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Abstract

In recent decades, phylogenetic networks have become a standard tool in
modeling evolutionary processes. Nevertheless, basic combinatorial ques-
tions about them are still largely open. For instance, even the asymptotic
counting problem for the class of phylogenetic networks and subclasses is
unsolved. In this paper, we propose a method based on generating func-
tions to count networks with few reticulation vertices for two subclasses
which are important in applications: tree-child networks and normal net-
works. In particular, our method can be used to completely solve the
asymptotic counting problem for these network classes when the num-
ber of reticulation vertices remains fixed while the network size tends to
infinity.

1 Introduction and Results

This paper will be concerned with the counting of phylogenetic networks, a basic and
fundamental question which is of interest in mathematical biology; see [25].
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Phylogenetic networks are used to model reticulation events in evolutionary bi-
ology. Even though the presence of such events has been acknowledged by biologists
since the dawn of the development of evolution as a scientific discipline, for the most
part, phylogenetic trees instead of phylogenetic networks have been used to model
the relationship between species. This might be due to the fact that trees are a
considerably simpler structure than networks and thus allow a rich theory. For in-
stance, their combinatorics is well-understood: the corresponding counting problem
was already solved by Schröder in 1870 [31]. Several further studies were published
to analyze parameters or variations, e.g. [4, 5, 19, 20]. Moreover, phylogenetic trees
are also important for constructing phylogenetic networks (see [7, 10]) and thus the
comparison of phylogenetic trees and networks is an active area of research, see [21]
and [8, 11, 32] concerning tree-embeddings in networks.

The combinatorics of phylogenetic networks, on the other hand, remains a chal-
lenge and only few papers have addressed it. It is the goal of this paper to make
some further progress and in particular to solve the counting problem for phyloge-
netic networks with a fixed number of reticulation vertices.

Before stating our results in more detail, we recall some definitions and previous
work. First, a phylogenetic network is defined as a rooted directed acyclic graph
(DAG) which is connected and consists of the following vertices:

(i) a root vertex which has in-degree 0 and out-degree 2 (except if the network
consists of only one vertex);

(ii) tree vertices which have in-degree 1 and out-degree 2;

(iii) reticulation vertices which have in-degree 2 and out-degree 1;

(iv) leaves which have in-degree 1 and out-degree 0.

Phylogenetic networks are usually labeled, where all labels are assumed to be different
and two kinds of labelings are often considered: (i) all vertices are labeled; such
networks we will call vertex-labeled networks throughout this work, and (ii) only
leaves are labeled; these are called leaf-labeled networks.

Phylogenetic networks are used to model reticulate evolution. However, the pro-
cess of evolution is driven by specific principles which add further restrictions on
phylogenetic networks. Thus, biologists have defined many subclasses of the class of
phylogenetic networks. Two of them are tree-child networks and normal networks;
see e.g. [9, 36].

In tree-child networks, one has the additional requirement that reticulation events
cannot happen in close proximity, or more formally, every tree vertex must have at
least one child which is not a reticulation vertex and no reticulation vertex is directly
followed by another reticulation vertex. Normal networks, on the other hand, form
a subclass of the class of tree-child networks with the additional requirement that
evolution does not take shortcuts, or again more formally, if there is a path of at
least length 2 from a vertex u to a vertex v, then there is no direct edge from u to
v. For examples of such networks see Figure 1.
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Remark. Note that in general phylogenetic networks, as defined above, multiple edges
are not explicitly forbidden (except when dealing with enumeration of leaf-labeled
networks, since otherwise the counting problem is not meaningful). In fact, only
double edges may occur because of the degree constraints. The tree-child condition,
however, makes double edges impossible. Thus tree-child and normal networks do
not contain double edges.

(i) (ii)

Figure 1: Two phylogenetic networks, where (i) is a general network that is not
a tree-child network and (ii) is a tree-child network that is not a normal network.
Edges are directed downwards.

Next, let us recall what is known about the number of tree-child and normal
networks. Denote by Tn and Nn the number of vertex-labeled tree-child networks and
vertex-labeled normal networks, respectively, where n is the total number of vertices.
Similarly, denote by T̃` and Ñ` the number of leaf-labeled tree-child networks and
leaf-labeled normal networks, where ` denotes the number of leaves. Then, it was
proved in [25] that for all odd n,

(e1n)5n/4 ≤ Nn ≤ Tn ≤ (e2n)5n/4,

where e1, e2 > 0 are suitable constants. (It is easy to see that Nn = Tn = 0 when n
is even.) Similarly, there are f1, f2 > 0 such that for all `,

(f1`)
2` ≤ Ñ` ≤ T̃` ≤ (f2`)

2`.

Note that the first result can be equivalently stated as

Nn = n5n/4+O(n/ logn) and Tn = n5n/4+O(n/ logn)

and the second as

Ñ` = `2`+O(`/ log `) and T̃` = `2`+O(`/ log `).

Thus, one is still quite far away from getting precise asymptotics for these counting
sequences and this was left as an open problem in [25].

In this paper, we will consider tree-child and normal networks with a fixed num-
ber k of reticulation vertices. It should be mentioned that they form (very) small
subclasses of the class of all tree-child and normal networks since it was also proved
in [25] that almost all vertex-labeled tree-child resp. normal networks have k ∼ n/4
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and almost all leaf-labeled tree-child resp. normal networks have k ∼ `. Neverthe-
less, these subclasses are interesting from a combinatorial point of view since we can
get precise asymptotics of their numbers. Moreover, they are more suitable for mod-
elling phylogenesis in environments where reticulation is a very rare event (although
even then it may be sometimes desirable to admit k →∞ as n→∞). Models with
a fixed number of reticulation vertices were for instance considered in [6, 34]. Like-
wise, in the construction of phylogenetic networks from trees, models with bounded
reticulation number do play a role, see [22, 35].

Recently, people studying phylogenetic networks or related structures have be-
come more and more interested in enumerative aspects. We mentioned already the
shape analysis of phylogenetic trees [4, 5, 19, 20] and the bounds for the counting
sequences of some classes of phylogenetic networks [25]. But other counting problems
were studied in [1, 12, 13, 23, 30, 33, 34]. Though combinatorial counting problems
are often amenable to the rich tool box of analytic combinatorics [17], generating
functions have been rarely used in phylogenetic enumeration problems.

Here we focus on the already mentioned class of phylogenetic networks with a
low number of reticulation events, more specifically on the above two subclasses of
this class, and demonstrate how analytic combinatorics can be used to obtain general
(asymptotic) enumeration results for those classes. We believe that our paper is of
interest to experts working on the mathematics of phylogenetics and that many more
enumeration problems in phylogenetics can be approached in a similar way.

Now, denote by Nk,n resp. Tk,n the number of normal resp. tree-child networks
with k reticulation vertices in the vertex-labeled case and Ñk,` resp. T̃k,` in the
leaf-labeled case. Then, our results are as follows.

Theorem 1.1. For the number Nk,n of vertex-labeled normal networks with k ≥ 1
reticulation vertices, there is a positive constant ck such that

Nk,n ∼ ck (1− (−1)n)

(√
2

e

)n

nn+2k−1, (n→∞).

In particular,

c1 =

√
2

4
; c2 =

√
2

32
; c3 =

√
2

384
.

Remark. Note that this result also holds for k = 0 where it becomes the result of
Schröder; see above and [31].

Surprisingly, the same result also holds for vertex-labeled tree-child networks. (It
was proved in [25] that Nn = o(Tn).) This shows in particular that if one considers
only first-order asymptotics, then the additional requirement for normal networks
does not matter. Note, however, that we are considering networks with an a priori
fixed number k of reticulation vertices. Thus, we do not claim that the asymptotic
equivalence given in Theorem 1.1 holds uniformly in k (and neither do we claim this
in Theorem 1.2 below). Indeed, such a claim would surely be wrong since otherwise
one could sum up both sides over k and would get a contradiction to the above
mentioned result from [25].
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Theorem 1.2. For the number Tk,n of vertex-labeled tree-child networks with k ≥ 1
reticulation vertices,

Tk,n ∼ ck (1− (−1)n)

(√
2

e

)n

nn+2k−1, (n→∞)

with ck as in the previous theorem.

Remark. Again the result also holds for k = 0 where it is Schröder’s result. Moreover,
note that for k = 0 and k = 1, Tk,n is identical with the number of all vertex-labeled
phylogenetic networks (for k ≥ 2, the latter number becomes strictly larger than
Tk,n, however, the leading term of the asymptotic expansion is likely to be again the
same; see Section 6).

Corollary 1.1. Let k ≥ 1. Then, asymptotically almost all tree-child networks with
k reticulation vertices are normal networks.

Remark. When going beyond first-order asymptotics, one sees that the additional
requirement for normal networks does indeed matter; see below for longer asymptotic
expansions for k = 1, 2, 3 which show a difference in the second order term for vertex-
labeled normal and tree-child networks.

Similar results to the results above will be shown for leaf-labeled tree-child and
normal networks, too; see Section 5.

The remainder of the paper is as follows. In the next section, we will explain how
to use generating functions to count tree-child and normal networks. The method-
ology we use is what is known nowadays as “Analytic Combinatorics” [17] and relies
on the symbolic method [17, Sec. I.1–I.2] and the treatment of labeled structures [17,
Sec. II.1–II.2] as well as the pointing operation [17, Sec. II.6]. This counting pro-
cedure will then be applied in Section 3 to vertex-labeled normal networks. (This
section will contain the proof of Theorem 1.1.) In Section 4, we apply the same
approach to vertex-labeled tree-child networks and prove Theorem 1.2. In Section 5,
we will briefly discuss results for leaf-labeled networks which are obtained from those
for vertex-labeled networks in Section 3 and Section 4. Finally, we will conclude the
paper with some remarks in Section 6.

2 Decomposing Phylogenetic Networks

In order to count the above classes of phylogenetic networks, we will decompose
them and use this decomposition to obtain a reduction which can be easily analyzed
by means of generating functions. Then the reduction is extended to get back the
original network in such a way that the extension procedure has a counterpart in
generating function algebra, hence allowing an asymptotic analysis of the number
of phylogenetic networks. We start with normal networks, since tree-child networks
differ from normal ones just by dropping a condition which allows a similar analysis.

Consider a normal network having exactly k reticulation vertices. Then each such
vertex has two incoming edges. Choose one of them and remove it. The remaining
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graph is a (labeled and nonplane) Motzkin tree1, i.e., a tree consisting of leaves (zero
children), unary vertices (one child) and binary vertices (two children). All edges
in this Motzkin tree are directed away from the root. In particular, it is a Motzkin
tree with exactly 2k unary vertices, where k of them are the starting points of the
removed edges, the other k their end points (note that here the tree-child property
was used).

Now consider the following procedure (see Figure 2 for an illustration): Start with
a Motzkin tree M with exactly 2k unary vertices and n vertices in total. Then add
edges such that (i) each edge connects two unary vertices, (ii) no two of the added
edges have a vertex in common, and (iii) the resulting graph is a normal network
N . Finally, color the start vertices of the added edges green and their end vertices
red. We say then that M (keeping the colors from the above generation of N , but
not the edges) is a colored Motzkin skeleton (or simply Motzkin skeleton) of N . In
this way all normal networks with n vertices are generated and each of them exactly
2k times, since every network N with k reticulation vertex has exactly 2k different
Motzkin skeletons.

−→ −→

Figure 2: A normal network with colored Motzkin skeleton and coresponding spars-
ened skeleton. Note that there are three more possible colored Motzkin skeletons
which one can obtain from the same network and that all but one yield the same
sparsened skeleton.

In order to set up generating functions for phylogenetic networks, we will con-
struct them as follows: for a given network N first pick one of its 2k possible Motzkin
skeletons. Then, look for the minimal subtree T which contains all green vertices.
This tree contains all the green vertices as well as all last common ancestors2 of any
two green vertices. These particular vertices form a tree whose edges are paths in T .
Contract each of these paths to one single edge. The resulting tree, which is again a

1We mention that we slightly abuse the word here: a Motzkin tree (also known as unary-binary
tree) is usually unlabeled and plane. The concept stems from computer science; see [14, 16, 18]. In
contrast, the trees we are considering here are labeled and nonplane, but nevertheless still unary-
binary trees. Thus, they are the labeled and nonplane counterpart of classical Motzkin trees. For
a comprehensive introduction into recursive structures like Motzkin trees and also labeled and
nonplane combinatorial structures see [17].

2Note that we use the name which is common in the combinatorial literature. In the phyloge-
netics literature this is usually called most recent common ancestor.
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Motzkin tree, is called the sparsened skeleton of N . The structure of this tree tells
us how the green vertices are distributed within N (again See Figure 2).

In order to construct networks with k reticulation vertices, we start with a spars-
ened skeleton having k green vertices. Then we replace all edges by paths that are
made of red vertices or binary vertices with a Motzkin tree (whose unary vertices are
all colored red) as second child and add a path of the same type on top of the root
of the sparsened skeleton. Moreover, we attach a Motzkin tree (again with all unary
vertices colored red) to each leaf of the sparsened skeleton such that this new subtree
is linked to the (now former) leaf by an edge (for normal networks, this tree can be
a binary tree). Do all of the above in such a way that the new structure has k red
vertices altogether. What we obtain so far is a Motzkin skeleton of a phylogenetic
network. Finally, add edges connecting the green vertices to the red ones in such a
way that the corresponding mapping is bijective and that the normality condition
for phylogenetic networks is respected.

Let us set up the exponential generating function for Motzkin trees which appear
in the above construction. This means that the tree-child condition for networks has
to be respected, but the number of unary vertices need not be even. After all, the
unary vertices in those trees will be the red vertices of our network.

Denote by M`,n the number of all vertex-labeled Motzkin trees with n vertices and
` unary vertices (all colored red) that respect the tree-child condition for networks,
which means that the child of a unary vertex cannot be a unary vertex and each
binary vertex has at least one child which is not a unary vertex. Let M denote the
set of all these Motzkin trees. The exponential generating function associated toM
is

M(z, y) =
∑
n≥1

∑
`≥0

M`,ny
` z

n

n!
.

Furthermore, let Mu(z, y) and Mb(z, y) denote the generating function associated to
all Motzkin trees inM whose root is a unary vertex and a binary vertex, respectively.
Then

Mu(z, y) = zy(z +Mb(z, y))

since a unary vertex cannot have a unary child. In a Motzkin tree with a binary
root, the root may have two children being either a leaf or a binary vertex, or one
of the children is a unary vertex and the other either a leaf or a binary vertex. This
yields

Mb(z, y) =
z

2
((z +Mb(z, y))2 + 2zy(z +Mb(z, y))2).

Solving gives

Mb(z, y) =
1−

√
1− 2z2 − 4yz3

z(1 + 2yz)
− z

and

Mu(z, y) = y
1−

√
1− 2z2 − 4yz3

1 + 2yz
(1)
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and thus

M(z, y) = z +Mu(z, y) +Mb(z, y) =
(1 + yz)

(
1−

√
1− 2z2 − 4yz3

)
z(1 + 2yz)

. (2)

The first few coefficients can be seen from

z + yz2 +
1

2
z3 +

3

2
yz4 +

(
y2 +

1

2

)
z5 +

5

2
yz6 +

(
4y2 +

5

8

)
z7 + · · · .

3 Counting Vertex-Labeled Normal Networks

In this section, we will count (vertex-labeled) normal networks with a fixed number k
of reticulation vertices. We will start with the cases k = 1, 2, 3 which will be discussed
in the next three subsections and for which we will derive asymptotic expansions up
to the second order term (in fact, our method allows one to obtain full asymptotic
expansions as well). From these three cases, we will observe a general pattern which
will be proved in the fourth subsection.

3.1 Normal networks with one reticulation vertex

In this subsection we will determine the asymptotic number of normal networks with
one reticulation vertex and then discuss their relationship to unicyclic networks that
were studied in [34].

3.1.1 Counting

In order to count normal networks with only one reticulation vertex we use Motzkin
trees from the class M, which have generating function (2), and (sparsened) skele-
tons, as described in the previous section: We delete one of the two incoming edges
of the reticulation vertex which then gives a unary-binary tree satisfying the tree-
child property with exactly two unary vertices. Conversely, we can start with the
general tree or even the sparsened skeleton (which only consists of one vertex) and
then construct the network from this.

Proposition 3.1. The exponential generating function for vertex-labeled normal net-
works with one reticulation vertex is

N1(z) =
z
(
1−
√

1− 2z2
)3

2(1− 2z2)3/2
= z

ã1(z
2)− b̃1(z2)

√
1− 2z2

(1− 2z2)3/2
, (3)

where
ã1(z) = 2− 3z and b̃1(z) = 2− z.

Proof. As already mentioned, we start with the general tree as depicted in Figure 3,
which arises from the sparsened skeleton, i.e., the tree consisting of a single green
vertex g as follows: we add a sequence of trees on top of g which consist of a root
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x

g

`

Figure 3: The structure of Motzkin skeletons of networks with one reticulation vertex.
It originates from a sparsened skeleton which consists of only one green vertex. It has
one green vertex, denoted by g, and one red vertex which is hidden within the forest
made of the triangles in the picture, which are attached to g and all the vertices
on the path of length `. Note that the position of the red vertex in this forest is
restricted by the normality condition.

to which a tree inM is attached. Moreover, we attach also a tree fromM to g as a
subtree.

Next, in order to obtain all normal networks arising from these Motzkin skeletons,
we have to add an edge starting from g and ending at the red vertex. Note that for
a normal network, this edge is neither allowed to point to a vertex on the path from
g to the root (since the network must be a DAG), nor to the root of one of the
trees which are connected to the vertices on the path from g to the root (since this
violates the normality condition) nor to any vertex in the subtree of g (since this
again violates the normality condition). Overall, the red vertex must be contained
in the forest attached to the path from g to the root, but not in the tree attached to
g. Moreover, note that since there is only one red vertex, the requirement that trees
in this forest satisfy the tree-child property could actually be dropped.

The networks arising from these skeletons can therefore be specified as a tree
without red vertices (the one attached to g) and a sequence of structures of the
form “vertex plus Motzkin tree with non-unary root” (cf. Figure 3). In terms of
generating functions this gives

N1(z) =
1

2

∂

∂y

zM(z, 0)

1− zM̃(z, y)

∣∣∣
y=0

,

where

M̃(z, y) = z +Mb(z, y) = M(z, y)− zy(z +Mb(z, y)). (4)

The factor 1/2 makes up for the fact that each network is counted exactly twice by
the above procedure. Evaluating this and writing My for the partial derivative of M
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(with respect to y) yields

N1(z) =
z

2
M(z, 0)(My(z, 0)− z2 − zMb(z, 0))

∑
`≥1

`z`M(z, 0)`−1

=
z2M(z, 0)(My(z, 0)− z2 − zMb(z, 0))

2(1− zM(z, 0))2
.

Now, by using

M(z, 0) =
1−
√

1− 2z2

z
, My(z, 0) =

1√
1− 2z2

− 1,

Mb(z, 0) =
1−
√

1− 2z2

z
− z, (5)

we obtain (3).

From this result we can now easily obtain the asymptotic number of normal
networks (see the Appendix for numerical data).

Corollary 3.1. Let N1,n denote the number of vertex-labeled normal networks with
n vertices and one reticulation vertex. If n is even then N1,n is zero, otherwise

N1,n = n![zn]N1(z) =

(√
2

e

)n

nn+1

(√
2

2
− 3
√
π

2
· 1√

n
+O

(
1

n

))
,

as n→∞.

Proof. The function (3) has two dominant singularities, namely at ±1/
√

2, with
singular expansions

N1(z)
z→±1/

√
2∼ ± 1

8(1∓
√

2z)3/2
∓ 3

√
2

8(1∓
√

2z)
+O

(
1√

1∓
√

2z

)
.

Applying a transfer lemma (see [15, 17]) for these two singularities and using Stirling’s
formula completes the proof.

Remark. Note that the periodicity is not surprising since, as mentioned in the intro-
duction, phylogenetic networks always have an odd number of vertices.

3.1.2 Relationship to unicyclic networks

In [34], the authors counted unicyclic networks which are (vertex-labeled or leaf-
labeled) pointed3 graphs with only one cycle to which complete binary trees are
attached. The enumeration was done only for leaf-labeled networks there.

On the other hand, phylogenetic networks with exactly one reticulation vertex
are the same as unicyclic networks, if one disregards the direction of the edges.

3Pointed means that an edge is chosen to which a vertex v is attached (with an edge, of course).
The chosen edge itself is thus split into two edges and the point where the new edge is attached
becomes a further new vertex. The vertex v is then the root vertex of the network.
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Remark. Combinatorially, there is no big difference between rooted and pointed, since
we can always drop the attached vertex and edge in the latter case and direct all
edges. Thus, if one can solve the counting problem for a subclass of rooted networks
also the corresponding counting problem for pointed graphs can be solved.

So, another way of counting normal networks with exactly one reticulation vertex
is by using a modification of the approach of [34]: either the root is in a cycle in
which case one of the vertices on this cycle except the root and its two neighbours
are the reticulation vertex and to each vertex may be attached a complete binary
rooted tree or the root is not in the cycle in which case exactly one subtree contains
the cycle. This translates into

N1(z) = zM(z, 0)N1(z) +
1

2

∑
`≥3

(`− 2)z`+1M(z, 0)`.

Solving this equation gives

N1(z) =

∑
`≥3(`− 2)z`+1M(z, 0)`

2(1− zM(z, 0))
=

z4M(z, 0)3

2(1− zM(z, 0))3
.

Plugging (5) into this reveals

N1(z) =
z(1−

√
1− 2z2)3

2(1− 2z2)3/2

as it must be.

3.2 Normal networks with two reticulation vertices

For this case, we use two variables y1, y2 to express the possible pointings of the two
green vertices of the Motzkin skeletons. Furthermore, we have now more complicated
paths (and attached trees) which replace the edges of the sparsened skeleton and thus
we first set up the generating function corresponding to theses paths. To govern the
situation where an edge from one of the two green vertices must not point into
a certain subtree or to a particular vertex, we distinguish several types of unary
vertices, which are the red vertices of our construction.

To simplify the explanation, let us use the following conventions: If the root of a
Motzkin tree is a unary vertex (so, a red vertex) we call the tree a red tree, otherwise
a white tree. Note that the class of white trees has generating function M̃(z, y) given
in (4), whereas the class of red trees has generating function Mu(z, y), see (1).

The structure we will need is a class P of paths which serve as the essential
building blocks for Motzkin skeletons. In this class the rules for pointing to particular
red vertices differ, depending on whether (i) the red vertex lies on the path itself, but
is not the very first vertex there, or is the root of one of the (red) subtrees attached
to the vertices of the path, (ii) it is one of the non-root vertices of one of the attached
subtrees or (iii) the red vertex is the first vertex of the path. To distinguish these
three classes of red vertices, we will mark the red vertices of type (i) with the variable
y, those of type (ii) with ỹ and the vertex of type (iii) with ŷ.
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Q Q
Q

+ ++{ε}=Q

Figure 4: The specification of the class Q. In this picture, the paths are drawn such
that they are going from upper right to lower left. The triangles represent the trees
attached to the path. These are white trees, i.e., trees which do not have a unary
root. The variable y marks the red vertices that are shown in the figure. Others may
be hidden in the white trees and are marked by ỹ. The last part of the specification
guarantees that there are no consecutive red vertices on the path.

Moreover, we have to respect the tree-child condition. Normality does not play a
role on this level, it actually only causes the need for the third class of red vertices.
The tree-child condition implies that the successor of a red vertex on the path itself
must not be red. Moreover, if the tree attached to some vertex x is a red tree, then
the successor of x on the path must not be a red vertex. This gives rise to the
a combinatorial specification. Take a set of three possible atomic items: a vertex
with a white tree, a vertex with a red tree (which is itself a red vertex having a
white tree as subtree), and a vertex having a red vertex and a white tree as subtrees.
Then a path in P is either (a) a sequence made of these atomic items or (b) a red
vertex followed by a sequence of type (a). More formally, let M̃ denote the class of
white trees, ◦ denote a binary vertex and • denote a red (unary) vertex. We write
{x} × S × T if x is a vertex having subtrees S and T , where T is omitted if x is a
red vertex and the edge x — S is an edge of the path. Then we consider a class Q
which contains all path in P of type (a) above. The specification of this class is

Q = {ε} ∪ {◦} × Q× M̃ ∪ {◦} × Q× ({•} × M̃) ∪ {◦} × ({•} × Q)× M̃, (6)

where ε denotes the empty tree; see Figure 4. Since a path in P may also start with
a red vertex, which then belongs to the third class of red vertices, we specify P as

P = Q∪ {•} × Q. (7)

This leads to the generating function

P (z, y, ỹ, ŷ) =
1 + zŷ

1− (z + 2z2y)M̃(z, ỹ)
(8)

after all.
Let us summarize what we just defined. In our analysis the variables y, ỹ, ŷ will

be replaced by a sum of variables yi where the presence of a particular yi indicates
that the corresponding gi is allowed to point, its absence that pointing is forbidden.
In particular, y represents the permission to point to vertices of the path (except its
first vertex) as well as to the roots of the trees attached to the path. The variable
ỹ describes the permission to point to non-root vertices of these trees and ŷ allows
pointing to the first vertex of the path.

Now we are ready to state the following result.
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g1

g2

x

k

`

y

g1 g2

x

k `

r

Figure 5: The possible structures of Motzkin skeletons of networks with two reticula-
tion vertices. These originate from the two possible sparsened skeletons made of two
green vertices: The path of length one, which gives rise to the left Motzkin skeleton,
and the cherry leading to the right Motzkin skeleton.
Note: In this figure (as well as in all the subsequent figures of this paper) the tri-
angles are placeholders for trees which may but need not necessarily be white trees
(see beginning of Section 3.2). The class they belong to depends on their position
within the normal network.

Proposition 3.2. The exponential generating function for vertex-labeled normal net-
works with two reticulation vertices is

N2(z) = z
ã2(z

2)− b̃2(z2)
√

1− 2z2

(1− 2z2)7/2
, (9)

where

ã2(z) = 6z4 − 87

2
z3 + 30z2 − 3z and b̃2(z) = −18z3 + 27z2 − 3z. (10)

Proof. Note that, in the current situation, there are only two possible sparsened
skeletons: either a path of length one (with both vertices green) or a cherry (with
both leaves being green vertices). From this, one builds two possible types of Motzkin
skeletons that are depicted in Figure 5.

For the first type (see Figure 5, left), we have to complete the Motzkin skeletons
by adding two egdes having start vertex g1 and g2, respectively. The one starting
from g1 may point to any non-root vertex within the subtrees that are attached to
the skeleton’s spine (i.e., the paths k and ` and g2). By normality, it can neither
point to the root of one of those subtrees nor to a vertex in the subtree attached to
g1 itself, but g1 does not belong to what we called the spine anyway. Similarly, the
edge starting at g2 may point to any non-root vertex in the subtrees attached to the
path `, the path from the root to the parent of g2. Thus the generating function
of the subtrees attached to the vertices of ` is M̃(z, y1 + y2), that of the subtrees
attached to the vertices of k is M̃(z, y1). The tree attached to g1 corresponds to
M(z, 0) since it must not contain any red vertices. Finally, note that we have to
point at two red vertices, one targeted by g1 and one targeted by g2. Pointing (and
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not counting it any more as red vertex) corresponds to differentiation in the world of
generating functions. Since we do not want any other red vertices to be present, we
set y1 = y2 = 0 after the differentiations. After all, we get the generating function

N2,1(z) = ∂y1∂y2
z2M(z, 0)

(1− zM̃(z, y1))(1− zM̃(z, y1 + y2))

∣∣∣
y1=y2=0

.

For the second type (see Figure 5, right), none of the two green vertices g1 and
g2 is the ancestor of the other, they have a common ancestor y. Moreover, there is
a path on top of y connecting y with the root of the network, called r. Also, there
are paths from y to g1 and g2, namely k and `, respectively. To each of the vertices
of k, ` and r as well as to the two green vertices a tree from M is attached.

In order to meet the constraints imposed by the tree-child and normality property
there are certain restrictions for the target vertices of the edges we add to the green
vertices. We will analyse the parts of the structure. First, since the targets of the
added edges are certainly reticulation vertices, the trees attached to a green vertex
cannot be red trees (cf. the terminology at the beginning of Section 3.2) and have
generating function M̃(z, y). We only have to replace y by y1 or y2 or their sum,
depending on whether g1 or g2 or both green vertices, respectively, are allowed to
point at the red vertices in this tree (the last situation cannot happen here). The
vertices y, g1 and g2 cause a factor z3.

Next, we analyse the contribution of the paths:

• Path r: Both green vertices may point into the attached subtrees, except to
their root. The trees are therefore white trees and the generating function of
the path is 1/(1− zM̃(z, y1 + y2).

• Path k: The vertex g1 may point to any non-root vertex of the attached trees,
g2 may point to any vertex on k, except the first one, and any vertex of the
attached trees. Thus the generating function of this path is P (z, y2, y1 + y2, 0).

• Path `: The situation for this path is symmetric to k.

Overall, this yields the generating function

N2,2(z) =
1

2
∂y1∂y2

z3M̃(z, y1)M̃(z, y2)P (z, y2, y1 + y2, 0)P (z, y1, y1 + y2, 0)

1− zM̃(z, y1 + y2)

∣∣∣
y1=y2=0

.

The exponential generating function for normal networks with two reticulation
vertices is then N2(z) = (N2,1(z) + N2,2(z))/4, where the factor 4 appears, because
each normal network is generated four times. Simplifying the resulting expression
gives (9).

As an easy consequence, we obtain the asymptotic number of networks; see the
Appendix for numerical data.
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Corollary 3.2. Let N2,n denote the number of vertex-labeled normal networks with
n vertices and two reticulation vertices. If n is even then N2,n is zero, otherwise

N2,n = n![zn]N2(z) =

(√
2

e

)n

nn+3

(√
2

16
− 3
√
π

8
· 1√

n
+O

(
1

n

))
,

as n→∞.

Proof. This follows by singularity analysis as in the proof of Corollary 3.1.

Remark. It turns out that the asymptotic main term is determined by N2,2(z). In
hindsight, this is no surprise, because the corresponding sparsened skeleton has two
edges, which leads to three paths made of sequences of trees after all. This leads to
three expressions contributing a singularity in the denominator and together with
the number of differentiations this eventually determines the growth rate of the
coefficients of the generating function.

3.3 Normal networks with three reticulation vertices

In the case of three reticulation vertices we follow the same procedure: We decompose
the network according to how the reticulation vertices are distributed in the network.
There are four cases.

Case 1: The three reticulation vertices lie on one path, i.e., one reticulation vertex
is ancestor of another, which itself is ancestor of the third one.

Case 2: One reticulation vertex is a common ancestor of the other two, but none
of those two is ancestor of the other one.

Case 3: One reticulation vertex is ancestor of another one, but not of both of
them, and the third one is not ancestor of any other reticulation vertex.

Case 4: No reticulation vertex is ancestor of any other reticulation vertex.

The Motzkin skeletons of the first two cases are depicted in Figure 6, Case 3
is depicted in Figure 7 and the last case is depicted in Figure 8. For all those
cases, the lengths of the paths connecting two reticulation vertices or connecting a
reticulation vertex with the last common ancestor of two reticulation vertices are the
free parameters. To each vertex of such a path we may attach a Motzkin tree which
must be shaped in such a way that the condition for normality of the network is
respected. So, we will set up generating functions N3,1(z), N3,2(z), N3,3(z), N3,4(z)
associated to Motzkin skeletons of the four respective cases and since the procedure
will generate each normal network eight times, the generating function of normal
networks with three reticulation vertices is

N3(z) =
N3,1(z) +N3,2(z) +N3,3(z) +N3,4(z)

8
.

We start with Case 1, see Figure 6, left tree. As in the previous section we call
the path from the root to the parent of g1 the spine of the Motzkin skeleton. Then
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Figure 6: Two of the four possible structures of Motzkin skeletons of networks with
three reticulation vertices. The left one arises from the sparsened skeleton which is
a path of length 2 and the right one arises from a unary vertex to which a cherry is
attached.

g1 can point to each non-root vertex of the subtrees attached to any of the vertices
of the spine. Likewise, the pointing options for g2 are the non-root vertices of the
subtrees attached to the vertices of the sub-paths `2 ∪ `3 of the spine. The situation
for g3 is analogous.

From this we obtain the following expression for the generating function of all
normal networks with three reticulation vertices which are distributed within the
network as shown in Figure 6, left:

N3,1(z) = Y

(
z3M(z, 0)

(1− zM̃(z, y1))(1− zM̃(z, y1 + y2))(1− zM̃(z, y1 + y2 + y3))

)
,

where M̃(z, y) is as in the last subsection (cf. (4)) and Y denotes the operator
differentiating with respect to y1, y2, y3 and setting y1 = y2 = y3 = 0 afterwards,
i.e., Yf(z, y1, y2, y3) = (∂y1∂y2∂y3f) (z, 0, 0, 0).

Next we will determine the generating function of all normal networks belonging
to Case 2, which have Motzkin skeletons as shown on the right of Figure 6. As in
the previous section we analyse the substructures. There are four vertices in the
sparsened skeleton, yielding a factor z4. The red vertices in the (white) subtree
attached to g1 may only be targets of the edge coming from g2, for the subtree
attached to g2 vice versa.

• Paths `3 and `4: These paths are sequences of vertices, each with a white
subtree attached to it. For `4 each green vertex is allowed to point at the
red vertices in these white subtrees. Pointing to the vertices of the path is not
allowed. Likewise, the corresponding vertices in the subtrees of `3 are forbidden
for g3 by the normality condition.
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• Paths `1 and `2: They are symmetric, so we discuss `1. The non-root vertices
of the subtrees are the only allowed targets for the edge from g1. The edge from
g2 may end at each vertex of the subtrees and the vertices of the path itself
except the first vertex. There are no options for g3. So, we must distinguish
three classes: the first vertex of the path, the other vertices of the path and
the roots of the trees, the vertices “strictly inside” the trees. These precisely
correspond to the variables ŷ, y and ỹ, respectively, of the function P (z, y, ỹ, ŷ)
introduced in (8). We obtain P (z, y2, y1 + y2, 0) for `1.

Overall, this gives, again using the operator Y defined above, the generating
function

N3,2(z) =
1

2
Y

(
z4M̃(z, y1)M̃(z, y2)P (z, y1, y1 + y2, 0)P (z, y2, y1 + y2, 0)

(1− zM̃(z, y1 + y2 + y3))(1− zM̃(z, y1 + y2))

)
.

Case 3 is the one shown in Figure 7. The sparsened skeleton has 4 vertices and
the subtrees attached to g1 and g3 are white trees. The red vertices of the subtree
of g1 may be targeted by the edges starting either in g2 or in g3, the red vertices of
the other tree by edges from g1.

Next we inspect the paths:

• Path `4: All green vertices may point to the non-root vertices of the (white)
subtrees. Pointing to the path itself is not allowed.

• Path `3: The edge starting at g3 may point to non-root vertices of the subtrees,
but neither to the roots nor to the vertices of the path itself. There is no option
for g2. All but the first vertex of the path as well as all tree vertices can be the
end point of the edge starting at g1.

• Path `1: Similar to `3. The edges from g2 and g3 may point anywhere except
to the first vertex of the path. The non-root vertices of the subtrees may be
targeted by g1 as well.

• Path `2: All green vertices may point to the non-root vertices of the subtrees.
To point at the vertices on the path or to the root vertices of the subtrees is
only allowed for g1. Again, the first vertex of the path is the exception. It must
not be red by the normality condition.

Altogether, we obtain for the generating function N3,3(z) of Case 3 the expression

N3,3(z) = Y

(
z4M̃(z, y2 + y3)M̃(z, y1)

1− zM̃(z, y1 + y2 + y3)
P (z, y1, y1 + y3, 0)

× P (z, y2 + y3, y1 + y2 + y3, 0)P (z, y1, y1 + y2 + y3, 0)

)
.
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Figure 7: The third possible structure of Motzkin skeletons of networks with three
reticulation vertices. It arises from the sparsened skeleton which consists of a root
with a left child and path of length 2 as right subtree.
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Figure 8: The fourth possible structure of Motzkin skeletons of networks with three
reticulation vertices. It arises from a sparsened skeleton which is a rooted binary
caterpillar with three leaves.



M. FUCHS ET AL. /AUSTRALAS. J. COMBIN. 73 (2) (2019), 385–423 403

The last case of normal networks has Motzkin skeletons as shown in Figure 8. The
restriction for the target vertex of the edges to be added at g1, g2 and g3 follow the
analogous rules in order to meet the normality constraint. Setting up the generating
function follows the same pattern as before. We omit now the details and get from
path analysis after all

N3,4(z) =

1

2
Y

(
z5M̃(z, y1 + y2)M̃(z, y1 + y3)M̃(z, y2 + y3)

1− zM̃(z, y1 + y2 + y3)
P (z, y1 + y2, y1 + y2 + y3, 0)

× P (z, y1 + y3, y1 + y2 + y3, y3)P (z, y2 + y3, y1 + y2 + y3, y3)

× P (z, y3, y1 + y2 + y3, 0)

)
.

Overall, by collecting everything, we obtain the following result.

Proposition 3.3. The exponential generating function for vertex-labeled normal net-
works with three reticulation vertices is

N3(z) = z
ã3(z

2)− b̃3(z2)
√

1− 2z2

(1− 2z2)11/2
,

where

ã3(z) = 270z6 − 2187

2
z5 + 576z4 − 9z3

and

b̃3(z) = 18z6 − 531z5 + 567z4 − 9z3.

As a consequence we obtain the following result; see the Appendix for numerical
data.

Corollary 3.3. Let N3,n denote the number of vertex-labeled normal networks with
n vertices and three reticulation vertices. If n is even then N3,n is zero, otherwise

N3,n = n![zn]N3(z) =

(√
2

e

)n

nn+5

(√
2

192
− 3
√
π

64
· 1√

n
+O

(
1

n

))
,

as n→∞.

Proof. This follows by singularity analysis as for k = 1 and k = 2 above.
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3.4 Normal networks with a fixed number of reticulation vertices

By looking at Proposition 3.1, Proposition 3.2 and Proposition 3.3, one clearly sees a
pattern for the exponential generating function of normal networks. In this section,
we will prove that this pattern continues to hold for the exponential generating
function of normal networks with k reticulation vertices. This will then be used to
prove the remaining claims of Theorem 1.1.

We start with a technical lemma. Therefore, consider the following function

G(z, y) =
a(z, y)− b(z, y)

√
1− 2z2 − 4yz3

1 + 2yz
, (11)

where a(z, y), b(z, y) are polynomials in z and y with a(z, 0) = b(z, 0) = 1. This
function will be used as a building block for construction the exponential generating
function of normal networks. We need the following simple properties of this function.

Lemma 3.1. (a) For all ` ≥ 1,

∂`

∂y`
G(z, y)

∣∣∣
y=0

=
c`(z)− d`(z)

√
1− 2z2

(1− 2z2)`−1/2
,

where c`(z) and d`(z) are suitable polynomials.

(b) For all ` ≥ 0,

∂`

∂y`
1

1−G(z, y)

∣∣∣
y=0

=
e`(z)− f`(z)

√
1− 2z2

(1− 2z2)`+1/2
,

where e`(z) and f`(z) are suitable polynomials.

Proof. For the proof of part (a), by differentiation

∂`

∂y`
G(z, y) =

a`(z, y)− b`(z, y)
√

1− 2z2 − 4yz3

(1 + 2yz)`+1(1− 2z2 − 4yz3)`−1/2

with suitable polynomials a`(z, y) an b`(z, y). (Note that this becomes incorrect for
` = 0). The claim follows now by setting y = 0.

For the proof of part (b), we use induction. Note that ` = 0 is trivial. Now,
assume that the claim holds for all ˜̀< `. Then, by Leibnitz rule

∂`

∂y`
1

1−G(z, y)

∣∣∣
y=0

=
∂`−1

∂y`−1

(
1

1−G(z, y)
· 1

1−G(z, y)
·G′(z, y)

) ∣∣∣
y=0

=
∑

k1+k2+k3=`−1

(
`− 1

k1, k2, k3

)
∂k1

∂yk1
1

1−G(z, y)

∣∣∣
y=0
· ∂

k2

∂yk2
1

1−G(z, y)

∣∣∣
y=0

·G(k3+1)(z, y)
∣∣∣
y=0

.

Plugging into this the induction hypothesis and part (a) gives the claimed form with
power of the denominator equal to

k1 + 1/2 + k2 + 1/2 + k3 + 1/2 = `+ 1/2.

This proves the result.
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Now, we can prove the following result which generalizes Proposition 3.1, Propo-
sition 3.2 and Proposition 3.3.

Proposition 3.4. The exponential generating function for vertex-labeled normal net-
works with k reticulation vertices is

Nk(z) =
ak(z)− bk(z)

√
1− 2z2

(1− 2z2)2k−1/2
,

where ak(z) and bk(z) are suitable polynomials.

Proof. Fix a type of Motzkin skeletons (arising from a sparsened skeleton) for gen-
erating normal networks with k reticulation vertices. As explained in the cases
k = 1, 2, 3, the exponential generating function of the normal networks arising from
these skeletons is a product of generating functions for the paths which are either
counted by 1/(1 − zM̃) or P multiplied with a z for each vertex of the sparsened
skeleton and the generating functions of the Motzkin trees attached to the leaves. In
particular note that zM̃ is of the form (11) and the denominators of P is one minus
a function of the form (11). Also, note that all these functions G have polynomials
satisfying a(z, 0) = b(z, 0) = 1.

In summary, we have that the exponential generating function Nk(z) for normal
networks is a sum of terms of the form

∂y1 · · · ∂yk
G1(z, y) · · ·Gs(z, y)

(1−Gs+1(z, y)) · · · (1−Gs+t(z, y))

∣∣∣
y1=···=yk=0

, (12)

where the number of functions Gs+i(z, y) is bounded by the number of edges of the
sparsened skeleton increased by one (for the sequence of trees added above the root
when constructing the Motzkin skeletons). Moreover, y is the sum of the yi’s where
not all of them must be present and the missing ones can differ from one occurrence
to the next in the above formula. Note that because of this special form of y, we can
apply the above lemma after expanding (12) and obtain that

Nk(z) =
ak(z)− bk(z)

√
1− 2z2

(1− 2z2)p
. (13)

What remains is to show that p = 2k−1/2. For this observe that (12) without the
derivatives is of the general form given in (13) with the exponent of the denominator
equals t/2 which reaches its maximum for the sparsened skeleton with the maximal
number of edges and is thus at most k − 1/2. Also, from the above lemma, we see
that each differentiation increases the exponent by 1. Thus, the exponent of (12)
when written as (13) is at most 2k− 1/2. Adding up this terms gives the claim.

Corollary 3.4. We have

Nk(z) = z
ãk(z2)− b̃k(z2)

√
1− 2z2

(1− 2z2)2k−1/2
,

where ãk(z) and b̃k(z) are suitable polynomials.
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Proof. Observe that Nk(−z) = −Nk(z) since phylogenetic networks necessarily have
an odd number of vertices. Thus,

ak(−z)− bk(−z)
√

1− 2z2

(1− 2z2)2k−1/2
= −ak(z)− bk(z)

√
1− 2z2

(1− 2z2)2k−1/2
.

This implies
ak(−z) + ak(z) = (bk(−z) + bk(z))

√
1− 2z2

which is obviously only possible if

ak(−z) = −ak(z) and bk(−z) = −bk(z),

i.e., both are odd functions. From this the result follows.

Now, we can finish the proof of Theorem 1.1.

Corollary 3.5. Let Nk,n denote the number of vertex-labeled normal networks with
n vertices and k reticulation vertices. If n is even then Nk,n is zero, otherwise there
is a positive constant c̃k such that

Nk,n = n![zn]Nk(z) ∼ c̃k

(√
2

e

)n

nn+2k−1,

as n→∞.

Proof. From the above corollary,

Nn,k = n![zn]z
ãk(z2)− b̃k(z2)

√
1− 2z2

(1− 2z2)2k−1/2
.

From this, by singularity analysis and Stirling’s formula, the claimed expansion fol-
lows with

c̃k =
2
√

2πãk(1/2)

4kΓ(2k − 1/2)
.

What is left is to prove that c̃k > 0 (note that we already showed this for k = 1, 2, 3
directly). This will follow from Proposition 3.5 below which shows that already a
subset of the set of normal networks with k reticulation vertices satisfies the above
claimed asymptotics with a positive constant.

The proof of Corollary 3.5 relies on the fact that a certain constant (called c̃k
there) is positive. This constant is related to the number of normal phylogenetic
networks; it is the multiplicative constant of the asymptotic main term. We will
construct a subclass of the class of normal networks and show that the number
of networks in that subclass is the same as for normal networks up to a positive
multiplicative constant. The result is presented in Proposition 3.5 below and closes
the small gap left in the proof of Corollary 3.5.

For this purpose, we consider all the normal networks which are generated (pos-
sibly with duplicity) from a sparsened skeleton which is a rooted binary caterpillar,
i.e., a sparsened skeleton of the form
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e1

e2

g

(For the discussion below, we have added an edge from the root.) Note that by
the same arguments as above, these networks are also counted by an exponential
generating function of the form

Ck(z) = z
ẽk(z2)− f̃k(z2)

√
1− 2z2

(1− 2z2)2k−1/2
, (14)

where ẽk(z) and f̃k(z) are suitable polynomials.
Now, we are in position to prove the following proposition.

Proposition 3.5. Let Ck,n denote the number of vertex-labeled normal networks with
n vertices and k reticulation vertices which arise from the above caterpillar-skeleton.
If n is even then Ck,n is zero, otherwise there is a positive constant d̃k such that

Ck,n = n![zn]Ck(z) ∼ d̃k

(√
2

e

)n

nn+2k−1,

as n→∞.

Proof. As in the proof of Corollary 3.5, the asymptotic formula follows from (14),
where

d̃k =
2
√

2πẽk(1/2)

4kΓ(2k − 1/2)
.

For the positivity claim, we will show that ẽk(1/2) is non-decreasing in k from
which the claim follows by our result for k = 1. In order to prove this, consider
the caterpillar-skeleton above with k leaves. Denote the path consisting of the
edges e1 and e2 by P . Then, a subset of all normal networks generated by this
caterpillar-skeleton of k leaves is formed by normal networks which are generated by
a caterpillar-skeleton with k − 1 leaves to which a normal network with one reticu-
lation vertex generated by P is added. More precisely, for the latter networks g is
connected to one of the subtrees attached to e1 or e2 (such that the normal condition
is satisfied), i.e., these networks arise from

g
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and are counted by

P (z) = ∂y
z2M(z, 0)

(1− zM̃(z, y))2

∣∣∣
y=0

=
8z2 − 12z4 − (8z2 − 4z4)

√
1− 2z2

(1− 2z2)2
,

where M̃(z, y) is as above. Consequently, the normal networks from the above men-
tioned subset are counted by

Ck−1(z)P (z) = z
p̃k(z2)− q̃k(z2)

√
1− 2z2

(1− 2z2)2k−1/2
,

where

p̃k(z2) = (8z2 − 12z4)ẽk−1(z
2) + (8z2 − 4z4)(1− 2z2)f̃k−1(z

2);

q̃k(z2) = (8z2 − 4z4)ẽk−1(z
2) + (8z2 − 12z4)f̃k−1(z

2).

This gives, for odd n,

n![zn]Ck−1(z)P (z) ∼ g̃k

(√
2

e

)n

nn+2k−1

with

g̃k =
2
√

2πẽk−1(1/2)

4kΓ(2k − 1/2)
> 0.

Moreover, since this counts a subclass of normal networks generated by a caterpillar-
skeleton with k leaves, we have d̃k ≥ g̃k which gives ẽk(1/2) ≥ ẽk−1(1/2). This proves
our claim and thus the proposition is also proved.

Finally, we would like to remark that in order to compute the multiplicative
constant in the asymptotic expression given in Corollary 3.5 one has to understand
the precise structure of the generating functions for each Motzkin skeleton. Our
investigations show that the main contribution comes from the Motzkin skeletons
for which the sparsened skeleton is a (rooted, nonplane) tree with k vertices. Since
there is no explicit formula for the number of such trees (but in fact there is an
asymptotic solution; see [17]), we cannot expect to get some explicit form for the
constant, but only some expression in terms of the number of rooted trees of size
k. This observation may also be exploited to derive upper bounds for the constant.
With the help of Proposition 3.5 lower bounds may be derived as well. However, this
needs some further investigations to understand the shape of the polynomials ẽk(z)
appearing in (14).

4 Counting Vertex-Labeled Tree-Child Networks

In this section, we will count (vertex-labeled) tree-child networks. As in the last
section, we will first work out in detail the cases k = 1, 2, 3, where, as for normal
networks, we will show more precise results than stated in Theorem 1.2. The general
case (and thus the proof of Theorem 1.2) is then done in the last subsection below.
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4.1 Tree-child networks with one reticulation vertex

We start with tree-child networks with one reticulation vertex which are again
counted by using the Motzkin skeletons in Figure 3.

Proposition 4.1. The exponential generating function for vertex-labeled tree-child
networks with one reticulation vertex is

T1(z) =
z3
(
1−
√

1− 2z2
)

(1− 2z2)3/2
= z

ã1(z
2)− b̃1(z2)

√
1− 2z2

(1− 2z2)3/2
, (15)

where
ã1(z) = b̃1(z) = z.

Proof. We have to add an edge from g in the Motzkin skeletons in Figure 3 which
points to a unary (or red) vertex. Note that this edge is not allowed to point on a
vertex on the path from g to the root (since the resulting network must be a DAG),
but is allowed to point to any vertex on the subtrees attached to these vertices.
Moreover, the edge can also point to any non-root vertex in the subtree attached to
g (pointing on the root of this subtree is not allowed because we do not allow double
edges).

This gives

T1(z) =
z

2
∂y

M̃(z, y)

1− zM(z, y)

∣∣∣
y=0

=
z

2

(
My(z, 0)− z2 − zMb(z, 0)

1− zM(z, 0)
+
zMy(z, 0)M(z, 0)

(1− zM(z, 0))2

)
,

where M̃(z, y) is given in (4). Similar to the normal network case, the factor 1/2
compensates for the fact that each network is counted exactly twice by the above
procedure. Now, by using (5) we obtain (15).

From this, we obtain the following consequence; see the Appendix for numerical
data.

Corollary 4.1. Let T1,n denote the number of vertex-labeled tree-child networks with
n vertices and one reticulation vertex. If n is even then T1,n is zero, otherwise

T1,n = n![zn]T1(z) =

(√
2

e

)n

nn+1

(√
2

2
−
√
π

2
· 1√

n
+O

(
1

n

))
,

as n→∞.

Remark. Note that the constant of the second order term in the asymptotic expansion
above is −

√
π/2 whereas that of the asymptotic expansion of N1,n is −3

√
π/2. Thus,

the difference between normal networks and tree-child networks becomes visible only
in the second order term (and the number of normal networks is of course smaller
than the number of tree-child networks). The behavior for k = 2 and k = 3 is similar;
see below.
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Relationship to unicyclic networks revisited.

Again there is a close relationship to unicyclic networks and the alternative approach
from Section 3.1.2 can be used: either the root is in a cycle, but in which case now
each vertex except the root can be the reticulation vertex, or the root is not in a
cycle. This gives

T1(z) = zM(z, 0)T1(z) +
1

2

∑
`≥2

`z`+1M(z, 0)`.

Solving gives

T1(z) =

∑
`≥2 `z

`+1M(z, 0)`

2(1− zM(z, 0))
=
z3M(z, 0)2(2− zM(z, 0))

2(1− zM(z, 0))3
.

which by using the expression (4) for M(z, 0) simplifies to (15).

4.2 Tree-child networks with two reticulation vertices

As for normal networks, the counting is done by using two variables y1 and y2 and
the two types of Motzkin skeletons depicted in Figure 5.

For trees attached to paths the situation is different from normal networks. We
never encounter different pointing rules between roots and internal vertices, but very
well between vertices on the path and vertices within the trees. Thus the red vertices
in the third and fourth term on the right-hand side of the specification for Q, see
(6), fall into different classes of red vertices. In the third term, {◦}×Q× ({•}×M̃),
the red vertex is the root of the attached (red) tree. It can be treated like the red
vertices within the tree and therfore we mark it with ỹ. A consequence of this is
that we do not need to distinguish between red and white trees any more. Indeed,
the second term of the specification corresponds to having a white tree attached, the
third one to having a red tree attached (to the path, in both cases). Since the red
vertices fall into the same class and are both marked by ỹ, we may replace these two
terms by one term corresponding to attaching simply a Motzkin tree. The red vertex
in the last term of (6) is on the path itself, thus marked by y. The other subtree
cannot be a red tree by the tree-child condition.

Q̂
Q̂

++{ε}=Q̂

Figure 9: The specification of the class Q̂ which is similar to that of Q (cf. Figure 4)
but with the second and third term merged. Also, now the subtree of the second
term can be either red or white and that of the third term must be white. All the
red vertices in these subtrees are counted by ỹ; the other red vertices arising from
the third term are counted by y.



M. FUCHS ET AL. /AUSTRALAS. J. COMBIN. 73 (2) (2019), 385–423 411

Altogether, this modification leads to a new class Q̂, specified by

Q̂ = {ε} ∪ {◦} × Q̂ ×M∪ {◦} × ({•} × Q̂)× M̃,

see Figure 9. We use this new class in (7) instead of Q to specify the paths forming
the basic building block for the Motzkin skeletons of tree-child networks. Call this
new structure P̂ . Then, we obtain the generating function

P̂ (z, y, ỹ, ŷ) =
1 + zŷ

1− zM(z, ỹ)− z2yM̃(z, ỹ)
.

To summarize: The variable y tells us which green vertex is allowed to point to
vertices of the path (with the first vertex as possible exception), ỹ which may point
to vertices in the trees attached to the path, and ŷ which may point to the first
vertex of the path. We also make explicit a frequently appearing function:

P̂ (z, 0, ỹ, 0) =
1

1− zM(z, ỹ)
.

Now, the result for tree-child networks with two reticulation vertices is as follows.

Proposition 4.2. The exponential generating function for vertex-labeled tree-child
networks with two reticulation vertices is

T2(z) = z
ã2(z

2)− b̃2(z2)
√

1− 2z2

(1− 2z2)7/2
,

where

ã2(z) = −4z4 +
21

2
z3 − 1

2
z2 and b̃2(z) = 9z3 − 1

2
z2.

Proof. We start with the tree-child networks arising from the Motzkin skeletons on
the left in Figure 5. Here, g1 and g2 can point to all vertices in the attached subtrees
except the root of the subtree attached to g1. In addition, g2 can also point to all
vertices on the path between g1 and g2 except the vertex directly followed by g2.

Overall, we obtain

T2,1(z) = ∂y1∂y2z
2M̃(z, y1 + y2)P̂ (z, y2, y1 + y2, 0)P̂ (z, 0, y1 + y2, 0)

∣∣∣
y1=y2=0

= ∂y1∂y2
z2M̃(z, y1 + y2)

(1− zM(z, y1 + y2))(1− (z + z2y2)M(z, y1 + y2)

∣∣∣
y1=y2=0

.

Now, consider the Motzkin skeletons on the right of Figure 5. For the trees
attached to the green vertices only pointing to the root is forbidden, for all the other
trees there is no pointing restriction. The analysis of the vertices on the paths is
done path by path, as in the case of normal networks.

• Path r: No green vertex is allowed to point to the vertices of that path.

• Path k: Pointing to all vertices is allowed for g2, but g1 may not point to that
path at all. The situation for path ` is symmetric.
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In this way, Motzkin skeletons which are not respecting the tree-child condition
are generated as well: Indeed, g1 may point to the first vertex of ` and g2 to the first
vertex of k, such that the common ancestor y has two red children. But for these
networks, all paths are of the same type, since there cannot be any red vertices in
any subtree. This gives

T2,2(z) =
1

2
∂y1∂y2

z3M̃(z, y1 + y2)
2

1− zM(z, y1 + y2)
P̂ (z, y2, y1 + y2, y2)P̂ (z, y1, y1 + y2, y1)

∣∣∣
y1=y2=0

− 1

2

z5M(z, 0)2

(1− zM(z, 0))3
.

The exponential generating function for vertex-labeled tree-child networks is now
obtained as T2(z) = (T2,1(z) + T2,2(z))/4. Plugging in the above expressions and
simplifying gives the result.

As a consequence, we have the following; see the Appendix for numerical data.

Corollary 4.2. Let T2,n denote the number of vertex-labeled tree-child networks with
n vertices and two reticulation vertices. If n is even then T2,n is zero, otherwise

T2,n = n![zn]T2(z) =

(√
2

e

)n

nn+3

(√
2

16
−
√
π

8
· 1√

n
+O

(
1

n

))
,

as n→∞.

4.3 Tree-child networks with three reticulation vertices

In this case we use the four different types of Motzkin skeletons depicted in Figure 6,
Figure 7 and Figure 8. Moreover, we use the Y operator from Section 3.3.

We start with the tree-child networks arising from the Motzkin skeletons depicted
on the left of Figure 6. The possibilities for the pointings of the edges starting at
g1, g2 and g3 are similar as in the first case for k = 2 (see above). All these edges
may target any non-root vertex in the tree attached to g1 and any vertex in all the
other trees. Concerning the vertices on the spine, we have some restrictions. The
edge from g1 may not end at any vertex from `1, for the first vertex this applies even
to g2. Similarly, the edges from g1 and g2 may not point to any vertex of `2, and no
green vertex may point to the first vertex of `2 as well as to any vertex of `1.

Overall, we obtain for this Motzkin skeleton that T3,1(z) equals

Y

(
z3M̃(z, y1 + y2 + y3)P̂ (z, y3, y1 + y2 + y3, 0)P̂ (z, y2 + y3, y1 + y2 + y3, 0)

1− zM(z, y1 + y2 + y3)

)
.

For the other cases, a similar reasoning for the possible pointings of the edges
starting from g1, g2 and g3 can be used. Furthermore, we have pay attention to the
Motzkin skeletons we generate which are not tree-child. These cases are those where
two green vertices point to the children of a latest common ancestor of two green
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vertices, but the third green vertex has some freedom in pointing. We refrain from
giving details and just list the obtained expressions. The reader is invited to derive
them herself.

For the Motzkin skeletons on the right of Figure 6, we obtain

T3,2(z) =
1

2
Y

(
z4M̃(z, y1 + y2 + y3)

2

1− zM(z, y1 + y2 + y3)
P̂ (z, y3, y1 + y2 + y3, 0)

× P̂ (z, y1 + y3, y1 + y2 + y3, y1 + y3)

× P̂ (z, y2 + y3, y1 + y2 + y3, y2 + y3)

)

− 1

2
∂y1

z6M̃(z, y1)
2

(1− zM(z, y1))3
P̂ (z, y1, y1, 0)

∣∣∣
y1=0

− 1

2
∂y2

z6M̃(z, y2)
2

(1− zM(z, y2))3
P̂ (z, y2, y2, 0)

∣∣∣
y2=0

− 1

2
∂y3

z6M̃(z, y3)
2

1− zM(z, y3)
P̂ (z, y3, y3, 0)3

∣∣∣
y3=0

.

For the Motzkin skeletons depicted in Figure 7, we obtain

T3,3(z) =Y

(
z4M̃(z, y1 + y2 + y3)

2

1− zM(z, y1 + y2 + y3)
P̂ (z, y2 + y3, y1 + y2 + y3, y2 + y3)

× P̂ (z, y1, y1 + y2 + y3, y1)P̂ (z, y1 + y2, y1 + y2 + y3, 0)

)

− ∂y2
z6M̃(z, y2)

2

(1− zM(z, y2))2
P̂ (z, y2, y2, 0)2

∣∣∣
y2=0

− ∂y3
z6M̃(z, y3)

2

(1− zM(z, y3))3
P̂ (z, y3, y3, 0)

∣∣∣
y3=0

.

For the final case, consider the Motzkin skeletons depicted in Figure 8. Here, the
generating function is given by

T3,4(z) =
1

2
Y

(
z5M̃(z, y1 + y2 + y3)

3

1− zM(z, y1 + y2 + y3)

× P̂ (z, y1 + y2, y1 + y2 + y3, y1 + y2)P̂ (z, y1 + y3, y1 + y2 + y3, y1 + y3)

× P̂ (z, y2 + y3, y1 + y2 + y3, y2 + y3)P̂ (z, y3, y1 + y2 + y3, y3)

)

− 1

2
∂y3

z7M̃(z, y3)
3

(1− zM(z, y3))2
P̂ (z, y3, y3, y3)P̂ (z, y3, y3, 0)2

∣∣∣
y3=0

− ∂y2
z7M̃(z, y2)

3

(1− zM(z, y2))3
P̂ (z, y2, y2, y2)P̂ (z, y2, y2, 0)

∣∣∣
y2=0
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− ∂y1
z7M̃(z, y1)

3

(1− zM(z, y1))3
P̂ (z, y1, y1, y1)P̂ (z, y1, y1, 0)

∣∣∣
y1=0

.

The exponential generating function for vertex-labeled tree-child networks is ob-
tained as T3(z) = (T3,1(z) + T3,2(z) + T3,3(z) + T3,4(z))/8 after all. This gives the
following result.

Proposition 4.3. The exponential generating function for vertex-labeled tree-child
networks with three reticulation vertices is

T3(z) = z
ã3(z

2)− b̃3(z2)
√

1− 2z2

(1− 2z2)11/2
,

where

ã3(z) = −6z6 +
249

2
z5 + 20z4 − z3

and
b̃3(z) = 30z6 + 144z5 + 19z4 − z3.

As a consequence, we have the following result; see the Appendix for numerical
data.

Corollary 4.3. Let T3,n denote the number of vertex-labeled tree-child networks with
n vertices and three reticulation vertices. If n is even then T3,n is zero, otherwise

T3,n = n![zn]T3(z) =

(√
2

e

)n

nn+5

(√
2

192
−
√
π

64
· 1√

n
+O

(
1

n

))
,

as n→∞.

4.4 Tree-child networks with a fixed number of reticulation vertices

In this subsection, we will prove Theorem 1.2 which is deduced from the following
proposition.

Proposition 4.4. For the numbers of vertex-labeled normal networks Nk,n and
vertex-labeled tree-child networks Tk,n,

Tk,n = Nk,n

(
1 +O

(
1√
n

))
, as n→∞.

Proof. First, observe that Tk,n −Nk,n is bounded by the number of networks which
arise from all types of Motzkin skeletons where for each green vertex we consider all
possibilities of adding an edge such that the normal condition is violated (note that
this is an over-estimate of the difference). Thus, we only have to count the number
of such networks which arise from a fixed type of Motzkin skeletons and a fixed green
vertex. Similar to the proof of Proposition 3.4, the largest number will come from
the Motzkin skeletons where the green vertices are the leaves (this will become clear
by applying the same arguments as below to all other Motzkin skeletons).

Now, fix such a type of Motzkin skeletons and one of its green vertices. Then,
for this vertex, we will have the following options.
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• The green vertex points to one of the subtrees attached to the leaves of the
skeletons. For the exponential generating function this gives

∂y2 · · · ∂yk
G′1(z, y) · · ·Gs(z, y)

(1−Gs+1(z, y)) · · · (1−Gs+2k−1(z, y))

∣∣∣
y2=···=yk=0

,

where the derivative comes from choosing a vertex in the subtree as end point
of the green vertex. (Here, and below y is the sum of yi’s with 2 ≤ i ≤ k and
not all of the yi’s must be present; also which are present can differ from one
occurrence to the next.)

• The green vertex points to the root of a Motzkin tree fromM attached to the
path from the green vertex to the root or attached to some of the edges of the
sparsened skeleton on a path from the green vertex to a leaf. Then, we have

∂y2 · · · ∂yk
G1(z, y) · · ·Gs(z, y)

(1−Gs+1(z, y)) · · · (1−Gs+2k(z, y))

∣∣∣
y2=···=yk=0

,

where the additional term comes from the fact that now one edge was split into
two edges by the above pointing.

• The green vertex points to the first vertex on one of the branches attached to
the path from the green vertex to the root. Then, we have

∂y2 · · · ∂yk
G1(z, y) · · ·Gs(z, y)

(1−Gs+1(z, y)) · · · (1−Gs+2k−1(z, y))

∣∣∣
y2=···=yk=0

.

The exponential generating function of all networks arising from these Motzkin
skeletons and the green vertex are a sum of generating functions of the above three
types. Thus, from Lemma 3.1, we obtain that this generating function has the form

c(z)− d(z)
√

1− 2z2

(1− 2z2)p
,

where c(z) and d(z) are suitable polynomials and the maximum of p is as follows:
note that without the derivatives in the above expressions, p would be at most k
(this bound is taken on in the first two cases, but not in the last case where p is at
most k − 1/2); also, because of Lemma 3.1, each derivative increases this bound by
one. Thus, p is at most 2k − 1.

Now, with the same arguments as in the proof of Corollary 3.4, we obtain that
the exponential generating function of the above number has the form

z
c̃(z2)− d̃(z2)

√
1− 2z2

(1− 2z2)2k−1
,

where c̃(z) and d̃(z) are suitable polynomials. Singularity analysis gives then the
bound

O

((√
2

e

)n

nn+2k−3/2

)
.

Summing over all possible type of Motzkin skeletons and all green vertices, we obtain
the same bound for Tk,n −Nk,n which proves the claimed result.



M. FUCHS ET AL. /AUSTRALAS. J. COMBIN. 73 (2) (2019), 385–423 416

5 Counting Leaf-Labeled Normal and Tree-Child Networks

In this section, we will count leaf-labeled normal and tree-child networks with ` leaves
and k reticulation vertices (recall that we denoted their numbers by Ñk,` and T̃k,`,
respectively). The counting results will follow from those for vertex-labeled networks
since there is a close relationship between leaf-labeled normal and tree-child networks
and vertex-labeled ones. To see this, we need to recall two lemmas from [25].

Lemma 5.1 (see [25]). For any phylogenetic network with ` leaves, k reticulation
vertices and n vertices, we have

`+ k =
n+ 1

2
.

(Recall that n is always odd.)

Lemma 5.2 (see [25]). The descendant sets for any two non-leaf vertices in a tree-
child network (and thus also normal network) are different.

These two lemmas immediately imply that

Nk,2`+2k−1 =

(
2`+ 2k − 1

`

)
(`+ 2k − 1)!Ñk,`.

To see this, note that all vertex-labeled normal networks with 2`+2k−1 vertices
and k reticulation vertices can be constructed as follows: start with a (fixed) leaf-
labeled normal network with ` leaves and k reticulation vertices. Then, choose `
labels from the set 2`+2k−1 labels and re-label the leaves of the fixed network such
that the order is preserved. Finally, label the remaining ` + 2k − 1 vertices by any
permutation of the set of remaining `+ 2k − 1 labels. By the above two lemmas, in
this way every vertex-labeled normal network is obtained exactly once.

The above now implies that

Ñk,` =
`!

(2`+ 2k − 1)!
Nk,2`+2k−1

from which an asymptotic result follows by Theorem 1.1 and Stirling’s formula.
Similarly, an asymptotic result for leaf-labeled tree-child networks is obtained from

T̃k,` =
`!

(2`+ 2k − 1)!
Tk,2`+2k−1.

Overall, we obtain the following theorem.

Theorem 5.1. For the numbers Ñk,` and T̃k,` of leaf-labeled normal networks resp.
leaf-labeled tree-child networks with k ≥ 1 reticulation vertices, we have

Ñk,` ∼ T̃k,` ∼ 23k−1ck

(
2

e

)`

``+2k−1, (`→∞),

where ck is as in Theorem 1.1.
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6 Conclusion

In this paper, we considered the counting problem of phylogenetic networks which
is largely unsolved. We devised an approach, based on generating functions and
analytic combinatorics, to solve this problem for two important subclasses of phylo-
genetic networks, namely, tree-child and normal networks, provided that the number
of reticulation vertices is fixed as the size of the network tends to infinity. The latter
restriction is necessary for our method to work. Indeed, the combinatorial setup we
developed in this paper is the construction of a sequence of combinatorial classes (for
each given number of reticulation vertices, we contruct a separate class). The actual
distribution of the reticulation vertices is then – on the level of generating functions
– realized by differentiations. Letting k tend to infinity, when n tends to infinity,
means that we have to cope with a growing number of differentiations and it is not
clear how this changes the qualitative nature of the generating function. We cer-
tainly cannot expect that Nk(z) keeps the shape (13) when k depends on n and gets
large with growing n. Thus, we have to leave the question of counting phylogenetic
networks when k is allowed to grow with n open.

Apart from this, the most obvious other question about the results of this paper is
the following: why is our method only applied to subclasses of phylogenetic networks?
In fact, our method can probably be extended to count general networks with a fixed
number of reticulation vertices, too, but for this some further work has to be done.
We will explain now why.

First, for vertex-labeled networks our method above relied on the use of Motzkin
skeletons, which have green and red vertices, and all of them are unary vertices. Re-
call that these vertices arise by deleting an edge for each reticulation vertex which was
colored red (the green vertices are then the other endpoints of the deleted edges). If
one considers general phylogenetic networks, then the colored vertices in the Motzkin
skeleton can be leaves as well. In order to see this consider the following networks
(which show all possible types of how such leaves can occur):

r1

r2

r1

r2 r3

In the network on the left, if the indicated edges are deleted, then r1 becomes a
leaf (which is colored both green and red). On the other hand, in the network on the
right, after deleting the indicated edges, the vertex which was connected to r2 and
r3 becomes a leaf (which is colored green). Also, note that in the second cases the
number of green and red vertices in the resulting Motzkin skeleton is not the same
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(unless one considers the leaf in the second case to be colored “double-green”). So,
in order to consider the counting problem for vertex-labeled general networks, more
possibilities for the Motzkin skeletons must be considered.

However, we in fact suspect that all the above mentioned additional possibilities
for the Motzkin skeletons are asymptotically negligible since they lead to restrictions:
In the first case one green vertex must be connected to the red-green leaf which
reduces the number of differentiations in the expression for the exponential generating
function by one, and in the second case the number of green vertices and thus the
number of edges in the Motzkin skeleton is reduced by one (which also leads to
a contribution of smaller order; e.g. see the proof of Proposition 3.4). Moreover,
for the general networks arising from the Motzkin skeletons defined in this paper,
we also expect that those networks which do not satisfy the tree-child property are
rare, because again, when the tree-child property is not satisfied, then one has severe
restrictions. So, overall, we guess that also for vertex-labeled general phylogenetic
networks the same first-order asymptotics as in Theorem 1.1 and Theorem 1.2 holds.

Second, the method for the counting of leaf-labeled general phylogenetic networks
with k reticulation vertices will also be different from the one used in this paper since
we do not have a simple connection between the vertex-labeled and the leaf-labeled
case anymore. (This is because Lemma 5.2 no longer holds.) Thus, one has to cope
with symmetries. However, it is expected that phylogenetic networks which have
vertices with equal sets of descendants are rare and thus one again expects the same
first-order asymptotics as in Theorem 3.5. We may come back to these questions
elsewhere.

Finally, we mention that tree-child and normal phylogenetic networks are special
classes of directed acyclic graphs. Though their enumeration is in general not easy,
there is already a fairly rich basis of enumeration results on general directed acyclic
graphs [2, 3, 27, 28, 29] as well as more sophisticated studies on their shape [24, 26]
which can probably be exploited in order to extend our results or get a finer analysis
on the structure of random phylogenetic networks.
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Appendix: The Number of Networks and Their Asymptotic
Values for Small Sizes

Here we present the numerical values for the number of normal and tree-child net-
works with one, two and three reticulation vertices. They are compared to the first
and second order asymptotics. The error is O (1/

√
n) in the first order asymptotics

and O (1/n) in the second order asymptotics. Thus convergence is slow. So, we chose
a quadratic scale to better visualize the convergence.

The data indicate that the more reticulation vertices the networks have, the bigger
is the constant factor in the third order term. In particular, for normal networks
even the second order asymptotics is still fairly inaccurate when the size is around
1000 vertices.

n N1,n first order asymptotics second order asymptotics
72 1.509083862× 1070 2.845078723× 1070 1.316888413× 1070

92 1.424572126× 10133 2.286221720× 10133 1.331103718× 10133

112 2.805663893× 10219 4.092442789× 10219 2.693592858× 10219

132 3.126424192× 10330 4.280475255× 10330 3.042449065× 10330

152 2.988746000× 10467 3.911561797× 10467 2.931078655× 10467

172 2.485340363× 10631 3.144767382× 10631 2.449229483× 10631

192 1.354821659× 10823 1.669930393× 10823 1.339465018× 10823

212 2.903179416× 101043 3.504201765× 101043 2.876792390× 101043

232 1.222842196× 101293 1.450922268× 101293 1.213731650× 101293

252 4.366393995× 101572 5.107382228× 101572 4.339243703× 101572

272 5.040854939× 101882 5.825548735× 101882 5.014299556× 101882

292 6.468853840× 102223 7.398904501× 102223 6.439612952× 102223

312 2.903035924× 102596 3.290787336× 102596 2.891652790× 102596

n N2,n first order asymptotics second order asymptotics
72 1.974631541× 1072 8.538792514× 1072 −0.634169808× 1072

92 0.652084068× 10136 1.874987588× 10136 0.308355286× 10136

112 3.279694748× 10222 7.489681863× 10222 2.369541406× 10222

132 0.775961070× 10334 1.528183172× 10334 0.644201521× 10334

152 1.393399104× 10471 2.475285199× 10471 1.234361225× 10471

172 1.993994409× 10635 3.283176454× 10635 1.830875936× 10635

192 1.751242120× 10827 2.720337482× 10827 1.643673031× 10827

212 5.742638603× 101047 8.518758291× 101047 5.468278229× 101047

232 3.551625232× 101297 5.075344229× 101297 3.415952745× 101297

252 1.799912695× 101577 2.493838978× 101577 1.743703701× 101577

272 2.866620516× 101887 3.869919308× 101887 2.792091620× 101887

292 4.954032473× 102228 6.541380718× 102228 4.845159005× 102228

312 2.932551027× 102601 3.798889014× 102601 2.877366178× 102601
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n N3,n first order asymptotics second order asymptotics
72 1.365816004× 1074 17.08470069× 1074 −0.104456524× 1074

92 1.755204956× 10138 10.25149464× 10138 −2.596848522× 10138

112 2.360997970× 10225 9.138036014× 10225 −0.232461034× 10225

132 1.215402285× 10337 3.637203298× 10337 0.481278310× 10337

152 4.159928205× 10474 10.44260944× 10474 2.589887410× 10474

172 1.034136900× 10639 2.285118173× 10639 0.768898277× 10639

192 1.472741571× 10831 2.954309176× 10831 1.200409327× 10831

212 0.742450513× 101052 1.380613859× 101052 0.639038343× 101052

232 6.765254066× 101301 11.83574504× 101301 6.031172891× 101301

252 4.878745045× 101581 8.117965422× 101581 4.455195521× 101581

272 1.074095703× 101892 1.713861489× 101892 0.997859210× 101892

292 2.503773287× 102233 3.855495246× 102233 2.355863510× 102233

312 1.957523560× 102606 2.923628151× 102606 1.859821038× 102606

n T1,n first order asymptotics second order asymptotics
72 2.295774923× 1070 2.845078723× 1070 2.335681951× 1070

92 1.948607480× 10133 2.286221720× 10133 1.967849052× 10133

112 3.603212411× 10219 4.092442789× 10219 3.626159479× 10219

132 3.850668993× 10330 4.280475255× 10330 3.867799857× 10330

152 3.573001570× 10467 3.911561797× 10467 3.584734083× 10467

172 2.905589575× 10631 3.144767382× 10631 2.912921415× 10631

192 1.556662281× 10823 1.669930393× 10823 1.559775267× 10823

212 3.289723172× 101043 3.504201765× 101043 3.295065305× 101043

232 1.370016200× 101293 1.450922268× 101293 1.371858728× 101293

252 4.845849891× 101572 5.107382228× 101572 4.851336052× 101572

272 5.549770266× 101882 5.825548735× 101882 5.555132339× 101882

292 7.073239889× 102223 7.398904501× 102223 7.079140649× 102223

312 3.155446557× 102596 3.290787336× 102596 3.157742486× 102596

n T2,n first order asymptotics second order asymptotics
72 4.640516422× 1072 8.538792514× 1072 5.481138402× 1072

92 1.224486692× 10136 1.874987588× 10136 1.352776820× 10136

112 5.411620540× 10222 7.489681863× 10222 5.782968374× 10222

132 1.176422691× 10334 1.528183172× 10334 1.233522622× 10334

152 1.989643302× 10471 2.475285199× 10471 2.061643874× 10471

172 2.722734486× 10635 3.283176454× 10635 2.799076281× 10635

192 2.309772743× 10827 2.720337482× 10827 2.361449330× 10827

212 7.367315911× 101047 8.518758291× 101047 7.501931598× 101047

232 4.454475775× 101297 5.075344229× 101297 4.522213731× 101297

252 2.215316571× 101577 2.493838978× 101577 2.243793885× 101577

272 3.472411188× 101887 3.869919308× 101887 3.510643410× 101887

292 5.919519663× 102228 6.541380718× 102228 5.975973477× 102228

312 3.462830748× 102601 3.798889014× 102601 3.491714733× 102601
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n T3,n first order asymptotics second order asymptotics
72 4.905522940× 1074 17.08470069× 1074 7.907916294× 1074

92 4.488502332× 10138 10.25149464× 10138 5.968713581× 10138

112 4.976717574× 10225 9.138036014× 10225 6.014536995× 10225

132 2.258644701× 10337 3.637203298× 10337 2.585228301× 10337

152 7.072035184× 10474 10.44260944× 10474 7.825035424× 10474

172 1.645107613× 10639 2.285118173× 10639 1.779711540× 10639

192 2.225232465× 10831 2.954309176× 10831 2.369675891× 10831

212 1.076588119× 101052 1.380613859× 101052 1.133422020× 101052

232 9.485462012× 101301 11.83574504× 101301 9.900887645× 101301

252 6.651391940× 101581 8.117965422× 101581 6.897042119× 101581

272 1.430044284× 101892 1.713861489× 101892 1.475194062× 101892

292 3.266427497× 102233 3.855495246× 102233 3.355617999× 102233

312 2.509177651× 102606 2.923628151× 102606 2.569025778× 102606
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