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Abstract. We determine the limit of the expected value and the variance of the protection
number of the root in simply generated trees, in Pólya trees, and in unlabelled non-plane binary
trees, when the number of vertices tends to in�nity. Moreover, we compute expectation and
variance of the protection number of a randomly chosen vertex in all those tree classes. We
obtain exact formulas as sum representations, where the obtained sums are rapidly converging
and therefore allowing an e�cient numerical computation of high accuracy. Most proofs are
based on a singularity analysis of generating functions.

1. Introduction

The protection number of a tree is the length of the shortest path from the root to a leaf. It
is interchangeably called the protection number of the root. We de�ne the protection number of a
vertex v in tree T as the protection number of a maximal subtree of T having v as its root. We
say that a vertex is k-protected if k does not exceed its protection number.
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Figure 1. Tree with vertices holding their protection numbers.

Previous research concerning protection numbers has been conducted in two closely related
directions: (i) the number of k-protected vertices in a tree of size n, and (ii) the protection number
of a root or a random vertex.

Cheon and Shapiro [4] were the �rst ones to investigate the number of 2-protected nodes in
trees. They stated the results for unlabelled ordered trees and Motzkin trees. Later on Mansour [23]
complemented their work by solving the case of k-ary trees. Over the next several years these results
were followed by a series of papers examining the number of k-protected nodes (usually for small
values of k) in various models of random trees. To mention just a few, Du and Prodinger [12]
analysed the average number of 2-protected nodes in random digital search trees, Mahmoud and
Ward [21] presented a central limit theorem as well as exact moments of all orders for the number of
2-protected nodes in binary search trees and three years later they found the number of 2-protected
nodes in recursive trees (consult [22]). The family of binary search trees was investigated also by
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Bóna and Pittel [3] who showed that the number of its k-protected nodes decays exponentially in
k.

In 2015 Holmgren and Janson [19] went for more general results. Using probabilistic methods,
they derived a normal limit law for the number of k-protected nodes in a binary search tree and
a random recursive tree.

Soon after, two particular parameters attracted the attention of the algorithmic community.
These were (as already mentioned earlier) the protection number of the root and the protection
number of a random vertex. In 2017 Copenhaver [5] found that in a random unlabelled plane tree
the expected value of the protection number of the root and the expected value of the protection
number of a random vertex approach 1.62297 and 0.727649, respectively, as the size of the tree
tends to in�nity. These results were extended by Heuberger and Prodinger [18]. They showed
the exact formulas for the �rst terms of the expectation, the variance and the probability of the
respective protection numbers.

The protection number of the root is closely related to parameters calledminimal �ll-up level and
saturation level. These were studied previously by, among others, Devroye [7] and Drmota [9, 10].

The aim of this paper is to generalize the protection number results to a larger class of rooted
trees. We study both the root protection number as well as a random vertex protection number
for the family of simply generated trees (introduced by Meir and Moon [24]) and their non-plane
counterparts: unlabelled non-plane rooted trees, also called Pólya trees due to their �rst extensive
treatment by Pólya [27], examined further by Otter [25] including numerical results and the binary
case. The present paper broadens the results from [18], but maintaining the emphasis on as concrete
formulas as possible.

For simply generated trees a general theory of asymptotics of additive cost functionals was
developed recently in [6], but this theory, which is based on embeddings into Brownian excursion
and weak limit theorems, does not cover functionals in the local regime (i.e., functional with
small toll functions), such as the number of protected nodes. Devroye and Janson [8] presented
a uni�ed approach to obtaining the number of k-protected nodes in various classes or random
trees by putting them in the general context of fringe subtrees introduced by Aldous in [2]. We
have obtained analogous results for simply generated trees, but employing a di�erent methodology.
This allows an e�cient numerical treatment and may serve as a basis for random generation in the
framework of Boltzmann sampling [13]. Parts of our investigations fall into the general framework
of additive functionals treated in [28], but our focus on concrete expressions allows an easy access
to numerical evaluation of the considered parameters.

Plan of the paper. In Sections 2, 3, and 4 we consider simply generated trees, Pólya trees and
non-plane binary trees, respectively. In each section the expected value and the variance of the
protection number of the root and the protection number of a random vertex are computed. All
these quantities tend to constants when the tree size tends to in�nity. The emphasis is on deriving
exact expressions for these constants in terms of characteristic parameters of the considered tree
class. We obtain them in terms of sums that converge at an exponential rate and therefore enable
us to compute e�ciently accurate numerical values. We provide numerical values for several well-
known simply generated tree classes as well as for two non-plane classes studied in Sections 3
and 4.

2. Simply generated trees

2.1. Protection number of the root. The class T of simply generated trees was introduced
in [24] and can be described as the class of plane rooted trees whose generating function satis�es
a functional equation of particular type: If tn denotes the sum of the weights of all trees with n
vertices, then the generating function T (z) =

∑
n≥0 tnz

n satis�es

T (z) = zφ(T (z)),

where the power series φ(t) =
∑
j≥0 φjt

j has only non-negative coe�cients, φ0 > 0, and there is

a j ≥ 2 such that φj > 0. Moreover, it is required that the equation τφ′(τ) = φ(τ) has a unique
positive solution.
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We are interested in the asymptotic protection number of a random simply generated tree,
sampled according to the weights from all simply generated trees with n vertices, where n tends
to in�nity.

Remark . For the sake of simplicity we assume that φ is non-periodic, meaning that
gcd{j > 0 : φj > 0} = 1. The periodic case can be dealt with in the very same way, but the
calculations leading to the desired number have to be done repeatedly (for analogous situations)
in order to collect several contributions to the �nal value.

Within this paper the primary tool that is used will be singularity analysis (see [15, 16]), which
provides a direct connection between the singularities of a generating function and the asymptotic
behaviour of its coe�cients. By Pringsheim's theorem [16, p. 240] we know that a generating
function with non-negative coe�cients must have a singularity at z = R, if R denotes the radius
of convergence. Our assumption that φ is non-periodic guarantees furthermore that this is the only
singularity on the circle of convergence. Throughout this paper we will call z = R the dominant
singularity of the generating function. In particular, we denote the dominant singularity of T (z)
by ρ. Furthermore, we say that a function f has an algebraic singularity of type α at s, if there is
a constant C such that f(z) ∼ f(s) + C · (1− z

s )α as z tends to s in such a way that z − s /∈ R+.

If f(z) ∼
∑
k≥0 fi

(
1− z

ρ

)αk
then we say f admits a Puiseux expansion. For instance, it is well

known that the generating function T (z) associated to some class of simply generated trees has
an algebraic singularity ρ of type 1/2 (for obvious reasons also called square root singularity) the
location of which is determined by the system T (ρ) = ρφ(T (ρ)), 1 = ρφ′(T (ρ)) and that it admits
a Puiseux expansion there, cf. [10]. For further information on this theory we refer the reader to
[16] and [15].

Let Tk(z) denote the generating function of the class of simply generated trees that have pro-
tection number at least k, where z marks the total number of nodes. Then, Tk(z) can be de�ned
by

Tk(z) = z (φ(Tk−1(z))− φ0) . (1)

Note that T0(z) = T (z).

Lemma 1. All generating functions Tk(z) have the same dominant singularity as T (z), and it is
a square root singularity.

Proof. First let us consider that the generating function Tk(z) reads as

Tk(z) = Ωk(T (z))

where Ω(t) = zφ(t)−zφ0 and Ωk(·) denotes the k-fold composition. Since Ω(t) is analytic at T (ρ),

inserting a function admitting a Puiseux expansion t(z) = α0 + α1

√
1− z

ρ + . . . results in

Ω(t(z)) = Ω(α0) + Ω′(α0)α1

√
1− z

ρ
+ . . . ,

again being a Puiseux expansion at z = ρ. It is well known that T (z) admits a Puiseux expansion

τ0 + τ1
√

1− z
ρ + . . . with nonzero numbers τ0 and τ1. Moreover, we always insert one of the

functions Tk(z), thus α0 attains the positive values Tk(ρ), k = 0, 1, 2, . . . , implying that Ω′(α0)
is always positive, as Ω(t) is a power series with only non-negative coe�cients. By induction it
is guaranteed that α1 is always negative and thus all the function Tk(z) have a unique dominant
singularity of square root type at z = ρ. �

In order to derive the expected value of the protection number Xn of a random simply generated
tree of size n (i.e. with n nodes) asymptotically, we use the well known formula

EXn =
∑
k≥1

P(Xn ≥ k). (2)



4 B. GITTENBERGER, Z. GO��BIEWSKI, I. LARCHER, M. SULKOWSKA

Thus, we need to calculate the probability P(Xn ≥ k), which is given by

P(Xn ≥ k) =
[zn]Tk(z)

[zn]T (z)
.

However, �rst we show an auxiliary result that will be needed in the following.

Lemma 2. Let Tk(z) denote the generating function of a class of simply generated trees with
protection number at least k de�ned as in (1) and let ρ denote its dominant singularity. Then the

sum
∑
k≥1

∏k−1
i=1 (ρφ′(Ti(ρ))) converges.

Proof. It is easy to see that the sequence (Ti(ρ))i≥0 is monotonically decreasing, since the number
of trees with protection number at least i is always greater than the number of trees that have an
(i + 1)-protected root, i.e. protection number at least i + 1. Since φ′ is monotonically increasing
on the positive real axis, this implies that ρφ′(Ti(ρ)) ≤ ρφ′(T1(ρ)) < ρφ′(T (ρ)) = 1. Thus, we can
estimate the sum ∑

k≥1

k−1∏
i=1

(ρφ′(Ti(ρ))) <
∑
k≥1

(ρφ′(T1(ρ)))k−1, (3)

which converges, since ρφ′(T1(ρ)) < 1. �

Theorem 1. Let Xn be the protection number of a random simply generated tree of size n. Then
the expected value EXn and the variance VXn satisfy

lim
n→∞

EXn =
∑
k≥1

ρk−1
k−1∏
i=1

φ′(Ti(ρ)),

and

lim
n→∞

VXn =
∑
k≥1

(2k − 1)ρk−1
k−1∏
i=1

φ′(Ti(ρ))−
(

lim
n→∞

EXn

)2
.

with ρ denoting the dominant singularity of the generating function T (z) = zφ(T (z)) of the class
of simply generated trees.

Proof. We know that the asymptotic behaviour of the generating function, namely T (z) = τ0 +

τ1
√

1− z
ρ + τ2(1− z

ρ ) + . . ., implies

[zn]T (z) ∼ −τ1
n−3/2

Γ(−1/2)
ρ−n, (4)

as n tends to in�nity. In order to derive the asymptotics of the n-th coe�cient of Tk(z), observe
that we know from Lemma 1 that all generating functions Ti(z) have the same dominant singularity

ρ of type 1
2 . Setting η =

√
1− z

ρ , the Puiseux expansions of Tk(z) and Tk−1(z) read as

Tk(z) = τ0,k + τ1,kη + τ2,kη
2 + . . . .

and

Tk−1(z) = τ0,k−1 + τ1,k−1η + τ2,k−1η
2 + . . . .

Plugging these expansions into (1) and using z = ρ(1− η2) we get

τ0,k + τ1,kη + τ2,kη
2 + . . . = ρ(1− η2)

∑
j≥0

φj
(
τ0,k−1 + τ1,k−1η + τ2,k−1η

2 + . . .
)j − φ0

 .

Expanding and comparing coe�cients of η0 and η1 yields

[η0] : τ0,k = ρφ(τ0.k−1)− ρφ0,

[η1] : τ1,k = ρ
∑
j≥0

φjjτ1,k−1τ
j−1
0,k−1.
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Obviously, the τ0,i's match exactly the Ti(ρ), i ≥ 0, as they are the constant terms in the
Puiseux expansions of the functions Ti(z), with 0 ≤ i ≤ k. Thus, the equation for τ1,k can be
rewritten as τ1,k = ρτ1,k−1φ

′(Tk−1(ρ)).
As τ1,0 = τ1, we get

τ1,k = τ1ρ
k−1

k−1∏
i=1

φ′(Ti(ρ)).

Applying a transfer lemma [15] directly gives the asymptotics of the coe�cients of Tk(z) and
plugging them in conjunction with (4) into Equation (2) yields the asymptotic value for the mean.
In order to derive the formula for the asymptotic variance we use the equation

VXn = E(X2
n)− (EXn)2 and E(X2

n) =
∑
k≥1

(2k − 1)P(Yn ≥ k)

and immediately get the asserted result. The convergence of the obtained sums follows from
Lemma 2. �

As the sums in Theorem 1 are majorized by convergent geometric series (i.e., the inequality (3)
even holds term-wise), we can calculate e�ciently the asymptotic mean and variance for all classes
of simply generated trees with arbitrary accuracy. We will now exemplify this by calculating the
limits of mean and variance of the protection number of some prominent classes of simply generated
trees.

Example (Plane trees). The generating function C(z) of plane trees is the unique power series
solution of

C(z) = z
1

1− C(z)
,

which yields

C(z) =
1

2
−
√

1

4
− z. (5)

Thus, its dominant singularity is ρ = 1
4 , and C(ρ) = 1

2 .
The recursion for the Ti(ρ)'s reads as

T1(ρ) =
1

4
, Ti(ρ) =

1

4− 4Ti−1(ρ)
− 1

4
.

In the case of plane trees the recursion can be solved explicitly, leading to

Ti(ρ) =
3

2(4i + 2)
.

The limits of expected value and variance are therefore given by

lim
n→∞

EXn =
∑
k≥1

1

4k−1

k−1∏
i=1

1(
1− 3

2(4i+2)

)2 ≈ 1.622971384715353,

and

lim
n→∞

VXn =
∑
k≥1

(2k − 1)
1

4k−1

k−1∏
i=1

1(
1− 3

2(4i+2)

)2 − ( lim
n→∞

EXn

)2
≈ 0.7156950717833327,

which has already been calculated by Heuberger and Prodinger in [18].

Example (Motzkin trees). The generating function M(z) of Motzkin trees is de�ned by

M(z) = z
(
1 +M(z) +M(z)2

)
,

which can be solved to result in

M(z) =
1− z −

√
1− 2z − 3z2

2z
.
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Thus, its dominant singularity is ρ = 1
3 and M(ρ) = 1.

The recursion for the Ti(ρ)'s reads as

T1(ρ) =
2

3
, Ti(ρ) =

1

3

(
Ti−1(ρ)2 + Ti−1(ρ)

)
We are not aware of a method to solve this recursion explicitly, but from the equivalent equation

3iTi(ρ) = 2

i−1∏
j=1

(1 + Tj(ρ)),

we directly get Ti(ρ) ∼ C ·3−i for a constant C > 0. Due to this exponential decrease estimates are
easily obtained and we can calculate the limits of mean and variance for the protection number
numerically with arbitrary accuracy:

lim
n→∞

EXn ≈ 2.546378248338912, lim
n→∞

VXn ≈ 1.679348871220563.

Example (Incomplete binary trees). The generating function I(z) of incomplete binary trees is
de�ned by

I(z) = z
(
1 + 2I(z) + I(z)2

)
,

which gives

I(z) =
1− 2z −

√
1− 4z

2z
.

The dominant singularity is therefore at ρ = 1
4 and I(ρ) = 1.

The recursion for the Ti(ρ)'s reads as

T1(ρ) =
3

4
, Ti(ρ) =

1

4
(Ti−1(ρ)2 + 2Ti−1(ρ)).

This recursion cannot be solved explicitly, but the numerical values can be easily computed:
They are

lim
n→∞

EXn ≈ 3.536472483525321, lim
n→∞

VXn ≈ 3.763883442795153.

Example (Cayley trees). Though, in a strict sense, Cayley trees do not belong to the class of
simply generated trees (cf. the discussions in [20] and [17]), they are usually listed as an example for
that class. In fact, they are closely related (see [26] for a thorough analysis and [17] for an analysis
of the di�erences) and in many contexts (like the one considered here), quotients of coe�cients
are computed which makes the fact that in this case the generating functions are exponential ones
irrelevant.

The (exponential) generating function C(z) of Cayley trees is de�ned by

C(z) = zeC(z),

which has its dominant singularity at ρ = 1
e . Moreover, we have C(ρ) = 1.

The recursion for the Ti(ρ)'s reads as

T1(ρ) = 1− 1

e
, Ti(ρ) =

1

e
(eTi−1(ρ) − 1).

As in the two previous examples the recursion for the Ti(ρ)'s cannot be solved explicitly, but
the numerical values are

lim
n→∞

EXn ≈ 2.286198316708012, lim
n→∞

VXn ≈ 1.598472890455086.

Example (Binary trees). This is the class of complete binary trees with only internal vertices
contributing to the size. The generating function is then de�ned by the functional equation B(z) =
1 + zB(z)2 with B(z) = C(z)/z where C(z) is the function displayed in (5). Though this class
does not strictly fall into the simply generated framework, the functional equation is of the form
B(z)−1 = zφ(B(z)−1), which re�ects the fact that incomplete binary trees with all nodes counted
are in bijection to complete binary trees with only internal vertices counted. For the protection
number this causes some shifts within the tree. But the methodology presented above works here
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as well. We get T0(z) = B(z) and Tk(z) = zTk−1(z)2. Since ρ = 1/4 we have Tk(ρ) = 22−2
k

, for

all k ≥ 0, and then �nally P(Xn ≥ k)→ 2k+1−2k , as n tends to in�nity. Thus we obtain

lim
n→∞

EXn ≈ 1.562988296151161, lim
n→∞

VXn ≈ 0.372985688954940.

2.2. Protection number of a random vertex. In the �rst part of this section we studied the
average protection number of a simply generated tree, that is the protection number of the root of
the simply generated tree. Now we are interested in the average protection number of a randomly
chosen vertex in a simply generated tree of size n. We denote this sequence of random variables
by Yn.

As in the previous section we calculate the mean via EYn =
∑
k≥1 P(Yn ≥ k). In order to do so

we proceed analogously to Heuberger and Prodinger in [18] and de�ne Sk(z) to be the generating
function of the sequence (sn,k)n≥0 of k-protected vertices summed over all trees of size n. As in
[18] this generating function can be calculated by

Sk(z) = z−1Tk(z)
∂

∂u
T (z, 1), (6)

by means of the bivariate generating function T (z, u) of simply generated trees, where z marks
the size and u the number of leaves, and the generating function Tk(z) of simply generated trees
with protection number at least k. The formula for Sk(z) arises from considering a k-protected
vertex in the following way: First point at a leaf in a simply generated tree (which yields the factor
∂
∂uT (z, 1)), then remove this leaf (which explains the z−1) and �nally attach a tree with protection
number at least k (giving the factor Tk(z)).

Remark. The procedure works also for complete binary trees, where only internal vertices con-
tribute to the tree size. The only di�erence is that for complete binary trees the factor z−1 in (6)
must be removed, because removing a leaf does not change the size.

Using the generating function Sk(z) we can express the probability P(Yn ≥ k) by

P(Yn ≥ k) =
[zn]Sk(z)

n[zn]T (z)
. (7)

Before proving the main theorem of this subsection, we show the following lemma concerning
the decay of Tk(ρ).

Lemma 3. Let Tk(z) denote the generating function of a class of simply generated trees with
protection number at least k de�ned as in (1) and let ρ denote its dominant singularity. Then the
sequence (Tk(ρ))k≥0 tends to zero exponentially fast.

Proof. From (1) we have

Tk(ρ) = ρφ(Tk−1(ρ))− ρφ0 = ρ
∑
i≥1

φiTk−1(ρ)i = ρTk−1(ρ)
∑
i≥1

φiTk−1(ρ)i−1.

Since we know that Tk(ρ) is monotonically decreasing in k and T1(ρ) < T0(ρ) = T (ρ), we directly
obtain

Tk(ρ)

Tk−1(ρ)
= ρ

∑
i≥1

φiTk−1(ρ)i−1 ≤ ρ
∑
i≥1

φiT1(ρ)i−1 < ρ
∑
i≥1

φiT (ρ)i−1 = ρφ′(T (ρ)) = 1.

Hence we found a constant q := ρ
∑
i≥1 φiT1(ρ)i−1 such that

Tk(ρ)

Tk−1(ρ)
≤ q < 1,

which proves Tk(ρ) ≤ T1(ρ)qk−1 and thus the exponential decay. �

Theorem 2. Let Yn be the protection number of a randomly chosen vertex in a random simply
generated tree of size n. Then,

lim
n→∞

EYn =
φ0
T (ρ)

∑
k≥1

Tk(ρ),
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and

lim
n→∞

VYn =
φ0
T (ρ)

∑
k≥1

(2k − 1)Tk(ρ)−
(

lim
n→∞

EYn
)2
.

Proof. First we need to determine the n-th coe�cient of Sk(z). We have

∂

∂u
T (z, 1) =

zφ0
1− zφ′(T (z))

. (8)

Using T ′(z) = zφ′(T (z))T ′(z) + φ(T (z)) and φ(T (z)) = T (z)
z we get

zφ′(T (z)) =
T ′(z)− T (z)

z

T ′(z)
.

Therefore (8) transforms to

∂

∂u
T (z, 1) =

T ′(z)z2φ0
T (z)

.

Thus, altogether we have

[zn]Sk(z) = [zn]z−1Tk(z)
T ′(z)z2φ0
T (z)

,

which gives

[zn]Sk(z) ∼ −τ0,kτ1φ0
2τ0

n−1/2

Γ(1/2)
ρ−n.

Finally, we get

EYn =
∑
k≥1

P(Yn ≥ k) =
∑
k≥1

[zn]Sk(z)

n[zn]T (z)

n→∞→
∑
k≥1

Tk(ρ)φ0
T (ρ)

.

For the variance we use again the formula VYn =
∑
k≥1(2k − 1)P(Yn ≥ k)− E(Yn)2 and (7). The

convergence of the obtained sums follows from Lemma 3. �

limn→∞ EYn limn→∞VYn
Plane trees 0.7276492769137261 0.8168993794836289
Motzkin trees 1.307604625963334 1.730614214799486
Incomplete binary trees 1.991819588602741 3.638259051495130
Cayley trees 1.186522661652180 1.632206223956926
Complete binary trees 1.265686036087572 0.226591112528581

Table 1. The approximate values for the limits of mean and variance of the
protection number of a random vertex in di�erent classes of simply generated
trees. In the case of complete binary trees only internal vertices are considered.

3. Pólya trees

3.1. Protection number of the root. Let T (z) be the generating function of Pólya trees, which
reads as

T (z) = zeT (z) exp

∑
i≥2

T (zi)

i

 ,
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and in correspondence to the previous section let us denote by Tk(z) the generating function of
the class of Pólya trees that have protection number at least k. This generating function can be
speci�ed by

Tk(z) = zeTk−1(z) exp

∑
i≥2

Tk−1(zi)

i

− z, (9)

with T0(z) = T (z). From the classical results of Pólya [27] we know that T (z) has a unique
dominant singularity ρ of type 1/2 and admits a Puiseux series expansion there, which starts as

T (z) ∼ 1− b
√

1− z

ρ
+
b2

3

(
1− z

ρ

)
+ d

(
1− z

ρ

)3/2

+ · · · . (10)

Numerical approximations for the constants have been �rst computed by Otter [25]. This was
also topic in the book of Finch [14, Section 5.6] and the book of Flajolet and Sedgewick [16,
p. 477] where we �nd approximations up to 25 digits: ρ ≈ 0.3383218568992076951961126 and
b ≈ 1.55949002037464088554226.

Lemma 4. All the generating functions Tk(z) have their (unique) dominant singularity at ρ, and
the singularity is a square root singularity.

Proof. First let us recall that T0(z) = T (z). Thus, for k = 0 the lemma is trivial. For k ≥ 1
we proceed by induction. Therefore let us assume that Tk−1(z) has the dominant singularity ρ
which is of type 1

2 . Then the dominant singularity of Tk(z), satifying the recurrence relation (9),

comes from eTk−1(z), since exp
(∑

i≥2
Tk−1(z

i)
i

)
is analytic in |z| < ρ + ε with ε > 0 su�ciently

small. Applying the exponential function to a function having an algebraic singularity does neither
change the location nor the type of the singularity, which proves the assertion after all. �

The goal of this section is to derive an asymptotic value for the average protection number of
Pólya trees. We use again the formula EXn =

∑
k≥1 P(Xn ≥ k), but rewrite this equation as

EXn =
∑
k≥1

k∏
i=1

P(Xn ≥ i|Xn ≥ i− 1),

where the conditional probabilities can be obtained by

P(Xn ≥ k|Xn ≥ k − 1) =
[zn]Tk(z)

[zn]Tk−1(z)
. (11)

Let us again start by showing the exponential decay of the sequence (Tk(ρ))k≥1.

Lemma 5. Let Tk(z) denote the generating function of the class of Pólya trees with protection
number at least k de�ned as in (9) and let ρ denote its dominant singularity. Then the sequence
(Tk(ρ))k≥0 tends to zero exponentially fast.

Proof. Let us denote Ck := exp
(∑

i≥2
Tk(ρ

i)
i

)
. Then Equation (9) directly yields

Tk(ρ) = ρeTk−1(ρ)Ck−1 − ρ < ρeTk−1(ρ)Ck−1 = ρCk−1
∑
i≥0

Tk−1(ρ)i

i!
= ρCk−1Tk−1

∑
i≥1

Tk−1(ρ)i−1

i!
,

which implies

Tk(ρ)

Tk−1(ρ)
< ρCk−1

∑
i≥1

Tk−1(ρ)i−1

i!
≤ ρCk−1

1

T1(ρ)

∑
i≥1

T1(ρ)i

i!
= ρCk−1

e1−ρ − 1

1− ρ
,

since Tk(ρ) ≤ T1(ρ) for k ≥ 1 and T1(ρ) = 1− ρ. Estimating Ck yields

Ck ≤ C1 < exp

∑
i≥2

T (ρi)

i

 =
1

eρ
.
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Putting all together gives

Tk(ρ)

Tk−1(ρ)
<
e1−ρ − 1

e(1− ρ)
≈ 0.52153,

which �nally yields the exponential decay. �

Lemma 6. The asymptotic expansions of the n-th coe�cients of Tk(z) and Tk−1(z) read as

[zn]Tk−1(z) =
γkρ
−nn−

3
2

Γ(−1/2)

(
1 +O

(
1

n

))
,

[zn]Tk(z) =
(Tk(ρ) + ρ)γkρ

−nn−
3
2

Γ(−1/2)

(
1 +O

(
1

n

))
,

as n→∞, with a constant γk > 0.

Proof. Let the Puiseux expansion of Tk−1(z) be given by Tk−1(z) = Tk−1(ρ)− γk
√

1− z
ρ + . . ..

Then Tk(z) behaves asymptotically as Tk(z) ∼ ρeTk−1(ρ)Ck−1e
−γk
√

1− zρ , where Ck =

exp
(∑

i≥2
Tk(ρ

i)
i

)
. Applying the asymptotic relation e−γk

√
1− zρ ∼ 1 − γk

√
1− z

ρ and using the

equation ρeTk−1(ρ)Ck−1 = Tk(ρ) + ρ completes the proof. �

Plugging the expansions obtained in Lemma 6 into Equation (11) gives

P(Xn ≥ k|Xn ≥ k − 1) = Tk(ρ) + ρ,

which directly yields the following theorem.

Theorem 3. Let Xn be the protection number of a random Pólya tree of size n. Then

lim
n→∞

EXn =
∑
k≥1

k∏
i=1

(Ti(ρ) + ρ) ≈ 2.154889671973873, (12)

and limn→∞VXn ≈ 1.369993017502652.

Proof. The proof for the asymptotic mean follows directly by Lemma 6. In order to determine the

variance we use the representation limn→∞ VXn =
∑
k≥1(2k − 1)

∏k
i=1(Ti(ρ) + ρ)− E(Xn)2. The

convergence of the sums for the expected mean and variance follows by Lemma 5. �

Remark. Note that in order to get accurate numerical values, we must not compute Tk(ρ) by
insertion into a (truncated) series expansion for Tk(z). The reason is that ρ lies on the circle
of convergence and thus the convergence is very slow at z = ρ. Instead, Tk(ρ) can be directly
computed using the recurrence relation (9). The values Tk(ρi) for i ≥ 2, which appear in that
recurrence relation, can be computed with the help of the series expansion of Tk(z), because ρi

then lies in the interior of region of convergence where the series converges at an exponential rate.

Remark. We could also have used the same approach as for simply generated trees in order to get
the asymptotic mean. Then the resulting formula looks like

lim
n→∞

EXn =
∑
k≥1

ρk−1
k−1∏
i=1

Cie
Ti(ρ), (13)

where Cj = exp
(∑

i≥2
Tj(ρ

i)
i

)
. Since Ti(ρ) tends to 0 exponentially fast and hence Ci tends to

1, we immediately get the constant given in Theorem 3. However, since this approach requires
more technical calculations, we decided to switch to the more direct strategy using the conditional
probabilities. Moreover note that the equivalence of (12) and (13) is immediate from (9).
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3.2. Protection number of a random vertex. The method of marking a leaf and replacing
it by a tree with protection number k does not work here. Due to possible symmetries in non-
plane trees, this would result in wrong counting: Indeed, if there are k-protected vertices x1, . . . , x`
which can be mapped to each other by some automorphisms of the tree (i.e., they lie in the same
vertex class), then only one of them is counted. Though this is counterbalanced by trees having `
leaves in the same vertex class one of which is replaced by a tree with protection number k (the
root of this tree is then counted ` times), there are further overcounts: As all leaves are marked,
trees having several leaves in the same vertex class are counted several times, and so are their
k-protected vertices.

Thus we appeal to the proof of [28, Theorem 3.1] here: For a tree T let

f(T ) =

{
1 if T has protection number at least k,

0 otherwise.

Moreover, we de�ne F (T ) to be the number of k-protected nodes in T . Then the generating
function Rk(z, u) =

∑
T z
|T |uF (T ) satis�es (cf. [28, Equ. (3.1)])

z exp

∑
i≥1

Rk(zi, ui)

i

 =
∑
n≥1

zn
∑

T :|T |=n

uF (T )−f(T ) (14)

As in Section 2.2 we utilize the formula EYn =
∑
k≥1 P(Yn ≥ k) and express the occurring

probabilities as P(Yn ≥ k) = [zn]Sk(z)/(n[zn]T (z)) with Sk(z) being the generating function
whose nth coe�cient is the cumulative number of k-protected nodes in all trees of size n. Obviously,
((∂/∂u)Rk)(z, 1) = Sk(z) and thus by di�erentiating (14) with respect to u and inserting u = 1
we obtain

T (z)
∑
i≥1

Sk(zi) = Sk(z)− Tk(z). (15)

This implies

Sk(z) =
T (z)

∑
i≥2 Sk(zi) + Tk(z)

1− T (z)
∼
∑
i≥2 Sk(ρi) + Tk(ρ)

b
√

1− z
ρ

(16)

where b is the constant appearing in (10). Standard transfer theorems applied to (10) give

[zn]T (z) ∼ −bn
−3/2ρ−n

Γ(−1/2)
=
bn−3/2ρ−n

2
√
π

,

and from (16) we get

[zn]Sk(z) ∼

(∑
i≥2 Sk(ρi) + Tk(ρ)

)
n−1/2ρ−n

b
√
π

and thus

P(Yn ≥ k) ∼ 2

b2

∑
i≥2

Sk(ρi) + Tk(ρ)

 . (17)

Now we prove that
∑
i≥2 Sk(ρi) decreases exponentially.

Lemma 7. Let Sk(z) denote the generating function of the cumulative number of k-protected
vertices in all Pólya trees of size n, and let ρ denote the dominant singularity of the generating
function of Pólya trees. Then

∑
i≥2 Sk(ρi) decreases exponentially fast with growing k.

Proof. First, let Ck(z) be the generating function of plane trees with protection number at least
k and C(z, u) denote the bivariate generating function of plane trees, where z marks the size and
u the number of leaves.

Now, observe that the cumulative number of k-protected vertices in all Pólya trees of size n
is smaller than the respective number in all planted plane trees of size n, since in the latter
case di�erent plane embeddings of the same Pólya tree are counted separately (and so are their
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respective protected nodes). This in conjunction with (6) implies that for 0 < z ≤ ρ2 (note that
ρ2 < 1/4) we have

Sk(z) < z−1Ck(z)
∂

∂u
C(z, 1) < 4Ck

(
1

4

)
∂

∂u
C

(
1

4
, 1

)
. (18)

From Lemma 3 we know that Ck
(
1
4

)
tends to zero exponentially fast and, in view of (18), so does

Sk(z). �

By means of Lemma 5 and Lemma 7 we know that the series for EYn, namely

EYn =
∑
k≥1

P(Yn ≥ k),

converges rapidly. But (17) still bears a secret, because we do not have an explicit expression for
Sk(z) and we cannot solve the functional equation (15).

For numerical purposes, however, it is not necessary to have an explicit expression for Sk(z). If
we write Sk(z) = Ψ(Sk(z)) with Ψ being the operator on the ring of formal power series de�ned
by

Ψ(f(z)) =
T (z)

∑
i≥2 f(zi) + Tk(z)

1− T (z)
,

then Ψ is a contraction on the metric space R[[z]] equipped with the formal topology (cf. [16,
Appendix A.5]). Indeed, if f(z) and g(z) coincide up to their `th coe�cient, then the �rst 2`+ 2
coe�cients of Ψ(f(z)) andΨ(g(z)) coincide.

As there is exactly one tree with k + 1 vertices which possesses k-protected vertices at all
(namely the path of length k has a k-protected root) whereas all smaller trees do not possess any
k-protected vertices, we know that the (one-term) series zk+1 coincides with Sk(z) = zk+1 + · · ·
in its �rst k + 2 coe�cients. Applying Ψ to zk+1 a few times, with each application more than
doubling the number of known coe�cients of Sk(z), gives quickly a fairly accurate expression for
Sk(z). We obtain the following theorem:

Theorem 4. Let Yn be the protection number of a random vertex in a random Pólya tree of size
n. Then

lim
n→∞

EYn =
∑
k≥1

2

b2

∑
i≥2

Sk(ρi) + Tk(ρ)

 ≈ 0.9953254987

and limn→∞VYn ≈ 1.3818769746.

4. Non-plane binary trees

4.1. Protection number of the root. We denote by T (z) the generating function of non-plane
binary trees, where z marks the number of internal nodes. Then T (z) satis�es

T (z) = 1 + z

(
1

2
T (z)2 +

1

2
T (z2)

)
. (19)

The generating function Tk(z) of non-plane binary trees with protection number at least k
satis�es

Tk(z) = z

(
1

2
Tk−1(z)2 +

1

2
Tk−1(z2)

)
, (20)

and T0(z) = T (z). As in the previous sections, the decay rate of Tk(z) guarantees the convergence
of all the series appearing in the subsequent results. For combinatorial reasons the function T (z)
has a singularity at some 0 < ρ < 1 and from the functional equation (19) we can deduce that
T (ρ) = 1/ρ < 1. Inserting this into (20) and using the estimate Tk−1(z2) < Tk(z) gives T1(z) < 1,
for 0 ≤ z ≤ ρ. Using the estimate again yields Tk(z) < ρTk−1(z2) and therefore Tk(z) decays even
super-exponentially, as k tends to in�nity.
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In order to obtain the asymptotic mean and variance for the protection number of a random
non-plane binary tree of size n we proceed analogously as in the previous section for Pólya trees.
Thus, we use

EXn =
∑
k≥1

k∏
i=1

P(Xn ≥ i|Xn ≥ i− 1) =
∑
k≥1

k∏
i=1

[zn]Ti(z)

[zn]Ti−1(z)
.

Theorem 5. Let Xn be the protection number of a random non-plane binary tree of size n. Then

lim
n→∞

EXn =
∑
k≥1

k−1∏
i=1

(ρTi(ρ)) ≈ 1.707603060723366

and limn→∞VXn ≈ 0.431102549825064.

Proof. Let the Puiseux expansion of Tk(z) and Tk+1(z) read as

Tk−1(z) = Tk−1(ρ)− γk
√

1− z

ρ
+O

(
1− z

ρ

)
,

and

Tk(z) = ρ

(
1

2
Tk−1(ρ)2 +

1

2
Tk−1(ρ2)

)
+ ρTk−1(ρ)γk

√
1− z

ρ
+O

(
1− z

ρ

)
.

Using singularity analysis yields the desired result for the mean. For the variance we use again
the formula VXn =

∑
k≥1(2k − 1)P(Xn ≥ k)− E(Xn)2. �

4.2. Protection number of a random internal vertex. The asymptotic mean and variance
for the protection number of a randomly chosen internal vertex in a random non-plane binary tree
can be obtained in the same way as in the previous section for Pólya trees.

Thus, we again set up an equation for the generating function Rk(z, u) where the coe�cients
[znul]Rk(z, u) count the number of non-plane binary trees of size n with l k-protected vertices:

z

2

(
Rk(z, u)2 +Rk(z2, u2)

)
=
∑
n≥1

zn
∑

T :|T |=n

uF (T )−f(T )

Di�erentiating this equation with respect to u and setting u = 1 yields

zT (z)Sk(z) + zSk(z2) = Sk(z)− Tk(z).

Therefore we get

Sk(z) =
zSk(z2) + Tk(z)

1− zT (z)
.

The asymptotic expansion of T (z) is given by

T (z) ∼ 1

ρ
− a
√

1− z

ρ
.

In [16, p. 477] we �nd the numerical values of the constants ρ and a. (Caveat : The scaling is
di�erent, so [16, p. 477] in fact lists a · ρ, not a.) We have ρ ≈ 0.4026975036714412909690453 and
a ≈ 2.8061602222420538943722824. Using this expansion we get

P(Yn ≥ k) =
[zn]Sk(z)

n[zn]T (z)
∼ 2

a2ρ

(
ρSk(ρ2) + Tk(ρ)

)
.

By denoting Ψ(f(z)) = zf(z2)+Tk(z)
1−zT (z) we can use the same arguments as in the Pólya case to

e�ciently obtain numerical values for the probabilities P(Yn ≥ k). Finally, we are able to calculate
the asymptotic mean and variance for the protection number of a random node in non-plane binary
trees.
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Theorem 6. Let Yn be the protection number of a random internal vertex in a random non-plane
binary tree of size n. Then

lim
n→∞

EYn =
2

a2ρ

∑
k≥1

(
ρSk(ρ2) + Tk(ρ)

)
≈ 1.3124128299,

and limn→∞VYn ≈ 0.2676338724.

Remark. As in the Pólya case, we can compare Sk(z) with the corresponding function of plane
binary trees and argue as in the proof of Lemma 7. This shows that Sk(z) converges to zero at an
even super-exponential rate.

5. Conclusion

In this paper we generalized the work of Heuberger and Prodinger, who derived the average
protection number of plane trees, to a more general framework. We obtained the average protection
number for all simply generated trees, as well as for Pólya trees and non-plane binary trees. We
did not include Pólya trees with general degree restrictions, since the general expressions will look
clumsy and only numerical results for speci�c classes may be of interest. But it is immediate
that the asymptotic mean and variance of the protection number for Pólya-trees with any kind
of degree restriction can be calculated in the very same way. As we saw in some of the examples,
there are classes of trees, for which the obtained formulas involve a recurrence that might not be
solvable explicitly. However, using these equations it is possible to calculate the asymptotic mean
and variance in an arbitrarily accurate way with a fairly low computational e�ort. In Table 2 we
summarize the obtained results for some speci�c tree classes.

Tree model limn→∞ EXn limn→∞ EYn
Simply generated trees
Plane trees 1.62297 0.72765
Motzkin trees 2.54638 1.30760
Incomplete binary trees 3.53647 1.99182
Cayley trees 2.28620 1.18652
Complete binary trees 1.56298 1.26568
Non-plane trees
Pólya trees 2.15489 0.99532
Non-plane binary trees 1.70760 1.31241

Table 2. Summary of the obtained mean values for the protection numbers.

It is well known that Cayley trees and Pólya trees are very similar, but the latter are not
simply generated, as the simple proof presented in [11] shows. A detailed analysis of the structural
di�erences was done in [17, 26]: Roughly speaking, Pólya trees are Cayley trees (more precisely, the
simply generated class whose ordinary generating function is the exponential generating function
of Cayley trees) with small forests attached to each vertex. Comparing the resulting values (from
Table 2) for Cayley trees and Pólya trees shows the quantitative e�ect of those forests, which
have on average less than one vertex. As expected, these additional forests decrease the protection
numbers.

For complete binary trees the correspondence between plane and non-plane is a bit di�erent
due to the strict degree constraint. The small forests are not attached anywhere, but they always
consist of two identical trees and attachment is done by replacing a leaf. The e�ect of the presence
or absence of symmetries seems stronger than the possible increase of the protection number by
adding forests, because the larger number of plane structures gives some bias to lower protection
numbers.

Furthermore, since we have explicit formulas for the asymptotic probabilities P(Xn ≥ k) and
P(Yn ≥ k), we have direct access to the discrete probability distributions of the random variables
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Xn and Yn, summarized in Table 3. Some concrete approximate values of the limiting distribution
are given in Table 4.

Tree model lim
n→∞

P(Xn = k)

Simply generated trees ρk−1
∏k−1
i=1 φ

′(Ti(ρ))(1− ρφ′(Tk(ρ)))

Pólya trees
∏k
i=1(Ti(ρ) + ρ)(1− ρ− Tk+1(ρ))

Non-plane binary trees
∏k−1
i=1 (ρTi(ρ))(1− ρTk(ρ))

Tree model lim
n→∞

P(Yn = k)

Simply generated trees φ0

T (ρ) (Tk(ρ)− Tk+1(ρ))

Pólya trees 2
b2 (Sk(ρ)− Sk+1(ρ))

Non-plane binary trees 2
a2ρ (ρSk(ρ2) + Tk(ρ)− ρSk+1(ρ2)− Tk+1(ρ))

Table 3. Discrete asymptotic distributions of the protection number of the root
(Xn), and of a random vertex (Yn), respectively.

plane trees binary trees Pólya trees non-plane binary trees

k = 1 0.55556 0.5 0.33832 0.4026975

k = 2 0.31221 0.4375 0.35205 0.4888019

k = 3 0.09762 0.06201171875 0.19036 0.1067009

k = 4 0.02585 0.000488266 0.07698 0.0017995

k = 5 0.00655 0.000000015 0.02775 0.0000002

k = 6 0.00165 6.939 · 10−15 0.00959 2.346 · 10−15

Table 4. The �rst few (rounded) values for lim
n→∞

P(Xn = k).

plane trees binary trees Pólya trees non-plane binary trees

k = 1 0.33333 0.75 0.2939995 0.7137829891

k = 2 0.12121 0.23438 0.1610251 0.2602367674

k = 3 0.03383 0.01556 0.0682504 0.0257646827

k = 4 0.00870 0.00006 0.0252114 0.0002155459

k = 5 0.00219 9.314 · 10−10 0.0088016 0.0000000148

k = 6 0.00055 2.168 · 10−19 0.0030102 7.025 · 10−17

Table 5. The �rst few (rounded) values for lim
n→∞

P(Yn = k). In the binary cases,

only internal nodes are considered.
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Table 5 lists the �rst few probabilities of four tree classes. As in the binary cases the leaves do
not contribute to the tree size, they are also disregarded with respect to protection numbers. If we
take them into account, the probabilities would only have to be multiplied by 1/2. In this case,
the values for expectation and variance would change as well. For the plane case, we would have

lim
n→∞

E(Yn = k) ≈ 0.6328430180 and lim
n→∞

V(Yn = k) ≈ 0.5137858418,

instead of the values listed in Table 1 and in the non-plane case

lim
n→∞

E(Yn = k) ≈ 0.6562064150 and lim
n→∞

V(Yn = k) ≈ 0.5644237952.

instead of the values listed in Theorem 6.
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