GENERAL URN MODELS WITH SEVERAL TYPES OF BALLS
AND GAUSSIAN LIMITING FIELDS

MICHAEL DRMOTA* +, DANIELE GARDY** +, AND BERNHARD GITTENBERGER* t

ABSTRACT. We study a system of m urns, where several types of balls are
thrown, and an additive valuation is assigned to each urn depending on its
state. Examples are the join models studied in a database context, and some
models whith two types of balls. The object of our investigation is the evolution
of the valuation with time, when a ball is thrown at each time unit. By means of
a generating function approach we show the weak convergence of the valuation
to a Gaussian field.

1. INTRODUCTION

Our main motivation is the analysis of some random allocation models that have
been proposed to study the dynamical behaviour of relational databases. The second
author introduced urn models to study the so-called sizes of relations obtained by
projection or joins [8, 9]. The projection model is basically a generalization of the
empty-urns model (see [15] for a detailed presentation of this last model, both
for the asymptotic distribution and for the limiting process under a large set of
assumptions), and we gave in [6] an analysis of the asymptotic process in a restricted
dynamic case (balls are added one at a time, no deletions are allowed). The present
paper has its origin in the more involved models required to deal with joins with
insertions, or to allow for deletions in the database. These kinds of combinatorial
objects have turned out to be of interest of their own; they can also be applied to
completely different fields, e.g. to biological problems etc.[13]

A general formulation of the urn models for joins might be as follows. Consider
a sequence of m urns into which we throw different types of balls according to some
rules. The balls are thrown one at a time and independently. Moreover, we assume
that the balls of one type are undistinguishable. Assign to each urn U containing
k; balls of type i, i = 1,2,...,d, an integer valued valuation f(ki,ks,...,kq) > 0.
We are interested in the random variable X,,, equal to the sum of all valuations. If
we denote by K;; the number of balls of type ¢ in the jth urn, then we have

m
Xm = f(Kij..., Kq).
j=1

This formulation allows us to present a unified treatment of several urn models :
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e Semijoin and equijoin models in dynamical databases, where we have two
types of balls and the valuation is the join size (see [8, 9] for the definition
of the semijoin and of the equijoin, and for their modelization by random
allocations of balls into urns) :

k11[g,>0) for the semijoin,
k1ko for the equijoin.

f(k1;k2)={

A first study of the dynamic behaviour of join models under some assumptions
was presented in [11], where each case required an ad hoc treatment.

e Urns of balance ¢ : There are again two types of balls; the balance of an
urn is the relative difference between the numbers of balls of each type, and
the valuation is the number of urns with the specified balance : f(kq,k2) =
1[ky—ky+q]- Such models were introduced in [3] to study the behaviour of a
learning process; they also appear in [6]. The model we consider in the present
paper differs somewhat, in that here the number of balls of each type is known,
whereas the former study assumed that only the total number of balls was
known.

e It should be mentioned that the general urn model previously studied by the
authors in [6] also fits into this scheme : There we (in most cases) had one
type of balls and we counted the number of urns in a certain state C. For
these urn models the function f can be defined by

1 if the urn is in state C
(k) = { 0 otherwise

We shall prove in this paper that, when the balls are thrown at each unit time,
the process associated to the number of urns with a specified number of balls of
each type converges weakly towards a Gaussian field, whose covariance function
can be explicitly computed.

A second contribution of our paper is the proposal of a model that allows for dele-
tions of balls. Again we obtain the convergence of the relevant parameter towards
a Gaussian process.

The plan of the paper is as follows. In Section 2 we present a very general urn
model based on a generating function approach and formulate our main result : We
prove that, under suitable conditions, the global valuation X,, converges towards
a Gaussian field. We study several examples in Section 3 (join and balanced urns
models); for example the equijoin leads to variations on the Brownian sheet. Sec-
tion 4 introduces a model for deletions and validates this approach on an empty-urns
model. Finally Section 5 gives the proof of our theorem.

2. CONVERGENCE TO A GAUSSIAN FIELD

2.1. Generating Functions for the Motivating Model. First, let us consider
the motivating model described in the Introduction.

We consider d types of balls which are thrown into m urns. Let g¢;(y) =
> k>0 a;xy*, 1 < i < d, be the generating functions enumerating the allocations
of balls of type i into a single urn.! Hence, the generating function describing the

1We will apply the generating function technique for combinatorial enumeration (for an intro-
duction to this method see e.g. [7, 12]).
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allocation of balls in one urn is given by
E1yenska) Lk k
o1(x, 21,5 2d) = E alkl---adkdxf( 1 d)zll---zdd,
k1,...,ka>0

where x marks the value of this urn. Due to the additivity property described in
the Introduction, the generating function of the situation of m urns is given by

Dy (2,21,---,2q9) = 1(x,21,---,29)™-
More precisely, let X, (n1,ns2,...,nq) denote the (additive) value of these m urns,
where n; balls of type 7, 1 < i < d, have been thrown, i.e.
[wkz?l e znd]q)l(xa Rly---s zd)
P{X,(ni,ns,...,ng) =k} = d
(Xl Tz osma) = M = T (L2
If we define
Dy(z1, 22, T 21, -+, Zb) = Op(T1, %2, -, Tb; 21, -, Zb)"
with Zj = (le, .. .,Zdj) and
op(x1, T2, Ty} 21, -, ZD)
b d
(2-1) _ Z H (w;(kll"‘"""klj,k21+"'+k2j,---’kd1+"'+kdj) H Qik;; ZZ’J)
j=1 i=1

ki; 20
1<i<d,1<5<b

we also get the finite dimensional distribution, i.e.

P{Xm(nl) = kl,Xm(Ill +1’12) = kg,... ,Xm(n1 + ns + "‘+Ilb) = k‘b}

2.2) _ [wfl . --x’,f"z'lll < ZgP | Py (T, X2, - -, T3 B, - -, BD)
) (7% ---Zz5®]®(1,1,... , 1521, ..,2p) )
2.2. Main Result. The nature of ®(z,z21,...,24) (i-e., a m-th power) allows a

straightforward application of the results of Bender and Richmond [1], which gives
directly the convergence towards a Gaussian distribution. Especially the asymptotic
mean

[20t .. .zgd]ailbl(l,zl, ey 2q)
2.3 EX ey ng) = a
(2.3) m(n1,-- -, nd) [27" - 27?1 ®@1(1, 21, . ., 2a)
and variance
2
[Z{Ll . ng]8—2¢1(17 ARREEE) Zd)
VarX = = o
ar Xy, (n1, .- -, Nq) [z - 204)®1 (1, 21, .- - , 2a)
(2.4 FBX (1, 1) = (BXon (1, m0))?

are both of order m (as we will see in a moment). The idea is now to approzimate
Xm(ni,...,nq) by

Xt yna) % BXp(na, .. ,nq) + Vi - Glny fm, ... ,na/m),

where G(t1,... ,tq) is a proper Gaussian field.

The following theorem shows that this can be actually worked out. Note that
Theorem 2.1 just refers to very general properties of generating functions and is
thus applicable in more general situations.
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Theorem 2.1. Let X,,(n1,...,nq), m > 1, n; >0, be a discrete process, such that
there exist entire generating functions

oo(T1,%2, .., T} 21, - ,Zb)
with z; = (21,...,2q;) such that the following conditions are satisfied:
1. (2.2) holds with &, = ¢}".
2. ¢1(1,0) = 1.
3. =22(0,0) #£0 fori=1,... ,d.

8z,~
4. ¢b(1;17- .. 7].,Zl,. .. 7Z]:,) = ¢1(1,Z1) . --¢1(1,Zb).
Then there exists a centered and continuous Gaussian field G(t1,...,tq), t; > 0,
such that the following functional limit theorem holds:

Yottty oo XLty lta]) = BXm(lmta ), s Ita)) ) gy

Jm

The covariance function Bs, .. sut1,..ta 0Of G(t1,...,tq) satisfies Bs,, . suty,...ta =
Bmin(51,tl),...,min(sd,td);max(sl,tl),...,max(sd,td))7 i, t; >0, and fOT 8; <ty it s given by

"Qulug Hulvl et "aulvd
K/U1 uz K/U1 U1 et ’im Vd
2 5 B K:’Uduz "devl e K‘vdvd
( . ) S1,..,8a5t1,.0ta = )
Kyiv tee K/vlvd
K/’Udvl ot ’ivdvd

where Ky, (y,z € {ui,u2,v1,...,va}) is defined by

L 62(10g ¢2 (eu1 ) eU27pllev17 s apdlevd7pl27 s 7pd2)
Ryz = G
Yyoz

ulzugzvlz---:’ud:()
and pin = pi(s1,-..,8q4) and pi2 = pi(t1 — 81,...,ta — 8a) (i = 1,...,d) are the

saddle points p; = pi(11, ... ,7q4) which are defined by the equations in z;

2 6¢1(17215 e 'azd)
¢ 82,’

(26) = Ti¢1(1;21;---;zd); izl,...,d.
Furthermore we have

EXm(nla s and) =M fin,/m,... ng/m + 0 (1) )

where

(2 7) u — 3_i¢1(13p1(317"'78d)5"' 7pd(815"'53d))
Phyotd #1(1,p1(81, -, 84),--- ,pa(81,---,54))

and

COV(Xm(’I’Ll, ey nd), Xm(ﬁl, e ,’ﬁd)) = mBm/m,“_,nd/m;ﬁl/m,___,ﬁd/m + 0 (1) .
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Remark 1. Note that k,, can be easily represented explicitly. We have

& _0%¢> __ 8¢ 042
28210z (93)1(9322 3.’/51 ng
K/Uq’UQ - b
b5
b _0°¢s  _ O¢2 ¢
_ 2521021 Oz1 O0zi1
Rujv; = Pil ¢2 )
2
b %¢s  _ 903 063
_ 2 B8z;10To Bz;1 Oz
Kyjus = Pil ¢2 )
2
2i10zi2 Zi Zi
Ryv; = le 513 + pirpj1 B P H=
¢2 ®3
where we have to evaluate at (z1,22,21,22) = (1,1, 011, -+ , Pd1, P12, - -  Pd2)-

Remark 2. We want to point out that the assumptions for the generating function
¢p have two interesting implications which will be frequently used in the proof of
the theorem. We have

(2.8) $2(x1, 72,21, 0) = ¢1(T122,21)-
and
(2.9) $2(x1,1,21,22) = d1(x1,21) 1 (1, 22).

In order to show (2.8) we use (2.2) for b = 2 and n, = 0 and use the fact that
$2(1,1,21,0) = ¢1(1,21)$1(1,0) = ¢1(1,z1).

The proof of (2.9) is similar. We again use (2.2) for b = 2 but sum over all ks.
We also have to use the relation ¢o(1,1,21,22) = ¢1(1,21)¢1(1,22) in order to get
correct normalization.

The equations (2.8) and (2.9) can be also used to derive a simpler expression for

BS1,...,Sd;sl,...,3dﬂ na‘mely
Fuu R'/uvl /%uvd
KByiu  Boivg Koivg
g]vdu kvdv1 ’%vdvd
(210) le,...,sd;sl,...,sd = Msq,...,54 + = )
K:’U1’U1 K/’Ul’Ud
kvdvl R'Udvd
where &y, (y,2 € {u,v1,...,v4}) is defined by
2
P o 0 (log ¢1 (euaplevl; v apdevd)
Y,z 1
ayaz U=v1="+=vq=0

and p; = pi(s1,---,84) (1 <1i < d) are defined in (2.6). Of course, we have
VarX,,(n1,...,74) = M By, /m,...na/mn1 fm,..ona/m + O (1) .
If ¢; = s; then by (2.6) we have p;» = 0. Thus we can apply (2.9) and get
Kuyv; = Ruv;s
Ky;us = Kou,
Kusn; = Ry,v; -
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Furthermore, we obtain by using (2.8)

é %¢2 _ O¢a 82
— 2 81118.’/02 81)1 3:02

ﬁu1u2 - ¢§
_ #gu%(wlm,pu,--- , Pa1)
B é1(z122, P11, - - - 5 Pd1)
%%(mlxzyl)u, .. ,pdl)%%(wlwmpu, .. ;pdl)
- ¢1(z122, P11, - - - 5 Pa1)?
%(1,/}11,... ,Pd1)

(L, p1a,- -, par)

2 2
611,11, s par) 52 (L, p11s- - s par) — (%(LPM,--- ;Pd1))
+
¢1(17P117--- 7pd1)2

= Msy,...,s4 + Kyu-

This proves (2.10).

Remark 3. The assumption that the functions ¢, are entire is not a necessity; the
actual requirement is that any saddle point considered during the evaluation of a
Cauchy integral throughout the proof be closer to the origin than any singularity
of the integrand. Moreover it is not necessary that the generating functions ¢
are power series in x;. We only have to require that they are analytic in z; in a
neighbourhood of 1 which provides that we can also treat real valued valuations
f(kla"' Jkd)'

3. JOIN AND BALANCED URNS MODELS

As discussed in the Introduction, some important cases appear when studying
join sizes or balanced urns. We specify now the results of Theorem 2.1 for several
cases. We first make explicit the covariance formula in the case d = 2, then consider
the case of models with factorization (see Remark 2 of Section 2), and finally give
explicit results for equijoins and semijoins and for balanced urns.

3.1. Formulas for the case d = 2. We work with the functions ¢;(z,y, 2) and
¢2(21, %2, Y1, 21,Y2, 22) : In @1, © marks the valuation and y and z mark the balls of
first and second type; in ¢o, £1 and z» mark the valuation for the first and second
batch, y; and ys mark the number of balls of the first type at each time, and z;
and z; mark the number of balls of the second type for the first and second batch.
The correspondance is as follows :

Z11 = Y1;%21 — 215212 — Y23 222 — Z2.

The saddle points p;; that appear in the expression of the covariance are defined by
the equations on the derivatives of ¢1(z,y, z)|z=1. The points p;; =y and pa; = 2
are defined by the system?

2]
P11 ﬁ(Lplhle) = 81 ¢1(1, p11, p21);
el
p21 5 (1, p11, p21) = 82 $1(1, p11, p21)-
2We also use the notations p1 and p2 when there is no ambiguity.
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In the same way, the points p;2 and pa2 are the solutions of the system (again for
z=1)

P12 %ﬁ(lapuapzz) = (t1 — 51) ¢1(1, p12, p22);

P22 Bazl (1; P12, p22) = (t2 - 52) ¢1(1,p12,p22).

The covariance function is

Rujuz  Rujvy  Rujvs
Kojug  Koivy  Kojog

Rysus  Rusvr  Rugvs

le,52;t1,t2 -

Kyjvy  Kogus

K’U2’U1 K:’U2 v2

The k., are obtained from Remark 1 as derivatives of the function
$2(x1, 22,91, 21, Y2, 22), taken at the point (1,1, p11, pa1, P12, p22)-

3.1.1. Expectation and variance. To get the asymptotic value EX,,(n1,n2) =
M, /mna/m + O(1), we have to compute

M — %(17p17p2)
e ¢1(1;P1792) ’

where the saddle points p; and p2 are defined by the system (we have that s; = n;/m
in all this section)

p2 G (1, p1,p2) = 52 61(1, p1, p2).-

{ p1 Z2(1,p1,p2) = 81¢1(L, p1, p2);
For the variance we have :

Vaer(”la”Z) = mBnl/m,ng/m + 0(1)7
with

Bujus  Ruivi  Rujve
Kviug  KBvivy  Kogvs

Kogug  Kugvs  Kugws

.

81,82 T BS1,S2;S1,52 - NS1,52 + ~ ~
K/’U1’U1 /i’v1’v2

K/’Uz’vl /i’vz’vQ

~2 2 ~2 2 ~2 ~2 2
_ ~ Kuv, 01 + Kuv, 02 — 2Hv1v2 Ky, Fuw,
= WPsy,sp T Kuu — 2 2 =2 ’
01 02 - K/Ul’uz
where we used the notations
8%¢1 241

a 2
o = p%l(b—lll(l;pll;p?l) + 51— 87; o5 = Pgl%(lapnapm) + 53 — 5.



3.1.2. Models with factorization. For join or balanced urns models without deletion,
there is a further simplification in the computation of the variance :

(31) ¢1(1,y,2’) = )‘l(y) )‘2(2)

The saddle points p1; and pa; that appear in the expression of the expectation or
variance are now defined as solutions of two separate equations :
{ p11 B (p11) = 51 M (pn);
P21 %(pm) = 82 Aa(p21)-
In the computations for the variance, the coefficients £ can also be simplified, by
taking into account the relations % = A} (y)A2(2) and % = A1 (y) Xy (2). We get

Ryi0o = 0. This gives the asymptotic variance as VarX,,(ny,nq) = mBy, 5, +0(1),

with
2 2 3 2
~ ~ UV Uv2
BS1,S2 = ,us1,sz + Kyy — - - — .
g1 02

For the computation of the covariance, we need the saddle points p12 and pos :

{ pr2 Gk (p12) = (t1 — 51) Ai(p12);
p22 B2 (p22) = (t2 — 52) Ao (p22)-
Now the derivatives of the function ¢, that appear in the expressions of Ky, u.,
Kyyus and Ky, are evaluated at the point (1,1, p11, pa1, p12, p22). The other terms
ki,; do not involve a derivative w.r.t. zo and we can get them from the variance
computations. The equalities Ky, = Kyyv, = 0, which come from the factorization
property, still hold, which allow for some simplifications :

B _ Kyjug -KFuyvy Kyguz -Kujva
81,82;t1,t2 — Ruqus — 2 - 2
01 03

We also have simpler expressions for 0% and 0% :

" ”

o7 =Pf1)\—1(P11) + 51— s7; o3 = 931)\—2(921) + 53 — 53

We now present applications of our results to join models (equijoin and semijoin)
and to balanced urns.

3.2. Equijoin. In this part, ¢1(2,y,2) = 3, , axbiz*y* 2!, and we use the relations
S karyt =yh (@) D Fawyt =17 A @) + yh ().
k k

Of course, similar relations hold for A\y. This gives %(1, Y, 2) = yA; () 22y (2); we
obtain the asymptotic expectation as

EX,,(ny,n2) = min

+O(1) = msy 52 + O(1).
The expression for the variance simplifies into VarX,,(n1,n2) = mBs, 5, + O(1),
with

351,52 = Uf O’%.
We can get more precise results for infinite or bounded urns. For infinite urns,
Ai(t) = et, the saddle point is s; and o7 = s;; for urns of bounded size §;, \;(t) =

(]. +t)6", pPi = sl/(é, - Si) and O'iz = Si(]. - s,-/éz-) :
8



50

FiGure 1. Centered process for the equijoin size, infinite urns,
m = 20 and ny,ns < 50.

e Urns are unbounded for both types of balls. Then By, ,, = s; sa.

e Urns are unbounded for one type of balls and bounded for the other type. For
example, \; (t) = e! and Ao(t) = (1 + t)%2; then By, ;, = s182(1 — 82/82).

e Urns are bounded for both types of balls. Then By, ,, = s182(1 — 51/81)(1 —
82/(52).

The covariance is equal to mBs, s,:t, 4, + O(1), with Bg, s,.t, t, = 0% 03, hence
Cov(X,(n1,n2), Xm(f1,72)) = VarX,,(n1,n2) + O(1).

Now the limiting process can be precisely characterized : If sy is fixed, the covariance
of the process G(s1,.) between two times t; and ty > t; is 0%t if the urns (for the
second type of balls) are infinite, and 07t; (1 — t1 /dz) if the urns are bounded. This
means that, up to a multiplicative constant, G is a Brownian Motion (for infinite
urns) or a Brownian Bridge (for bounded urns). The same result holds if s, is fixed.
Hence G(s1, s2) is a Brownian sheet, or a variation thereof [18]. More precisely, we
get a Brownian sheet if the urns are infinite for both types of balls, a Kiefer-Miiller
process when the urns are infinite for one type of balls, and bounded for the other
type, and a tucked Brownian sheet for urns bounded on both types of balls.

3.3. Semijoin. We now turn to the semijoin. We have that

$1(2,y,2) = M(y) + A (zy)(A2(2) - 1).
The asymptotic expectation is EX,,(n1,n2) = mp,, s, + O(1), with

1
s1,0 =81 |1 ——F— .
a 1( /\2(P2))

The variance is VarX,,(n1,n2) = mBs, 5, + O(1) with

5 _reem) -1 sds
b X(p2) 3N (p2)

9




Again we can get results for bounded or unbounded urns : We just plug in the
values for o1 and o2 which were computed in Section 3.2.

e Urns are unbounded for both types of balls. Then

By, s, = 51672 (1451 — e (1 + 51 + 5152)) -

e Urns are unbounded for the first type of balls and bounded for the second
type. Then

B 52 — 5y 262—1 So
le’” =S ( 62 ) |:(1 =+ 81) (1 — E) — 8182:| .

e Urns are bounded for the first type of balls and unbounded for the second
type.

(51 61

e Urns are bounded for both types of balls.

By, s, = 62— )" 14— ) (1-22) — g5
51,82 — S1 5 1 & 5 182 -

The generating function for the two-dimensional distributions is

‘I>2(371;$2a11172/2a21;32) = ¢2(371a372,l/1;y2aZ1;32)m

where the function ¢, describing the possible states of one urn is equal to

A1 (y1)A2(y2) + A1 (z291) M (22y2) (A2(22) — 1) + A (Z122y1) A1 (292) (A2 (21) — 1) Aa(22)-
This gives CovX,, = mBy, s:t,.t, + O(1), with

_ () -1 2, 2 VRV N
= %0022 (02a) [(s +07) + s1(51 — t1) A2 (p21) A2 (p22) — 1)]

_ 81t18%
o3 A2(p21)? A2 (p2z)’
We can also write By, s,;t,.¢, a8
1 ~ S1(t1—81) S%
Bs s¢o———— | =+ (X -1\ A -1 .
5o (B = o5 |24 Oalon) = DOp)dalom) - )

For example, infinite urns on both types of balls give

By spitats = 51 (—(t1 —s1)(1—e7%2) + e (1 + 11 — e 2[1 +t1 + s2t1]))

381,82;t1,t2

3.4. Urns of balance ¢. The valuation of the urn is equal to 1 if the difference
between the number of balls of the first type and the number of balls of the second
type is ¢, and to 0 otherwise. We shall use Hadamard products to express our
results; we recall that the Hadamard product of the two functions f(t) = Y, frt"

and g(t) = Y, git® is
(fog®t) =) funt".
k
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FiGURE 2. Centered process for the semijoin size, unbounded urns,
m = 80 and nq,ns < 200.

We define a shifted version of the Hadamard product of the functions A; and Ay
(defined by the equation (3.1)) as

9q(t) == Z aH_qbltl.
1

Of course go(t) = A\ © Aa(t).
We have here ¢1(2,y,2) = A1 (y)A2(2) + (x — 1)y%g4(y2), which we can also write
as

b1(2,9,2) = MW (2) + (@ = Dbg(y,2)  with  y(y,2) = [u]h (uy)o

This comes from the fact that the generating function marking balls of the first and
second kind by y and z and the balance by u is simply A; (uy)As (%) We also have
that ¥,(y, 2) = y994(y2).

In the same vein, the generating function for allocations in two batches can be
written as

SN——

z
u

G221, T2, Y1, Y2, 21,22) = (21 — 1)(x2 — 1) Yq(y1, 21) Yo (y2, 22)
+(x1 = 1) Pq(y1, 21) A1 (y2) A2(22)
+(z2 — 1) My (y1, Y2, 21, 22)
+A1(y1) A1 (y2) A2 (21) A2 (22),
with

My (Y1, 92, 21, 22) = [u?] Ax(uyr) A1 (uy2) A2 (2—1) A2 (%2) i

The asymptotic expectation is

q
BXo(n1, 1) = Moy on(@) + O(1)  with  figr ea(g) i= %

11



We now define

9; (p1p2)

T I =p1pPp2—F—~-
9q(p1p2)

Then the asymptotic variance is VarX,,(ni,n2) = mBy, 4,(g) + O(1), with

. T+ q—51)? T — 8)2
Bunea@ = i01a(@) (1= () [1 4 L2 2R ),
01 03
To compute the covariance, we introduce
o e P11 Ol . P Ol
Hq ayl, Hl] 821 .
We get
Bs1,sz (Q) =

b1(y2,22) ¢ o} o3

For infinite urns, the generating functions ¢; and ¢ can be expressed in terms
of Bessel functions. We have that A (t) = Aa(t) = e’ (as in Section 3.2), which
gives 07 = 51 = p1 and 0% = 85 = pa; moreover g,(t) = t~9/2I,(2/t) and g (t) =
t_(q+1)/21q+1 Vi) = gq+1(t). We get

tior 3 (@) ( go(y222) T [1 n (a—s1)(g+7—51) n (B = s2) (T — 52)]) _

S1

/2
ﬂs1,s2(q) = (_> Iq(2\/8182)6_81_82.

52

Now 7 = /5182 I441(2+/5152)/1,(2+/5152), and we get the variance by

Bura(0) = b (@) (1= s a@) 14 (=1 40 (7= 52 ).

We also have that

+ a/2
My (y1,y2, 21, 22) = Yg(y1 +y2,21 + 22) = (%) L2/ (y1 + y2) (21 + 22))-

Define

n:= \/t1t2 Iq+1 (2\/t1t2)/Iq(2\/t1t2);
then o = s1(¢ +n)/t1 and B = san/t2. We finally get

s q/2
BSl,S2;t1,t2 = (i) eitlitqu(ZV 3152)'
tl Q/Q
bV =G ) -€ (2] ernevim .
with
f=1+ (q+n—t12(q+r—t1) N (n—tzz(T—tg)‘
1 2
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4. MODELS WITH DELETIONS

In some instances, e.g. when modelizing dynamic databases to study the evolu-
tion of projection or join sizes, we need to allow both the deletion of items (balls),
and the existence of queries that do not modify the current state of the system (no
ball is added or deleted). We shall assume that the balls inserted are all of the same
type, and that a deletion specifies the urn in which a ball must be deleted, but not
the precise ball among those present in the urn (which are undistinguishable). In
this section, we first present the ideas that allow us to write generating functions
for models with deletions, then show on an example how these functions can be
written down and used to characterize the limiting Gaussian process. The study of
general update models (including those with queries) will be presented in a further

paper.

4.1. What happens in a single urn? We introduce a new type of balls to mark
deletions : We shall consider white balls, the ones originally thrown into the urn,
and black balls, corresponding to deletions. Of course, we cannot delete balls that
are not present in the urn. The difference between the number of white balls and
the number of black balls is the number of balls remaining in the urn, and cannot
become negative. This leads us to consider a scheme of allocation with two types
of balls such that, at each time, the balance of the urn, defined as the number of
white balls minus the number of black balls, is positive or null.

Such a situation is related to the framework presented in [10]. There we proved
that, starting from a general combinatorial structure for which we have the enumer-
ating generating function, and assuming that the basic items can take two colors,
we can easily obtain the bivariate generating function marking the size and the
color balance, by taking the Hadamard product of the initial enumerating function
and of the function associated with the sequence of balances. Requiring that the
sequence of balances is always positive simply means that this sequence is the pre-
fix of a Dyck path, for which the enumerating function is well-known. Allowing for
queries that do not add or delete balls, we simply take prefixes of Motzkin paths
as allowed sequences.

To sum up, what happens in a single urn is described by taking the Hadamard
product of the function for an urn with a single type of balls and of the function for
the sequence of balances; a white ball is an insertion and a black ball is a deletion;
the current balance is the number of balls in the urn at the specified time. Hence
we obtain the generating function for the urn as a Hadamard product.

To make clear our ideas, we present now a simple model. Our assumptions are
as follows :

e The urns are infinite : there is no upper limit on the number of white balls
that an urn can receive.

e The balls that are in the same urn are undistinguishable, when performing
either an insertion or a deletion.

o We first choose the urn, then the operation to be done in this urn; the only
possible operations are insertion or deletion of a ball.

e The urns are chosen with uniform probability 1/m.

e Assuming that the urn that has been chosen is not empty, the probabilities
of insertion and deletion in this urn are equal. If the urn is empty, then we
perform an insertion.

13



We modelize this situation with two types of balls : White balls correspond to
insertions, and are thrown according to the usual rules (there is no upper limit on
the number of white balls in an urn); black balls correspond to deletions, and are
thrown in such a way that the balance of an urn, defined as the number of white
balls minus the number of black balls, is always positive or null.

In the multivariate generating function associated to an urn, we use the variables
x to mark the fact that the urn is empty, z to mark the balance of the urn, and ¢
to mark the total number of balls (black and white) that this urn has received : ¢
marks the number of insertions/deletions relative to the urn. The global generating
function relative to the sequence of m urns is obtained by taking the m-th power of
the function for one urn, where the variables z, z and ¢ mark respectively the number
of empty urns, the number of remaining balls (balls inserted and not deleted) in
the sequence of urns, and the total number of operations, i.e. the time.

4.2. Generating functions. The function describing the allocation of balls into
one urn is®

)‘(ta Z) = g(t) oF P(t7 Z),

where g(t) is the function describing the allocation of (white and black) balls into
the urn (usually g(t) = €?), and P(t,z) = 2 n,qPnqt"2? is the bivariate function
enumerating the allowed sequences of allocations of black and white balls into the
urn. The number of such sequences with n operations (the final time is equal to n)
and an excess of ¢ insertions over deletions is p, 4 : At the end of the sequence, the
urn contains ¢ balls that have not been deleted (this is closely related to the well-
known ballot numbers). Now P(t, z) is simply the generating function for prefixes
of Dyck paths, with ¢ marking the length and z the final height : An up step
corresponds to an insertion, a down step to a deletion, we cannot go under the
zero axis, and the final height is positive (or null for Dyck paths). Let d(t) :=
(1—+/1 — 4#2) /2t? be the function enumerating Dyck paths; then P(t, z) = d(t)/(1—
tzd(t)). We also mention that the function enumerating prefixes of Dyck paths that
end at height g is py(t) 1= Y, Pn,gt™ = t9d(t)7H.

The function describing the behaviour of one urn, with # marking the fact that
the urn is empty, ¢ marking the number of operations relative to the urn, and z
marking the number of remaining balls, is

d(t)

1l,1,2) = X0, + &~ DAG0) = (0 01 g + (o= D))

We consider now what happens at two successive times. Let 7y, ny,q4,,40 D€ the
number of sequences of balances of length n; 4+ ns, such that after n; steps, the
balance is ¢;, and that the final balance is g2, and define the generating function of
these numbers :

— nigna 491,92
m(t1,t2, 21, 22) := E Tny,na,q1,qs 01 b2 21 Zo

ni,n2,q1,q92
Our next step is to compute this function 7. At least as long as we are working with
unbounded urns, it does not depend on the function g(z) enumerating allocations
in one urn, and it is simply the generating function for prefixes of Dyck path,
enumerated according to their total length n; + ns and final height g2, and to

31In the case of multivariate functions, we index the Hadamard product by the relevant variable.
14
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min+1

FIGURE 3. Decomposition of a Dyck prefix

some intermediate length n, and corresponding height ¢;. We decompose the paths
according to their minimal height min between the times ¢; and ¢ : Let ¢; be the
time of last passage at min before ¢;, and let i2 be the time of first passage after
tl. ObViOllSly min S q1,42 and il S tl S iz S t2.

e The part between 0 and iy is the prefix of a Dyck path, whose generating
function is d(t1)/(1 — t1 d(t1)). Taking into account the heights at times #;
and t, gives

d(t1)
1-— tlzled(tl) )

e In the central part of the path, the minimal height min can be equal to ¢ :
then i; = t; = i5. Otherwise, the path begins by an up step, then stays at
height at least min + 1 in the interval [i; + 1,72 — 1]. We shall consider the
times j; and jo of last passage to min + 1 before t;, and of first passage to
min + 1 after ¢1. The path between i1 and j; is enumerated by z1t1d(¢1), and
the path between j, and iy is enumerated by t2d(t2). Hence the multivariate
generating function describing the central part of the path (including the case
g1 = min) is

1
1- 2111 to d(tl) d(t2) .

e Finally, the part between the times i and ¢5 is again a Dyck path, and we
mark the final height at time ¢, which gives

d(t2)
1-— t2 z9 d(tg) )

Concatenating the three parts of the path gives :

d(t:) d(t2)
1-— tlzlzgd(tl)) (]- - t222d(t2)) (]- - tltZzld(tl)d(tQ)) -

Now let &(t1,t,21,22) t= 35, 1o o1 4 Fnano,an,0t1 5721 25° be the function enu-

merating allocations of black and white balls in two batches, such that, after throw-
ing n; balls, the balance is ¢, and after throwing again n» balls in the second batch,
the balance becomes ¢2. As for the one-dimensional case, we have that

7T(t]_,t2,21,22) = (

K(t1,t2, 21, 22) = g(t1) O, (9(t2) O, w(t1, 2, 21, 22))
15



The function marking the emptyness of the urn at the end of the first or second
batches by the variables z; and z» is

¢a(x1, T2, t1,t2,21,22) = (x1 — 1)(x2 — 1)K(t1,12,0,0) + (z1 — 1)K(t1,¢2,0, 22)
(2 — 1)(t1, t2, 21,0) + K(t1, t2, 21, 22).

We have expressions for the k(t1,t2,.,.) as Hadamard products of the entire func-
tions g(t1) = et and g(t2) = €2, and of algebraic functions 7(t1, s, .,.). Hence the
function ¢o(z1,x2,t1,12, 21, 22) is an entire function in ¢; and ¢s.

It is not difficult, but cumbersome, to check that we can write down all the
desired multivariate generating functions, and that they satisfy the assumptions
of Theorem 2.1; hence the associated process converges towards a Gaussian field
G(s,t). Note that the first time s = n/m corresponds to the total number n of
operations (insertions and deletions) and ¢ = ¢/m to the difference. Hence, 7 =
(n+ ¢)/2 is the number of insertions and § = (n — ¢)/2 is the number of deletions.
This means that we can define a modified discrete process X,, by

Xm(ﬁaq) = Xm (ﬁ'{'qaﬁ_q)
which counts the number of empty urns with 7 insertions and g deletions and
another Gaussian process G(s,t) (0 <t < s) by

G316 =G(GE+t35-1)
so that
Xn(@,9) = EX 1 (70,9) + vVm - G(@/m,q/m).

4.3. Number of empty urns. In this part, we consider the number of empty
urns but for simplicity we just take the total number of operations into account
(which is a functional of the bidimensional process we studied above) and show
that we can effectively compute the parameters of the limiting process. We get the
functions ¢ and ¢o by putting z = 23 = 2z = 1 in the corresponding functions
computed in Section 4.2 :

pr(z,t) = (z—1)g(t) 0 d(t) +g(t) © 13(73(,5)?
(21,20, t1,t2) = (21— 1)(m2 — 1)K(t1,12,0,0) + (21 — 1)K(t1,t2,0,1)

+(x2 — 1)K(t1,t2,1,0) + K(t1,t2,1,1).

To compute the moments and the limiting distribution, we may use Theorem 2.1
for d =1 or the results of [6]. Our first goal is the computation of the saddle point
that appears in the expression of the asymptotic expectation and variance. Let us
define f(t) := A(t,0) = g(t) © d(t) and g1(t) := A(t,1) = g(t) © d(t)/(1 — td(t));
so that ¢1(x,t) = g1(t) + (x — 1) f(¢). The saddle point p is defined as the unique
real positive solution of the equation tg, (t)/g1 (t) = s, where we put s := n/m. The
asymptotic expectation is EX,,(n) = mp,/m + O(1), with

ps = f(p)/91(p)-
Now f(t) = I1(2t)/t, with I; a Bessel function [10]. Further g; () = e*(1 — K(t)),

where the function K is defined as the solution of the equation tK (t) = e 2tI; (2t)/t
that becomes null for ¢ = 0; hence

g1(t) =e* (1 - /0t€_2”11(2u)d7u) ‘
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Now gy (t) = 2¢1(t) — f(t) and the equation defining the saddle point p translates
to

pflp) _

g1(p)

This equation can be solved numerically with Maple for any given s; it can also
be used to simplify the expression of the asymptotic expectation : We get u, =
2 — s/p, whose numerical value is simple to obtain. For example, s = 1 gives
p = .6793222511... and EX,,(n) ~ .527944582...m.

The asymptotic variance is computed from [6, Corollary to Theorem 2.1] :
VarX,,(n) = mB, + O(1), with

2 2
5 81 P71
4.1 Bi=mo|l-m |1+ —1 (122 ,
*1) T"( n | oo () D
where the parameters 79, 71, 71 and 7 are
(4.2) A0 _f ) m = 9(p). L= )
g1(p) g1(p) g1(p) g1(p)

Equations (4.1) and (4.2) are quite general, and we can simplify them by plugging
in the exact values of f and g;. We get expressions of the parameters 7; and ;
using only s, p and the quotient A := Iy(2p)/1,(2p) :
s 1 s 2 s s
n=2-2  m=2a-2e- m=2% m=le+2-9)-ame-d)
p p p p p p p

This gives us an expression of the asymptotic variance as

. 9 1 s>

B, ==(2p—-5)A+ = (sp—2p> —4p+3 .
’ p(p °) +p2(5p o s)+p2(2p(2p—8)A—28p+82—4p+8)

Numerical computation for s = 1 gives an asymptotic variance equal to
0.17394268...m. As another example, we choose s = 2; then p = 1.2154678..., the
expected value is 0.3545302...m, and the variance is 0.1953331...m.

5. PROOF OF THEOREM 2.1

5.1. Existence of Limiting Gaussian Field with a.s. Continuous Sample
Paths. In order to prove Theorem 2.1 we first have to show that there exists a
random field with a.s. continuous sample paths and f.d.d.’s which are characterized
by the limiting f.d.d.’s of Y;,,(¢1,- - -, tq).- We start with the following property (not
including continuity).

Lemma 5.1. There exists a Gaussian field G(t1,...,tq) with covariance function
Bs, .. saste,...tas given by (2.5) such that the finite dimensional distribution of

_ Xn(lmtal,..., |mta)) = EXp(lmts ..., [mits))
N

converge weakly to the corresponding finite dimensional distributions of
G(t1,y...,tq)-

Vin(t,- - ta) -

17



Proof. The limiting distribution of Y, is characterized by the normalized limit of
P{Xm(nlj,.. .,ndj) = kj,j = ].,. ,b}

b kj nij ndj k1 kv, ny ng
[szle AR R K STC/ RN s TR T
(2171 - --zp™e] @ (1,..., 152171, . .., Z7)

where nj = (n4;,...,nq;). Applying the results of Bender and Richmond [1] yields
that the above limiting distribution is a Gaussian distribution with asymptotic
mean

EXp(n1,...,n4) = My, /m,... ngym +0 (1),
and covariance
Cov(Xm(n1,---yna), Xm(fa, -, 0q)) = MBp, /m,....na/msiy fm,..siia/m- + O (1) .
Especially, for the variance we have
VarX,,(ni,...,ng) = mBy, /m,...na/mine fm,..ona/m + O (1).

Here p(s1,...,5q) and By, . 5.:s1,...,5, are given by

A(log A, ..., (€%))
‘1 8 84 = 3 N
(5.1) Msi,.., e -
and by
0?(log As, .5, (%))
? Bs 8d381,e.98d — 15..498d ’
(5 ) v 621], u=0

where A, ... s5,(z) denotes

¢1(-T7P1> - 7Pd)

and p; = pi(x, $1,...,84) (1 <i < d) are the saddle points defined by the equations
in z;

Asy .5 (T) =

5 8¢1($, Zly---y zd)
! 62!Z
Furthermore, for s;,t; > 0 we have

(53) = sml(w,zl,...,zd), Z=].,,d

le yerus8ditlyeeyta — Bmin(sl ,t1),...,min(sq,tq),max(s1,t1),...,max(sq,tq))

and for s; < t;
02(108 Ns, ,...p50,t0,..,a (€71, €%2))

(5'4) le,---,sd;th---,td = 10
ul u2 u1=0,uz:0
with
\ _ $2(@1, @2, p11,- - 5 pa1, P12, - - -, Paz)
81,--,8d,st1,--std (1'17372) - s1 . .84 t1—s1 ___ ta—Sa ’
P11 """ Pa1P12 Pgz

where p;; = pij(21,22,81,---,84,t1,-.-,tqa) (i =1,...,d, j = 1,2)) are the saddle
points which are defined by the equations in z;;

6¢2($1,$2, Zy, ZZ)

(55) Zil = Si¢2($1,$2,Z1,Z2), = ].,...,d,
O0zin
0¢2(x1,%2,21,2 .
(5'6) 242 ¢2( 1822 L 2) = (t,’ - 3i)¢2($1,$2, Zy, Zz) 1=1,..., d.
i2
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Now let G(t1,...,tq) be the Gaussian field with covariance function
Bs, .. saste,...ts (compare with [17], by construction it is clear that the corresponding
covariance matrices are positive semi-definite.) The above construction also ensures

that all (normalized) finite dimensional distributions of X,,(n1,...,n4) converge
weakly to the corresponding finite dimensional distributions of G(t1,-. -, q)-
It remains to show that p(si,...,sq) and By, .. s,:t1,..t, Can be represented

by the nice formulae (2.7), (2.10), and (2.5). This is just an (advanced) exercise
in implicit differentiation. (In order to simplify notation we use the abbreviations
= (s1,...,8q4) and t = (t1,... ,tq).)
First, let us consider

8(10g )\s(eu)) _ %(ﬁl (euapl(euis)a v 7p1(euis))

Ou ¢1(---)
el u KB u
CEees)  fpales)
pi(e",s) " pale,s)
— eu%( apl( )u apd(euus))
(- )
) )
L 6;42511( )G (- ) s %pwl(...) .
¢1() p1(---)
) )
pen (BT B
¢1(---) pa(---)
eu%(eu,pl(eu’s), ,Pd(e 55))
¢1(---) ’
which proves that (2.7) is correct.
Similarly we can treat the second derivatives:
*(log As(e")) _ "Gt e B;jl 2“5’15’; 3
e e
7 7 '

i=1

Setting u = 0 and using the definition of &,, we also get

92 (log As(e")) e 3
(57) T o = s + Kyu + Z:ZI Kuz; p;

The derivatives 3% p; can be calculated by differentiating (5.3) with respect to z:

0pi 061 | d1 <~ P Op _ 8¢1 961 Op;
Ox 0z pi 0x0z; + Z; 02i0z; Ox T Z 0z Oz
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or after setting x = 1, substitution s; = p,%%? /&1, and using again the definition
of Ky

d
(5.8) pr.
j=1

By combining (5.7) and (5.8) and using Cramer’s rule we directly obtain (2.10).
The verification of (2.5) is similar but a little bit more involved. For convenience

Op;

Bz _ _ ¢
— = —Ruz;-
Pj

we extend the definition of k,, to y,z € {u1,u2,v1,... ,v4,w1,... ,wq} by
P o az(log ¢2(eulanZa pllevla s 5pdlevda plQeWIa te apd2ewd)
Y,z
8y6z UL =UL=V1= - =Vg=w1= - wWqag=0
From
O(log As;¢ (€"1, e"2))
8u1
et g%f(@ulaewaP11(€u1>€u2757t)7 s del(' te ),P12(' o )7 s de2(' o ))
¢2(. .. ) ’

we get (after differentiating with respect to us, setting u; = us = 0 and using the
definition of k)

8 .
62 (log )\s;t (eul ) ev2 )) _ d 8[.);21 d %pzk;
e TP D
10Uz w1 =us =0 = Pij1 =1 Pk2
Now by differentiating (5.5) with respect to z2 we get (similary as above)
d aaﬁjl d %ﬂkQ
To T2
Kyjv; — + Koy;w = —Kusu;
; T pi 192—:1 " pr2 2
and
d %le d %ﬂkz
) T2
Ko, —— + Rw;w, —— = —Rusw; -
jzzl 7 pj l; * pr2 2
Now observe that
(5.9) Ruiw; = 0 (1<j<ad),
(5.10) Kojw; = kwye; =0 (1 <4,5 <d).

This follows from definition and (2.9): ¢a(z1,1,21,22) = ¢1(21,21)¢1(1,22). Hence,
we have

2 d Apj1
0%(log As;e (€1, €¥2)) 92a
6 a K:uluz + K/’th]
U10U2 w1 =us=0 i=1 j
and
d 9pj1
dza  __
Ky;v; = —Kugu;)
i=1 J

Hence, another application of Cramer’s rule finally proves (2.5). The relation

d Opr2
8.’/62 —
Bwiwe =~ = ~Kugw; -
=1 Pk2
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Opr2
3:22

might be used to calculate
Note also that

but is not needed for our purposes.

pi1(1,1,s,t) = p;(s)
and
pi2(1,1,8,t) = p;i(t1 — $1,... ,tqa — 84)-
Thus, the defintion of &, fits to the calculations above. [
The next step is to show that G(t) has continuous sample paths. This can be

done by the Kolmogorov-Centsov theorem, see [14, Ch. 2, Theorem 2.8 and Problem
2.9)):

Theorem 5.1. Let t = (t1,...,tq) and h = (hy,...,hq). Then every real-valued
random field X (t) for which there exist three constants o, 8, C > 0 such that

E[| X (t +h) — X(t)|%] < C[|n]| ™7,

for every t € Ri andh € ]Ri, has a modification with a.s. continuous sample paths.
The same holds on the space C ([0,T]?) with t,t + h € [0, T]%.

The fact that G(t) satisfies this criterion follows immediately by
Lemma 5.2. We have for s = (s1,... ,8q) and t = (t1,... ,tq)
E (G (t) - G (s)*™* = 0 (|t —s|I*™),
uniformly, if s and t are contained in an arbitrary bounded but fixed bozx.

Proof. Since

E(G(t) - G ()2 = 24+ 2

(Bs;s - 2-Bs;t + Bt;t)d+1

T 20 (d+1)!
it suffices to prove
(5.11) Byt = Bs;s + O ([t —sl])-
Due to symmetry it suffices to consider the case s1 < t1,...,84 < tg4..
First we observe that by definition (5.3) the saddle points p;(t — s) satisfy
¢1(1,p1,-- -, pa)

pi(t —s) = (t; — ;) .
%(I;PI;-- . de)

Thus, p; = O (t; — s;) and consequently
(5.12) pi(t —s) = (t; — s;) (c; + O (||t —s]]))

where ¢; = 1/%(1,0) # 0.
We also use the property that ¢» (considered as a power series) can be represented
as

d

$o (@1, 2,21, 22) = d1 (2122,21) + Y 24 R (w1, 22,21, 22),

i=1

where [; > 1 are integers and R, are proper power series with R;(z1, z2,21,0) # 0
(compare with (2.8)). Note that ¢(1,1,21,22) = ¢1(1,21)¢1(1,22) and thus, by
assumption, we have I; = 1. We will use this relation for small z, and use the
shorthand notation
(513) ¢2($1,$2,Z1,Z2) = ¢1(IL’1.§L’2,Z1) +O(Z2)
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For convenience we set € = ||t — s||.
The next step is to show that

(5.14) Kuius = Hs + Fyu + O (€)
(5.15) Kuiv; = Fuy; +0 () (1 <0< d)
(5.16) Koy = For + 0 () (1<i<d)
(5.17) Kojv; = Kooy + O() (1<4,j<d)
For the proof of (5.14) we use (for z; = 25 = 1)
0¢2(1,1,21,22)  O¢1(1,21)
6{[}1 == 61’ + O (ZZ) )
6¢2(1,1,Z1,Z2) _ 6¢1(1,Z1)
6{[}2 == 61’ + O (ZZ) )

and

0%¢2(1,1,21,2) _ 0¢1(1,21) + ?¢1(1,21)
0z10z2 oz Ox?
There relations (together with (5.12)) directly imply (5.14). In the same way we
can treat the other cases (5.15)—(5.17).
Thus, combining (5.14)—(5.17) it follows that

+0(Z2).

Ruius  Kuivs "7 Rujug s + R'/uu R/um et R'/uvd
ﬁvluQ K/vlvl ot K'ulvd K/'vlu /"\7111111 ot ﬁvlvd n O ( )
= . . . 3
K/vduz Hvdvl oot Hvd'vd F"Jvdu F';Udvl ot E/vdvd
~ ~ kuu kuvl e ’Euvd
K:’Ul’Ul e K:’U1‘Ud ~ ~ ~
i i Ryiu Koo e Ryivg
= Ms : : + . . . +0 (E)
R/Udln e i‘évdvd -~ ' ~ ) ~ )
Kygu  Koguy " Kogug
and that
Kyjvr "7 Kojug kv1v1 e ’%vwd
=| : D+ 0().
K"Udvl e K/’Ud’l)d K/vdvl o ﬁvdvd

Of course, this proves that
Bt = Bsis + 0 (¢),

which completes the proof of the lemma. [

5.2. Tightness. We will need the following Lemma bounding certain central mo-
ments of the process.

Lemma 5.3. For all integers A > 0 there exists a constant C > 0 such that for
m — 00

(5.18) E(Xpm(n) — EXp(n))*2 < Cnl|?,

uniformly for ||n|| = O (m).
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Proof. Set z = (z1,...,24) and

aa
o— n
Cnya 1= [2"] %él (z,2) .
where z™ denotes 2i" zy” - - - z;;*. Furthermore let
i1 o .
A =EJ[(Xm(n) - j) = =
j=0 Cn,0

Then the moment occurring in (5.18) can now be expressed by

2A l
519 B - BX, @)% =3 (7)) (-0 s,

where S, denotes the Stirling numbers of the second kind and the empty sum

occurring in the above summation for [ = 0 is supposed to be equal to 1.
Hence we have to compute ¢y, o. If we set

1 o

dj(z) = —— =—¢1 (2,2

J (Z) g(z) Oz ¢1 ( )

where we use the notation g(z) := ¢1(21)g2(22) - - - ga(z4), then by Fad di Bruno’s

formula (see e.g. Comtet [4]) we have

)
=1

a

() Ko
tma= X premlm =D (m—h — o=k + DB [T (42

kq!- J !
¥, jki=a @ =1\ 7

Thus we have to calculate the coefficient

(5:20) g 1T (49"

J!

Jj=1

For this task we use the ideas developed in detail for simpler urn models in [6].
First note that cn,0 = [2™]g(z)™ and that by Taylor’s theorem we have for real 2

E gy
. le .7

() =g exp | 3 w00 +0 (18412)
=1 7

where
z2g)(z
K = 91( )
91(2)
Since there exist no r,d such that g, # 0 if and only if ¢g;,, = r mod d we have

moreover

and Ky (2) =2k 5(2), j21,1=1,....d

\gi(ze'”)| < gi(z)e="

for some positive constant ¢. Hence we can apply the saddle point method. If y; =
/cl_ll for I =1,...,d, then the saddle points of g;(z)™2, ™ for l =1,...,d are given

by
e () = 22 (10 (2)
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Note that g, #0for I =1,...,d and k = 0,1, since we allow an urn to be empty
or to contain only one ball regardless of its type. Now define functions &;; by

o () = o <%>>

which are analytic functions with Iﬂ]( )
0 = (01,...,0;) Furthermore define z* :=
point method yields

= 1. Let p = (p1,...,pa), as well as
(2f,.. g) Then applying the saddle

k

7 la ()" / -/ exp< S Loime () + 303 Dl (1)

=1 j=3

+0 (mz |p,0f+1|>) dé, ---déy
=1
)m d ’U/l2 d . j 7]/2~ ' n
fen (- L G
B

_ glp
(2m)dpm \/H;i:l nykga (ng/m) =1 =1 j=3

d u k41
+0 (mZpl — )) duy -+ -dug
= IV

Fj(z) = Fuj(@)Raa () 772,

where

and the integration domain B is given by
B ={(0) 16 < (mp) /2, 1=1,.....d}

and B is its transformation due to the substitutions 6; = u; //miki2(n;/m) and for
l=1,...,d. Now we could expand this into a series and evaluate the integral. In
the general case (a > 0) this yields some very complicated expressions involving,
for example, Hermite polynomials (cf. [5] for expansions of similar type) which are
quite hard to deal with. Fortunately, we need only some structural properties rather
than the exact expansion in order to complete the proof.

Observe that, if we expand the integrand, except those terms containing only
squares of u;, into a series and set

g(p)™
(2m)3/2pm [T, mumes (/)

V(p,n,m) =

7

we obtain
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N
3
%
O
3
|
=
(%]
¥
Q_.\.b
BE
—
—

ol 51)

5 =1

d u3 / ng d u4 ng

1, —1/2; I

(13 o (1) +32 (2)

=1 =1

d d w [P
+ 0 w2 v ubn | 40 (my o | —= duy - - - dug

(; ’ ’ 20| T

d
~V(p,n,m) (1 + ZFLM (%) SLnl)
=1

Using more terms this procedure yields a multivariate asymptotic series expansion
of the form

ni ng . .
[zn]g(z)m ~ V(pa n, m)j Zj>0 Qjy---ja (EJ ceey E) ny R Ng -
1e05Jd>

where aj,...;,(t1,...,t2q) are explicitly computable analytic functions.

The next task is analyzing cn, for a > 0, where we have to cope with the
additional factor in (5.20). W.l.0.g. let us assume that the term containing none of
the factors z1, ..., 24 vanishes. Then d;(z) can be represented in the form

d
di(z) = ch(l)(z)zl
=1

with analytic functions cl(l) (z). Due to the definition of d;(z) this implies

d

dj(z) =Y (2)x

=1

where cl(j ) (z) are again analytic functions. Hence ¢, o can be represented as a sum
of terms with the shape

m(m —1)---(m — B +1)[z"]g(z)" Ks(z)

with coefficients independent of n and m. Here Kg(z) is an analytic function ad-
mitting a representation of the form

d
Kps(z) = Z Ly, ..n,(2) H zl’n
Visees¥a 20 =1
Ej vi=8

with an analytic functions L., ...,,(z).

For simplicity, assume that the above sum has only one term. Let L(z1,z,) be
the additional factor corresponding to a choice of 71, ...,v4 with 3 ;7 = B- Then
we have for z € R?
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L( 6 04 _ - H?=1(wl)jl i . gh+1
21, ..., 2q€"%, 212) = L(z) exp Z ==X (2) + 0 ZZ” B

N

Ji+---+ja>0 =1
with
e, (z) =2 %L(Z) forp=1 d
€, - ru L(Z) p=1...,

0
)\j1+eF(Z) :ng)\jl(z) fOI',U,: 1,...,d
I

where e, denotes the puth unit vector in R?. Thus we can proceed as in the case
a = 0. Set

5\.7'1(Z) = Ajy (Ml(z;I)JZ;Nd(zd)))

and get

m(m —1)---(m - § +1)[z"]g (Z)’”KB(Z)

~mm-—=1)---(m— ﬂ+1 ﬁ
@n)ip Ll
d k - l
o fon (3 T (32) + 23 G ()
=1 =3 m
Hl 1(“91)] ny n1 nq
+ZZ%91 + Z Jim SEL L N, (E,,E)
Ji+-+3ja>0
+0 <m2 |p,9,k+1|>> dé; - - - dfy
=1
d
_mlm =) = 5+ DE@V (pmom) 1]
(27r)d/2 P 1
4 w2 d x (tu i/ n, d w
2 l 1 —j 2~ 1
X [ oo [ exp + Kij { — )+ N—F——7—-=
/B / ( lz; 2 zz;]zz 3! ’(m) ; TR (nam)
k d e oNq o 1—ji/2
[Ti—, (i) my (M ng
> im0 ()
Ji+--+3a>0
d w [
A dus - --d
0 (m3zafe[")) e
with
:\Jl (xla 7-77d) = S‘jlﬂll(xl) /2



Expanding the exp-term into a series and evaluating the integral yields finally an
asymptotic series expansion of the form

d
Cna ~ Y m(m—1)---(m =B+ 1)L(p)V(p,n,m) [] "
B =1
(a) n1 nay\ —j —jap—0 -0
X Z ajl...jd(ﬁv"-ag)nl1"'nd “hy by
J1se-5Ja>0,
01,--,042>0
m(m—1)---(m—-F+1
~ymm e ) Lp)V (p, 0, m)
m
B
et Yd
(a) E E) nl .. nd
(5.21) % Z Y-+ ja (m""’ m/ plt ...nf;zd
J1s--3a20,
(51,...,6,120
with explicitly computable analytic functions agf) ja (t1,...,tq) analytic functions.

Inserting this into (5.19) implies that for m — oo E(X,,(n) — EX,,(n))?2 is
asymptotically equal to a rational function in n4,...,n4. If we choose si,...,sq
fixed and require ny = sym,...,ng = sqm, then by (5.2) we have E(X,,(n) —
EX,,(n))?2 = O (||n||*) as desired. Since on the one hand this holds for any choice
of s1,...,84 and on the other hand all terms in (5.21) (and thus in the asymptotic
series for E(X,,(n) — EX,,(n))?2) have up to constant factors the shape

ni'---nj
ny' - - - n
we must have
N+t va—p = —ja <A

But as to the fact that nzi . -n},’ < |n||?, if v{ +- - -+ ) < B, the above inequality
guarantees the validity of (5.18) for all n satisfying n = O (m) and the proof is
complete. [

In order to prove tightness, by [17, Ch. XIII, Ex. 1.12] it suffices to show the
following Lemma.

Lemma 5.4. Let n = (ny,...,nq) and h = (hy,..., hq). Then there exists aposi-
tive constant C' such that

2d+-2 d+1
(Xm0 +h) = X (n) = B(Xp(n+h) = X (@)™ _ (nhn) !

(5.22) E i -

uniformly for ||n|| = O (m) as m — co.
Corollary. The sequence Yy, (t) is tight.

Proof. In order to treat the difference Z,,(n,h) = X,,,(n + h) — X,,,(n) we distin-
guish two cases. If [|n|| = O (||h[]), then set X¢ (n) := X, (n) — EX,,(n) and use
the crude estimate

! <2d +2

(5.23) EZ,,(n,h)2%+2 < Z o )Echn (n + h)ZFEX¢, (n)20+2- 2k
k=0

27



in conjunction with Lemma 5.3.

If ||n|| = O(||h|]) does not hold, we may without loss of generality as-
sume that ||h||/|ln|]] — 0. We use the generating function that enumerates
the change of the valuation between the first and the second batch, i.e.,
<I>2(1/:c,:c,z11, Sy Rd1, 212, - - .,ng). Set zZ = (2’11, . 7zd1)> Zo = (2'12, . .,ng), and

n_ h aa 1
Cn,h,a = [zl Z2:| e ¢2 an7z17z2

z=1

Furthermore let

i—1
. Cn,h,i
A-::E”Z n,h) —j)=——.
i '_0( m( ) —J) e

Then the moment occurring in (5.22) can again be expressed by

2d+2 2d+ 9 l
(5.24) E(Zm(n,h) = EZy(n,h))*4 = - ( ! )<—1)1A%d+2"25zkAk-
=0 k=1

Hence we have to compute ¢y b, If we set

1 o 1
0% = g 35 (37777)

z=1

then Faa di Bruno’s formula yields

!
Cn,h,a = Z ﬁm(m_l)...(m_kl_..._ka+1)
> iki=a o
S (di(zy,2 I
[t lsle) ()" [T (41772
=1 '

Thus we have to calculate the coefficient

dj(Z1;Z2))kj

7!

(5.25) [7172] g(z1)"g(z2)" [ | (

J

The calculation of ¢pho = [z7zh)g(z1)™g(z2)™ is easy since it factorizes. The
saddle points of g;(zi1)™z;""* and g;(z12)" 2, " for | =1,...,d are given by

i = (%) — G0 T (1+0 (%)) for j = 1,2.
m g m m
Setting p1 = (p11,--.,pda1), P2 = (P12, - .-, paz) as well as z¥ := (2f,...,2%) and

g(p1)"g(p2)"
(2m)%pm oI i g/ m) i ()

V(p13p27n7 h7 m) =

’

we get as above
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2 d o
O B <‘ PO EDD %)
B

=1 =1
d .3
(15 o (2 5 o ()
) =1 ) u4 = ,
o3 o () 3 o ()
=1 =1

(Zullnl 2+ul1nl )+O<Zulzh 3/2 +ul2h )

=1

kel d k+1
Ui ur2
+0 |m E pi +0(m E pi2 | —F= duii - - - dugy dugs - - - dugs
( =1 Vi > < =1 Vhi ))

d d
~ s 1 . hl 1

~V(p1,p2,n,h,m) (1 + E Ful—)—+ E Riq ( ) )
=1 (m) 8’I’L1 =1 Shl

Using more terms we get a multivariate asymptotic series expansion of the form

(2725 ]g(21) " g(22)™
ny ng hy ha\ _; —jar—6 -5
~V(p1,p2,n,h,m) Z Qjy..jgdy-8g (E,...,E,E,...,E> nlll...ndehl 1...hd d
.7'17~~~,de0
81,...,04>0
where aj,...;,.5,.-.6,(t1, ..., t24) are explicitly computable analytic functions.

Now we turn to cp h,o for a > 0. Therefore we first analyze the additional factor
occurring in (5.25). By (2.8):

¢2($1,$2,Z1,0) = d)l(wle;zl)

we obtain
6¢(mmz0) 8¢(m:cz0) (z x)6¢>(:cz) 0
a_ PY2\41,42,4], - 5 P2\L1,L2,41, = L2 —21) 7 -P1\L, 21 =
Oz, Oz, R ox S
and thus
d

di(2z1,22) = 75— ¢2(T1, 22,21, 22) — 55— P2(¥1,22,21,22) = ch(l)(zl,zz)zm

Ox, Oz, P
with analytic functions cl(l) (z1,22). As in the proof of Lemma 5.3, the definition of

d;(z1,22) guarantees that there exist analytic functions cl(j )(

(J)
Z1,Z2 E &} Zl,Zz 212

Z1,22) such that

Hence cp h,o can be represented as a sum of terms with the shape

m(m = 1)+ (m = B + 1)[z7 2} g(21) " g(22)" K (21, 22)
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with coefficients independent of n, h, and m and an analytic function Kgz(z1,22)
of the form

d
— 21
Kﬁ(ZI,ZQ) = Z L%...W(zl,zz)Hzlz
Y15ee¥a >0 =1
Zj vi=8

where L,,...,,(21,22) is again analytic.
As above we assume that this sum has only one term, denoted by L(z,2z2) and
corresponding to a choice of 7y, . .., yg with > %= B. Then we have for z;,z, € R?

i i i 042\ _
L (211, . za1€", 2122, L 242€"' %) = L(21,25)

J1dz2 (z1: z2)

X exp 3 [Tic (#0117 (i)

SN
J11+e+jar+jro++5ia2>0 Jii-Ji2

d d
+0 (Z O] + Zzzzlefz“'>>
=1 =1

with

%L(zla ZZ)

)\ey(zlaz2) = Zplm forp=1,...,d
652L(z1,z2)
)\e’u(z1,Z2):Zu27}/(z1 2] forpy=d+1,...,2d
0
)\(jl,j2)+e,; (Z1,Z2) = Zu1 62—)\j1’j2 (zl,z2) for u= 17 . _7d
pl

0
)‘(.7'1,.’1'2)+€u (z13z2) = zu26—)‘j17.7'2 (z17z2) for pu=d+1,...,2d
2,0

where this time e, denotes the uth unit vector in R??. Thus we can proceed as in
the case a = 0. Set

N ga (71, 72) = Nja,g (1 (211), - - -5 pa(Zar), pa(212), - - -, a(2az))

211 """ 2d1”12 """ Zd2

and get (cf. previous Lemma)
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_ m(m_ 1)"'(m_ﬂ_'—I)L(p17p2)v(p17p27n7ham) 1 p’n

a (27)d 1 12
L uh L Uy & (fup)? 1-j/2 e
[ fer (2 X T T Y R ()
B =1 =1 =1 j=3
d k . . d
(tw2)? 12 (hl> g2
+ T h K|l — |+ | —
Z}; gttt m ,;7 TuFs (ha )
+ 5 [Lics G )™ )2y "0y 72 < (g
i1 o Im2d didz \

Jii++jar+jie++jae>0

d u k+1 d - k1
+O m Pl + 0 m P12 | —— dull . dudl dU12 L dUd2
( ; Vi ) lzzl Vh
with
:\.’i1.’i2 (T1,...,%24) = S\jlj2ﬁll (xl)_j“ﬂl_ﬂz(.Z'd+l)_j’2/2_

Expanding the exp-term into a series and evaluating the integral yields finally an
asymptotic series expansion of the form

d

m(m—1)---(m—pF+1
Cn,h,a ™~ g ( ) mﬂ( )L(pl,p2)V(p1,p2,n, ha m) H h;ﬂ
=1
(5.26)
(@) ni ng hi hq —j a1 —6 5
x Z Q1o ja,b1, 6a (EPH’E7E7'”7E nl]l‘”ndjdhl 1‘”hd ’
jla-'-vdeOa
01,.-,6420

()

i1oejab1---6a (15 - - -, t24) analytic func-

with explicitly computable analytic functions a

tions.
Arguing as in the proof of the previous Lemma, we choose arbitrary con-
stants si,...,8¢ and ty,...,tq and require n; = sym,...,ng = sgm and h; =

tim,...,hq = tym. Then by Lemma 5.2 we have EZ,,(n,h)??+? = O (||h[|?+!).
On the other hand, inserting (5.26) into (5.24), shows that EZ,,(n,h)??+?2 is for
m — oo asymptotically equal to a rational function in ni,...,ng,h1,...,hq all
terms of which have the shape

gs! Yd
h’l ...hd

Ji Jd 3,01 34
ndt - onddht .. hd

(5.27)

if we neglect constant factors. Thus Lemma 5.2 implies

MA Y — e — == —ja<d+1
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and (5.27) can be rewritten as

! ] hjl P th
h;l . hgd H
nl e nd
with 7{ + --- + v, < d + 1. Assume without loss of generality that equality holds.
If H?:l (hi/n;)% = O (1) then

Rt ... pdd
R 4 L
nl .. -nd

and we would be finished. If Hle (hi/m;)’ is not bounded, then we may assume
H;.izl (hi/ni)% — oo. In this case set h; = t;m, for i = 1,...,d, with ¢; lying in an
interval bounded away from zero. On the one hand, this implies the existence of a
positive constant C' such that h?i . -h}; > C||h||™*! and consequently

, C pI L pde
(5.28) hit - hyt ———% > ||h[|
n .. .n
1 d

since we still have H?Zl (hi/n;)% — oo. On the other hand, by ||n|| = O (m) we
have now ||n|| = O (||h|]) and thus (5.28) contradicts the conclusion of (5.23) and
Lemma 5.3. O

Thanks are due to P. Chassaing, A. Mokkadem and A. Rouault for information
on multivariate processes, and to J.F. Marckert for plotting the bi-dimensional
Gaussian processes.
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