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In this paper infinite systems of functional equations intédilyi or infinitely many random variables arising in com-
binatorial enumeration problems are studied. We provecserffi conditions under which the combinatorial random
variables encoded in the generating function of the syséaah to a finite or infinite dimensional limiting distribution
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1 Introduction

Systems of functional equations for generating functigopear in many combinatorial enumeration prob-
lems, for example in tree enumeration problems or in the emation of planar graphs (and related
problems), see Drmota (2009). Usually, these enumeraticimiques can be extended to take several
parameters into account: the number of vertices, the nuoftetiges, the number of vertices of a given
degree etc.

One of the simplest examples is that of rooted plane treatatie defined as rooted trees, where each
node has an arbitrary number of successors with a natutdablefght-order. By splitting up at the root
one obtains a recursive description of rooted plane treesKgure 1) which translates into corresponding
relations for the counting generating functigfx) = >, -, yn2™:

— 2 3. _ T
(o) = @ oy(e) +ay(@) +ay(@) + o= s
Of course, this leads to
1—-+1—-4z
y(x) = — s 1)
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1(2n—2)
Yn = — .
n\n—1

Now letk = (ko, k1, k2, . . .) be a sequence of non-negative integersangd the number of rooted plane
trees withn vertices such that; vertices have exactly successors (that is, the out-degree eqgafer
all j > 0. Then the formal generating functigitz, u) = 3, Yn xx"uX, whereu = (ug, u1, ua, ...)

and to

andu® = ufouf1ub> ... | satisfies the equation
y(iE, U.) = Tup + $U1y($, U.) + mqu(ma U.)2 + $U3y($, u)S += F(x,y(x, u)7 u)' (2)

If ||ulle is bounded then this can be considered as an analytic equatiay(x,u), and of course
y(x,u) encodes the distribution of the number of vertices of givatrdegree. More precisely, sup-

T

Fig. 1. Recursive structure of a rooted plane tree

pose that all rooted plane trees of sizeare equally likely. Then the number of vertices with out-
degreej becomes a random variabi{’. If we now consider the infinite dimensional random vector
X, = (X,SO), X,Sl), X,(f), ...) then we have in this uniform random model

1
Eu®" = —[2"] y(z, ),
Yn
where[z"] y(z) denotes the coefficient of* in the series expansion gfx). Let/ be a linear functional
of the form¢- X, = >~ .-, st,(ﬂ) then we also have
1 itsg itsi )

— "] y(x, e, e, 0.
yn[ Jy(

E eitl-Xn —

This also means that the asymptotic behavior of the chaistitefunction of¢ - X,, (that determines
the limiting distribution) can be derived from the asymptdiehavior of[2"] y(z,u). In this way it
follows (more or less) by standard methods tigf’ and also all finite dimensional random vectors
(Xflo), Xfll), e ,X,(IK)) satisfy a (finite) dimensional central limit theorem. Nehetess it is not imme-
diately clear that the infinite random vecf®r, has Gaussian limiting distribution, too. (For a definition
of infinite dimensional Gaussian distributions see SecfignIn Theorem 3 we will give a sufficient
condition for such a property when the generating function u) satisfies a single functional equation
y(x,u) = F(z,y(z,u),u).
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In more refined enumeration problems it will be necessargpace the (single) equation fg(x, u)
by a finite or infinite system of equatiogs = F(z,y,u); see Section 4. More precisely, this means
that we have to split up our enumeration problem into finiwlyinfinitely many subproblems that are
interrelated. Ify; denotes the generating function of thth subproblem then this means thatz, u) =
F;(z,y(z,u),u) for a certain functior¥;. After having solved this system of equations the genegatin
functiony(z, u) for the original problem can be computed with the help of teaggating functiong;,
thatisy(z,u) = G(z, y(z,u), u) for a properly chosen functio@.

In this case we are faced with two different problems. Fifstlla system of equations is more difficult
to solve than a single equation, in particular in the infiditeensional case. However, this can be handled
by assuming compactness of the Jacobian of the system, seechin 1. Furthermore it turns out that the
problem on the infinite dimensional Gaussian distributfoeven more involved than in the single equation
case. Nevertheless we will prove that all bounded functohiaX,, have a Gaussian limiting distribution
which is a slightly weaker result, see Theorem 2

The structure of the paper is as follows. In Section 2 we coBeme facts from functional analysis
that are needed to formulate our main results that are statgdction 3. The corresponding proofs can
be found in the Appendix whereas some applications are givBection 4.

Finally we would like to mention that this paper is a contitioia of the work of Drmota (1997) and
Morgenbesser (2010).

2 Preliminaries

Before we state the main result, we recall some definitiaoms fihe field of functional analysis in order to
be able to specify the basic setting. L&t and B, be Banach spaces. We denotell{y3;, B») the set of
bounded linear operators froBy to Bs. If U is the open unit ball i3, then an operatdf : B; — Bs
is compact, if the closure @ (U) is compact inB; (or, equivalently, if every bounded sequerteg),>o
in B; contains a subsequenge,, );>o such tha(T'z,, );>o converges im,). If A is a bounded operator
from B to B, thenr(A) denotes the spectral radius &fdefined byr(A) = sup,c,(a) [A|, Whereo(A)
is the spectrum ofl.

Afunction F': By — Bs is called Fréchet differentiable ap if there exists a bounded linear operator
(0F/0x)(x0) : By — Bs such that

oF
F(xo+ h) = F(xo) + %(mo) h+w(xg,h) and w(xg,h)=o0(h]), (h—0). 3)
The operatod F'/Ox is called the Fréchet derivative 6. If the Banach spaces are complex vector spaces
and (3) holds for alh, thenF' is said to be analytic iny. F'is analyticinD C By, if it is analytic for
all zp € D. Analyticity is equivalent to the fact that for aty € D there exist as > 0 and continuous
symmetricn-linear formsA,, (zo) such thady -, [|An(zo)|| s™ < co and

(")

n

F(zo+h) = Fag) + Y

n>1

in a neighborhood of, (including the sefxq + & : ||| < s}). (The “coefficients”4,, are equal to the
(iteratively defined)y.-th Fréchet derivatives of"). See for example (Deimling, 1985, Section 7.7 and
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15.1), (Zeidler, 1986, Chapters 4 and 8) and (Reich and &kiR005, Chapter 2) for analytic functions
in Banach spaces.

Next, we want to recall some facts concerning probabiligotty on Banach spaces (see for exam-
ple Billingsley (1999); Ledoux and Talagrand (1991)). Sogp thatX is a random variable from a
probability spacé(, F,P) (here 2 denotes a set with-algebraF and probability measur®) to a sepa-
rable Banach spade (equipped With the Boret-algebra). LetP be the law (the distribution) aX (that
is, P = PX~!). Since we assume# to be separable, we have that the scalar valued random lesriab
£*(X) for continuous functionalg* determine the distribution d&X (see (Ledoux and Talagrand, 1991,
Section 2.1)).

The random variableX,,, n € N (with possibly different probability spaces) are said tonarge
weakly to someB-valued random variablX (defined on some probability space and with |Ryif the
corresponding law#,, converge weakly td, i.e., if we have (as goes to infinity)

[ foo

for every bounded continuous real functign In what follows we denote this b¥X,, — X. We call

a setlI of probability measures tight if for each > 0 there exists a compact st = K. such that
P(K) > 1— ¢ foreveryP € II. Let B* be the dual space dB (the set of continuous functionals
from B to C). By Prohorov’s theorem (see (Billingsley, 1999, Chapte®dction 5)) we have th&,,
weakly converges tX if and only if £*(X,,) weakly converges té*(X) for all * € B* and the family

of probability measure§P,, : n € N} is tight. (Prohorov’s theorem says that in a separable antptzie
metric space a set of probability measures is tight if and dit is relatively compact.) Since for
scalar valued random variables the weak convergence isletetypdetermined by the convergence of the
corresponding characteristic functions, one has to check

(i) tightness of the sefP, : n € N}
and
(i) there exists arX such thatt [ (X»)] — E [ (X)] for all ¢* € B*,

in order to showX,, =+ X. We call a random variab¥ Gaussian i?*(X) is a Gaussian variable (in the
extended sense that = 0 is also normally distributed) for ali* € B*. If it exists, we denote biEX the
(unique) elemeny € B such that

(y) = E(¢"(X))

for all ¢* € B*. Gaussian variables are called centeredXf = 0.

In what follows, we mainly deal with the Banach sp#@te= /?(N) (1 < p < o) of all complex valued
sequencetty, )nen satisfyingH(tn)Hg =307 |tn]? < co. (The spacé> = (>°(N) is the space of all
bounded complex sequences,) with norm||(z,)||., = sup,>1 |2| < o0.) In this case, the Fréchet
derivative is also called Jacobian operator (in analoghédfinite dimensional case). We call a function
F: C x ¢? — (P positive (inU x V), if there exist nonnegative real numbessg;, such that for alk > 1
and forall(z,y) e U x V,

Fk(maY) = Z ai.j7k$iyj7
i,
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wherej € NV, only finitely many components are nonzero, ahe- y]'y3>y - - .

In our main theorem we have to assume &Y dy is irreducible. In order to be able to define this
property, we recall some basic notion from functional agsialpn/? spaces. Any bounded linear operator
on anf? space { < p < o) is uniquely determined by an infinite dimensional mateix; )1<i,j<oo Via
the functional

(Az); = Z @ik T,
=1

where (zx)1<k<o00 IS Written with respect to the canonical standard base®.inWe call the matrix
(@ij)1<i,j<oo the matrix representation of (and writt A = (ai;)1<i j<co OF justA = (a;;)). An
operatorA is called positive, if all entries of the matrix represeittatof A are nonnegative. A positive
operatord = (a;;) is said to be irreducible, if for every pait, j) there exists an integer= n(i, j) > 0,
such thatzl(;) > 0, where

A" = (aij )1§i,j<oo-

If « andv are real vectors or matrices,> v means that all entries afare greater than or equal to the
corresponding entries ef. Thus, an operatad is positive if (a;;) > 0. Similarly, a vectorz is called
positive (or also nonnegative)if > 0. We callx strictly positive, if all entriese; of z satisfyz; > 0.
Moreover, ifu is a vector with entries;, then|u| denotes the vector with entriég;| (a corresponding
definition is used for matrices).

The dual space aP, 1 < p < oo is isomorphic to/?, wherel /p + 1/q = 1. Note, that the dual space
of ¢! is ¢>. If p is fixed, we use throughout this work the lettefor the real number which satisfies
1/p+1/g=1ifp>1landg = cifp=1. If x € (P and€ € (7 = (¢P)’, we denote by(x) the
functional evaluated at:. Analogous to the finite dimensional case, we also use thegioo¥ - « and
2"z instead oft(z).

If 1 < p < oo, the adjoint operator of an operatdr(denoted byA*) is acting onf?’ = ¢4, The
operatorA* can be associated with the mat(ix;; )1<; j<oo acting oné? (which we do in the sequel
without explicitly saying so). Ifc is an eigenvector ofl we also call it right eigenvector of and if y is
an eigenvector ofi* we call it left eigenvector of.

The study of operators (or matrices)is is different. In fact, the spade€® is not separable and there is
no one-to-one correspondence between operators and esatffctually, there exist nontrivial compact
operators, such that the corresponding “matrix repretientas the zero matrix.) Nevertheless, if we
have a matriXa;;)1<i,j<-, We define an operatof on (> via

(Az); = Z @ik T,
=1

if the summation is well-defined for all > 1 and for allz € ¢>°. In the case thatl = (a;;)1<i,j<oo IS
an operator frond' to ¢!, we get that the dual operator froftt to £ is given by(a;i)1<i,j<~ (asin the
(P-case fop > 1).

Throughout, we denote bly, the identity operator or? (with matrix representatiofd;; )1<i,j<oo;
whered;; denotes Kronecker’s delta function).
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3 Main Theorems

Our first result is a generalization of a result of Morgenbe$2010), where only one counting variable
was considered. It determines the kind of singularity ofgblition of a positive irreducible and infinite
system of equations. Note that it is more convenient to wriie the formu = eV, thatis,u; = e%. The
reason is that in the functional analytic context of our hssitiis natural to work in a neighborhood of
v = 0 instead of a neighborhood af = 1. Anyway, in the applications we will use againsince this is
more natural for counting problems.

Theorem 1 Letl <p<oo,1 <r<ocandF:Cx P x{" — (P (z,y,v)+— F(x,y,v) beafunction
satisfying:

1. there existopenball8 € C,U € ¢ andV € ¢" such thai0,0,0) € Bx U x V andF is analytic
inBxUxV,

. the functionz,y) — F(z,y,0) is a positive function,
. F(0,y,v)=0forally € U andv € V,
. F(z,0,v)#0inBforallveV,

a A~ W DN

. g—g(:p,y,ﬂ) = A(z,y) + a(z,y) I, forall (x,y) € B x U, wherec is an analytic function and

there exists an integet such thatA™ is compact,
6. A(x,y) is irreducible for strictly positivéx, y) anda(z,y) has positive Taylor coefficients.
Lety = y(z, v) be the unique solution of the functional equation
y=F(z,y,v) (4)

with y (0, v) = 0. Assume that fov = 0 the solution has a finite radius of convergenge> 0 such that
vo := y(zo, 0) exists andzg,yo) € B x U.
Then there exists > 0 such thaty (z, v) admits a representation of the form
X

xo(V)

Y(xvv) = g(:L', V) - h(x,v) 1- (5)

for v in a neighborhood 00, |z — 2¢(v)| < ¢ andarg(x — zo(v)) # 0, whereg(z,v), h(z,v) and
xo(v) are analytic functions with; (z(0),0) > 0 for all 7 > 1.

Moreover, if there exist two integers andn, that are relatively prime such that™! |y, (z,0) > 0
and[z"2]y;(z,0) > 0, thenzy(v) is the only singularity o (z, v) on the circle|z| = z¢(v) and there
exist constant8 < 6 < w/2 andn > 0 such thaty(z, v) is analytic in a region of the form

A= {z:|z] <z0(0) +n,|arg(z/xo(v) — 1) > d}.
Remark 1 As we will show in the proof of Theorem 1, the pdiry, yo) satisfies the equations

Yo = F(ZE(),y(),O),
JOF
r <$(‘T05y050)) =1



Infinite Systems of Functional Equations and Gaussian igDistributions 7

The main reason for this property is the fact that we have msslthat(zg,yo) lies in the domain of
analyticity of F'. For a detailed study in the finite dimensional case of suatadled critical points see Bell
et al. (2010). Note furthermore, that the existence of a {p6in, yo) satisfying the above equations
implies thatF is a nonlinear function iry.

Remark 2 In the stated result we have assumed that the fundiiaas defined on some subset@fx

P x £, wherel < p < coandl < r < oo and that the range of’ is a subset of?. The same result
(with obvious modifications of the proof) holds true if onplages one (or both) of the spac&sand /"

by finite dimensional spac@™ andR™. In the case that both spaces are replaced by finite dimeakion
ones, the statement was proven in Drmota (1997).

Corollary 1 Lety = y(z,v) be the unigue solution of the functional equat{dy and assume that all
assumptions of Theorem 1 are satisfied. SupposezhatC, /7, ¢") — C is an analytic function such
that (x0(0),y(z0(0),0),0) is contained in the interior of the region of convergence #mat

oG
y
Then there exists, ¢ > 0 such that7(x, y(x, v), v) has a representation of the form
- x
G(x,y(z,v),v) = g(x,v) — h(z,v), /1 — 6
(2, y(2,v),v) = g(z,v) = h(z, V) P e (6)

for |z — xo(v)| < e andarg(z — 2¢(0)) # 0 and forv in a neighborhood 06. The functiong(z, v),
h(z,v) and zo(v) are analytic in this domain and(z((0),0) # 0. Moreover,G(z,y(z,v),v) is
analytic forv in a neighborhood 06 and |« — xo(v)| > ¢ but|x| < |zo(v)| + n and we have

[2"]G(z,y(z,v),v) = %}%V)%(VW"B/Q (1 O <%)>

uniformly forv in a neighborhood 0.
As mentioned in the introduction, the solution of a finite ofinite system of equations;(z,v), is

used to represent the generating functjon, v) of the original combinatorial problem, thatj$z, v) =
G(z,y(z,v),v). If we write it as

o0

y(z,v) = G(z,y(z,v),v) = Z en(v)a”,

n=0

(wherey(z, v) satisfies a functional equatign= F(z,y, v) with y(0, v) = 0 such that the assumptions
of Theorem 1 are satisfied) aiXd, denotes the correspondifi¢valued random variable defined on some
probability spac€Q, F,P) (1 < p < oo) then

cn (itl)
cn(0)
for all £ € ¢4. In applications one can think ¢f(z, y, v) to be of the form

G(z,y(z,v),v) = i Z Cnme™ V" = i Z Crmu™z",

n=0 me/p n=0 melr

E [eite»xn} _

()
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wherec, ., denotes the number of objects of sizeind characteristio». Our second result shows that
all bounded functionals dX,, satisfy a central limit theorem.

Theorem 2 Letl < p < oo and suppose thaX,, is a sequence d¥-valued random variables defined
by (7). Furthermore, le? € (9. Then we havé - EX,, = pen + O(1) with pe = f%(o) -£/xo and

()

weakly converges for to infinity to a centered real Gaussian variable with variang = £* B¢, where
B € L(¢1,¢7) is given by the matrix

1 [0z ox 1 02z
(e frer) - L(Zme)
x5 \ 0V Vi 1<ij<oo L0 \OViVj 1<i,j<00

Corollary 2 Let1 < p < oo and suppose thaX,, is a sequence dP-valued random variables defined
by (7) such that the set of laws ¢K,, — EX,,)/+/n, n > 1is tight. Then there exists a centered Gaussian
random variableX such that

X, — EX, v X
vn
whereX is uniquely determined by the operatBre L(¢?, ¢?) stated in Theorem 2.

It is clear that we cannot expect tightness in all cases. ¥amele if we have

xy(z,v)

— Z'zo Vi
y(CC, V) xresa + 1 — y(ZE,V)

then all random variablex ) (s > 0) count the number of leaves in rooted plane trees and the segue
(X, —EX,)/+/nis nottight. Actually, the next theorem shows that even endhse of a single equation
we have to check several non-trivial assumptions. It isfamfbeing obvious how these properties might
generalize to the general case.

Theorem 3 Suppose thag(z, v) is the unique solution of a single functional equatipp- F(x,y,v),
whereF : B x U x V — C is a positive analytic function oB x U x V C C2? x £2 such that there exist
positive real(zo, yo) € B x U withyo = F(x0, yo,0) and1 = F,(xo, yo, 0) such thatf"; (zo, yo, 0) # 0

and Fy, (zo,y0,0) # 0. Furthermore assume that the corresponding random vaeishill!) have the
property thatX,(f) = 01if j > ¢n for some constant > 0 and that the following conditions are satisfied:

ZF”J' < 00, ZFZIQU:' 00, ZF”J'”J‘ < 00,

J=0 j=0 j=0
Fop; = 0(1),  Firyju; = o(1), Fyyo; = o(1), Fyyvu; = o(1),
Fxxvj = 0(1)7 nyvj = 0(1); nyyvj = 0(1)7 Fyyyvj = 0(1)7 (] - OO)

where all derivatives are evaluated @ty, yo, 0).
Then the the set of laws 6X,, — EX,,)/+/n, n > 1is tight and has a Gaussian limit.
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Finally, we mention the (simpler) case when the funcfibis linear iny (as noted in Remark 1, we
considered until now only the nonlinear case). We just siatkprove the following result from which
one can deduce corresponding asymptotic expansions ob#ftoients and limit theorems.

Theorem4 Letl <p<oo, 1 <r<ocandF:C x P x " — (P, (x,y,v) — F(z,y,v) be alinear
function iny satisfying the assumptions (i)—(vi) of Theorem 1.Bet y,v) = L(z,v)y + b(z,v) and
lety = y(z,v) be the solution of the functional equation

y = L(z,0)y + b(z,v)

with y(0,v) = 0. Assume that there exists a positive number> 0 in the domain of analyticity of
L(x, v) such that

T(L(Jco, 0)) = 1.

Then there exists > 0 such thaty(z, v) admits a representation of the form

= ——f(z,v) (8)

for v in a neighborhood 00, |z — 2(v)| < € andarg(z — z(v)) # 0, wheref(z, v) andzo(v) are
analytic functions witHf; (z¢(0),0) # 0 forall ¢ > 1.

4  Applications
4.1 Rooted Plane Trees

As in the Introduction we consider rooted plane trees, wheralso count the number of vertices with
out-degreg > 0. Itis clear that the functional equation (2) satisfies theuagptions of Theorem 3 (recall

thatzy = 1/4). Consequently the random vecky = (X,(f))jzo satisfies a central limit theorem. The
convergence of the finite-dimensional projections (witit@htness) was already shown in Pittel (1999).

4.2 Bipartite Planar Maps

Planar maps are connected graphs that are embedded on #re.sitooted (and also pointed) maps
can be counted by several techniques (for example by thergiiathethod etc.). Recently, a bijection
between rooted maps and so-called mobiles has been dseabtisat makes the situation much more
transparent, see Bouttier et al. (2004). We restrict oueseb the case of bipartite maps, that is, all faces
have an even degree.

In particular letR(z, u) denote the generating function that solves the equation

2j —1\ .,
R=x+ u( . )RJ.
2wl

Jj=1

Then the generating functidlf (=, u) of bipartite maps, where counts the number of edges amgdthe
number of faces of degreg for j > 1, satisfiesM, = R.

Here we can also apply Theorem 3 (in this cage= 1/8). Furthermore, since Eulerian maps are dual
to bipartite maps we also get a central limit theorem for tegrde distribution of Eulerian maps.
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4.3 Subcritical Graphs

Every connected graph can be decomposed into 2-connectepoo@nts (we just have to cut at cut
points). Suppose that we are considering a class of cortheettex labeled graphs with the property that
all 2-connected components of are also in this class B(ef) denote the exponential generating function
of 2-connected graphs in this class &id:) the exponential generating function of all (connectedpbsa
in this class. By the unique decomposition property we hhea¢lation ¢f. (Harary and Palmer, 1973,
p.10, (1.3.3)))

C/(l’) _ eB’(:cC’(x))-
Note thatC’(x) is the generating function of pointed graphs, that is, onmtexes distinguished (and not
labeled). A graph class is called subcritical if the radiisanvergence of3(x) is larger than), where
7 is defined by the equationB”(n) = 1. It has been already proved in Drmota et al. (2011) that the
number of vertices of degreein subcritical graph classes satisfy a central limit themrEor fixedj it is
sufficient to consider just a finite system of equations sbdha can apply the methods of Drmota (1997)
to obtain the central limit theorem. However, if we want tmsier allj > 1 at once then we are forced
to use an infinite system.

Suppose thaB? (z, u1, u1, . . .) denotes the generating function of pointed 2-connecteghgravhere
the pointed vertex has degreend the variables andw; count the number of remaining vertices and
the (remaining) vertices of degrgej > 1. Similarly we defineC's (x, u1, us, . . .) for connected graphs.
Then the unique decomposition property implies that we #reegating functions satisfy the relations

BT.(IE,Wl,WQ,. ) i
Cj(z,u) = > 1 N :

l142l24--jlj=5 r=1

wherelV; abbreviates
Wi =Y uip;Cf (z,u)
i>0
with the conventiorC§ = 1 (see Drmota et al. (2011)). The generating function of ggeis then
C*(z,u) = Z C?(z,u).
3>0
This means that we are actually in the framework of Theoremsdl2. The only condition that cannot

be directly checked is the compactness condition of thehiano However, we can apply the following
general property (that is satisfied in the present example).

Lemmal Let H(x,y,w) be a positive functions (as in Theorem 1 in the one dimenk&wtting) and

suppose thay(z) has a finite radius of convergenag (so thatH (z,y, 1) is analytic at(zo, yo)) and

satisfies the functional equatigiiz) = H(z,y(x),1). Furthermore consider the system of equations
yj(xvu) = Fj(waY(xvu)vu)

with positive functions that satisfy all assumptions ofdreen 1 except 5. (the compactness of the Jaco-
bian) and whereF; has the additional property that

Fi(z,y, 1) = [w'H | 2, _yj.w
J
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Then we haveg(z) = >, yi(x, 1) so that all functiongy;(x, 1) have the same radius of convergence as
y(z) and the operatod = g—l;(x, y, 1) is compact.

Proof: The assumptions imply thg(z) = . y:(«, 1) and thatA has rank one. O

4.4 Pattern in Trees

In Chyzak et al. (2008) it is proved that the number of ocawres of a specific pattern in random trees
satisfies a central limit theorem. The proof of this resulsfarecisely into the framework of the present
paper. However, it is sufficient to consider a finite systeneadations. The combinatorial method of
Chyzak et al. (2008) can be naturally extended to count (ae)the number of occurrences of any
pattern. Of course, this leads to an infinite system of eqoatior which Theorems 1 and 2 apply.
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Appendix

Auxiliary results

In this section we prove some spectral properties of comgratipositive operators aif spaces and we
show that the spectral radius of the Jacobian operatbr @hder the assumptions stated in Theorem 1)
is continuous.

Recall that the spectrum of a compact operator is a counsabhith no accumulation point different
from zero. Moreover, each nonzero element from the specisuan eigenvalue with finite multiplicity
(see for example (Kato, 1966, Chapter §16.7)). The following result is a generalization of the Perro
Frobenius theorem on nonnegative matrices and goes backeio Knd Rutman (1950) (see (Zeidler,
1986, Proposition 7.26)).

Lemma2 LetT = (t;;)1<i,j<o0 D€ @ compact positive operator éh (wherel < p < oo) and assume
that~(T") > 0. Thenr(T) is an eigenvalue of " with nonnegative eigenvectar € ¢?. Moreover,
r(T) = r(T*) is an eigenvalue df’* with nonnegative eigenvectgre (4.

Lemma 3 Let A; be a positive and irreducible operator difi (wherel < p < oo) such thatA} is
compact for some integer > 1. Furthermore letx > 0 be a real number and set = A; + aI,. Then
we haver(A;) > 0 andr(A4) = r(A4;) + « is an eigenvalue oft with strictly positive right eigenvector
x € (P and strictly positive left eigenvectgre (9.

Proof: First we show that(A;) > 0. SinceA; is irreducible, there exists an integersuch that
d= (A7), > 0.

Then we have|AT"|| > d™ for all n > 1, where||-|| denotes the operator norm that is induced

by the p-norm on¢? (considerAT"e;, wheree; = (1,0,0,...)). Gelfand’'s formula implies:(A) =
limy, o0 |AT[|Y/™ > d¥/™. Since
a(A7) = (0(A1))",

we have that := r(A;) is equal tor(A})'/". Lemma 2 implies that” is an eigenvalue afi} and there
exist vectorst € ¢P andg € ¢4 such that

Atz =r"z, and gAY =1"g.
Thus we have that is also in the spectrum of; andr(A) = r(A4;) + a > 0. (Note, thato(A) =
o(41) 4+ a.) In the following we show that

n—1

T = g TZA?flﬂiz

=0

is a strictly positive right eigenvector of; to the eigenvalue. It is easy to see that;z = rz. We
clearly have that is nonnegative and # 0. Thus, there exists an indgxsuch thatz; > 0. Letk > 1.
SinceA; is irreducible, there exists an integersuch that A7*); > 0. SinceA*z = r™x, we obtain

1 o0
AT'x), = — > AT i > 0.
= o Z IEL ( )i i
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Furthermore, one can show the same way ghat Z;:Ol rig AT is a strictly positive left eigenvector
of A; to the eigenvalue. O

Proposition 1 Letl < p < coandA = A; +al,, C = C; +7]1, be operators of” with v € R*, v €
C and such that there exists an integersuch thatA} and C}* are compact. Furthermore led; be
positive and irreducible such th&f; | < A; and|y| < a but|Cy| + |1, | # A. Then we have

r(C) < r(A).

Proof: Lemma 3 implies that(A4) > r(A;) > 0. If »(C1) = 0, we haver(C) = |y| and
r(A)=r(A1)+a>a> |y =rC).

Assume now that(C) > 0. SinceC} is compact, there exists an eigenvectar /7 to some eigenvalue
s with |s| = 7(Cy). Sincer(C) < r(C1) + ||, we get

r(O)lz] < (r(Cr) + WDzl = [Crz| + vz < (IC1] + [ I )]z < Alz].
If we assume that(A4) < r(C'), then we have
r(A)|z] < Alzl. ©)

Next we show that this inequality can only hold trug4f = 0 or if |z| is strictly positive and a right
eigenvector of4 to the eigenvalue(A) (cf. (Vere-Jones, 1967, Lemma 5.2)):|4 = 0, then (9) holds
trivially true. Hence we assume thaf # 0. Lemma 3 implies that there exists a strictly positive left
eigenvectoy € ¢7 associated to the operatdr Holders inequality and the fact thiat € ¢7 imply

1 oo
@yAM =y-|z] = ;xnan < 0.
Thus we have - (A|z| — r(A4)|z|) = 0 and sincey is strictly positive this can only hold true f£| is an
eigenvector of4 to the eigenvalue(A). The same way as in the proof of Lemma 3 one can now show
that the irreducibility ofA; implies the strict positivity of the eigenvectps|.

It remains to show that(A) < r(C) yields a contradiction. Since is an eigenvector (of'*) we
clearly havdz| # 0. Hence, let us assume that is a strictly positive eigenvector of. We obtain

Alz| = r(A)|z] < r(O)lz] < (ICi] + I [)]2] < Al

Thus, we havgA — (|C1| + |71, ]))|z| = 0. But since|z| is strictly positive andd > |Cy| + |1, | but
A # |C1] + |y 1, |, this is impossible. O

Remark 3 Let A be given as in Proposition 1. Furthermore, IBtbe obtained through eliminating the
first row and first column of4, that is B = B; + aI,, whereB; = ((B1):j)1<i,j<co IS defined by
(Bl)ij = (AI)H—I G+1- Then we have

r(B) < r(A).

In order to see this, note tha is also compact;(4) = (A1) + e« andr(B) = r(B1) + «. Itis easy to
show that Proposition 1 (withh = v = 0) impliesr(By) < r(A1), which shows the desired result.
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Lemma 4 Let the functiorF satisfy the assumptions of Theorem 1. Then we have that the ma

OF
) a.. ) 70
wy) - (G tey0)
is continuous for all positivéx,y) € B x U. Furthermore, if there exists an arbitrary poifi,y,v) €

B x U x V such that
aF( v, V)| <1
/r ay ‘r’y)v )

then the same holds true in a neighborhood®fy, v).

Proof: First note, thatz,y) — g—z(m,y, 0) = A(z,y) + a(x,y) is continuous. Let us fix some positive
(z,y) € B x U (in the following, we suppress andy for brevity). The positivity properties df* and
Lemma 3 imply that (OF /0y) = r(A) + a.. (Note, that we have(0F /Jy) = o(A) + «.) Furthermore,
we have (compare with the proof of Lemma 3)

r(A)" = r(A").

Thus it remains to show that A™) is continuous for positivéz, y). Letr(A™) > 0. SinceA™ is compact
and isolated eigenvalues with finite multiplicity must vamyntinuously (see (Kato, 1966, Chapter IV,
§3.5)), we obtain the desired result. IfA™) = 0, then the continuity follows from the upper semi-
continuity of the spectrum of closed operators (see (K&661 Chapter IV 3.1, Theorem 3.1)).

Now suppose that there exists a pdifty, v) € B x U x V such that

This means, that the spectrum @F/9dy)(z,y, V) is contained in a ball with radius. We can use
again (Kato, 1966, Chapter 1¥,3.1, Theorem 3.1) (the upper semi-continuity of the spectofi closed
operators) in order to deduce that there exists a neighbdbof (z, y, v) such that foral(z,y,v) € D

the spectrum of0F /9y )(z, y,v) is contained in a ball with radius— (1 —r)/2. In particular, it follows

that oF
< — — .
r(ay(m,y,v)) <1-(1-n)/2<1

This proves the second assertion of Lemma 4. O

Proof of Theorem 1 and Corollary 1

Proof Proof of Theorem 1. First, we fix the vector = 0. The implicit function theorem for Banach
spaces (see for example (Deimling, 1985, Theorem 15.3))iésmphat there exists a unique analytic
solutiony = y(z, 0) of the functional equation (4) in a neighborhood6f0). It also follows from the
Banach fixed-point theorem that the sequey®é = 0 and

y(”H)(m,O) = F(m,y(") (2,0),0), n=>1,
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converges uniformly to the unique solutigriz, 0) of (4). SinceF is positive forv = 0, we get that
y(z,0) is positive. Next we show that

Yo = F(.TO, Yo, 0))
F
r<g_y(z05y050)) = 17 (10)
holds true. The first equation follows from analyticity. & ¥ is positive, we obtain that the Jacobian
operator (evaluated at y(z, 0) and0) is positive. Lemma 4 and Proposition 1 imply that the funicti

oo (E eyt 0.0)

is continuous and strictly monotonically increasing. Wefgeeachr < xq that

r <g—£(z,y(x,0),0)) <1

In order to see this note that implicit differentiation yisl

(I — g—ff‘(m,y(l’,O),O)) g—i(l’,O) = 2—5(1’7}’(%0)70)- (11)

Suppose that the spectral radius of the (positive and inibtk) Jacobian operator &t, y(z,0),0) for
somezx < xq is equal tol. Lemma 3 implies that there exists a strictly positive léffemvector to
the eigenvalud. Multiplying this vector to equation (11) from the left yild a contradiction since
%(z,y(x,o),o) # 0 (note thatF(z,0,0) # 0 and thatF is positive). Sincey cannot be analyti-
cally continued at the point, and sincdxg, y(xo)) = (x0,y0) lies in the domain of analyticity df, we
obtain that (10) holds true. Indeed, otherwise the impligiiction theorem would imply that there exists
an analytic continuation.

Next, we divide equation (4) up into two equations (we progegiation (4) onto the subspace spanned
by the first standard vector and onto its complement):

Y1 = Fl(xaylayvo)a (12)
y = F("Ea ylvya 0)7 (13)

wherey = S;y, F = S, F andS, denotes the left shift defined 8 (z1, z2, 73,...) = (z2,23,...).
Observe, that the Jacobian operatofofwith respect tay) can be obtained by deleting the first row
and column of the matrix of the Jacobian operatoFofThe tuple(zy, (yo0)1,¥0) iS @ solution of (12)
and (13). We can employ the implicit function theorem andaobthat there exists a unique positive
analytic solutiony = y(z,y1,0) of (13) with¥(0,0,0) = 0. For simplicity, we use the abbreviation
Yo1 = (yo)1 andyy = Sryo. Set

OF OF
A= — 0) and B=— Y0,0).
By (IOJO, ) oy (Cvo,ym,)’o, )
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Proposition 1 and Remark 3 implies thdtB) < r(A) = 1. Thus, we can employ the implicit func-
tion theorem another time (at the point, yo1,¥0,0)) and obtain thay(x, y1,0) is also analytic in a

neighborhood ofz, yo1,0). Furthermore, we havg(zo, yo1,0) = ¥o. If we insert this function into

equation (12), we get a single equation

Y1 = Fl(xaylay($1y170)50)

for y1 = yi(x,0). The functionG(x,y1) = Fi(x,y1,y¥(x,y1,0),0) is an analytic function around
(0,0,0) with G(0,y1) = 0 and such that all Taylor coefficients 6f are real and non-negative (this
follows from the positivity ofF andy («, y1, 0)). Furthermore, the tuple:, yo1, 0) belongs to the region
of convergence of7(z, y). In what follows, we show thdtzo, yo1, 0) is a positive solution of the system
of equations

Y1 = G(zayl)a
1= Gyl (xayl)a

with GI($Q, yOl) 7& 0 andelyl (IL'(), y()l) 7& 0.

In order to see thak,, (o, yo1) is indeed equal td, note that the classical implicit function theorem
otherwise implies that there exists an analytic solutiog0f= G(z,y;) locally aroundz,. Inserting
this function into equation (13), we obtain that there algists an analytic solutiowy(z,0) of (4) in a
neighborhood of(. As in (11), implicit differentiation yields a contradioti since the spectral radius of
the (positive and irreducible) Jacobian operatoFatt (zo, yo, 0) is equal tol.

Next suppose tha¥,.(zo, yo1) = 0. The positivity implies that the unique solutionmf = G(z,y1) is
given byy; (z,0) = 0. Consider the solutiog(x, 0) of (4) for some reak > 0 in the near of). Since
the spectral radius of the Jacobian operator is smaller thi{&r = small), we can express the resolvent
with the aid of the Neumann series, i.e., we have (cf. (11))

w0 = (1- G ey@.0) Fey@).0
OF " OF
=3 (Grlev@0) Feyw.o

SincedF/dy is irreducible anddF /0x # 0 we obtain that no component of the solutigfi, 0) is a
constant function. In particulag; (x, 0) cannot be constant.

Finally, if Gy, 4, (z0,y01) = 0, it follows from the positivity ofG thatG is a linear function iny;. But
then the condition& (o, ¥01) = yo1 andGy, (zo,yo1) = 1 imply

yor = G(x,y01) = G(2,0) + Gy, (z,yo1) - yor = G(,0) + yo1.

Thus we have in this case th@{z, 0) = 0. But then (since7,, (z,y1) = G(z,1) andG(0, y1) = 0), the
only solution of
y1 = G(z,y1) = Gy, (z,901) - 1

isy1(x,0) = 0. As we have seen before, this is impossible.
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It follows from (Drmota, 2009, Theorem 2.19) that there ex@unique solutiog(z1, 0) of the equa-
tiony; = G(z,y1) with ,(0,0) = 0. It is analytic for|z| < z¢ and there exist functiong (=, 0) and
hi(z,0) that are analytic aroune}, such thatj; (z, 0) has a representation of the form

1(,0) = g1(7,0) ~ hu(,0) 1 - = (14)
locally aroundzq with hy(z9,0) > 0 andg; (zo, 0) = yo1. Due to the uniqueness of the solutigfx;, 0)
of the functional equation (4), we have that the first compomé y(z, 0) coincide withg, (z,0), i.e.,
y1(z,0) = g1 (x,0). Moreover, we gey(x, y1(x,0),0) = (y2(z,0),ys(z,0),...). More precisely, the
analyticity ofy implies that there exist an > 0 and vectors., (x) := a,(x, g1(x,0),0) € ¢? such that
>, llan ()] 5" < oo and

an ()
n!

¥(z,v1,0) = ¥(x,91(2,0),0) + Y | ((yl - gi(, 0))")7 (15)

n>1

and we obtain

¥ (z,y1(x,0),0) =¥(z,g1(z,0),0) + Z %azn(lf)(hl(x, O)Qn)

e (1-2)

- N 7 2n+1
- 2 (2n+1)! a2n+1(2) (hl(z’o) )
_ — x
=g(z,0) — h(z,0),/1 — —.
0

In particular, we get the desired representation

y(z,0) = g(x,0) —h(z,0),/1 — x
Zo
with g(z,0) = (g1(x, 0),g(x,0)) andh(z,0) = (hi(z,0), h(z,0)). Furthermore, we have the property
h;(x,0) > 0. Since the same result can be obtained when equation (49jiscped onto the subspace
spanned by théth standard vector and onto its complement, we obtainlih@t, 0) > 0, either. (Note,
that the reasoning of Remark 3 also works when g row and column of the Jacobian matrix is
deleted.)

Until now, we have shown that the statement of Theorem 1 esfouv = 0. Next, we prove that the
solutiony (z, v) is also analytic inv. We have seen before, that
OF
a— ) 7_5 0 <1
r <(’)y (zo, (¥o)1,¥0 ))
It follows, that there exists a unique solutigiz, y1, v) of the function equation

y= F(xaylay7 V)
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for all (z,y1,v) in a neighborhood ofx, (yo)1,0). Inserting this solution into (12) (but this time with
the additional variable), we have already seen that the functional equations

y1 = G(z,y1,v),
1= Gy1 (zaylav)a

with G(z,y1,v) = F1(z,y1,y(x, 41, V), v) have a positive solutiolzg, (yo)1,0). Furthermore, note
thatG,(zo, (y0)1,0) # 0 andGy, ,, (zo, (¥o0)1,0) # 0. Since we have (evaluated(ab, (yo)1,0)) that

-G 1-G
det * yl) - Gm -G 1Y1 05
<_Gy1,l‘ _Gy1,y1 yry ?é

the implicit function theorem implies that there exist wmganalytic functions:y(v) andy;(v) in a
neighborhood of, such that we have, (v) = G(zo(v),y1(v),v) andGy, (zo(v),y1(v),v) = 1. In
particular, we havery(0) = z9 andy;(0) = (yo)1. ¢From continuity it follows that for any in
a neighborhood 00 we haveG,(zo(v),y1(v),v) # 0 and Gy, y, (xo(v),y1(v),v) # 0. Thus, the
Weierstrass preparation theorem implies that there erislyic functionsg; (x, v) and h;(x, v) such
that

y(z,v) =gi1(z,v) — hi(z,v), /1 — (16)

zo(v)
(see for example the proof of (Drmota, 2009, Theorem 2.1B3erting this solution intgr(x, y1,v)
(cf. 15), this finally proves (5).

In what follows, we show that,(v) is the only singularity of/(x, v) on the circldz| = x¢(v). Recall
that by assumption, there exist two integersandn, that are relatively prime such thiat** ]y, (z,0) > 0
and[z™2]y1(z,0) > 0. In order to show the desired result, it suffices to show that

Gyl(xayl(xav)av) #1 (17)

for |z| = zo(v) butz # x¢(v) (compare with the proof of (Drmota, 2009, Theorem 2.19)) usfirst
study the case& = 0. Sincey;(z,0) is positive, we clearly havgy:(z,0)| < y1(|]z|,0). If equality
occurs, then

ny _

x |z|™ =i and 2" = |z|"? = z(>.

Sincen; andns are relatively prime we obtaim = xy, which is impossible. Thus, we actually have
ly1(x,0)] < y1(|z],0). The positivity ofG implies

|Gy1 ($,y1($,0),0)| < Gy1(|$|a |y1($,0)|,0)
< Gy1(|x|ay1(|$|70)a0) = Gy1(x07 (yO)lvo) =1

¢From continuity we obtain thé®,, (x, y1(x, v),v)| < 1and (17) follows. Thus, there exists an analytic
continuation ofy; (x, v) locally aroundz. ¢ From positivity, it follows that

OF

OF
e <y<x,o>>1,y<x,o>,o>\ < ] (20, Y01, 50,0)]

9y
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Employing Proposition 1 yields _

H(F e vm) <1
for 2/ = xz andv = 0. Lemma 4 implies that the same holds true for(all, v) in a neighborhood of
(z,0). The implicit function theorem implies that we can inse# fhnctiony; (x, v) into the solution of
equation (13). We obtain that (v) is the only singularity of/(x, v) on the circlelz| = z¢(v) and there
exist constants andn such thaty(x, v) is analytic in{xz : || < zo(v) + n,|arg(z/xo(v) — 1) > ¢}
(note, that locally around, (v) the representation (16) yields an analytic continuation). O

Proof Proof of Corollary 1: The first part of the proof is similar to (15). Sin€&z,y,v) is analytic
in (z9(0),y(z0(0),0),0) there exist ars > 0 and continuous symmetrie-linear formsA,,(z,v) :=
A, (x,g(x,v),v) (defined on the the right space) such that

D [ An(z, V)] s™ < o0

and
Gy v) = Glaglev) )+ 0 0 (g g v,
Note, that )
Ao ¥)(F) = o (0B, v).¥) € 1
and oG
Ai(@0(0),0) = 5= (20(0). ¥(20(0).0),0) # 0

by assumption. We can write

G(‘TaY(xvv)vV) - G(z,g(x,v),v) + Z

xo( = (2n+1)
=g(z,v) — h(z,v), /1 — $0:€V)

Moreover, we have thatandh are analytic and

h(0(0),0) = Ay (x0(0),0) - h(z0(0), 0) # 0.
(Recall thath € ¢? andh;(x¢(0),0) > 0 for all i« > 1, see Theorem 1). The analyticity of(v) and
G(z,y(z,v),v) follows from Theorem 1. Using the transfer lemma of Flajaletl Odlyzko (1990) (the
region of analyticityA from Theorem 1 is uniform iv) we finally obtain that

16y (ev)w) = N gy (14 0(1))
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uniformly for v in a neighborhood 0. (Note, that the part coming frog{z, v) is exponentially smaller
than the stated term.) i

Proof of Theorem 2 and Corollary 2

Recall thatG(z,y, v) is the generating function of some combinatorial objechefform
G(z,y(z,v),v) =Y enl(v)a",
n=0

wherey(z, v) satisfies a functional equation

y =F(z,y,v)

with y(0,v) = 0 such that the assumptions of Theorem 1 are satisfied. MareKyedenotes arf’-
valued ( < p < oo) random variable defined on some probability spdeeF, P) with

E [e*%Xn] = cn(itk)
cn(0)
forall £ € ¢4,
Proof of Theorem 2: We havel € (4. Corollary 1 implies that uniformly in (for small values of) that
, h(wo(ite),itl) = . 4 1
Cn (zt@) = Tl’o(lte) n 1+ O E s

whereh andzx, are analytic functions . Thus we get
. itl)  h(zo(itl),itl) [ 20(0) \" 1
E [eit6Xn] — cn(l _ L 1+0 (= )
[ = (0) ~  h(x0(0),0) \xo(ite) HO\n

)=o), ) —toe (212) . ang <>(%)

These functions are analytic in a neighborhood &f 0 and we havefy(0) = g¢(0) = 0 and®,(0) =
z0(0). We obtain

Set

E [eiwxn] — efe(it)ntae(it) (1 4 O 1
n

_ eitugn—ogn%+0(nt3)+0(t) (1 +0 (l)) ,

n

wherew, = f,(0) andoj = f;/(0). Replacing: by t/\/n we get

E {eit[x"/‘/ﬁ} = eit““ﬁ_agé""o(t/ﬁ) (1 + O <l>) . (18)
n
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By definition,£-EX,, = E[£-X,,]. If we sety,,(t) = Ee!¢ X~ thenE[¢-X,,] = —i-x/,(0). By Cauchy’s
formula, we have

, 1 X ()
i (0) = —=— du.
7 Xn( ) o s ") U
Settingp = 1/n, we get
1 1+ iugy(0) + O (u? 1
E6-X,] = —— ““W”““ng( ) +0(w?) (1+O<—>)du
2T lul=1/n u n
1
== B 4+ 0(1).
211 lul=1/n u
This impliest - EX,, = uen + O(1). Setting
y, i Xn ZEX,
N

we finally obtain (see (18))

lim E [eiw'Y"] =€ d%f .

n—oo

In particular, this implies thaY,, weakly converges to a centered Gaussian random varialile/asitance
o3. Itremains to calculatg, ando}: Sincex, : £¢ — C is an analytic function, it follows that there exists
avectordzy /v : (1 — (P ~ (£9)* (the first derivative) and an operat@tzo/ov? : (4 — L(¢9, () (the
second derivative) such that

ox

sall) = a0(0) + G20) -+ 5

82$0
ov?2

<o>) (h) b+ o(B%)

in a neighborhood 0®. Note, that the second derivative can be associated witntiméte dimensional
Hessian matrixd = (a;;)1<i,j<oco Via

<82$° (0)) (h) -h = ht’ Ah,

ov?
where 92,
g = ov;v;
We obtain ) 1 Do
He Be(0) Dp(0) = T B(0) W(O) £,
and
/ 2 " " 2
(o R R ol L CR
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If we defineB € L(¢, ¢P) by

1 8$0 8:1:0 T 1
B4(0)? (W(” v O > T B0t

then we have
o7 =¢7Be.

This finally proves Theorem 2. |

Proof of Corollary 2: SetY, = (X, — EX,)/+/n. Since the set of laws ofY,,),>1 is tight, we
know from Prohorov’s theorem (see (Billingsley, 1999, Cieap, Section 5)) that the set of laws of
(Yn)n>1 is a relatively compact set. In particular, it follows thhete exists a subsequen@g,, )i>1
that weakly converges to some random varidXleLet x,(¢) be the characteristic function éf X, that
is, xe(t) = Ee'**X. ; From weak convergence¥f,, , we obtain on the one hand that

lim E [eiw'Y"k‘] = xe(t)

k—o0o

for all £ € ¢4. One the other hand, Theorem 2 implies that there exist antsst; such that

lim E [eti"] =e 2

n—oo

for all £ € /1. Hence we see that we actually have

and thus X is a centered Gaussian random variable. Moreover, we ofitatmot only(Y,,, )x>1 but
(Y,)n>1 weakly converges t&X. Since the distribution aK is uniquely determined by the distributions
of £-X, £ € ¢, we obtain thaiX is uniquely determined by the operaf8rstated in Theorem2. O

Proof of Theorem 3

For the sake of brevity we just give an outline of the proofrd@llary 2 implies that we only have to show
the tightness condition. Theorem 6.2.3 of Grenander (1963s that tightness follows from the property

X7(1]) _ EX7(LJ) 2
lim supE | ) K —BX)T) (19)

N—00 4> . n
n>1 JSN

First of all we know by assumption théct,(f) = 0if 7 > cn. Hence the condition (19) reduces to

lim sup Z Ufm =0, (20)

whereo?. ; denote the variance of the normalized random variemg) - EX,(lj))/\/ﬁ.
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Now assume that we know thaﬁ_’ ; Is asymptotically given by

n.j

02 =0+ T?Z +0(n72), (21)

where
ZO’? <oo, and 7;=0(1) (j— 00),
720
and the error term is uniform for afl > 0. Then it is clear that (21) implies (20) and, hence, tightnes
follows.
By Theorem 2.23 of Drmota (2009) we already know that we havexgpansion of the form (21) and
thato? is given by

E,. F,. \?2 1
2 vj vj 2 2
o5 = + 4 —=F (FyyFo.v, — F,, ) = 2F, Fy (FyyFoyw. — FyaFyo.
I $01x ($01I) $0F§’Fyy( I( Yys viv yvj) ]( vy 7 yety J)

+ F2 (FyyFaw — FL)).

By assumption it is then clear that the s@wf is convergent. In a similar (but slightly more involved)
way it is also possible to calculatg explicitly, from which we easily deduce the convergenge- 0.

Proof of Theorem 4
In this section we prove Theorem 4. Let us recall fRatan be written as

F(z,y,v) = L(z,v)y + b(z,v),

whereL(x,0) = A(x) + a(z) I, a is an analytic function, and there exists an integsuch thatd™ is
compact. Furthermored(z) is irreducible and strictly positive for > 0 anda andb(z, 0) has positive
Taylor coefficients. MoreoveE (0,y, v) = 0 for all y andv in a neighborhood o.

In order to show the desired result we proceed as in the pfobfieorem 1. Let us first assume that
v = 0 (in the following, we suppress the variable= 0 in order to make text more readable). The
implicit function theorem (and the Banach fixed-point trera) implies that there exists a unique analytic
and positive solutiory(z) of the function equatioy = F(z,y), y(0) = 0. SinceF is linear, this can
be also deduced from the following reasoning: Sinde(0)) = 0 (note, thafF'(0,y) = 0 forall y in a
neighborhood 00), we see that the solutign(z) is given by

y(@) = (I, ~L(x)) 'b(z) = ) L(z)"b(x).
k=0

Here we also used that the inverséf—L(x)) can be represented by the corresponding Neumann series
as long as'(L(z)) < 1. SinceL andb is positive, the solutioly is also positive. Note, that the solution
exists for allz < ¢ and that there is a singularity ag.

In what follows we split the functional equatign= F(z,y) up into two equations (cf. (12) and (13)).
SinceF is linear, this gives

'Y +bi(z) (22)
(), (23)

y1 = lii(z) - y1 +1.()
¥ = yile(z) + L(2)y +
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where we denote bl the vector inf? associated to the first row of the infinite matiix(that is, 17" =
el'L), by, the first column ofL,, and byl;; the element? Le;. The operatoL is defined as the operator
S¢LS,., whereS, is the left shift- andS,. is the right shift operator; moreover we st Sya. Note that
the matrix representation &f is equal to the matrix representationlofvithout the first row and column.
Sincer(L(xg)) = 1, we obtain (cf. Remark 3) tha{L(x,)) < 1. Thus, the solution of (23) is given
by
¥(@.y1) = (I, ~L(@)) " (v1L(2) + B(x)).

Inserting this solution into Equation (22) gives

and

Then we have
_ k(@)

1—y(z)
Note, thatk(x) is analytic forz in a neighborhood aof,y. Note furthermore, thaf(z) is also analytic for
2 in a neighborhood of and that it is a positive function, and thus, a monotonidaltyeasing function
(again, this can be shown with the help of the Neumann serM#) also know thaty(zo) = 1 since
otherwise(I, —L(zo)) would be an invertible operator (contraryt@L(zo)) = 1). Finally we set (for

T # xo)

y(z)

_ -z k@)
f(z) = 1—7(x) a0
We obtain that 1
y(z) = - f(z)

To
In order to finish the proof of Theorem 4 for = 0 it suffices to show thaf(z) can be analytically
continued tary and thaff (z); # 0 for all j. First note that
To— T k(z) 1 k(zo)

lim f(z) = lim . = . . 24
Jn @) = i ) =@ = Y(@) 24)
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This implies that for every € ¢4 the limit

lim €-f(z)

T—T0
exists. Riemann’s theorem on removable singularities moplies that¢ - f(z) can be continued ana-
lytically to z for all £ € ¢9 which finally implies thatf(«) can be analytically continued te,. Since
v'(z0) # 0 (v is positive) andk(xzg); # 0 for all j (this follows from irreducibility with the help of the
Neumann series), we have also proved fitat ), # 0 for all ;.

In the second part of the proof we show that the result holsls e forv in a neighborhood 06.
First we see that Equation (23) can also be solved with thitiaddl parametex. Indeed, the analyticity
of F and Lemma 4 imply that(L(zo,v)) < 1 for all v in a neighborhood 0. Inserting this solution
into Equation (22), we obtain in the same way as above that

k(x,v)

A T

for some analytic functiok(z, v) and fory(z, v) = li1(z,v) + 1.(z, v)(I, —L(z, v)) "'1.(x, v). Since
~'(z9,0) > 0, the implicit function theorem implies that there existsaalytic functionzy(v) in a
neighborhood 06 such that

Y(xo(v),v) = 1.

Thus we obtain with
xo(v) — 2z k(z,v)

f(l') = 11— fy($7v) . :EO(V) s T 7é $0(V),
that )
y(z,v) = qf(x,v)

As before, we see théitcan be continued analytically tg(v). This finally proves Theorem 4.



