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Abstract. Panagiotou and Stufler (arXiv:1502.07180v2) recently proved one important
fact on their way to establish the scaling limits of random Pólya trees: a uniform ran-
dom Pólya tree of size n consists of a conditioned critical Galton-Watson tree Tn and many
small forests, where with probability tending to one as n tends to infinity, each forest Fn(v)
is maximally of size |Fn(v)| = O(log n). Their proof used the framework of a Boltzmann
sampler and deviation inequalities.

In this paper, first we employ a unified framework in analytic combinatorics to prove
this fact with additional improvements on the bound of |Fn(v)|, namely |Fn(v)| = Θ(log n).
Second we give a combinatorial interpretation of all weights on the D-forests and C-trees in
terms automorphisms associated to a given Pólya tree. Finally, we derive the limit probability
that for a random node v the attached forest Fn(v) is of a given size.

1. Introduction and main results

First we recall the asymptotic estimation of the number of Pólya trees with n nodes from
the literatures [8, 9, 11]. Second we present Theorem 1 that leads to the proof of the scaling
limits of random Pólya trees in [10].

1.1. Pólya trees. Pólya trees are unlabelled rooted trees considered up to symmetry. For
any Ω ⊆ N0 such that 0 ∈ Ω and {0, 1} 6= Ω, we call a Pólya tree with outdegree set Ω an
Ω-Pólya tree and note that a Pólya tree is an N0-Pólya tree, that is, the outdegree set is
N0 = {0, 1, 2, . . .}. The size of a tree is referred to the number of its nodes. We denote by
tn the number of Pólya trees of size n and by T (z) the corresponding ordinary generating
function. That is, tn = [zn]T (z). From the Pólya enumeration theory [11] or the Burnside’s
Lemma, the generating function T (z) satisfies

T (z) = z exp

(
∞∑

i=1

T (zi)

i

)

.(1.1)

By differentiating both sides of (1.1) with respect to z, one can derive a recurrence relation
of tn (see [8, Chapter 29] and [9]). The first few terms of T (z) are then

T (z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8 + 286z9 + 719z10 + · · · .(1.2)

Pólya [11] showed that the radius of convergence z = ρ of T (z) satisfies 0 < ρ < 1 and that
z = ρ is the only singularity on the circle of convergence |z| = ρ. Subsequently, Otter [9]
proved that T (ρ) = 1 as well as the asymptotic expansion

T (z) = 1− b (ρ− z)1/2 + c(ρ− z) +O
(

(ρ− z)3/2
)

.(1.3)
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By transfer theorems he derived

tn =
b
√
ρ

2
√
π

ρ−n

√
n3

(

1 +O
(
1

n

))

(1.4)

where ρ ≈ 0.3383219, b ≈ 2.68112 and c = b2/3 ≈ 2.39614.
We will see that T (z) is connected with the exponential generating function of Cayley

trees, which belongs to the class of simply generated trees. Simply generated trees have been
introduced by Meir and Moon [7] to describe a weighted version of rooted trees. They are
defined by the functional equation

y(z) = zΦ(y(z)), where Φ(z) =
∑

j≥0

φj z
j(1.5)

is a power series with non-negative coefficients and y(x) =
∑

n≥1 ynx
n is the generating

function of weighted simply generated trees. One usually assumes that φ0 > 0 and φj > 0 for
some j ≥ 2 to exclude the trivial cases. In particular Cayley trees are simply generated trees
which are characterized by Φ(z) = exp(z). For this purpose, let

C(z) =
∑

n≥0

cn
zn

n!

be the exponential generating function of Cayley trees of size n, which is also a generating
function of weighted Cayley trees where every Cayley tree of size n has weight 1/n!. Then,
by construction it satisfies C(z) = z exp(C(z)).

In order to analyze the dominant singularity of T (z), we follow [9, 11], see also [4, Chap-
ter VII.5], and we rewrite (1.2) into

T (z) = zeT (z)D(z), where D(z) =
∑

n≥0

dnz
n = exp

(
∞∑

i=2

T (zi)

i

)

.(1.6)

We observe that D(z) is analytic for |z| < √
ρ < 1, so

√
ρ > ρ and it follows that

T (z) = C(zD(z))(1.7)

is convergent for |z| < ρ. In fact, T (z) = C(zD(z)) is a case of super-critical composition
schema where T (z) becomes singular before reaching the singularity of D(z). In other words,
the dominant singularity of T (z) is determined by the outer function C(z). That is, T (ρ) = 1
or equivalently ρD(ρ) = e−1 where z = e−1 is the unique dominant singularity of C(z).

We set dn = [zn]D(z) which counts the number of weighted D-forest of size n. These
are forests of Pólya trees and the weights on each Pólya tree are assigned according to the
function D(z). From (1.2) and (1.6) one gets its first values

D(z) =

∞∑

n=0

dnz
n = 1 +

1

2
z2 +

1

3
z3 +

7

8
z4 +

11

30
z5 +

281

144
z6 +

449

840
z7 + · · · .(1.8)

Combinatorially, the composition (1.7) means that a Pólya tree is constructed from a “Cayley”
tree where a weighted D-forest is attached to each node. We note that Cayley trees are labeled
objects, while this composition (1.7) is on the level of unlabeled objects. Thus, we are not
really working with Cayley trees, but with the Cayley function. The difference is that we
interpret the exponential generating function of Cayley trees as a weighted ordinary generating
function. To emphasize this fact we will from now on speak of C-trees in this context.
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1.2. Main results. We will present Theorem 1 in the context of Pólya trees because it shows
the main ideas in the proof without the notational and technical complications in the more
general random Ω-Pólya trees.

Consider a random Pólya tree of size n, denoted by An, which is a Pólya tree that is
uniformly selected from such trees with n vertices. We use Tn to denote the random C-tree
that is contained in a random Pólya tree An. For every vertex v from Tn, we use Fn(v) to
represent the D-forest that is attached to the vertex v in An. See Figure 1.1.

Fn(v1)

Fn(v2)

Fn(v3)

v1

v2

v3 v3

v1

v2

Figure 1.1. A random Pólya tree An (left) and a C-tree Tn (right) that is
contained in An where all D-forests Fn(v), except Fn(v1), Fn(v2), Fn(v3) are
empty.

Let Ln be the maximal size of a D-forest contained in An, that is, |Fn(v)| ≤ Ln holds for
all v ∈ Tn. The first theorem is stated as follows:

Theorem 1 (the upper bound is from (5.5) of [10]). For 0 < s < 1,

(1− (log n)−s)

(−2 log n

log ρ

)

≤ Ln ≤ (1 + (log n)−s)

(−2 log n

log ρ

)

(1.9)

holds with high probability 1− o(1).

Our first main result is a new proof of Theorem 1 by applying the unified framework by
Gourdon [5]. Our second main result is a combinatorial interpretation of all weights on the
D-forests and C-trees in terms automorphisms associated to a given Pólya tree.

Let cn,k denote the total weight of C-trees of size k that are contained in the Pólya trees
of size n, let tc,n(u) and Tc(z, u) denote the corresponding generating function and bivariate
generating function of cn,k, that is,

tc,n(u) =

n∑

k=1

cn,ku
k and Tc(z, u) =

∑

n≥0

tc,n(u)z
n.

where cn,k is not an integer for general n, k. By marking the nodes of all C-trees in Pólya
trees, we find a functional equation of the bivariate generating function Tc(z, u), which is

Tc(z, u) = zu exp (Tc(z, u)) exp

(
∞∑

i=2

T (zi)

i

)

= zu exp (Tc(z, u))D(z).(1.10)

Our second main result is the following:
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Theorem 2. Let T be the set of all Pólya trees, and MSET(≥2)(T ) be the multiset of
Pólya trees where each tree appears at least twice if it appears at all. Combinatorially this is
a forest without unique trees. Then their weights dn defined in (1.8) is equal to

dn =
∑

F∈MSET(≥2)(T)
|F |=n

|{σ ∈ Aut(F ) | σ1 = 0}|
|Aut(F )|

where Aut(F ) is given in Definition 1. Furthermore, the polynomial of C-trees in Pólya trees
of size n is given by

tc,n(u) =
∑

T∈T
|T |=n

tT (u) where tT (u) =
1

|Aut(T )|
∑

σ∈Aut(T )

uσ1 .

In particular, for all T ∈ T , it holds that t′T (1) = |P(T )| where P(T ) is the pointing operation
on the tree T , that is, P(T ) is the set of T with one single pointed (or colored) node.

Finally, we derive the limit probability that for a random node v the attached forest Fn(v)
is of a given size, which is consistent with the Boltzmann sampler from [10]. The precise
statement of our third main result is the following:

Theorem 3. The generating function T [m](z, u) of Pólya trees, where each vertex is marked
by z, and each weighted D-forest of size m is marked by u, is given by

T [m](z, u) = C (uzdmzm + z (D(z)− dmzm)) .(1.11)

where dm = [zm]D(z) and

P [|Fn(v)| = m] =
dmρm

D(ρ)

(
1 +O

(
n−1

))
.(1.12)

1.3. Paper outline. The paper is organized as follows. In Section 2 we prove Theorem 1 and
discuss the size of the C-tree Tn in a random Pólya tree An. In Section 3 we prove Theorem 2
and 3. In Section 4 we conclude with final remarks.

2. The maximal size of a D-forest

We will use the generating function approach from [5] to analyze the maximal size Ln of
D-forests in the random Pólya tree An, which provides a new proof of Theorem 1. Following
the same approach, we can establish a central limit theorem of random variable |Tn|, which
has been done in [13] in the more general random R-enriched trees.

Proof of Theorem 1. In (5.5) of [10], only an upper bound of Ln is given. By directly apply-
ing Gourdon’s Theorem (Theorem 4 and Corollary 3 of [5]) for the super-critical composition
schema, we find that for any positive m,

P[Ln ≤ m] = exp(− c1n

m3/2
ρm/2)(1 +O(exp(−mε))), where c1 ∼

b

2
√
π(1−√

ρ)(D(ρ) + ρD′(ρ))
.

Moreover, the random maximal size Ln satisfies asymptotically, as n → ∞,

ELn = −2 log n

log ρ
− 3

2

2

log ρ
log log n+O(1) and VarLn = O(1).
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By using Chebyshev’s inequality, one can prove that Ln is highly concentrated around the
mean ELn. We set εn = (log n)−s where 0 < s < 1 and we get

P(|Ln − ELn| ≥ εn · ELn) ≤
VarLn

ε2n · (ELn)2
= o(1),

which means that (1.9) holds with high probability 1− o(1). �

It was shown in [13] that the size |Tn| of the C-tree Tn in An satisfies a central limit theorem
and |Tn| = Θ(n) holds with high probability 1− o(1). The precise statement is the following.

Theorem 4 (Page 38, (3.9), (3.10) of [13] and (5.6) of [10]). The size of the C-tree |Tn| in
a random Pólya tree An of size n satisfies a central limit theorem where the expected value
E|Tn| and the variance Var |Tn| are asymptotically

E|Tn| =
2n

b2ρ
(1 +O(n−1)), and Var |Tn| =

11n

12b2ρ
(1 +O(n−1)).(2.1)

Furthermore, for any s such that 0 < s < 1/2, with high probability 1− o(1) it holds that

(1− n−s)
2n

b2ρ
≤ |Tn| ≤ (1 + n−s)

2n

b2ρ
.(2.2)

The random Pólya trees belong to the class of random R-enriched trees and we refer
the readers to [13] for the proof of Theorem 4 in the general setting. Here we provide a
proof of Theorem 4 to show the connection between bivariate generating function and normal
distribution.

Proof of Theorem 4 (see also [13]). It follows from Theorem 2.23 in [2] that the ran-
dom variable |Tn| satisfies a central limit theorem. In the present case, we set F (z, y, u) =
zu exp(y)D(z). It is easy to verify that F (z, y, u) is an analytic function in z, y around 0
such that F (0, y, u) ≡ 0, F (x, 0, u) 6≡ 0 and all coefficients [znym]F (z, y, 1) are real and
non-negative. From Theorem 2.23 in [2] we know that Tc(z, u) is the unique solution of the
functional identity y = F (z, y, u). Since all coefficients of Fy(z, y, 1) are non-negative and the
coefficients of T (z) are positive as well as monotonically increasing, this implies (ρ, T (ρ), 1)
is the unique solution of Fy(z, y, 1) = 1, which leads to the fact that T (ρ) = 1. Moreover, the
expected value is

E|Tn| =
nFu(z, y, u)

ρFz(z, y, u)
=

[zn]∂uTc(z, u)|u=1

[zn]T (z)
=

(

[zn]
T (z)

1− T (z)

)

([zn]T (z))−1 =
2n

b2ρ
(1 +O(

1

n
)).

The asymptotics are directly derived from (1.3). Likewise, we can compute the variance

Var |Tn| =
[zn]∂2

uT (z, u)|u=1

[zn]T (z)
+ E |Tn| − (E |Tn|)2

=
[zn]T (z)(1 − T (z))−3

[zn]T (z)
− (E |Tn|)2 =

11n

12b2ρ
(1 +O(

1

n
)).

Furthermore, |Tn| is highly concentrated around E |Tn|, which can be proved again by using
Chebyshev’s inequality. We set εn = n−s where 0 < s < 1/2 and consequently we get

P(|Tn| − E|Tn|| ≥ εn · E|Tn|) ≤
Var|Tn|

ε2n · (E|Tn|)2
= O(n2s−1) = o(1),

which yields (2.2). �

As a simple corollary, we also get the total size of all weighted D-forests in An. Let Dn

denote the union of all D-forests in a random Pólya tree An of size n.
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Corollary 5. The size of weighted D-forests in a random Pólya tree of size n satisfies a central
limit theorem where the expected value E|Dn| and the variance Var|Dn| are asymptotically

E|Dn| = n

(

1− 2

b2ρ

)

(1 +O(n−1)), and Var|Dn| =
11n

12b2ρ
(1 +O(n−1)).(2.3)

Theorem 4 and Corollary 5 tell us that a random Pólya tree An consists on average out of
2
b2ρ

≈ 82.2% C-tree Tn and 1− 2
b2ρ

≈ 17.8% weighted D-forests Dn. Furthermore, the average

size of a weighted D-forest Fn(v) attached to a random C-tree vertex in An is b2ρ
2 −1 ≈ 0.216,

which indicates that on average the D-forest Fn(v) is very small, although the maximal size
of all D-forests in a random Pólya tree An reaches Θ(log n).

Remark 1. We will describe the connection of (1.7) to the Boltzmann sampler in [10]. We
know that F (z, y, 1) = zΦ(y)D(z) where Φ(x) = exp(x) and y = T (z). By dividing both sides
of this equation by y = T (z), one obtains from (1.6) that

1 =
zD(z)

T (z)
exp(T (z)) = exp(−T (z))

∑

k≥0

T k(z)

k!

which implies that in the Boltzmann sampler ΓT (x), the number of offspring contained in the
C-tree Tn is Poisson distributed with parameter T (x). As an immediate result, this random
C-tree Tn contained in the Boltzmann sampler ΓT (ρ) is a critical Galton-Watson tree since
the expected number of offspring is Fy(z, y, 1) = 1 which holds only when (z, y) = (ρ, 1).

3. D-forests and C-trees

In order to get a better understanding of D-forests and C-trees, we need to return to the
original proof of Pólya on the number of Pólya trees [11]. The important step is the treatment
of tree automorphisms by the cycle index. Let us recall what it means that two graphs are
isomorphic.

Definition 1. Two graphs G1 and G2 are isomorphic if there exists a bijection between the
vertex sets of G1 and G2,

f : V (G1) 7→ V (G2)

such that two vertices v and w of G1 are adjacent if and only if f(v) and f(w) are adjacent
in G2. If G1 = G2 we call the bijection f an automorphism. The automorphism group on the
graph G1 is denoted by Aut(G1).

For any permutation σ, let σi be the number of cycles of length i of σ. We define the type

of σ, to be the sequence (σ1, σ2, . . . , σk) if σ ∈ Sk. Note that k =
∑k

i=1 iσi.

Definition 2 (Cycle index). Let G be a subgroup of the symmetric group Sk. Then, the
cycle index is

Z(G; s1, s2, . . . , sk) =
1

|G|
∑

σ∈G

sσ1
1 sσ2

2 · · · sσk

k .(3.1)

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. From the Pólya enumeration theory [11] or the Burnside’s Lemma,
the generating function T (z) satisfies the functional equation:

T (z) = z
∑

k≥0

Z(Sk;T (z), T (z
2), . . . , T (zk))

= z
∑

k≥0

1

k!

∑

σ∈Sk

(T (z))σ1(T (z2))σ2 · · · (T (zk))σk .(3.2)

which, by a simple calculation, can be simplified to (1.1), the starting point of our research.
However, this shows that the generating function of D-forests from (1.6) is given by

D(z) = exp

(
∞∑

i=2

T (zi)

i

)

=
∑

k≥0

Z(Sk; 0, T (z
2), . . . , T (zk)) =

∑

k≥0

1

k!

∑

σ∈Sk
σ1=0

(T (z2))σ2 · · · (T (zk))σk .

This representation enables us to interpret the weights dn of D-forests of size n: A D-forest
of size n is a multiset of k Pólya trees, where every tree occurs at least twice. Its weight is
given by the ratio of fix point free automorphisms over the total number of automorphisms.
(Equivalently, it is given by the number of fix point free permutations σ ∈ Sk of these trees
rescaled by the total number of orderings k!.)

Let T be the set of all Pólya trees, and MSET(≥2)(T) be the multiset of Pólya trees where
each tree appears at least twice if it appears at all. Combinatorially this is a forest without
unique trees. Then their weights are given by

dn =
∑

F∈MSET(≥2)(T)
|F |=n

|{σ ∈ Aut(F ) | σ1 = 0}|
|Aut(F )| .

Example 1. The smallest D-forest is of size 2, and it consists of a pair of single nodes. There is
just one fix point free automorphism on this forest, thus d2 = 1/2. For n = 3 the forest consists
of 3 single nodes. The fix point free permutations are the 3 cycles, thus d3 = 2/6 = 1/3. The
case n = 4 is more interesting. A forest consists either of 4 single nodes, or of 2 identical
trees, each consisting of 2 nodes and one edge. In the first case we have 6 4-cycles and 3 pairs
of two involutions. In the second case we have 1 involution swapping the two trees. Thus,
d4 =

6+3
24 + 1

2 = 7
8 .

These results also yield a natural interpretation of C-trees. We recall that by definition

Tc(z, u) =
∑

n≥0

tc,n(u)z
n,

where tc,n(u) =
∑

k cn,ku
k is the polynomial marking the C-trees in Pólya trees of size n.

From the decomposition (1.7) and (1.10) we get the first few terms

tc,1(u) = u, tc,2(u) = u2,

tc,3(u) =
3

2
u3 +

1

2
u, tc,4(u) =

8

3
u4 + u2 +

1

3
u.

Evaluating these polynomials at u = 1 obviously returns tc,n(1) = tn the number of Pólya trees.
Their coefficients however are weighted sums depending on the number of C-tree nodes. A
C-tree node is a node, that does not belong to a decoration. For a given Pólya tree there are
in general several ways to decide what is a C-tree node and what is a D-node. The possible
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choices are encoded in the automorphisms of the tree and these are responsible for the above
weights.

Let T be a Pólya tree, and Aut(T ) be its automorphism group. For an automorphism
σ ∈ Aut(T ) the nodes which are fix points by σ are C-tree nodes. All other nodes are part of
D-forests. Summing over all automorphisms and normalizing by the total number gives the
C-tree generating polynomial for T .

tT (u) = Z(Aut(T );u, 1, . . . , 1) =
1

|Aut(T )|
∑

σ∈Aut(T )

uσ1 .(3.3)

The polynomial of C-trees in Pólya trees of size n are then given by

tc,n(u) =
∑

T∈T
|T |=n

tT (u).

Example 2. For n = 3 we have 2 Pólya trees, namely the sequence T1 and a cherry T2. Thus,
Aut(T1) = {id}, where Aut(T2) = {id, σ}, where σ swaps the two leaves and the root is
unchanged. Thus,

tT1(u) = u3, tT2(u) =
1

2
(u3 + u).

For n = 4 we have 4 Pólya trees shown in Figure 3.1. Their automorphism groups are given
by Aut(T1) = Aut(T2) = {id}, Aut(T3) = {id, (v3 v4)} ∼= S2, and

Aut(T4) = {id, (v2 v3), (v3 v4), (v2 v4), (v2 v3 v4), (v2 v4 v3)} ∼= S3.

This gives

tT1(u) = tT2(u) = u4, tT3(u) =
1

2
(u4 + u2), tT4(u) =

1

6
(u4 + 3u2 + 2u).

T1 T2 T3 T4

v3 v4 v2 v3 v4

Figure 3.1. All Pólya trees of size 4

In the same way as we got the composition scheme in (1.7), we can rewrite Tc(z, u) from
(1.10) as Tc(z, u) = C(uzD(z)). The expected total weight of all C-trees contained in all
Pólya trees of size n is the n-th coefficient of Tc(z), which is,

Tc(z) :=
∂

∂u
Tc(z, u)

∣
∣
∣
∣
u=1

=
T (z)

1− T (z)
= z + 2z2 + 5z3 + 13z4 + 35z5 + 95z6 + 262z7 + · · · .

(3.4)

Let us explain why these numbers are integers, although the coefficients of tc,n(u) are in
general not. We will show an even stronger result. Recall that P(T ) is the pointing operation
on the tree T , that is, P(T ) is the set of T with one single pointed (or colored) node.

Lemma 6. For all T ∈ T it holds that t′T (1) = |P(T )|.
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Proof. From (3.3) we get that t′T (1) =
∑

σ∈Aut(T )
σ1

|Aut(T )| is the expected number of fixed

points in a uniformly at random chosen automorphism on T . Let XT be the associated
random variable for the number of fixed points in a random chosen automorphism of T . We
will prove EXT = |P(T )| by induction on the size of T .

The most important observation is, that only if the root of a subtree is a fixed point, its
children can also be fixed points. Obviously the root of the tree is always a fixed point.

For |T | = 1, it obviously holds as E(XT ) = 1 and there is just one tree with a single node
and a marker on it. For larger T consider the construction of Pólya trees. A Pólya tree
consists of a root and its children, which are a multiset of smaller trees. Thus, the children
set is of the form

{T1,1, . . . , T1,k1 , T2,1, . . . , T2,k2 , . . . , Tr,1, . . . , Tr,kr}, with Ti,j ∈ T .

On the level of children, the possible behaviors of automorphisms are permutations within the
same class of trees. In other words, an automorphism may interchange the trees T1,1, . . . , T1,k1

in k1! many ways, etc. Here the main observation comes into play: only subtrees, of which
the root is a fixed point, might also have other fixed points. Thus, the expected number of
fixed points are given by the expected number of fixed points in a random permutation of Ski
times the expected number of fixed points in Tki . By linearity of expectation we get

E(XT ) =

r∑

i=0

E(Fixed points in Ski)
︸ ︷︷ ︸

=1

E(XTi
),

where E(XTi
) = E(XTi,j

) for all 1 ≤ j ≤ ki and XT0 = 1 because the root is a fixed point
of any automorphism. Since the expected number of fixed points for each permutations is 1,
we get on average 1 representative for each class of trees. This is exactly the operation of
labeling one tree among each equivalent class. Finally, by induction the claim holds. �

In view of Lemma 6, we complete the proof of Theorem 2. �

As an immediate consequence of Lemma 6, t′c,n(1) counts the number of Pólya trees with n
nodes and a single labeled node (see OEIS A000107, [12]). This also explains the construction
of non-empty sequences of trees in (3.4): Following the connection of [1, p. 61, 62] one can
draw a path from the root to each labeled node. The nodes on the path are the roots of a
sequence Pólya trees.

Remark 2. Note that Lemma 6 also implies that the total number of fixed points in all
automorphisms of a tree is a multiple of the number of automorphisms.

Remark 3. Lemma 6 can also be proved by considering the cycle-pointed Pólya trees; see
subsection 3.2 of [6] for a full description. Let (T, c) be a cycle-pointed structure considered
up to symmetry where T is a Pólya tree and c is a cycle of an automorphism σ ∈ Aut(T ).
Then, the number of such cycle-pointed structures (T, c) where c has length 1, is exactly the
number t′T (1).

Let us analyze the D-forests in An more carefully. We want to count the number of D-
forests that have size m in a random Pólya tree An, so we label such D-forest with additional
weight u in (1.7). From the bivariate generating function (1.11) we can recover the probability
P[|Fn(v)| = m] to generate a D-forest of size m in the Boltzmann sampler from [10].

Proof of Theorem 3. The first result is a direct consequence of (1.7), where only vertices
with weighted D-forests of size m are marked. For the second result we differentiate both
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sides of (1.11) and get

T [m]
u (z, 1) =

T (z)

1− T (z)

dmzm

D(z)
= Tc(z)

dmzm

D(z)
.

Then, the sought probability is given by

P [|Fn(v)| = m] =
[zn]T

[m]
u (z, 1)

[zn]Tc(z)
=

dmρm

D(ρ)

(
1 +O

(
n−1

))
.

For the last equality we used the fact that D(z) is analytic in a neighborhood of z = ρ.
Let Pn(u) be the probability generating function for the size of a weighted D-forest Fn(v)

attached to a vertex v of Tn in a random Pólya tree An. From the previous Theorem it follows
that

Pn(u) =
∑

m≥0

[zn]T
[m]
u (z, 1)

[zn]Tc(z)
um =

[zn]Tc(z)
D(zu)
D(z)

[zn]Tc(z)
=

D(ρu)

D(ρ)

(
1 +O

(
n−1

))
.

This is exactly (5.2) in [10] when Ω = N0. �

Summarizing, we state the asymptotic probabilities that a weighted D-forest Fn(v) in An

has size equal to or greater than m.

m 0 1 2 3 4 5 6 7
P[|Fn(v)| = m] ≈ 0.9197 0.0000 0.0526 0.0119 0.0105 0.0015 0.0027 0.0003
P[|Fn(v)| ≥ m] ≈ 1.0000 0.0803 0.0803 0.0277 0.0161 0.0060 0.0041 0.0014

Table 1. The probability that a weighted D-forest Fn(v) has size equal to or
greater than m when 0 ≤ m ≤ 7.

4. Conclusion and perspectives

In this paper we provide an alternative proof of the maximal size of D-forests in a random
Pólya tree, we interpret all weights on D-forests and C-trees in terms of automorphisms
associated to a Pólya tree, and we derive the limiting probability that for a random node v
the attached D-forest Fn(v) is of a given size.

Our work can be extended to Ω-Pólya with more technical details. In view of the connec-
tion between Boltzmann sampler and generating functions, it comes as no surprise that the
‘colored’ Boltzmann sampler from [10] is closely related to a bivariate generating function.
But certainly the unified frameworks in analyzing the (bivariate) generating functions offer
stronger results on the limiting distributions of the size of the C-trees and the maximal size
of D-forests.

Now the door is open to studying shape characteristics of D-forests. The C-tree is the
Cayley tree within a Polya tree and thus already well-known.
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[5] X. Gourdon, Largest component in random combinatorial structures, Discrete Mathematics, 180, 185-209,
1998.
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