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Abstract. This article presents a powerful method for the enumeration
of pattern-avoiding words generated by an automaton or a context-free
grammar. It relies on methods of analytic combinatorics, and on a matri-
cial generalization of the kernel method. Due to classical bijections, this
also gives the generating functions of many other structures avoiding a
pattern (e.g., trees, integer compositions, some permutations, directed
lattice paths, and more generally words generated by a push-down au-
tomaton). We focus on the important class of languages encoding lattice
paths, sometimes called generalized Dyck paths. We extend and refine the
study by Banderier and Flajolet in 2002 on lattice paths, and we unify
several dozens of articles which investigated patterns like peaks, valleys,
humps, etc., in Dyck and Motzkin words. Indeed, we obtain formulas for
the generating functions of walks/bridges/meanders/excursions avoiding
any fixed word (a pattern). We show that the autocorrelation polynomial
of this forbidden pattern (as introduced by Guibas and Odlyzko in 1981,
in the context of regular expressions) still plays a crucial role for our
algebraic functions. We identify a subclass of patterns for which the
formulas have a neat form. En passant, our results give the enumeration
of some classes of self-avoiding walks, and prove several conjectures from
the On-Line Encyclopedia of Integer Sequences. Our approach also opens
the door to establish the universal asymptotics and limit laws for the
occurrence of patterns in more general algebraic languages.
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1 Introduction

Combinatorial structures having a rational or an algebraic generating function
play a key role in many fields: computer science (analysis of algorithms involving
trees, lists, words), computational geometry (integer points in polytopes, maps,
graph decomposition), bioinformatics (RNA structure, pattern matching), number
theory (integer compositions, automatic sequences and modular properties, integer
solutions of varieties), probability theory (Markov chains, directed random walks),
see e.g. [3,12,21,35]. They are often the trace of a structure which has a recursive
specification in terms of a system of tree-like structures, or of some functional
equation solvable by variants of the kernel method [13].

Since the seminal article by Chomsky and Schützenberger on the link be-
tween context-free grammars and algebraic functions [15], which also holds for
push-down automata [33], many articles encoded and enumerated combinato-
rial structures via a formal language approach. See e.g. [19, 25, 30] for such an
approach on the so-called generalized Dyck languages. These languages are in
fact equivalent to directed lattice paths, and in this article, we try to understand
how some of these fundamental objects can be enumerated when they have the
additional constraint to avoid a given pattern. For sure, such a class of objects can
be described as the intersection of a context-free language and a rational language;
therefore, classical closure properties imply that they are directly generated by
another (but huge and clumsy) context-free language. Unfortunately, despite the
fact the algebraic system associated with the corresponding context-free grammar
is in theory solvable by a resultant computation or by Gröbner bases, this leads
in practice to equations which are so big that no current computer could handle
them in memory, even for generalized Dyck languages with 20 different letters.

In this article, we introduce a generic and efficient way to tackle the question
of enumerating words avoiding a given pattern (for languages generated by
push-down automata) which bypass these intractable equations. For directed
lattice paths, our method allows to handle an arbitrary number of letters (i.e.,
allowed jumps), up to alphabets of thousands of letters, computationally in a
few minutes. It relies on an analytic combinatorics approach, and also on the
kernel method, which we used in our investigation of enumerative and asymptotic
properties of lattice paths [4–7]. This allows to unify the considerations of many
articles which investigated natural patterns like peaks, valleys, humps, etc., in
Dyck and Motzkin words, corresponding patterns in trees, compositions. . . , see
e.g. [9,10,14,16–18,20,26,29,31] and all the examples mentioned in our Section 7.

2 Definitions and Notations

Let S, the set of steps (or jumps), be some finite subset of Z, that contains at
least one negative and at least one positive number. A lattice path with steps from
S is a finite word w = [v1, v2, . . . , vn] in which all letters belong to S, visualized
as a directed polygonal line in the plane, which starts in the origin and is formed
by successive appending of vectors (1, v1), (1, v2), . . . , (1, vn). The letters that
form the path w = [v1, v2, . . . , vn] are referred to as its steps. The length of w,
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to be denoted by |w|, is the number of steps in w. The final altitude of w, to be
denoted by h(w), is the sum of all steps in w, that is v1 + v2 + . . .+ vn; visually,
it is the y-coordinate of the point where w terminates.

Under this setting, it is usual to consider two restrictions: being the whole path
(weakly) above the x-axis, and having final altitude 0 (equivalently, terminating
at the x-axis). Consequently, one considers four classes of lattice paths:
1. A walk is any path as described above.
2. A bridge is a path that terminates at the x-axis.
3. A meander is a path that stays (weakly) above the x-axis.
4. An excursion is a path that stays (weakly) above the x-axis and also termi-

nates at the x-axis. In other words, an excursion fulfills both restrictions.

ending anywhere ending at 0

on Z

walks

W (t, u) =
R(t, u)

K(t, u)

bridges

B(t) =

e∑
i=1

u′i
ui

t

1 + R′(t,ui)

R(t,ui)2
t`+1ub

i −
(`−1)t`ub

i
R(t,ui)

on N

meanders

M(t, u) =
R(t, u)

K(t, u)

c∏
i=1

(u− ui(t))

excursions

E(t) =
(−1)c+1

t

c∏
i=1

ui(t)

Table 1. Summary of our results. For the four types of paths and for any set
of jumps encoded by P (u), we give the corresponding generating function of such
lattice paths avoiding a pattern p (of length ` and final altitude b). The formulas
involve the autocorrelation polynomial R(t, u) of p, and the small roots ui of the kernel
K(t, u) := (1− tP (u))R(t, u) + t`ub.

For each of these classes (when no pattern is forbidden), Banderier and
Flajolet [4] gave general expressions for the corresponding generating functions
and the asymptotics of their coefficients. In the generating functions, the variable
t corresponds to the length of a path, and the variable u to its final altitude. P (u)

is the characteristic polynomial of the set of steps S, defined by P (u) =
∑
s∈S

us.

The smallest (negative) number in S is denoted by −c, and the largest (positive)
number in S is denoted by d: that is1, if one orders the terms of P (u) by the
powers of u, one has P (u) = u−c + . . .+ ud.

1 Some weights (or probabilities, or multiplicities) could be associated with each jump,
but we omit them in this article to keep readability. All the proofs would be similar.
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3 Lattice Paths with Forbidden Patterns, and
Autocorrelation Polynomial

We consider lattice paths with step set S that avoid a certain pattern, that is, an
a priori fixed path p = [a1, a2, . . . , a`]. To be precise, we define an occurrence of
p in a lattice path w as a substring of w which coincides with p. If there is no
occurrence of p in w, we say that w avoids p. For example, the path [1, 2, 3, 1, 2]
has two occurrences of [1, 2], but it avoids [2, 1].

Before we state our results, we introduce some notations.
A presuffix of p is a non-empty string that occurs in p both as a prefix and

as a suffix. In particular, the whole word p is a (trivial) presuffix of itself. If p
has one or several non-trivial presuffixes, we say that p exhibits an autocorre-
lation phenomenon. For example, for the pattern p = [1, 1, 2, 1, 2] we have no
autocorrelation. In contrast, the pattern p = [1, 1, 2, 3, 1, 1, 2, 3, 1, 1] has three
non-trivial presuffixes: [1], [1, 1], and [1, 1, 2, 3, 1, 1], and thus in this case we have
autocorrelation.

While analysing the Boyer–Moore string searching algorithm and properties
of periodic words, Guibas and Odlyzko introduced in 1981 [22] what turns out
to be one of the key characters of our article, the autocorrelation polynomial2

of the pattern p: For any given word p, let Q be the set of its presuffixes; the
autocorrelation polynomial of p is

R(t, u) =
∑
q∈Q

t|q̄|uh(q̄), (1)

where q̄ denotes the complement of q in p.
For example, consider the pattern p = [1, 1, 2, 3, 1, 1, 2, 3, 1, 1]. Its four presuf-

fixes produce four terms of P (t, u) as follows:

q |q̄| h(q̄)

[1] 9 15
[1, 1] 8 14

[1, 1, 2, 3, 1, 1] 4 7
[1, 1, 2, 3, 1, 1, 2, 3, 1, 1] 0 0

Therefore, for this p we have R(t, u) = 1 + t4u7 + t8u14 + t9u15.
Notice that if for some p no autocorrelation occurs, then we have Q = {p}

and therefore R(t, u) = 1.
Finally, we define the kernel as the following Laurent polynomial:

K(t, u) := (1− tP (u))R(t, u) + t|p|uh(p). (2)

Also in our case it can be shown that each root u = u(t) of K(t, u) = 0 is either
small or large, and that the number of small roots is e := max{c,−h(p)}: we
shall denote them by u1, . . . , ue.

2 A similar notion also appears in the work of Schützenberger on synchronizing
words [34].
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Now we can state our main results. Recall that t is the variable for the length
of a path, and u is the variable for its final altitude.

Theorem 1. Let S be a set of steps, and let p be a pattern with steps from S.
Denote ` = |p|, b = h(p).

1. The bivariate generating function for walks avoiding the pattern p, is

W (t, u) =
R(t, u)

K(t, u)
. (3)

If one does not keep track of the final altitude, this yields

W (t) = W (t, 1) =
1

1− tP (1) + t`/R(t, 1)
. (4)

2. The generating function for bridges avoiding the pattern p is

B(t) = t

e∑
i=1

u′i(t)

ui(t)

R(t, ui(t))

R(t, ui(t)) + (∂tR)(t,ui(t))
R(t,ui(t))

t`+1ui(t)b − (`− 1)t`ui(t)b
, (5)

where u1, . . . , ue are the small roots of the kernel K(t, u), as defined in (2).

Definition. For meanders and excursions, the formulas have a noteworthy
shape when the pattern p is a pseudomeander, i.e. a lattice path which does not
cross the x-axis, except, possibly, at the last step. Notice that if the pattern p is
a pseudomeander, then h(p) ≥ −c, and therefore, the number of small roots of
K(t, u) is c.

Theorem 2. Let S be a set of steps, and let p be a pseudomeander. Denote
` = |p|, b = h(p).

1. The bivariate generating function M(t, u) for meanders avoiding the pattern p
is

M(t, u) =
R(t, u)

ucK(t, u)

c∏
i=1

(
u− ui(t)

)
, (6)

where u1(t), . . . , uc(t) are the small roots of K(t, u) = 0.
If one does not keep track of the final altitude, this yields

M(t) = M(t, 1) =
R(t, 1)

K(t, 1)

c∏
i=1

(
1− ui(t)

)
. (7)

2. The generating function for excursions avoiding the pattern p is

E(t) = M(t, 0) =
(−1)c+1

t

c∏
i=1

ui(t) (8)

if b > −c; if b = c, then one has t− t` rather than t in the denominator.

N.B.: When p is not a pseudomeander, there are still some algebraic expres-
sions, but not as concise.

Remark. Notice that for these four classes of lattice paths, if one forbids a
pattern of length 1 or if one uses symbolic weights for each jump, this recovers
the formulas from Banderier and Flajolet [4].
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4 Automaton and Transfer Matrix A

The following automata, sharing the spirit of the Knuth–Morris–Pratt algorithm,
will allow us to tackle pattern avoidance. Let p = [a1, . . ., a`] be the “forbidden”
pattern. As we construct a lattice path w = [v1, v2, . . .] step by step, it might start
“accumulating” p, that is, contain some prefix of p. We introduce `many states that
indicate how much of p has the path w accumulated at each step. These states,
X0, X1, . . ., X`−1, will be labelled by proper prefixes of p: Xi = [a1, a2, . . . , ai]
(in particular, the first state is labelled by the empty word: X0 = ε = [ ]). We say
that w1..m = [v1, v2, . . ., vm], a prefix of w, is in the state Xi (or, alternatively:
w, after its mth step, is in the state Xi), if the label of Xi is the longest proper
prefix of p that coincides with a suffix of w1..m: vm−i+1 = a1, vm−i+2 = a2, . . .,
vm = ai.

If w is in the state Xi after certain step vm, then its state after the next step
vm+1 is uniquely determined by i and vm+1 (unless i = ` − 1 and vm+1 = a`
which is impossible since this would yield an occurrence of the forbidden pattern).
This gives a finite automaton completely determined by P (u) and p. Its states are
labelled by X0, . . . , X`−1, and for i, j ∈ {0, . . . , `− 1} we have an arrow labelled
λ from Xi to Xj if j is the maximum number such that Xj is a suffix of Xiλ. Its
transition matrix will be denoted by A: it is an `× ` matrix, and its (i, j) entry
is the sum of all terms uλ such that there is an arrow labelled λ from Xi−1 to
Xj−1. See Figure 1 for an example.

[1,2,1,2][1,2,1][1,2][1]ε

X1 X2 X3 X4
S = {−1, 1, 2}

p = [1, 2, 1, 2,−1]
1 2 1 2

−1, 2 1

−1
−1, 2

1

−1

1

2

u−1 + u2

u−1

u−1 + u2

u−1

u2

u

u

u

u

u

u2

u2

A =

d = 0

d = 1

d = 2

d = 3

1 2 1 2
2 1 2 -1

1 2 -1

2 -1

-1

1 2 1

1 2

1

A2,2 = u

A5,4 = u

A4,2 = u

A5,2 = 0

because we already have u
to the right of this entry

X0

Fig. 1. The automaton and the transfer matrix A for S = {−1, 1, 2} and the pattern
p = [1, 2, 1, 2,−1]. (The 0 entries of A are replaced by dots.)
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The matrix A has several general properties. In particular, for all i, j such
that j > i+ 1, we have Ai,j = 0; for each i, 1 ≤ i ≤ `− 1, we have Ai,i+1 = ai;
for each j, 2 ≤ j ≤ `, every entry in the jth column is either 0 or aj−1; for each
i, 1 ≤ i ≤ ` − 1, the sum of the entries in the ith row is P (u); the sum of the
entries in the `-th row is P (u)− a`.

The “essential” entries of A are those with 2 ≤ j ≤ i. They can be deter-
mined by the following procedure, which is also illustrated in Figure 1. For
d = 0, 1, . . . , ` − 2 we compare [a1, a2, . . . , a`−d−1] with [ad+2, ad+3, . . . , a`]. If
they coincide (aβ = ad+1+β for all β = 1, 2, . . . , ` − d − 1), then all the entries
Ai,j with i− j = d, j ≥ 2, are 0. Otherwise, if β is the smallest number such that
aβ 6= ad+1+β , then Ad+β+1,β+1 = uβ , unless a smaller d yielded uβ in the same
row, to the right of this position (if this happens, Ad+β+1,β+1 = 0).

5 The Structure of the Kernel: det(I − tA)

In what follows, an important role will be played by the matrix I−tA, specifically
by its determinant and by the sum of elements in the first row of its adjoint. In
particular the role of det(I − tA) in our study is the analog of the role played by
1− tP (u) in the study of Banderier and Flajolet [4], but our equation is more
involved.

Theorem 3. Let S be a set of steps, and let p be a pattern with steps from S.
Then for A, the transfer matrix of the automaton, we have

det(I − tA) = K(t, u) = (1− tP (u))R(t, u) + t|p|uh(p), (9)

(1 0 · · · 0) adj(I − tA) (1 1 · · · 1)> = R(t, u), (10)

where K(t, u) and R(t, u) are the kernel and the autocorrelation polynomial, as
defined in Equations (1) and (2). In particular, in the case without autocorrelation
we have det(I − tA) = 1 − tP (u) + t|p|uh(p), and the sum of the entries in the
first row of adj(I − tA) is 1.

Proof (sketch). Consider first that every step s of S has a symbolic weight ts.
Let W be the generating function of walks avoiding p with these weights, R the
autocorrelation polynomial of p, P =

∑
s ts the polynomial encoding the different

steps s, and tp the weight of p. Using the construction of [21, p. 60], we find that:

W = R(t,u)
(1−P (u))R(t,u)+tp

. By Cramer’s rule, W is also equal to the left-hand side

of (10) divided by the left-hand side of (9). Since (1 − P (u))R(t, u) + tp is an
irreducible polynomial with degree `, the two rational representations of W are
identical. We conclude by specializing ts to tuh(s) for all s. ut
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6 Proofs of the Generating Functions for Walks, Bridges,
Meanders, and Excursions

Proof of Theorem 1 for walks. Let W (t, u) be the bivariate generating
function for the number of walks with steps from S avoiding a fixed pattern p.
For α = 1, 2, . . . , `, we denote by Wα = Wα(t, u) the corresponding bivariate
generating function restricted to those walks that terminate in state α. Then we
have the following vectorial functional equation:

(W1 W2 · · · W`) = (1 0 · · · 0) + t (W1 W2 · · · W`) A,

(W1 W2 · · · W`) (I − tA) = (1 0 · · · 0),

(W1 W2 · · · W`) = (1 0 · · · 0)
adj(I − tA)

|I − tA| .

Therefore, the generating function for W (t, u), which is the sum of the generating
functions Wa(t, u) over all states, is equal to

W (t, u) = (W1 W2 · · · W`) (1 1 · · · 1)> =

=
(1 0 · · · 0) adj(I − tA) (1 1 · · · 1)>

|I − tA| =
R(t, u)

(1− tP (u))R(t, u) + t|p|uh(p)
,

where the last equality follows from Theorem 3. ut

Proof of Theorem 1 for bridges. In order to find the univariate generating
function B(t) for bridges, we need to extract the coefficient of [u0] from W (t, u).
To this end, we assume that t is a sufficiently small fixed number, extract the
coefficient of a (univariate) function by means of Cauchy’s integral formula, and
apply the residue theorem:

B(t) = [u0]W (t, u) =
1

2πi

∫
|u|=ε

W (t, u)

u
du =

e∑
i

Resu=ui(t)
W (t, u)

u
,

where u1, . . . , ue are the small roots of K(t, u). By the formula for residues of
rational functions, we have

Resu=ui(t)
W (t, u)

u
= Resu=ui(t)

R(t, u)

u ((1− tP (u))R(t, u) + t`ub)
=

=
R(t, u)

d
du (u ((1− tP (u))R(t, u) + t`ub))

∣∣∣∣∣
u=ui(t)

.

The denominator of this expression is

−tuP ′(u)R(t, u) + u(1− tP (u))Ru(t, u) + bt`ub
∣∣
u=ui(t)

. (11)

Next, we differentiate K(t, ui) = 0 with respect to t and obtain an expression for
P ′(ui(t)). When we substitute it to (11), we obtain (5). ut
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Proof of Theorem 2 for meanders and excursions. Similarly to our
notation above, we denote by M(t, u) the bivariate generating function for
meanders, and by Mα(t, u) the bivariate generating function for meanders that
terminate in state α. Then we have the following vectorial functional equation:

(M1 M2 · · · M`) = (1 0 · · · 0) + t (M1 M2 · · · M`) A− t [u<0]
(
(M1 M2 · · · M`)A

)
,

where [u<0] denotes all the terms in which the power of u is negative. The first
component of [u<0]

(
(M1 M2 · · · M`)A

)
is a sum of several fractions of the form

M j
i (t, u)/uγ , where M j

i (t, u) is the generating function for p-avoiding meanders
that terminate in state i at altitude j, and 1 ≤ γ ≤ c. We denote this expression
by F (t, u)/uc, where F (t, u) is polynomial in t and u. All other components of
[u<0]

(
(M1 M2 · · · M`)A

)
are 0 because if the path arrives at state Xi with

i > 1 this means that it accumulated a non-empty prefix of p. And since p
is a pseudomeander, w will always remain (weakly) above the x-axis while it
accumulates its non-empty prefix. Thus we obtain

(M1 M2 · · · M`) (I − tA) =

(
1− t

uc
F (t, u)

)
(1 0 · · · 0), (12)

(M1 M2 · · · M`) =

(
1− t

uc
F (t, u)

)
(1 0 · · · 0)

adj(I − tA)

|I − tA| . (13)

Finally, we multiply it the last identity by (1 1 · · · 1) from the right and obtain,
through the use of Theorem 3,

M(t, u) =

(
1− t

uc
F (t, u)

)
R(t, u)

K(t, u)
. (14)

In order to determine 1 − tF (t, u)/uc, we proceed as follows. First, the kernel
K(t, u) has precisely c small roots. This follows from the fact that the lowest
degree of u in K(t, u) is −c: it is contributed by u−c in P (u), while the lowest
degree of u in t`ub is at least −c; and this these terms cannot cancel out (the
only exception is the trivial case of a one-letter pattern); then it can be shown
(for example, by the Newton polygon method) that K(t, u) has c many (distinct)
roots whose Puiseux series starts with const · u1/c. Further, it can be show in
a similar way that all other roots of K(t, u) are large. As usual, we denote the
small roots by u1, . . . , uc.

For each 1 ≤ i ≤ c, we substitute u = ui into (12). Then the matrix I − tA
is singular and therefore it has a (right) eigenvector v that belongs to the
eigenvalue 0. Moreover, the first component of v is not 0: otherwise the columns
of I−tA, with the first column excluded, are linearly dependent, which contradicts
the structure of the matrix. Then comparing the first components yields the
identity 1 − t

uc
i
F (t, u) = 0, which means that each ui, i = 1, . . . , c, satisfies

uc − tF (t, u) = 0, which is a polynomial equation of degree c. This implies
uc − tF (t, u) = (u − u1)(u − u2) . . . (u − uc), We substitute this into (14) and
finally obtain the claimed result (6).

Setting u = 0 in Formula (6) gives the formula for excursions. ut
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7 Examples

We end our article with a small set of examples, see Table 2. We can also link some
self-avoiding walks and pattern avoiding lattice paths. In fact, the enumeration
and the asymptotics of self-avoiding walks in Z2 is one of the famous open
problems of combinatorics and probability theory. As it is classical for intractable
problems, many natural subclasses have been introduced, and solved. Our lattice
paths avoiding some pattern allow to enumerate many of these subclasses of
self-avoiding walks, like partially directed self-avoiding walks with an added
constraint of living in a half-plane or a strip [2]. Partially directed walks have
three kinds of steps, say n, e and s, and the self-avoiding condition means that
factors ns and sn are disallowed. Consider the following three models:

– in the first model, the half-plane is the one over the line x = 0; the heights of
the steps are h(n) = 1, h(e) = 0 and h(s) = −1;

– in the second model, the half-plane is the one over the line x = y; the heights
are h(n) = 1, h(e) = −1 and h(s) = −1;

– in the third model, the half-plane is the one over the line x = −y; the heights
are h(n) = 1, h(e) = 1 and h(s) = −1.

These models are illustrated in Figure 2. Each of them leads to an algebraic
generating function, compatible with our formulas.

steps, pattern, model generating function OEIS reference3

S = {−1, 0, 1}
p = [1, 0, . . . , 0,−1]
bridges

1√
1−2t−3t2+2t`−2t`+1+t2`

` = 2: OEIS A051286

(proving a claim therein on
Whitney numbers, see also [11])

S = {−1, 0, 1}
p = [1, 0, . . . , 0,−1]
meanders

1−3t+t`−
√

1−2t−3t2+2t`−2t`+1+t2`

2t(1−3t+t`)

` = 2: OEIS A091964

(RNA folding, see [23])

S = {−1, 0, 1}
p = [1, 0, . . . , 0,−1]
excursions

1−t+t`−
√

1−2t−3t2+2t`−2t`+1+t2`

2t2
` = 2: OEIS A004148 [24]
` = 3: OEIS A114584 [27]

S = {1,−1}
p = [1,−1, 1,−1, . . . , 1]
excursions

1−t`+1−
√

1−4t2+2t`+1+4t`+3−3t2`+2

2t2(1−t`−1)

` = 3: ≈ OEIS A001006

(Motzkin numbers [32,36])

S = {1,−1}
p = [1,−1, 1,−1, . . . ,−1]
excursions

1−t`+2−
√

1−4t2+6t`+2−4t2`+2+t2`+4

2t2(1−t`)

` = 4: OEIS A078481

(irreducible stack
sortable permutations, [8, 28])

Table 2. Our results provide a unified approach for the computation of generating
functions for different models. In particular, this solves several conjectures in the On-
Line Encyclopedia of Integer Sequences, it also allows to produce many formulas: this
recovers several earlier works, often related to Dyck/Motzkin paths.

3 Such references are links to the web-page dedicated to the corresponding sequence in
the On-Line Encyclopedia of Integer Sequences, http://oeis.org.

https://oeis.org/A051286
https://oeis.org/A091964
https://oeis.org/A004148
https://oeis.org/A114584
https://oeis.org/A001006
https://oeis.org/A078481
http://oeis.org
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Fig. 2. Some models of self-avoiding walks are encoded by partially directed lattice
paths avoiding a pattern (see [2]).

8 Conclusion and Extensions

In this article, we showed how a vectorial generalization of the kernel method
allows to enumerate lattice paths avoiding a given pattern. Our approach is
flexible, and our future researches include the case of several patterns at once and
the general study (enumeration, limit laws) of counting the number of occurrences
of a given pattern in algebraic structures. The asymptotics are interestingly much
more involved than in [4], we analyse these aspects in our companion article [1].
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