
as its duplicate. This yields the term V (z2, u).

By Vu(z, u) we denote the derivative of V (z, u) with respect to u, i.e. Vu(z, u) = ∂V (z,u)
∂u . What

we will need is Vu(z, 1). Differentiating Equation (8) with respect to u and plugging u = 1 yields

Vu(z, 1) =
V (z)

1− zV (z)
. (9)

Case 1: S is a Motzkin tree.
We proceed as in the plane case and start with recursively defining the generating function

AS(z) for the number of embeddings of S into the family Vn, when S is a Motzkin tree. As in the
plane case, we denote the single subtree attached to the root by S̃ in case of a unary root and the
two subtrees by SL and SR (arbitrarily chosen order) in case of a binary root. We obtain

AS(z) =



Vu(z, 1) if S = •,
zV (z)

1− zV (z)
AS̃(z) if S = (•, S̃),

z

(1− zV (z))2
ASL(z)ASR(z) if S = (•, SL, SR) and SL 6∼= SR,

z

(1− zV (z))2

1

2
(ASL(z)2 +ASL(z2)) if S = (•, SL, SR) and SL ∼= SR.

The idea of setting up this recursive definition for AS(z) is similar to the plane case with the
following differences. In the first case, corresponding to embedding a single node, we can mark
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an arbitrary vertex class, instead of an arbitrary vertex, since there might be some non-trivial
isomorphisms that would lead to multiple countings of the same embedding. Furthermore, the
paths of left-or-right trees from the previous section, yielding a factor 1/(1 − 2zB(z)), are now
replaced by paths of trees where we do not distinguish between the left-or-right order, since we are
in the non-plane setting. Thus, these paths give a factor 1/(1− zV (z)). Finally, in the case when
the Motzkin tree starts with a binary root, we have to distinguish between the cases whether the
two attached trees are isomorphic or not. The non-isomorphic case works analogously to its plane
version, while in the isomorphic case we have to eliminate potential double-countings by using the
same idea as for Equation (3) (compare also with the multiset construction presented in Section 2).
We do not have to solve the recursion for AS(z) explicitly, since we are solely interested in the
asymptotic behaviour of its coefficients and it is easy to see that asymptotically the contribution
of the term ASL(z2) is negligible. Indeed, since ρ < 1 the function AS(z2) is analytic at z = ρ.
Thus, [zn]AS(z2) < (ρ+ ε)−n, which is exponentially smaller than Cρ−nnβ = [zn]AS(z).

Thus, by iterating we obtain

AS(z) ∼
(

z

(1− zV (z))2

)l−1

Vu(z, 1)l
(

zV (z)

1− zV (z)

)u(
1

2

)s
, as z → ρ,

where l denotes the number of leaves, u the number of unary nodes and s the number of symmetry
nodes in S (a symmetry node is a parent of two isomorphic subtrees). The same expansion holds
for z → −ρ.
Case 2: S contains vertices with more than two children.

In the general case where S is an arbitrary non-plane tree, i.e. a Pólya tree, we proceed as in
the previous section and consider the embeddings of all non-plane unary-binary trees obtained by
replacing d-ary nodes with d ≥ 3 together with their children by binary trees with d leaves. Thus,
again taking into account that there are m − l − u binary nodes that were already there before
the replacement (as binary or d-ary nodes with d ≥ 3) and 2l + u−m− 1 auxiliary binary nodes
that were introduced by the replacement, we get

AS(z) ∼
(

z

1− zV (z)

)2l+u−m−1(
z

(1− zV (z))2

)m−l−u
Vu(z, 1)l

(
zV (z)

1− zV (z)

)u
CS , as z → ρ,

(10)

and the analogous expansion for z → −ρ. The constant CS arises from the isomorphisms and
reads as

CS =
∑
t∈MS

s symmetry node of t

(
1

2

)s
, (11)

where MS denotes the set of all non-plane unary-binary trees obtained from S by replacing the
d-ary nodes with non-plane binary trees with d leaves for d ≥ 3.

Finally, substituting the expression given in (9) for Vu(z, 1) in Equation (10) yields the desired
result. Note that the asymptotic equivalence (10), or (7) respectively, is also true for the case when
S is a single node, i.e. l = 1 and u = s = 0. �

Theorem 4. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
The asymptotics of the number of all embeddings of S into Vn is given by

aVn(S) ∼ 2CSb
−m−l+1ρ−m−l

Γ(m+l−1
2 )

· ρ−n · n
m+l−3

2

for n being odd and aVn(S) = 0 for n being even. The asymptotics of the number of good embeddings
of S into Vn is given by

gVn(S) ∼


2CSb

−m−l+2ρ−m−l+1

Γ(m+l−2
2 )

· ρ−n · n
m+l−4

2 if m+ l − 2 > 0

b√
π
· ρ−n · n−3/2 if m+ l − 2 = 0,
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for n being odd and gVn(S) = 0 for n being even. Here b ≈ 2.5184, ρ ≈ 0.6346 and the constant
CS, given in (11), depends on the structure of S.

Proof. First, note that V (ρ) ∼ 1
ρ , which was already outlined in Remark 6. Therefore, the dominant

part of the asymptotics of the coefficients of AS(z) comes from the factors 1/(1 − zV (z)), which
give

1

1− zV (z)
∼ 1

ρb
√

1− z
ρ

for z → ρ.

The result for aVn(S) follows immediately by use of Lemma 1. As in the plane case, the generating
function GS(z) for the good embeddings just differs from AS(z) by a factor (1− zV (z)) and thus,
the asymptotic behaviour of its coefficients can be determined analogously. Recall thatm+l−2 = 0
represents the case where S is a single vertex. The number of good embeddings is therefore just
the cardinality of Vn (see Remark 6). �

6.2. Embedding disconnected structures in Vn. Now, let us comment on embedding discon-
nected structures in a non-plane case. Let S be a forest, i.e. a set of rooted trees S1, S2, . . . , Sr,
r ≥ 2. Again, instead of counting all embeddings of S into Vn, we can count the good embeddings
of S̃ in Vn, where S̃ is a forest S with an additional common parent that clips together all Si’s.
Note that in the non-plane case the order of Si’s does not matter, thus we simply have

aVn(S) = gVn(S̃).

7. Planted plane case - embeddings in Tn
In this section we extend the results from plane binary trees to planted plane trees, i.e. to

rooted trees where each internal node can have arbitrarily many child-nodes and the order of the
subtrees is important. The structures that we embed are as well planted plane trees, and therefore
every such a tree S is of the form S = (•, S1, . . . , Sk), where the Si’s denote the subtrees that
are attached to the root. We will present a lemma containing the construction of the generating
function AS(z) of all embeddings of the tree S in the family Tn of planted plane trees of size n.
But before doing so, we state another lemma that lists all the building blocks of that construction
together with their generating functions.

Lemma 3. The following constructions made from the class T are needed in the sequel:
The generating function associated with sequences of planted plane trees (plane forests), denoted

by Seq(T ), is z/(1− T (z)).
Let P denote the class of all paths of the following form: Take a path in the graph theoretical

sense (chain of vertices) as a spine and attach to each of its vertices a sequence of planted plane
trees left of the spine (left forest) and a sequence of planted plane trees right of the spine (right
forest). Then remove the last vertex, say v of the spine, but keep its edge as a separator between
the left and the right forest attached to the parent node of x. Then the generating function of P is

P (z) =
1− T (z)

1− 2T (z)
. (12)

The generating functions GS(z) and BS(z) associated with good and bad embeddings, respec-
tively, of S into T satisfy

GS(z) =
1− 2T (z)

1− T (z)
AS(z) and BS(z) =

T (z)

1− T (z)
AS(z). (13)

Proof. The first assertion was already presented in Section 2 and only listed for the sake of com-
pleteness.

To prove the assertion on P, observe that P is built of segments made of the left forest, the
spine node and the right forest. So, we have actually a sequence of such segments. Thus

P = Seq(Seq(T )× {•} × Seq(T )).
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Translating into generating functions gives

P (z) =
1

1− z
(1−T (z))2

=
1− T (z)

1− T (z)− z
1−T (z)

=
1− T (z)

1− 2T (z)
,

where we used the functional equation T (z) = z/(1− T (z)) in the last step.
A general embedding can be seen as a path of type P from the root of T to the embedded root of

S, call it v, and the subtree rooted at v. This subtree can in turn be interpreted as a new tree with
a good embedding of S. Thus AS(z) = P (z)GS(z), as desired. Finally, BS(z) = AS(z)−GS(z). �

Lemma 4. The generating function AS(z) of all embeddings of S = (•, S1, . . . , Sk) into the family
Tn of planted plane trees of size n can be recursively specified as

AS(z) =



zT ′(z) =
T (z)(1− T (z))

1− 2T (z)
if k = 0,

T (z)

1− 2T (z)
AS1

(z) if k = 1,

T (z)2

(1− 2T (z))2(1− T (z))
AS1

(z)AS2
(z) if k = 2,

T (z)

(1− 2T (z))2

(
1− 2T (z)

1− T (z)
AS1

(z)AS2,k
(z)

+
T (z)(1− 2T (z))

(1− T (z))2
AS1,k−1

(z)ASk(z)

+

(
1− 2T (z)

1− T (z)

)2 (
AS1,2

(z)AS3,k
(z) + . . .+AS1,k−2

(z)ASk−1,k
(z)
))

if k > 2,

(14)

where T (z) denotes the generating function of the family of planted plane trees and Si,j denotes
the tree Si,j = (•, Si, . . . , Sj) that consists of a root to which the j − i + 1 subtrees Si, . . . , Sj are
attached (in that order).

Proof. The case k = 0 is equivalent to the binary cases, and corresponds to marking an arbitrary
node in the tree T . Differentiating both sides of the specification T (z) = z/(1− T (z)) of planted
plane trees with respect to z and solving for T ′(z) yields the equality

zT ′(z) =
z

1− 2T (z)
=
T (z)(1− T (z))

1− 2T (z)
.

In the case k = 1 we have to embed the root of S at some node v and then its single subtree S1

into one of the subtrees attached to v in T . Figure 7 visualizes such an embedding. The generating
function of this particular subtree is AS1

(z). To the left and to the right of this subtree we have
a sequence of planted plane trees dangling from v. From the root to v there is a path of type P,
the class presented in Lemma 3. Altogether, this gives

AS(z) = P (z)
z

(1− T (z))2
AS1(z).

From z = T (z)(1− T (z)) and (12) we get the expression listed in (14) after all.
The obvious generalization to the case k = 2 is as follows: Embed the root of S into a vertex

v of T . When embedding S1 and S2, there will be a last common ancestor of the roots of S1 and
S2 until which the paths to the two subpatterns coincide and split into two paths afterwards.
Call this “splitting node” w. Then we have paths of type P from the root (of T ) to v and from
v to w, together contributing a factor P (z)2. Moreover, v and w themselves contribute each a
factor z and there is again a left forest and a right forest dangling from v and likewise from w. At
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S1

P
v

Seq(T )

AS1

Figure 7. Sketch of the principle of embedding a plane tree S = (•, S1) into the
family of planted plane trees (case k = 1).

S1 S2

Pv

Seq(T ) splitting node w

AS1
AS2

Figure 8. Sketch of the principle of embedding a plane tree S = (•, S1, S2) into
the family of planted plane trees (case k = 2, first approach).

the splitting node, we have a left forest, a middle forest and a right forest, separated by the two
subtrees carrying the embeddings of S1 and S2. Altogether, we obtain

AS(z) = P (z)2 z2

(1− T )5
AS1

AS2
(15)

which simplifies to the expression listed in (14). Figure 8 visualizes the described approach.
The disadvantage of this approach is that in the general case the subtrees of the splitting node

may contain embeddings of more than one subtree of S, and we would have to distinguish all
cases induced by the possible partitions of the subtrees of S into the subtrees of the splitting
node. Hence, let us offer a second approach to the case k = 2 by decomposing the structure in
another way, which allows for easy generalization: We leave the two paths of type P, the two
forests dangling from v and the left forest dangling from w as in the above construction. But
then we decompose what remains into the subtree containing the embedding of S1 (blue tree in
Figure 9) and the remaining structure (green tree in Figure 9). This remaining structure, which
consists actually of the splitting node, the middle and the right forest and the subtree with the
embedding of S2 in the former decomposition, is a tree rooted at w and containing the embedding
of S2. Therefore it is in fact a tree with a bad embedding of S2. Indeed, the root of S2 cannot be
embedded at the splitting node, as then we would have chosen the parent of w as splitting node.
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S1 S2

Pv

Seq(T )
w

AS1

BS2

Figure 9. Sketch of the principle of embedding a plane tree S = (•, S1, S2) into
the family of planted plane trees (case k = 2, second approach).

With this we get

AS(z) = P (z)2 z

(1− T )3
AS1

BS2
= P (z)2 z

(1− T )3

T (z)

(1− T (z))
AS1

AS2
,

which is of course the same as (15).
Now, let us continue with the proof of the recurrence for the case k > 2. In order to do so let

us look at Figure 10 that visualizes how an embedding of a tree S in a tree T can be constructed.
Again we keep everything up to the splitting node, namely the two paths of type P, the node
v where the root of S is embedded, the left and right forests attached to v and the left forest
attached to the splitting node, altogether yielding P (z)2z/(1 − T (z))3 = T (z)/(1 − 2T (z))2 as a
universal factor for all the subcases discussed below.

As before, we call the subtree that is attached to the splitting and contains the embedding of
S1 the “blue subtree” and the remaining structure the “green subtree”, which is a tree rooted at
w. Note that the blue subtree may also contain embeddings of further subtrees of S. If it also
contains an embedding of Si, then planarity implies that S2, . . . Si−1 are embedded into the blue
subtree as well. Therefore we have the following cases:

• Solely S1 is embedded in the blue subtree. Then the green subtree contains the embeddings
of S2, . . . , Sk, which is equivalent to embed S2,k = (•, S2, . . . , Sk), as long as the root of
S2,k is embedded into the splitting node in order to prevent multiple counting. So, in
this case the blue subtree is a tree that contains any (good or bad) embedding of S1,
giving a factor AS1(z), while the green subtree can only contain a good embedding of S2,k,
contributing a factor 1−2T (z)

1−T (z) AS2,k
(z) by Lemma 3.

• Solely Sk is embedded in the green subtree. Here we count the good embeddings of S1,k−1

in the blue subtree, as this is necessary for all cases where we consider more than just
one of the Si’s to be embedded in the same subtree. However, in this case we have to
count only the bad embeddings of Sk in the green subtree, since no node of S (except the
root of S) can be embedded into the splitting node (compare with the case k = 2 above).
Altogether this yields the factor 1−2T (z)

1−T (z)
T (z)

1−T (z)AS1,k−1
(z)ASk(z).

• Neither the blue nor the green subtree contain embeddings of only one of the sub-
trees S1, . . . , Sk. Then we face a good embedding of S1,i into the blue subtree
and a good embedding of Si+1,k into the green subtree, yielding together a factor(

1−2T (z)
1−T (z)

)2

AS1,i(z)ASi+1,k
(z).
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S1 S2 Sk

v

w

AS1

GS2,k

v

w

GS1,k−1

BSk

v

w

GS1,i

GSi+1,k

Figure 10. Sketch of the principle of embedding a plane tree S = (•, S1, . . . , Sk)
(for k > 2) into the family of planted plane trees. We distinguish three sub-cases:
(left) solely S1 is embedded in the blue subtree, (middle) solely Sk is embedded
in the green subtree, (right) neither the blue nor the green subtree contain em-
beddings of only one of the subtrees S1, . . . , Sk.

Together with the universal factor from above we get the desired coefficients. �

Remark 7. Note that for the cases k = 0, 1, 2 the generating function AS(z) of all embeddings of
S = (•, S1, . . . , Sk) into the family Tn of planted planes trees of size n given in (14) is of the form
fk(T ) · AS1

(z) . . . ASk(z), where fk(T ) is a function that depends only on T (z) and on the size k
of S, but not on the specific shape of S. We want to emphasize that, by digging into the structure
of S and by recursive application of the formulas given in (14), it follows that AS(z) is in fact of
the form

AS(z) = f(T ) ·AS1(z) · · ·ASk(z),

for arbitrary S = (•, S1, . . . , Sk).

Now, we are in the position to obtain the asymptotic number of all and good embeddings of a
given plane tree S in the family of planted plane trees.

Theorem 5. Consider a rooted tree S of size m with degree distribution sequence dS =
(l, d1, d2, . . . , dm−1). Let C =

∏m−1
i=1 (Ci−1)di . The asymptotics of the number of all embeddings of

S into Tn is given by

aTn(S) ∼
C · ( 1

2 )m+l

Γ(m+l−1
2 )

· 4n · n
m+l−3

2 .

The asymptotics of the number of good embeddings of S into Tn is given by

gTn(S) ∼
2C · ( 1

2 )m+l

Γ(m+l−2
2 )

· 4n · n
m+l−4

2 .
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Proof. Triggered by the observation in Remark 7, let us set

f1(z) =
1

2(1− 2T (z))
, and fk(z) =

AS(z)∏k
i=1ASi(z)

for k > 1. (16)

Then (14) immediately gives f2(z) = T (z)2/((1− 2T (z))2(1− T (z))).
Next, consider the last equation of (14) (the case k ≥ 3) and observe that all generating functions

on the right-hand side which are associated with a composite structure are of the form ASi,j (z),
where the root of Si,j has degree at least two. Thus, dividing the equation by

∏k
i=1ASi(z) (and

cancelling out all single ASj (z)) yields only quotients which can be readily turned into f`(z) with
suitable choices of `, because the case ` = 1 does not appear here. A straight-forward simplification
then gives

fk(z) =
T (z)

(1− T (z))2

k−1∑
j=1

fj(z)fk−j(z) for k ≥ 3. (17)

Both sides of this equation tend to infinity, as z → 1/4, and we need their singular behaviour for
our analysis of AS(z). Hence, we set gk(z) = (1− 2T (z))kfk(z) for k ≥ 1. Plugging this into (17)
we observe that gk(z) satisfies the same recurrence as fk(z), but with the initial values g1(z) = 1/2
and g2(z) = T (z)2/(1 − T (z)). As T (1/4) = 1/2, the functions gk(z) are regular at z = 1/4. By
evaluating the recurrence at z = 1/4 and setting hk := 2gk(1/4), we get a recurrence for hk, which
is in fact already valid for k ≥ 2:

h1 = 1 and hk =

k−1∑
j=1

hjhk−j for k ≥ 2.

This is exactly the recurrence for the Catalan numbers, and thus, hk = Ck−1.
Hence, for z → 1/4 and k ≥ 2 we have

fk(z) ∼ 1

2
Ck−1(1− 4z)−k/2,

which implies that as z → 1/4 we have

AS(z) ∼ Ck−1

2
(1− 4z)−k/2AS1

(z) . . . ASk(z) =

(
m−1∏
i=1

(
Ci−1

2
(1− 4z)−i/2

)di)
(A•(z))

l
,

where S = (•, S1, . . . , Sk), di denotes the number of nodes with out-degree i, l denotes the number
of leaves, i.e. l = d0, and the equation follows from recursively going into the subtrees S1, . . . , Sk
and using (16) until one encounters a leaf of S. Then each leaf yields a factor A•(z). Using the
equality A•(z) = zT ′(z) ∼ 1

2 (1 − 4z)−1/2, which follows from (14) and the singular expansion of
T (z), we get for z → 1

4

AS(z) ∼

(
m−1∏
i=1

(
Ci−1

2

)di)
(1− 4z)−(l+

∑m−1
i=1 idi)/2

(
1

4

)l
. (18)

Note that
∑m−1
i=1 idi = m− 1, since every vertex with out-degree i is counted exactly i times and

thus, we simply obtain the total number of nodes with in-degree greater than zero (i.e. all nodes
except for the root). We also have

∑m−1
i=1 di = m− l thus (recall that C =

∏m−1
i=1 (Ci−1)di)(

1

4

)l
·
m−1∏
i=1

(
Ci−1

2

)di
= C

(
1

2

)m+l

.

Finally, Lemma 1 gives

aTn(S) ∼
C · ( 1

2 )m+l

Γ(m+l−1
2 )

· 4n · n
m+l−3

2 .

The generating function of the number of good embeddings can be derived from the generating
function AS(z) by multiplication by the factor 1−2T (z)

1−T (z) . This factor is responsible for getting rid
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of the path of trees which could appear above embedded root of S when we were considering all
embeddings. Thus we have GS(z) = 1−2T (z)

1−T (z) AS(z). Noticing that

1− 2T (z)

1− T (z)
= 2

√
1− 4z

1 +
√

1− 4z
,

using (18) and applying Lemma 1 yields the desired result. �

8. Asymptotics and monotonicity of the ratio gF (S)/aF (S)

Kubicki et al. [29] proved that if T is a complete balanced binary tree of arbitrary size and S1,
S2 are rooted trees in which each node has at most 2 descendants (i.e. S1 and S2 are Motzkin
trees) and S1 ⊆ S2, then

gT (S1)
aT (S1) ≤

gT (S2)
aT (S2) . (From now on this property will be interchangeably

called “the ratio gT (S)
aT (S) being weakly increasing with S”.) They also conjectured that the inequality

remains true for any rooted trees S1 and S2. One year later in [30] they also stated an asymptotic
result for the ratio gT (S)

aT (S) when S is an arbitrary rooted tree and T a complete binary tree of size

n. They showed that limn→∞
gT (S)
aT (S) = 2l−1 − 1 where l is the number of leaves in S. Thereby

they proved that for any rooted tree S the asymptotic ratio gT (S)
aT (S) is non-decreasing with S (the

function 2l−1 − 1 increases with l and if S1 ⊆ S2 then the number of leaves of S2 equals at least
the number of leaves of S1).

The conjecture from [29] was disproved by Georgiou [22] who chose specific ternary trees as
embedded structures to construct a counterexample. He also generalized the underlying structure
to a complete k-ary tree and considered strict-order preserving maps instead of embeddings. In
this setting he proved that a correlation inequality (corresponding to gTn (S1)

aTn (S1) ≤
gTn (S2)
aTn (S2) ) already

holds for S1, S2 being arbitrary rooted trees such that S1 ⊆ S2.
Referring to the asymptotic result from [30], we show that in our case the asymptotic ratios√
n gBn (S)
aBn (S) ,

√
n gTn (S)
aTn (S) and

√
n gVn (S)
aVn (S) are all weakly increasing with S for S being an arbitrary

rooted tree. Using this asymptotic result we show later that also the ratios gBn (S)
aBn (S) ,

gTn (S)
aTn (S) and

gVn (S)
aVn (S) (unlike in the case from [29]) are eventually weakly increasing with S for sufficiently large n.

We start with the asymptotics of the ratio of the number of good to the number of all embeddings
of S into any considered family.

Corollary 2. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
Let k = m+l−2

2 and let Fn denote any of the families Bn, Vn, Tn. The asymptotic ratio of the
number of good embeddings of S into Fn to the number of all embeddings into Fn is given by

gFn(S)

aFn(S)
∼


Γ(k + 1/2)

Γ(k)

cFn√
n

if k > 0,

1/n if k = 0,

where
cBn =

√
2, cVn = bρ and cTn = 2

(b and ρ are as in Theorem 4). For the families Bn and Vn we consider only n’s being odd.

Proof. For Bn, Vn and Tn the corollary follows immediately from Theorems 2, 4 and 5, respectively.
�

Theorem 6. Let S1, S2 be rooted trees such that S1 ⊆ S2 and let Fn denote any of the families
Bn, Vn, Tn. Then

lim
n→∞

√
n
gFn(S1)

aFn(S1)
≤ lim
n→∞

√
n
gFn(S2)

aFn(S2)
.

Proof. Let dS1
= (l1, u1, . . .), dS2

= (l2, u2, . . .), k1 = m1+l1−2
2 , k2 = m2+l2−2

2 (where mi denotes
the size of Si) and k1 > 0 (the case when k1 = 0 is trivial). By Corollary 2 we have

lim
n→∞

√
n
gBn(S1)

aBn(S1)
=
cFn · Γ(k1 + 1/2)

Γ(k1)
and lim

n→∞

√
n
gBn(S2)

aBn(S2)
=
cFn · Γ(k2 + 1/2)

Γ(k2)
,
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where
cBn =

√
2, cVn = bρ and cTn = 2.

Note that the values k1, k1 + 1/2, k2 and k2 + 1/2 all belong to the set { 1
2 , 1,

3
2 , 2,

5
2 , . . .}. First, we

are going to show that the function f(k) = Γ(k+1/2)
Γ(k) is increasing in k for k ∈ { 1

2 , 1,
3
2 , 2,

5
2 , . . .}.

Indeed, applying twice Gautschi’s inequality (Lemma 2) we get for k > 1/2

f(k + 1/2)

f(k)
=

Γ(k + 1)

Γ(k + 1/2)

Γ(k)

Γ(k + 1/2)
> k1/2(k + 1/2)1/2.

Thus, for k >
√

17−1
4 ≈ 0.78, we obtain f(k+1/2)

f(k) > 1. For k = 1/2 we also have f(k+1/2)
f(k) = π

2 > 1.
Now, it suffices to show that whenever S1 ⊆ S2, then k1 ≤ k2 (equivalently m1 + l1 ≤ m2 + l2).

Of course, m1 ≤ m2. Next, observe that if S1 ⊆ S2, then also l1 ≤ l2. Indeed, the number of leaves
in a tree is the cardinality of its largest antichain. If S1 has l1 leaves and S1 ⊆ S2, then S2 needs
to contain an antichain of cardinality l1 as a subposet, which means that its number of leaves has
to satisfy l2 ≥ l1. Together we get m1 + l1 ≤ m2 + l2. �

Theorem 7. Let S1, S2 be rooted trees such that S1 ⊆ S2 and let Fn denote any of the families
Bn, Vn, Tn. Then for sufficiently large n

gFn(S1)

aFn(S1)
≤ gFn(S2)

aFn(S2)
.

Proof. Let dS1
= (l1, u1, . . .), dS2

= (l2, u2, . . .), k1 = m1+l1−2
2 , k2 = m2+l2−2

2 . Aiming for a
contradiction, assume that S1 ⊆ S2 and that there is an increasing sequence n0 < n1 < n2 < . . .

such that gFn (S1)
aFn (S1) >

gFn (S2)
aFn (S2) for all n ∈ {ni | i ∈ N}. Then by Theorem 6

lim
n→∞

√
n
gFn(S1)

aFn(S1)
= lim
n→∞

√
n
gFn(S2)

aFn(S2)
=
cFn · Γ(k1 + 1/2)

Γ(k1)
=
cFn · Γ(k2 + 1/2)

Γ(k2)
,

where
cBn =

√
2, cVn = bρ and cTn = 2.

Recall that the function f(k) = Γ(k+1/2)
Γ(k) is increasing in k for k ∈ { 1

2 , 1,
3
2 , 2,

5
2 , . . .} thus the above

equality implies k1 = k2, or equivalently m1 + l1 = m2 + l2. By S1 ⊆ S2 we have l1 ≤ l2 and
m1 ≤ m2 (see the proof of Theorem 6), therefore we get l1 = l2 and m1 = m2. Thus S1 and S2

are isomorphic and gFn (S1)
aFn (S1) =

gFn (S2)
aFn (S2) which is a contradiction. �

9. Discussion

We proved that the ratio of the number of good embeddings to the number of all embeddings
of a given tree S = (•, S1, . . . , Sk) into the families of trees Bn,Vn, Tn is asymptotically of the
same order for all the three considered families of trees, namely plane binary trees, non-plane
binary trees and planted plane trees. Thereby we extended the results of Kubicki et al. [29, 30]
and Georgiou [22]. We expect that this result will also hold for the family of Pólya trees, which
are the closest counterpart to posets that admit a (rooted) tree-like shape, i.e. they have a single
maximal element and each interval between two of their elements is a chain. In principle, the
approach that we used within this paper works for embeddings into the family of Pólya trees as
well. However, one would have to consider all possible partitions of S1, . . . , Sk, as any collection
of isomorphic subtrees within S1, . . . , Sk admits non-trivial isomorphisms between the Si’s, which
can get rather involved and is therefore omitted in this work.
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