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Abstract

This paper is intended as a note on [13], where risk processes related to storm damage insur-
ance are investigated. We consider a risk process in a Markovian environment with n states
where changes from one state to another are caused either by a claim or by external events.
We offer an asymptotic approach by adapting the results in [2] which works for a general
claim size distributions.

1 Introduction

The aim of this note is to examine the effect of catastrophe bonds or bonds with embedded options
on risk processes in a Markovian environment. The motivation for studying such risk processes
comes from recent developments in the insurance business, namely the increasing use of alternative
reinsurance concepts. Examples include the Winterthur CAT-Coupon ”Hagel” [16] which has been
analyzed by Schmock [12], the USAA hurricane bond [17], and the Swiss Re. earthquake bond
[15].

We will assume that the model which fits to the situation of the insurance company is the
following: there are time intervals in which an insurance is not faced with an adverse claim
situation, and then there will be comparatively short periods of time where the number and size
of the claim will make a reinsurance necessary. We assume that if such a state of nature j is
entered from a state i the insurance will receive a sum of Ki,j out of exercising the embedded
option. Also the insurance will receive a sum of Li,j if this state transition is accompanied by a
claim. We assume that all payments are non-negative, and thus contain only opportunity and no
risk for the insurance company. This potential profit has to be paid for by option premiums. These
payments are assumed to occur with sufficiently high frequency and can therefore be modeled by
a continuous payment.

Siegl and Tichy [13] studied this model for exponential claim distributions. They provided
a general model with n states and for the case of two states they could prove existence and
uniqueness of the solution of the system of equations describing the probability of survival. But it
seems that their method is not easily modifyable in order to work for other types of distributions.
Thus we will use a method of Asmussen [2] and give an asymptotic solution to this model for
arbitrary claim size distributions.

2 The Model

Basically, what we are modeling is a time-nonhomogeneous process with a possibility for a deter-
ministic jump which is governed by a Markov process: Denote by Ci the size of the i-th claim.
Furthermore let (Zt, t ≥ 0) denote the underlying Markov jump process whose value is the current
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state. Call the state space E = {1, . . . , n}. The jumps arrive according to a Poisson process which
we denote by Nt. Thus the risk process (Rt, t ≥ 0) can be written in the form

Rt = c̄tt −
Nt
∑

n=1

Ct (1)

where c̄t denotes the average income up to time t, i.e.,

c̄t =

n
∑

i=1

Ti(t)ci

when Ti(t) is the total time of the interval [0, t] the process has spent in state i and ci is the
intensity of the income (which is equal to premium minus payment for the embedded option) in
state i. Note that for technical reasons the process is written as if there is no initial reserve.
However, this can be coped with by redefining the ruin event to occur if Rt < −x.

For the case of two different states and state independent claim size distribution and no jumps
the model has already been discussed by Reinhard [11]. Some further generalizations of this idea
are due to Björk and Grandell [5], Asmussen [2], Asmussen and Højgaard [3], and Fuh [6]. For
further literature see [7, 8, 13]. Related models were treated by Klüppelberg [9], Promislov [10],
and Berg and Haberman [4].

Storm periods: We assume that the duration of each period is not known a priori. Let
us moreover assume that the duration of each period is exponentially distributed. The premium
in state i is ci and the claim size is assumed to be gamma distributed with parameters βi and
α. The claim intensity is given by the matrix Λ = (λi,j) and the state change intensity is given
by Γ = (γi,j). These two matrices represent the two possible ways that a state change from a
state i to a state j may occur. Either the change occurs after an exponentially distributed claim
with parameter βi (intensity λi,j) or by a change without claim (intensity γi,j , where we define
γii := −∑j 6=i γij for technical reasons). Conditional on a state change from state i to j due to a
claim the insurance receives a payment of Li,j and conditional on a state change without claim a
payment of size Ki,j .

In Asmussen [2] a Markov modulated risk process was studied and a corrected diffusion ap-
proximation in the sense of Siegmund [14] for the ruin probabilities was derived. That paper deals
with a model without payments upon state change and without the possibility that a state change
and a claim may coincide. However, Asmussen’s methods can be adapted to our situation and we
can get results for the general model. In the following we will present the relevant theorems for
our model, but we confine ourselves with sketching the proofs (for details consult [2]).

Set F̂t(i, j;α) := Ei[e
−αRt , Zt = j] (Rt defined in (1)) where probabilities, expected values, and

so on, with subscript i denote expressions conditioned on Z0 = i. We will need a representation
for the matrix F̂t(α) := (F̂t(i, j;α))i,j∈E . Assuming that Zt = i and restricting the process to
the time interval [0, h] we get according to the different possibilities of what can happen (each, a
claim, a state change, and a claim accompanied by a state change, may occur or not) the following
relation:

F̂t+h(i, j;α) = (1 − λiih + γiih)F̂t(i, j;α)e−αhci + λiihB̂i(α)F̂t(i, j;α)

+h





∑

k 6=i

γikF̂t(k, j;α)e−αKik +
∑

k 6=i

λikF̂t(k, j;α)e−αLik



+ O
(

h2
)

where B̂i(α) is the m.g.f. of the claim size, i.e., B̂i(α) =
∫∞

0
eαx dBi(x). The above equation

transforms to

d

dt
F̂t(i, j;α) = (−λii + γii − αci)F̂t(i, j;α) + λiiB̂i(α)F̂t(i, j;α)

+
∑

k 6=i

γikF̂t(k, j;α)e−αKik +
∑

k 6=i

λikF̂t(k, j;α)e−αLik
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and this is equivalent to

d

dt
F̂t(α) = (S(α) + Γ + G(α) + Λ + L(α) − αC)F̂t(α)

where
G(α) = (γij(e

−αKij − 1))i,j∈E , L(α) = (λij(e
−αLij − 1))i,j∈E

and S and C are diagonal matrices defined by

S(α) = diag(λii(B̂i(α) − 2))i∈E , C = diag(ci)i∈E .

Therefore by F̂0(α) = I we immediately have

Theorem 1 The following relation holds:

F̂t(α) = et(S(α)+Γ+G(α)+Λ+L(α)−αC)

In the following we will need a version of Wald’s fundamental identity of sequential analysis and
therefore we have to embed our process into an exponential family. Let eκ(α) denote the spectral
radius of F̂1(α) and h(α) a corresponding right eigenvector, that means we have F̂1(α)h(α) =
eκ(α)h(α). Furthermore, set Ft(i, j;A) = P{Rt ∈ A,Zt = j}. Then we define the exponential

family via the measure-valued matrix F
(θ)
t with elements

F
(θ)
t (i, j, ; dx) =

h(θ−θ0)(j)

h(θ−θ0)(i)
e(θ−θ0)x−tκ(θ−θ0)Ft(i, j; dx) (2)

where we choose (following [1, Ch. XII]) the location parameter θ0 := −γ0 with κ′(γ0) = 0 (a
solution to this equation is assumed to exist). These probability measures can be interpreted as
follows

Theorem 2 The probabilities Pθ;i defined by Pθ;i{Rt ∈ A,Zt = j} = F
(θ)
t (i, j, ;A) correspond to

a risk process Rt in a Markovian environment with initial condition Z0 = i and with parameters

λθ;ii = λiiB̂i(θ − θ0), B̂θ;i(α) =
B̂i(α + θ − θ0)

B̂i(θ − θ0)

and

F̂
(θ)
t (α) = et(Sθ(α)+Ψθ(α)−αC)

where Sθ(α) = S(α + θ − θ0) − S(θ − θ0) and

Ψθ(α) = S(θ − θ0) + ∆−1
θ Ψ(α)∆θ − (κ(θ − θ0) + θ − θ0)C

with ∆θ = diag(h(θ−θ0)(i))i∈E and Ψ(α) = Γ + G(α) + Λ + L(α).

Proof. (2) translates to

F̂
(θ)
t (α) = e−tκ(θ−θ0)∆−1

θ F̂t(α + θ − θ0)∆θ

= e−tκ(θ−θ0) exp
(

t
(

S(α + θ − θ0) + ∆−1
θ Ψ(α)∆θ − (α + θ − θ0)C

))

.

Moreover, because of F̂
(θ)
t (0)e = e (where e is the row vector with each entry equal to 1) and

F̂
(θ)
s+t = F̂

(θ)
s F̂

(θ)
t we have indeed a new Markov-modulated random walk. 2

The following lemma of Asmussen [2] (a generalized Wald’s identity) remains unchanged for
our model:

Lemma 1 Let τ be a stopping time w.r.t. the filtration Ft = σ(Zs, Rs : s ≤ t) and F ∈ Ft an

event satisfying F ⊆ {τ < ∞}. Then for any i, θ we have

PiF = Pθ0;iF

= h(θ−θ0)(i)Eθ;i

[

h(θ−θ0)(Zτ )−1 exp ((θ0 − θ)Rτ + τκ(θ − θ0)) ;F
]

.
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For a proof see [1, p. 266].
Following Asmussen [2] we use uniformisation, i.e. we choose η >

∑

j λij − γii for all i and a
Poisson process (N∗

t ; t ≥ 0) with rate η and construct (Zt) and (Nt) in the following way: each
arrival of (N∗

t ) causes an arrival of (Nt) w.p. λii/η, a jump of (Zt) to state j w.p. γij/η, a jump to
state j accompanied by an arrival of (Nt) w.p. λij/η, and a dummy event w.p. (η+γii−

∑

j λij)/η.
Set σ(0) := 0 and σ(n) equal to the n-th arrival epoch of N ∗

t , i.e., σ(n) := min{t : N∗
t = n} and

let Sn = Rσ(n), Xn = Sn − Sn−1, and Jn = Zσ(n). Then Jn and Zt have the same stationary
distribution π and we have a Markov modulated random walk in the sense that (Jn, Xn) is a
Markov chain with transition function depending only on the first coordinate. Let F (i, j;A) :=
Pi{J1 = j,X1 ∈ A}. This in conjunction with the initial conditions (S0 = X0 = 0) completely
specifies the random walk. Let us further define the time-reversed process (J ∗

n, X∗
n) given by the

transition function

F ∗(i, j;A) = Pπ{J0 = i,X1 ∈ A|J1 = i} =
π(j)

π(i)
F (j, i;A).

Moreover, let

τ+ = inf{n ≥ 1 : Sn > 0}, G+(i, j;A) = Pi{Sτ+
∈ A, Jτ+

= j},

τ− = inf{n ≥ 1 : S∗
n ≤ 0}, G−(i, j;A) =

π(j)

π(i)
Pj{S∗

τ− ∈ A, J∗
τ− = i}

and denote the corresponding matrices by F(A), G+(A), and G−(A).
If the premium is sufficient, then by [2, Lemma 5.1] G+(R) has positive left eigenvector π+ =

π(I−G−(R)), where π = π(θ) is the Perron-Frobenius left eigenvector of S0(θ)+Ψ0(θ)−θC. Now
we are in position to formulate the corrected diffusion approximation result (cf. [2, Theorem 7.1]):

Theorem 3 As θ0 ↑ 0, x → ∞ in such a way that ξ = xθ0 < 0 remains fixed, we have

Ui(x) ≈ 1 − e−γx−γc1(i)

where γ > 0 is the solution of the Lundberg equation κ(γ) = 0 and c1(i) = π
(0)
+ M

(2)
+ e/2π

(0)
+ M

(1)
+ e−

h′(i) + π
(0)
+ h′ with h′ = (eπ(0) − Γ − Λ)−1(S′

0(0) + Ψ′
0(0) − C)e and

M
(k)
+ (i, j) =

∫ ∞

0

xkG+(i, j; dx) = Ĝ
(k)
+ (i, j; 0).

Proof. The proof is essentially the same as that of [2, Theorem 7.1], so we will give a very brief
sketch: It relies on the fact that

(

1√
x2κ′′(0)

Rtx2 − κ′(0)tx2

)

t≥0

has a standard Brownian limit and that (by similar arguments as in [14])

Eθ0;i

[

e−λτ(x)κ′′

0 (0)/x; τ(x) < ∞
]

→ e−h(λ,ξ) (3)

where τ(x) is the time of ruin under initial reserve x, i.e.

τ(x) = inf{t ≥ 0 : Rt < −x},

κ′′
0(0) = κ′′(γ0) (which follows from the exponential family setup by κθ(α) = κθ0

(α+θ−θ0)−κθ0
(θ−

θ0)), and h(λ, ξ) =
√

2λ + ξ2 − ξ is the Laplace transform of the inverse Gaussian distribution

G(·; ξ, 1) with G(T ; ξ, c) = 1 − Φ
(

c/
√

T − ξ
√

T
)

+ e2ξcΦ
(

−c/
√

T − ξ
√

T
)

(which is the first

passage time distribution of Brownian motion with drift ξ to level c). The idea is to use more
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accurate asymptotics in (3) and do a formal inversion. The crucial point in the proof is to apply
Lemma 1. Here we take 0 instead of θ0 and get thus the Perron-Frobenius eigenvector h(θ) of
M(θ) := S0(θ)+Ψ0(θ)−θC. Let π(θ) denote the left eigenvector normalized by πθe = πθh(θ) = 1.
Now by differentiating πθh(θ) = 1 we get

(π(0))′e = −π(0)(h(0))′ = 0

since h(0) = e and (π(0))′e = (π(0)e)′. Next differentiating M(θ)h(θ) = κ(θ)h(θ) yields

−M ′(0)e = M(0)(h(0))′ = (M(0) − eπ(0))(h(0))′

where we applied κ(0) = κ′(0) = 0 and π(0)(h(0))′ = 0. Thus we get

(h(0))′ = −(M(0) − eπ(0))−1M ′(0)e

which equals the expression above.
The remainder of the proof is the same as the proof of [2, Theorem 7.1] and consists of tedious

calculations in order to derive an approximation for the finite horizon ruin probability (up to time
T ). The statement in the Theorem is then obtained by performing the limit for T → ∞. 2

Finally, the matrices M
(i)
+ can be calculated as in [2, Lemma 5.2 and Theorem 5.2], where

H(θ) has to be substituted by H(θ) := θC − S(θ) − L′(0) − G′(0) and Λ by L′(0).
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