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Towards a Proof of the Chern
Conjecture for Isoparametric

Hypersurfaces in Spheres
Mike Scherfner & Simon Weiß

Abstract: We present the framework and a short history of the Chern con-
jecture for isoparametric hypersurfaces in spheres and its generalizations.
Main results will be presented and we summarize the progress for this topic.

1 Introduction

The Chern conjecture for isoparametric hypersurfaces in spheres can be
stated as follows:

Let M be a closed, minimally immersed hypersurface of the (n + 1)-
dimensional sphere Sn+1 with constant scalar curvature. Then M is isopa-
rametric.

It was originally proposed in a less strong version by Chern in [11] and Chern,
do Carmo and Kobayashi in [12], in 1968 and 1970 respectively. So far, no
proof for the conjecture has been found, although partial results exist in
particular for low dimensions and with additional conditions for the curvature
functions of M . We will give an overview of these results and discuss several
possible generalizations of the Chern conjecture.

Its original version relates to the following theorem, first proved by Simons
[21]:
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Theorem 1.1. Let M ⊂ Sn+1 be a closed, minimally immersed hypersurface
and S the squared norm of its second fundamental form. Then

∫

M

(S − n)S ≥ 0.

In particular, for S ≤ n one has either S = 0 or S = n identically on M .

Note that since M is minimally immersed S is constant if and only if the
scalar curvature κ is constant. In this case it follows that S = 0 or S ≥ n,
which led Chern to propose the following

Conjecture 1.2. Consider closed minimal hypersurfaces M ⊂ Sn+1 with
constant scalar curvature κ. Then for each n the set of all possible values for
κ (or equivalently S) is discrete.

The only known examples for minimal hypersurfaces with constant scalar
curvature in Sn+1 are isoparametric, i.e. all of their principal curvature func-
tions are constant. From the classification of isoparametric hypersurfaces in
spheres, given by Münzner in [17], one obtains that S equals (g− 1)n, where
g is the number of pairwise distinct principal curvatures and can only take
the values 1, 2, 3, 4 or 6, which establishes the conjecture in this case. Based
on this, Verstraelen, Montiel, Ros and Urbano first formulated the stronger
version of the conjecture given initially (see [22]). Most of the later results
refer to this version.

2 Preliminaries

In the following we present the natural framework in order to attack the pro-
blem for the case n = 4, since the recent results are given for this dimension
and it is obvious how to generalize (or restrict) the equations given below.

Let M4 be a 4-dimensional hypersurface in a unit sphere S5(1). We choose a
local orthonormal frame field {e1, . . . , e5} in S5(1), so that restricted to M4,
e1, . . . , e4 are tangent to M4. Let ω1, . . . , ω5 denote the dual co-frame field
in S5(1). We use the following convention for the indices: A,B,C,D range
from 1 to 5 and i, j, k from 1 to 4. The structure equations of S

5(1) as a
hypersurface of the Euclidean space R6 are given by
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d ωA = −
∑

B

ωAB ∧ ωB, ωAB + ωBA = 0,

d ωAB = −
∑

C

ωAC ∧ ωCB +
1

2

∑

C,D

R̄ABCDωC ∧ ωD,

where R̄ is the Riemannian curvature tensor

R̄ABCD = δACδBD − δADδBC .

The contractions R̄AC =
∑
B

R̄ABCB and R̄ =
∑
A,B

R̄ABAB are the Ricci curva-

ture tensor and the scalar curvature of S5(1), respectively. Next, we restrict
all the tensors to M4. First of all, since ω5 = 0 on M4,

∑
i

ω5i ∧ωi = dω5 = 0.

By Cartan’s lemma we can write

ω5i =
∑

j

hijωi, hij = hji. (1)

Here h =
∑
i,j

hijωiωj denotes the second fundamental form of M4 and the

principal curvatures λi are the eigenvalues of the matrix (hij). Furthermore
the mean curvature is given by H = 1

4

∑
i

hii = 1
4

∑
i

λi and K = det(hij) =
∏
i

λi is the Gauß-Kronecker curvature. On M4 we have

dωi = −
∑

j

ωij ∧ ωj, ωij + ωji = 0,

dωij = −
∑

k

ωik ∧ ωkj +
1

2

∑

k,l

Rijklωk ∧ ωl,

where R is the Riemannian curvature tensor on M4 with components satis-
fying

0 = Rijkl +Rijlk.

These structure equations imply the following integrability condition (Gauß
equation):

Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk).
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For the scalar curvature we have

κ = 12 + 16H2 − S,

where S =
∑
i,j

h2
ij is the squared norm of h.

If we consider minimal hypersurfaces, the Ricci curvature and scalar curva-
ture are given by, respectively,

Rij = 3δij −
∑

k

hikhjk, (2)

κ = 12 − S. (3)

It follows from (3) that κ is constant if and only if S is constant. The covariant
derivative ∇h with components hijk is given by

∑

k

hijkωk = dhij +
∑

k

hjkωik +
∑

k

hikωjk. (4)

Then the exterior derivative of (2) together with the structure equations
yields the following Codazzi equation

hijk = hikj = hjik. (5)

For any fixed point on M4, we can choose a local orthonormal frame
{e1, . . . , e4}, such that

hij = λiδij.

We define the symmetric functions f3 and f4 on M4 as follows:

f3 :=
∑

i,j,k

hijhjkhki =
∑

i

λ3
i , f4 :=

∑

i,j,k,l

hijhjkhklhli =
∑

i

λ4
i . (6)

3 Results

The trivial case is given for n = 2. Here (under the premises of the conjecture)

λ1 + λ2 = 0, (7)



M. Scherfner & S. Weiß: Chern Conjecture 5

λ2
1 + λ2

2 = const (8)

and we have λ1 = −λ2 = const.

The first partial result was achieved by Peng and Terng, who gave further
constraints for the possible values of S:

Theorem 3.1 (Peng, Terng 1983 [18]). For every n ≥ 3 there exists a
maximal C(n) with the following property: Let M ⊂ Sn+1 be a closed minimal
hypersurface with constant S > n. Then it follows that S ≥ n + C(n) and
one has C(3) = 3, C(n) ≥ 1

12n
.

Since for isoparametric hypersurfaces the next highest possible value for S is
2n, they in particular proposed the following

Conjecture 3.2. C(n) ≥ n.

The originally shown inequality has since been improved considerably by
Yang and Cheng ([23],[24],[25]) to C(n) ≥ 26

61
n − 16

61
> 1

3
n and, under the

additional assumption that the sum of cubes of the principal curvatures f3

is constant, C(n) ≥ 13
15
n− 4

5
≥ 2

3
n.

The lowest dimension for which the Chern conjecture is non-trivial is n = 3.
In this case, a more general theorem has been proven:

Theorem 3.3 (Almeida, Brito 1990 [3]; Chang 1993 [7]). Let M ⊂ S4

be a closed hypersurface with constant mean curvature H and constant scalar
curvature κ. Then M is isoparametric.

Almeida and Brito initially showed this in [3] under the additional assumption
that κ is non-negative. The approach of this proof has since been used to show
a number of other results (see below), and can be sketched as follows: Let Y
be the set of points where all principal curvatures are distinct. It is easy to
see that it is sufficient to proof that the principal curvatures are constant on
Y . One defines a three-form ψ on Y depending on the principal curvature
directions, which satisfies dψ = Fvol for a non-negative function F . Using
Stokes’ theorem and an estimate on the boundary of Y , one obtains F = 0
from which the claim follows directly.
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Chang then completed the proof in [7] by showing that κ is non-negative
under these assumptions. He proved this separately for manifolds with three
everywhere distinct principal curvatures and those where two principal cur-
vatures coincide in a point, in the former case generalizing a proof earlier
given by Peng and Terng in [19] for minimal hypersurfaces.

Instead of manifolds in low dimensions, one can also consider those with a
certain number g of pairwise different principal curvatures. Again, g = 3 is
the first non-trivial case, and one has the following result:

Theorem 3.4 (Chang 1994 [9]). Let M ⊂ S
n+1 be a closed hypersurface

with constant mean and scalar curvatures which has exactly three pairwise
distinct principal curvatures in every point. Then M is isoparametric.

For the case n = 4 a partial result has recently been proven under the
additional assumption that M is a Willmore hypersurface, i.e. a critical point
of the Willmore functional W (M) :=

∫
M
ρn with ρ2 = S − nH2. For minimal

hypersurfaces with constant scalar curvature in spheres this has been shown
by Li in [14] to be equivalent to f3 = 0. This is the case for most minimal
isoparametric hypersurfaces of S5, which motivates the assumption. One has:

Theorem 3.5 (Lusala, Scherfner, Sousa Jr. 2005 [16]). Let M ⊂ S5

be a closed minimal Willmore hypersurface with constant non-negative scalar
curvature. Then M is isoparametric.

The proof follows essentially the same approach as that of [3].

In fact, [16] claims that this is true even in the case of negative scalar curva-
ture. However, the proof as given there contains an incorrect step; namely,
an integral estimate is made to show that on the set Y of points with four di-
stinct principal curvatures one has κ = 0. For this it is claimed that a certain
integral term goes to zero in the limit, which is not generally the case.

4 Generalizations

One obvious generalization is that on non-closed manifolds, i.e. a local version
of the conjecture. This has in particular been proposed by Bryant for the case
n = 3:
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Conjecture 4.1. Let M ⊂ S4 be a minimal hypersurface with constant scalar
curvature. Then M is isoparametric.

The following is a result of the proof of the (global) Chern conjecture in this
case:

Theorem 4.2 (Chang 1993 [8]). Let M ⊂ S4 be a minimal Hypersurface
with constant scalar curvature such that there is a point p ∈M in which two
principal curvatures coincide. Then M is isoparametric.

Another possible generalization is that on hypersurfaces of constant mean
curvature. It has already been mentioned that the proofs for the cases n = 3
and g = 3 remain valid under this more general assumption. One also has
the following inequalities in analogy to Theorem 1.1:

Theorem 4.3 (Alencar, do Carmo 1994 [1]). There exist continous po-
sitive functions Bn with Bn(0) = n and the following property:

Let M ⊂ Sn+1 be a closed hypersurface with constant mean curvature H. If

S̃ :=
∑

i

(λi −H)2 ≤ Bn(H),

then it follows that S̃ = 0 or S̃ = Bn(H) identically on M .

Theorem 4.4 (Hou 1997 [13]). Let M ⊂ Sn+1 be a closed hypersurface with
constant mean curvature. If S < 2

√
n− 1, then M is a hypersphere.

Note that in both cases there exist isoparametric hypersurfaces for which the
upper bounds are assumed, such that the inequalities are sharp.

A number of the results mentioned in section 3 can also be generalized to
hypersurfaces in Riemannian manifolds Rn+1 of constant curvature c ≤ 0; for
details see the second table in section 5 (note that it is sufficient to consider
c ∈ {−1, 0}).

One can also more generally ask what can be said about manifolds with other
combinations of constant curvature functions. For this one defines the r-th
mean curvature (or mean curvature of order r) σr as

σr :=

(
n

r

)
−1 ∑

i1<...<ir

λi1λi2 · · ·λir ,
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that is up to a factor as the r-th elementary symmetric polynomial of the
principal curvatures. Note that σ1 equals the mean curvature H , σ2 equals
the scalar curvature κ up to additive and multiplicative constants (κ = n(n−
1)(1 + σ2)) and σn equals the Gauß-Kronecker curvature K.

The Chern conjecture can now be stated as follows: If σ1 = 0 and σ2 are
constant, then so are all other σr. This suggests the question for which other
combinations of indices such a statement is true. For hypersurfaces immersed
in certain manifolds there exists the following remarkable result:

Theorem 4.5 (Bivens 1983 [6]). Let M be a compact hypersurface in Rn+1,
the hyperbolic space Hn+1 or the open half-sphere S

n+1
+ . If for some 1 ≤ r < n

the two mean curvature functions σr and σr+1 are constant, then M is a
geodesic hypersphere (and thus isoparametric).

For hypersurfaces in S4, Almeida and Brito proved the following using a
similar approach to that in [3]:

Theorem 4.6 (Almeida, Brito 1997 [4]). Let M ⊂ S4 be a closed hyper-
surface with mean curvature H = σ1, scalar curvature κ = 12(1 + σ2) and
Gauß-Kronecker curvature K = σ3.

If κ and K (or equivalently σ2 and σ3) are constant with κ ≥ 0 (σ2 ≥ −1),
then M is isoparametric.

If H und K 6= 0 (or equivalently σ1 and σ3 6= 0) are constant with
HK−1 ≥ −1 ( σ1σ

−1
3 ≥ −1), then M is also isoparametric.

In [5] Almeida, Brito and Sousa recently claimed that this is the case even
without assuming the inequalities. However, the proof given there uses the
same incorrect argument as [16] (see above).

Lusala and Oliveira showed in [15] that if H and K = 0 are constant, H is
also zero. In this case there exist non-isoparametric examples ([2], see also
[20]).
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5 Summary

The table given below recapitulates the dimensions and additional conditions
for which the Chern conjecture and its generalizations for hypersurfaces of
constant mean curvature and non-closed hypersurfaces have been proven.

In the following, let S̃ and Bn be defined as in theorem 4.3 and let g be the
number of pairwise distinct principal curvatures as a function on M .

n Chern Conjecture Chern Conjecture Chern Conjecture
(H 6= 0) (locally)

2 Yes Yes Yes

3 Yes, [19], [8] Yes, [3], [7] If S ≤ 3, [12]
or g = 2 in p, [8]

4 If f3 ≡ 0, S ≤ 12, [16] If S̃ ≤ B4(H), [1] If S ≤ 4, [12]

or f3 const., S < 20
3

, [25] or S ≤ 2
√

3, [13]
or S < 372

61
, [25] or g ≡ 3, [9]

or g ≡ 3, [9] or M ⊂ S5
+, [6]

> 4 If f3 const., If S̃ ≤ Bn(H), [1] If S ≤ n, [12]
S < 28

15
n− 4

5
, [25]

or S < 97
61
n− 16

61
, [25] or S ≤ 2

√
n− 1, [13]

or g ≡ 3,[9] or g ≡ 3, [9]
or M ⊂ S

n+1
+ , [6]
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For closed hypersurfaces in a Riemannian manifold Rn+1 of constant curva-
ture c which have constant mean and scalar curvature, the equivalent of the
Chern conjecture can be proved in the following cases:

n c = 0 Rn+1 = Rn+1 c = −1 Rn+1 = Hn+1

2 Yes∗ Yes∗ Yes∗ Yes∗

3 Yes∗∗ Yes∗∗ If S ≤ 9H2 − 6 Yes
(analogous to [10]) ([6],[10]) ([3]) ([6])

> 3 If g ≡ 3 Yes If g ≡ 3 Yes
(analogous to [9]) ([6]) (analogous to [9]) ([6])

∗: Also true locally ∗∗: Also true for complete hypersurfaces.

Finally, the following table gives the results that are known for closed hyper-
surfaces in S4 with two constant mean curvature functions.

Constant σr Result

σ1 σ2 isoparametric ([3],[7])

σ1 σ3 6= 0 isoparametric if σ1σ
−1
3 ≥ −1 ([4])

σ1 6= 0 σ3 = 0 does not occur ([15])

σ1 = 0 σ3 = 0 non-isoparametric examples ([2], [20])

σ2 σ3 isoparametric if σ2 ≥ −1 ([4])
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