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Abstract: In this article we prove that there do not exist non-architecturally
singular Stewart Gough Platforms with planar base and platform and no
four anchor points collinear, whose singularity set for any orientation of the
platform is a cylindrical surface with rulings parallel to a given fixed direction
p in the space of translations.
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1 Introduction

The geometry of the parallel manipulator is given by the six base anchor
points Mi := (Ai, Bi, Ci)

T in the fixed space and by the six platform anchor
points mi := (ai, bi, ci)

T in the moving space. By using Euler Parameters
(e0, e1, e2, e3) for the parametrization of the spherical motion group the coor-
dinates m′

i of the platform anchor points with respect to the fixed space can
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be written as m′

i = K−1R·mi + t with

R := (rij) =



e20 + e21 − e22 − e23 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e20 − e21 + e22 − e23 2(e2e3 + e0e1)
2(e1e3 + e0e2) 2(e2e3 − e0e1) e20 − e21 − e22 + e23


 ,

(1)
the translation vector t := (t1, t2, t3)T and K := e20 + e21 + e22 + e23. Moreover
it should be noted that K is used as homogenizing factor whenever it is
suitable.

It is well known (see e.g. [4]) that the set of singular configurations is given
by Q := det(Q) = 0, where the ith row of the 6× 6 matrix Q equals the

Plücker coordinates (li, l̂i) := (R·mi + t −KMi,Mi× li) of the carrier line
of the ith leg.

As we consider only manipulators with planar platform we may suppose
Ci = ci = 0 for i = 1, . . . , 6. Moreover it was proven by Karger in [2] that
for planar parallel manipulators with no four points on a line we can assume
A1 = B1 = B2 = a1 = b1 = b2 = 0 and A2B3B4B5a2(a4 − a3)coll(3, 4, 5) 6= 0
with

coll(i, j, k) := ai(bj − bk) + aj(bk − bi) + ak(bi − bj). (2)

coll(i, j, k) = 0 characterizes collinear platform anchor points mi,mj and
mk.

2 Preliminary Considerations

The set of Stewart Gough Platforms whose singularity set for any orienta-
tion is a cylindrical surface with rulings parallel to a given direction p also
contains the set of architecturally singular manipulators. This is due to the
fact that the singularity surface of these manipulators equals the whole space
of translations for any orientation.

It can easily be seen from the following example that the above two sets are
distinct:

The non-planar manipulator determined by m1 = m2, m3 = m4, m5 = m6

and M1M2 ‖ M3M4 ‖ M5M6 ‖ p has for any orientation of the platform
a cylindrical surface with rulings parallel to the direction p without being
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Figure 1: Non-planar manipulator with cylindrical singularity surface: (a)
Axonometric view. (b) Projection in direction p: The singularity surface (with
respect to the barycenter of the platform) is displayed as conic.

architecturally singular (see Fig. 1). This manipulator is in a singular con-
figuration if and only if the three planes [M1,M2,m1], [M3,M4,m3] and
[M5,M6,m5] have a common intersection line.

As the direct kinematics of this manipulator can be put down to that of a
3-dof RPR parallel manipulator, a rational parametrization of its singularity
surface according to [1] can be given. The singularity surface is a quadratic
cylinder due to the singular affine correspondence between the base and the
platform (cf. [3]).

Moreover, if M1, . . . ,M6 are coplanar we get an example for a planar parallel
manipulator with this property. Now the question arises, whether there exist
non-architecturally singular planar manipulators with no four anchor points
on a line possessing such a singularity surface. In the following section we
prove that such manipulators do not exist.

3 The Main Theorem and its Proof

Theorem The set of planar parallel manipulators with no four anchor points
on a line which posses a cylindrical singularity surface with rulings parallel
to a given fixed direction p for any orientation of the platform equals the set
of planar architecture singular manipulators (with no four anchor points on
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a line).

The analytical proof of this theorem is based on the following idea: We choose
a Cartesian frame in the base such that one axis ti is parallel to the given
direction p. Then Q = 0 must be independent of ti for all e0, . . . , e3, tj, tk with
j 6= k 6= i 6= j. Our proof is based on the resulting equations and Theorem 1
of [2].

We have to distinguish between two cases, depending on whether the base of
the manipulator is parallel to p or not.

Base is not parallel to p:

The proof of the case where the base is orthogonal to p is hidden in the proof
of Theorem 1 of [2]. For all other cases the proof was given by the author in
[5].

Base is parallel to p:

In this case we take as translation vector t := (cosφt1 − sin φt2, sinφt1 +
cosφt2, t3)T . After performing the same elementary operations with the ma-
trix Q as described on page 1154 of [2], we can replace the sixth row of Q
by

(r11K1 + r12A2K2, r21K1 + r22A2K2, r31K1 + r32A2K2,

0, r31A2K3 + r32A2K4,−r21A2K3 − r22A2K4)D
−1 (3)

with D := A2B3B4B5coll(3, 4, 5). K1 = K2 = K3 = K4 = 0 are the four
conditions given in [2] which are satisfied iff a planar manipulator (with no
four points on a line) is architecturally singular. We distinguish between the
following two cases:

• M1M2 is parallel to p. The proof of this part can be done by considering
only the four equations (12-15) given in [5].

• M1M2 is not parallel to p. This part of the proof is the primary concern
of this paper, because it was to long to be given in [5]. In the cited paper
only the two solutions were given which fulfill all equations resulting from
the coefficients of t1 of Q without contradicting

A2B3B4B5a2(a4 − a3)coll(3, 4, 5)K2 sinφ 6= 0. (4)
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These two solutions S1 and S2 are

S1 : Ai = Bi cotφ, Aj = Bj cotφ, Ak = A2 +Bk cotφ, (5)

bk = 0, a2 = ak, ai = K1bi/(K2A2), aj = K1bj/(K2A2), (6)

K3 = 0 and K4 = 0 (7)

S2 : Ai = A2 +Bi cotφ, Aj = A2 +Bj cotφ, Ak = Bk cotφ, (8)

ai = a2 + biK3/K4, aj = a2 + bjK3/K4, ak = bk = 0, (9)

A2K2 +K4 = 0 and K1 +K3 = 0 (10)

for i, j, k ∈ {3, 4, 5} and i 6= j 6= k 6= i. In the following we proof that
for K2 6= 0 all coefficients of t1 can only vanish for the above two given
solutions. Moreover we prove that for K2 = 0 all coefficients of t1 only
vanish for architecturally singular manipulators, i.e., K1 = K3 = K4 = 0.
The proof is split into the following two cases given in subsection 3.1 and
3.2, respectively.

1 M1M2 is orthogonal to p

We denote the coefficients of ti1t
j
2t

k
3 from Q by Qi,j,k. From all Qi,j,k with i > 0

we can factor out K. From Q1,0,0 we can even factor out K2.

For this case we set φ = π/2 and eliminate t1 fromQ. Now we can additionally
factor out (e0e1−e2e3) of Q2,j,k. We denote the coefficient of ea

0e
b
1e

c
2e

d
3 of Qi,j,k

by P i,j,k
a,b,c,d and compute the following 15 polynomials:

P1[18] := P 1,1,1
2,2,0,0 P2[42] := P 2,0,1

1,0,1,0 P3[12] := P 1,1,0
3,3,0,0 (11)

P4[42] := P 2,0,0
2,0,2,0 P5[72] := P 2,0,0

2,1,1,0 (12)

P6[36] := P 1,0,0
3,2,1,0 − P 1,0,0

2,3,0,1 − P 1,0,0
1,0,3,2 + P 1,0,0

0,1,2,3 (13)

P7[42] := P 1,0,1
4,1,1,0 − P 1,0,1

1,4,0,1 − P 1,0,1
1,0,4,1 + P 1,0,1

0,1,1,4 (14)

P8[30] := P 1,0,1
4,2,0,0 + P 1,0,1

2,4,0,0 + P 1,0,1
0,0,4,2 + P 1,0,1

0,0,2,4 (15)

P9[30] := P 1,0,1
4,2,0,0 + P 1,0,1

2,4,0,0 − P 1,0,1
0,0,4,2 − P 1,0,1

0,0,2,4 (16)
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P10[18] := P 1,1,1
2,1,1,0 − P 1,1,1

1,2,0,1 P11[42] := P 1,0,1
3,1,1,1 + P 1,0,1

1,3,1,1 (17)

P12[36] := P 1,1,0
3,2,1,0 − P 1,1,0

2,3,0,1 P13[24] := P 1,1,0
3,1,2,0 − P 1,1,0

2,0,3,1 (18)

P14[12] := P 1,0,0
3,3,0,0 + P 1,0,0

0,0,3,3 P15[24] := P 1,0,0
2,1,2,1 − P 1,0,0

1,2,1,2 (19)

It should be noted that the number in the square brackets denotes the number
of terms in the expression. In the first step we compute the resultant of P3

and P14 with respect to A3 which yields

a2
2b3b4b5B3B4B5K2coll(3, 4, 5)[K2(A4B5 − A5B4) +K4(B5 −B4)]. (20)

Therefore we have to distinguish between the following three cases:

Case I) K2 = 0

We set K2 equal to zero and compute P1 and P10 which factor into K1F1[6]
and K1F10[6], respectively.

Part [A] K1 6= 0: The resultant of F1 and F10 with respect to B3 yields

b3B4B5coll(3, 4, 5)(b4B5 − b5B4). (21)

(i) b3 = 0 implies b4b5 6= 0. From P1 = 0 we get B4 = B5. Substituting this
into P10 yields K1B3B5coll(3, 4, 5) and therefore a contradiction.

(ii) So we set b5 = b4B5/B4 and plug this into P1 and P10 which yields:

K1B5b4 (B4 − B5) (B4b3 −B3b4) and K1B5 (a4 − a5) (B4b3 − B3b4) .
(22)

If we set a4 = a5 and B4 = B5 we get b4 = b5 and thus coll(3, 4, 5) =
0, a contradiction. For b4 = B4b3/B3 the polynomial P14 factors into
a2b3B4B5K4coll(3, 4, 5) which implies K4 = 0. Now P8, which splits into
b3B4B5K1coll(3, 4, 5), yields a contradiction.

Part [B] K1 = 0: We compute

P3 = a2K4F1, P8 = a2K4F10, P11 = a2K3F1, P13 = a2K3F10, (23)

which implies that K3 = K4 = 0 or F1 = F10 = 0 must hold. We assume
K3 6= 0 and K4 6= 0 and consider again the resultant of F1 and F10 with
respect to B3 given in Eq. (21).
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(i) For b3 = 0 we get B4 = B5 from P3 = 0. Substituting this into P8 and
P13 yields a2B3B5K4coll(3, 4, 5) and a2B3B5K3coll(3, 4, 5).

(ii) If we plug b5 = b4B5/B4 into P3 = 0, P8 = 0, P11 = 0 and P13 = 0
we see that these equations can only vanish for b4 = B4b3/B3 or a4 = a5

and B4 = B5. The later contradicts again coll(3, 4, 5) 6= 0. Therefore
we set b4 = B4b3/B3 and substitute this into P14 and P15 which yields
a2b3B3B5K4coll(3, 4, 5) and a2b3B3B5K3coll(3, 4, 5), respectively.

Case II) bi = 0, K2 6= 0

Without loss of generality we can say b3 = 0, which implies b4b5 6= 0. Now P3

factors into a2B3b4b5[K2(A4B5 −A5B4) +K4(B5 −B4)]. From the last factor
we compute A5. Now the resultant of P8 and P1 with respect to A3 yields
K2a2B3B4B5coll(3, 4, 5)R1 with

R1 := K2A2(a4b5B5−a5b4B4) +K1b4b5(B4−B5) +K4a2(b5B5− b4B4). (24)

From R1 = 0 we compute a5. Then P1 simplifies to

B5 (b4 − b5) [K2B4(a2A3 − a3A2) − a2B3(K4 +K2A4)] . (25)

If b4 = b5 the equation P9 = 0 can only vanish (w.c.) for A4 = −K4/K2.
Now P8 = 0 implies a3 = a2A3/A2 and P10 = 0 yields a contradiction.
Therefore we set a3 = a2[K2(A3B4−A4B3)−K4B3]/(K2A2B4). Now P10 = 0
can only vanish (w.c.) for K2A2a4 −K1b4 +K4a2 = 0. From this equation we
compute a4. P9 = 0 implies A4 = −K4/K2. Then P7 factors into a2B3(K2A3+
K4)F7[8]/(K2

2A2). As K2A3 + K4 = 0 yield coll(3, 4, 5) = 0 we set F7 equal
to zero:

Part [A] K1K4 −K2K3A2 6= 0: Under this assumption we can compute b4
from F7 = 0. P12 = 0 splits into several factor, where only one does not lead
to a direct contradiction. From this factor we compute

b5 = a2[K2
2A3B5(A2−A3)+K4B3(K2A2+K4)]/[B3(K1K4−K2K3A2)]. (26)

Finally P6 = 0 yields a contradiction.

Part [B] K1K4 −K2K3A2 = 0:

(i) Assuming K3 6= 0 we can compute A2. Now F7 factors into a2K
2
4 (B5 −

B4)(K1 +K3)/K3.
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• Firstly we consider the case K1 = −K3. Now P12 = 0 implies A3 = 0 and
we get solution S2 for cosφ = 0 and k = 3.

• B4 = B5, K1 +K3 6= 0: From P12 = 0 we compute B3 as

B3 = K2A3B4(K2K3A3 −K1K4)/(K
2
4(K1 +K3)). (27)

Plugging this into P6 = 0 yields the contradiction.

(ii) Assuming K3 = 0 yields K1K4 = 0.

• We start with K4 = 0. P12 = 0 can only vanish (w.c.) for A2 = A3 which
yields solution S1 for cosφ = 0 and k = 3.

• K1 = 0, K4 6= 0: We compute P13 which factors into

a3
2K4B3(K2A2 +K4)(K2A3 +K4)(B4 −B5)/(K2

2A
2
2). (28)

K2A3 +K4 = 0 contradicts coll(3, 4, 5) 6= 0.

(α) For A2 = −K4/K2 we get from P12 = 0 the condition A3 = 0. We get
solution S2 for cosφ = 0 and k = 3 with the additional condition K1 = 0.

(β) B4 = B5, K4 + K2A2 6= 0: Now P6 = 0 can only vanish (w.c.) for
A3 = (K2A2(B5 −B3)−K4B3)/(B5K2) or A3 = 0. For both cases we get
a contradiction from P12 = 0.

Case III) K2(A4B5 −A5B4) +K4(B5 −B4) = 0, b3b4b5K2 6= 0

From the above condition and P3 = 0 we compute A3 and A4 as

Ai = [K2BiA5 +K4(Bi − B5)]/(K2B5) for i = 3, 4. (29)

In the next step we calculate the resultant of P1 and P10 with respect to a2

which yields B3B4B5coll(3, 4, 5)K4R2[12].

Part [A] K4 = 0: Now P9 equals K2A2B3B4A5coll(3, 4, 5) which implies
A5 = 0. Then P2 simplifies to A2K3F2 with

F2 := B3(a5b4 − a4b5) +B4(a3b5 − a5b3) +B5(a4b3 − a3b4). (30)

(i) F2 = 0:
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• If we assume b4B5 − b5B4 6= 0 we can compute a3 from F2. Now the
polynomials P4 and P5 factors into

K3A2(a4b5 − a5b4)F4[8] and K3A2(a4b5 − a5b4)F5[6], (31)

respectively. The factor a4b5 − a5b4 = 0 implies coll(3, 4, 5) = 0.

(α) Therefore we assume K3 6= 0 and compute the resultant of F4 and F5

with respect to B3, which yields

b3B4B5(B4 −B5)(b3 − b4)(b4B5 − b5B4)(b5 − b3)(a4b5 − a5b4). (32)

For the cases B4 = B5 or b3 = bi for i = 4, 5 equation F5 = 0 yields a
contradiction. The last factor of Eq. (32) implies coll(3, 4, 5) = 0.

(β) K3 = 0 : Now the P1 and P10 factors into F5C and F4C with

C := K2A2(a4B5 − a5B4) −K1(b4B5 − b5B4). (33)

For C = 0 we compute a4 from this equation and plug the obtained
expression into P8 = 0, which already yields a contradiction. Therefore
we consider again the resultant of F4 and F5 with respect to B3 given
in Eq. (32). For all possible cases (B4 = B5 or b3 = bi for i = 4, 5) the
equation P1 = 0 can only vanish (w.c.) for C = 0.

• We proceed with b4 = B4b5/B5. Now the polynomial F2 equals

(a4B5 − a5B4)(b3B5 − b5B3)/B5. (34)

(α) a4 = B4a5/B5: P5 = 0 can only vanish (w.c.) for K3 = 0. Then P8 = 0
implies a5 = K1b5/(K2A2). P1 = 0 yields a contradiction.

(β) b3 = b5B3/B5: Now we consider P1 = A2K2b5F1[6]/B5 and P10 =
K2A2F10[6]. The resultant of F1 and F10 with respect to a3 yields

B3(B3 − B4)(B3 −B5)(a4B5 − a5B4). (35)

For B3 = Bi for i = 4, 5 the equation P1 = 0 yields the contradiction. If
we set a4 = B4a5/B5 the equation P5 = 0 implies K3 = 0. Now P8 equals
B3B4coll(3, 4, 5)(K1b5−a5K2A2). From the last factor we compute a5 and
plug this into P1 = 0 which yields the contradiction.
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(ii) K3 = 0, F2 6= 0 : Computing the resultant of P1 and P10 with respect to
A2 yields K1K2B3B4B5coll(3, 4, 5)F2. This implies K1 = 0.

• Assuming b4 6= b5 we can compute a3 from P1 = 0. Now P10 splits into
K2A2B3(a4B5 − a5B4)coll(3, 4, 5)/(b4 − b5). Plugging a4 = B4a5/B5 into
P8 = 0 yields a contradiction.

• b4 = b5: Now P1 factors into K2A2B3(b3 − b5)(a4B5 − a5B4). As b3 = b5
contradicts coll(3, 4, 5) 6= 0 we set a4 = B4a5/B5. P10 = 0 can only vanish
(w.c.) for a3 = B3a5/B5. Again P8 = 0 yields a contradiction.

Part [B] R2 = 0, K4 6= 0:

(i) If we assume B4 6= B5 we can compute a3 from R2 = 0. Now P1 splits up
into the two factors C and F1 with

C := K4a2(B4 − B5) +K1(b4B5 − b5B4) +K2A2(a5B4 − a4B5) (36)

F1 := b3B3(B4 − B5) + b4B4(B5 −B3) + b5B5(B3 − B4). (37)

If we compute a2 from C = 0, the resulting equation P8 = 0 cannot vanish
without contradiction. If we compute b3 from F1 = 0 the polynomial P10

splits into 4 factors. Three of them yield coll(3, 4, 5) = 0. The fourth factor
equals C.

(ii) We get R2 = (B3−B5)[K2A2(a5−a4)+K1(b4−b5)] for the remaining case
B4 = B5. If B3 = B5 the equation P8 = 0 yields a contradiction. Therefore we
compute a4 from the second factor. Now P15 factors into a2B5coll(3, 4, 5)(B3−
B5)(K1b5−K2A2a5). This implies a5 = K1b5/(K2A2) and finally P8 = 0 yields
the contradiction. �

2 M1M2 is not orthogonal to p

Due to the above studied cases we can assume cosφ 6= 0 and sinφ 6= 0 when
eliminating t1 from Q. For the proof of this part we need the following 20
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polynomials:

P1[12] := (P 1,0,0
3,3,0,0 + P 1,0,0

0,0,3,3)/(a2 sin φ) P3[78] := P 1,0,1
0,4,0,2 − P 1,0,1

2,0,4,0 (38)

P2[36] := (P 1,0,0
3,0,3,0 − P 1,0,0

0,3,0,3)/(a2 cosφ) P4[66] := P 1,0,1
4,0,2,0 − P 1,0,1

2,0,4,0 (39)

P5[30] := (P 1,0,1
4,2,0,0 + P 1,0,1

0,0,4,2)/ sinφ P7[36] := P 1,0,1
4,2,0,0 − P 1,0,1

0,0,2,4 (40)

P6[66] := (P 1,0,1
4,0,2,0 + P 1,0,1

0,4,0,2)/ cosφ P8[42] := P 1,0,1
0,0,4,2 − P 1,0,1

0,0,2,4 (41)

P9[18] := (P 1,0,2
3,1,0,0 + P 1,0,2

1,3,0,0)/ sinφ P11[108] := P 1,0,1
3,1,1,1 − P 1,0,1

1,3,1,1 (42)

P10[18] := (P 1,0,2
2,0,1,1 − P 1,0,2

1,1,2,0)/ cosφ P12[102] := P 1,0,1
3,1,1,0 − P 1,0,1

1,4,0,1 (43)

P13[24] := (P 1,0,0
3,2,1,0 − P 1,0,0

0,1,2,3 − P 1,0,0
2,3,0,1 + P 1,0,0

1,0,3,2)/(a2 sinφ) (44)

P14[42] := (P 1,0,0
3,2,1,0 + P 1,0,0

0,1,2,3 + P 1,0,0
2,3,0,1 + P 1,0,0

1,0,3,2)/A2 (45)

P15[48] := P 1,0,0
3,2,1,0 + P 1,0,0

0,1,2,3 − P 1,0,0
2,3,0,1 − P 1,0,0

1,0,3,2 (46)

P16[36] := P 1,0,0
3,1,2,0 − P 1,0,0

0,2,1,3 − P 1,0,0
2,0,3,1 + P 1,0,0

1,3,0,2 (47)

P17[66] := P 1,0,1
4,1,1,0 + P 1,0,1

1,4,0,1 + P 1,0,1
1,0,4,1 + P 1,0,1

0,1,1,4 (48)

P18[54] := P 1,0,1
4,1,1,0 − P 1,0,1

1,4,0,1 + P 1,0,1
1,0,4,1 − P 1,0,1

0,1,1,4 (49)

P19[48] := P 1,0,1
3,2,0,1 − P 1,0,1

2,3,1,0 − P 1,0,1
0,1,3,2 + P 1,0,1

1,0,2,3 (50)

P20[150] := P 1,0,1
3,2,0,1 + P 1,0,1

2,3,1,0 − P 1,0,1
0,1,3,2 − P 1,0,1

1,0,2,3 (51)

Firstly we compute the resultant of P9 and P10 with respect to A5, which
yields the expression a2B3B4B5K2coll(3, 4, 5)R1 with

R1 := K2B3(A2a4 − A4a2) +K2B4(A3a2 − A2a3) +K1(b3B4 − b4B3). (52)

In the following section we show that for K2 = 0 the equations Pi = 0 for
i = 1, . . . , 20 can only be fulfilled for K1 = K3 = K4 = 0.

K2 = 0

Now the polynomials P9 and P10 factors into K1F9 and K1F10 with

F9 := B3B4b5(a4 − a3) +B4B5b3(a5 − a4) +B3B5b4(a3 − a5), (53)

F10 := B3B4b5(b4 − b3) +B4B5b3(b5 − b4) +B3B5b4(b3 − b5). (54)

(i) K1 6= 0: We compute the resultant of F9 and F10 with respect to B3

which yields b3B4B5(b4B5 − b5B4)coll(3, 4, 5). We start with b3 = 0. Now
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F10 = 0 implies B4 = B5 and F9 equals K1B3B5coll(3, 4, 5). Therefore we
set b4 = B4b5/B5. Now F9 splits up into B4(a4 − a5)(b3B5 − b5B3). If we
set b3 = B3b5/B5 the equation P5 = 0 yields the contradiction. For a4 = a5

the equation F10 = 0 implies b3 = B3b5/B5, which yields via P5 = 0 the
contradiction.

(ii) K1 = 0, K4 6= 0: Now P5 equals K4a2F9. Moreover from P1 also K4

factors out. We compute the resultant of F9 and F1 := P1/K4 with respect
to B3 which yields

b3B4B5coll(3, 4, 5)(a4b5B4 − a5b4B5). (55)

• For b3 = 0 we get P1 = K4a3b4b5(B4 − B5).

(α) For a3 = 0 the equation P5 = 0 implies b5 = b4a5B5/(a4B4). Now
P14 = 0 and P8 = 0 yield A3 = B3 = 0, a contradiction.

(β) For B4 = B5 we get the contradiction from P5 = 0.

• Now we set a4b5B4 − a5b4B5 = 0.

(α) We assume bi = 0 which yields ai = 0 for i, j ∈ {4, 5} and i 6= j.
Then equation P5 = 0 can only vanish (w.c.) for a3 = ajb3B4/(bjB3). The
equations P14 = 0 and P8 = 0 yield Ai = Bi = 0, a contradiction.

(β) For b4b5 6= 0 we can compute a4. Now the polynomial P1 factorize into
K4b4(B4 − B5)(a3b5B3 − a5b3B5). For a3 = b3a5B5/(B3b5) we get P15 =
a5B5K4F15/(b5B3B4) (a5 = 0 implies a3 = a4 = 0 a contradiction) and
P8 = K4F8/(B3B4). Computing F8 − 2F15 = 0 yields the contradiction.
For B4 = B5 the condition P5 = 0 also implies a3 = b3a5B5/(B3b5) and
we can construct the same contradiction as before.

(iii) K1 = 0, K4 = 0, K3 6= 0 : Now the polynomials P18 and P15 split
into K3a2 sinφF9 and K3A2 sinφF1. We consider again the resultant which
is given in Eq. (55).

• For b3 = 0 the polynomial F1 splits into a3b4b5(B4 −B5). As for B4 = B5

the equation F9 = 0 yields a contradiction, we set a3 = 0. Now F9 = 0
implies b5 = b4a5B5/(a4B4). From P6 = 0 we get A4 = A5. P17 = 0 yields
the contradiction.
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• Now we set a4b5B4 − a5b4B5 = 0:

(α) We assume bi = 0 which yields ai = 0 for i, j ∈ {4, 5} and i 6= j. Now
P18 = 0 implies a3 = ajb3B4/(bjB3). Then P6 = 0 can only vanish (w.c.)
for A3 = Aj. Finally P17 = 0 yields the contradiction.

(β) b4b5 6= 0: We compute a4 and factorize P2 and F1 which yield

K3b4(A4−A5)(a3b5B3−a5b3B5) and b4(B4−B5)(a3b5B3−a5b3B5). (56)

For A4 = A5 and B4 = B5 the equation P6 = 0 can only vanish (w.c.) for
A3 = A5. Now P17 = 0 implies B3 = B5, a contradiction. Therefore we set
a3 = b3a5B5/(B3b5). P6 factors into K3a2F6 with

F6 := b3b4B5(A3 −A4) + b3b5B4(A5 − A3) + b4b5B3(A4 − A5). (57)

Assuming B4b3 − b4B3 6= 0 we can compute A5 from F6 = 0. Inserting
this into P17 = 0 yields the contradiction. For b3 = b4B3/B4 the equation
P6 = 0 implies A3 = A4. Again P17 = 0 yields the contradiction. Hence,
we can assume K2 6= 0 for the rest of the proof.

R1 = 0, K2 6= 0

We proceed by setting R1 of Eq. (52) equal to zero. We compute A3 from
R1 = 0 and plug this into P9 which splits into B3(a3 − a4)F9 with

F9 := K2B4(A5a2 −A2a5) +K2B5(A2a4 − A4a2) +K1(b5B4 − b4B5). (58)

From F9 = 0 we can compute A5. Now the resultant of P1 and P5 with respect
to A2 simplifies to K2B3B4B5coll(3, 4, 5)R2[12]/a2.

Case I) a3b4b5[K4a2(a4 − a5) +K1(b4a5 − b5a4)] 6= 0

Under this assumption we can compute B3 from R2 = 0.

Part [A] Assuming a4a5(b4B5 − b5B4) 6= 0 we can compute A2 from the
common factor of P1 and P5. Now

P8 = B3B5coll(3, 4, 5)F8[8] and P7 = B3B5coll(3, 4, 5)F7[27].
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F7 = 0 and F8 = 0 are homogeneous linear equations in the unknowns sin φ
and cosφ. So we compute the determinant of then coefficient-matrix which
yields K2(b4B5 − b5B4)B4a2a5D[21]. From D[21] = 0 we can compute A4.
Now we get F7 = F8 = a4a5(b4B5 − b5B4)C[8]. From C = 0 we compute B4

and plug the expression into P11, which splits into coll(3, 4, 5)F11. The factor
F11 is quadratic in the unknown B5. Therefore we obtain two solutions for

B5 =
2[K1(aib5 − bia5) +K4a2(a5 − ai)]K1b5 sin φ

(K4a2 −K1bi)K2a2a5 cosφ
(59)

with i = 3, 4. If we plug B5 into Bi we get Bi = 0, a contradiction.

Part [B] ai = 0 for i, j ∈ {4, 5} and i 6= j. We compute P5 which splits into
Bjb3F5[8]. As b3 = 0 yields B3 = 0 we can assume b3 6= 0.

(i) Assuming d := K4(a3 − aj)(biBj − bjBi) 6= 0 we can compute

a2 = K1[Bibj(ajb3 − a3bj) + b2iBj(a3 − aj)]/d (60)

from F5 = 0. Inserting this into P1 = 0 yields the contradiction.

(ii) K4 = 0: Now P1 equals b3biBjK1(a3bj − ajb3)(biBj − bjBi)/(a2b2). For
both possible cases (i.e. a3 = b3aj/bj and bi = bjBi/Bj) the equation P5 = 0
yields the contradiction.

(iii) Bj = bjBi/bi, K4 6= 0: Now P5 = 0 implies K1 = 0 and P1 = 0 yields
the contradiction.

(iv) a3 = aj: Again P5 = 0 yields K1 = 0 and P1 = 0 the contradiction.

Part [C] b4 = b5B4/B5, a4a5 6= 0: P5 = 0 implies K1 = 0 and P1 = 0 yields
the contradiction.

Case II) K4a2(a4 − a5) +K1(b4a5 − b5a4) = 0

We do this case without the assumption a3 − a4 6= 0, such that a later
reindexing can be done without loss of generality.

Part [A] Assuming K4(a4 − a5) 6= 0 we can compute a2. Now the factor R2

simplifies to K1a4a5b3(b4B5 − b5B4)coll(3, 4, 5).
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(i) For b3 = 0 we compute A2 from P5 = 0 which yields A2 = K1(b4 −
b5)/[K2(a4 − a5)]. Now P7 = 0 can only vanish (w.c.) for

B4 = (K4 + A4K2) sinφ/(K2 cos φ). (61)

We compute P3 which splits up into coll(3, 4, 5)K1B3F3[18].

• Assuming K1(b4a5 − b5a4) + K3b4(a5 − a4) + K4a4(a4 − a5) 6= 0 we can
compute B5 from F3 = 0. Now P2 = 0 can only vanish (w.c.) for a3 = 0
and a factor F2[14] = 0. As for a3 = 0 the equation P20 = 0 yields
a contradiction, we compute B3 from F2 = 0. Again P20 = 0 yields a
contradiction.

• K1(b4a5 − b5a4) +K3b4(a5 − a4) +K4a4(a4 − a5) = 0:

(α) We can compute b5 from this equation for a4 6= 0. Now F3 = 0 can
only vanish (w.c.) for K1 = −K3. Then P2 = 0 implies a3 = 0. This yields
solution S2 for k = 3.

(β) For a4 = 0 we get b4a5(K1 +K3) = 0 which implies K1 = −K3. P3 = 0
can only vanish (w.c.) for b4 = (K1b5 +K4a5)/K1. P18 = 0 implies a3 = 0.
We get solution S2 for k = 3 with the additional condition a4 = 0.

(ii) ai = 0, b3 6= 0 for i, j ∈ {4, 5} and i 6= j. As P5 = 0 yields a contradiction
if we set a3 = 0 or b3 = bjB3/Bj , we can assume a3(bjB3 − b3Bj) 6= 0. Now
we can compute A2 from P5 = 0. P8 = 0 can only vanish (w.c.) for bj = 0
and a second factor F8 = 0.

• For bj = 0 we compute B4 from the only factor of P7 = 0 which does not
yield a contradiction.

(α) Assuming K1 + K3 6= 0 we can compute B3 from the only factor of
P3 = 0 which does not yield a contradiction. From the factor of P13 = 0
which does not yield a contradiction we compute B5. Then P6 = 0 yields
the contradiction.

(β) For K1 = −K3 we compute b3 from F3 = 0. Plugging this into P13 = 0
yields the contradiction.

• F8 = 0, bj 6= 0: We compute A4 from F8 = 0. Then P11 = 0 yields the
contradiction.
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(iii) b4 = b5B4/B5, a4a5b3 6= 0: As P5 = 0 yields a contradiction if we set
a3 = 0 or b5 = b3B5/B3, we can assume a3(b5B3 − b3B5) 6= 0. Now we can
compute A2 from P5 = 0. We compute A4 from the only non-contradicting
factor of P8 = 0. Finally P11 = 0 yields a contradiction.

Part [B1] K4 = 0 and K1 = 0:

(i) Assuming B4a5b5(a4b3 − a3b4) +B5a4b4(a3b5 − a5b3) 6= 0 we can compute
B3 from P1 = 0. Now P5 = 0 can only vanish (w.c.) for (B4b5 −B5b4) = 0 or
ai = 0 with i = 4, 5.

• For ai = 0 (i, j ∈ {4, 5}, i 6= j) we compute P16 = 0, which can only
vanish (w.c.) for K3 = 0 or F16 = 0. As P8 = 0 yields a contradiction
if we compute B4 from F16 = 0, we set K3 = 0. Now P19 = 0 implies
a3 = [a2(bj − b3) + ajb3]/bj . P14 = 0 can only vanish (w.c.) for F16 = 0.

• b4 = B4b5/B5: P7 = 0 can only vanish (w.c.) for

A4 = (sinφA2a4 + cosφB4a2)/(a2 sinφ).

P8 = 0 yields the contradiction.

(ii) B4a5b5(a4b3 − a3b4) +B5a4b4(a3b5 − a5b3) = 0:

• Assuming b4b5(a4B5 − a5B4) 6= 0 we can compute a3. Now P1 = 0 vanish
(w.c.) for b3 = 0, b5B4 − B5b4 = 0 or ai = 0 with i = 4, 5.

(α) ai = 0: From P7 = 0 we get B4. P8 = 0 yields a contradiction.

(β) b3 = 0, a4a5 6= 0: We get a4 = a2(sinφA4 − cosφB4)/(A2 sinφ)
from P15 = 0. Now P5 = 0 can vanish (w.c.) for B4 = sin φA4/ cosφ or
b4 = b5B4/B5. For both cases P8 = 0 yields the contradiction.

(γ) b4 = b5B4/B5, b3a4a5 6= 0: Now P7 = 0 implies a4 of (β). Plugging
this into P8 = 0 yields the contradiction.

• bi = 0 (i = 4, 5): Eq. (ii) can only vanish (w.c.) for a4 = 0 or a5 = 0.

(α) For ai = 0 we compute B4 from P15 = 0. Now P5 = 0 only vanish
(w.c.) for a3 = 0, aj = 0 or b3 = bjB3/Bj . For all three cases equation
P8 = 0 yields the contradiction.
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(β) aj = 0, ai 6= 0: P5 = 0 can only vanish (w.c.) for a3 = 0. From the only
non-contradicting factor of P7 = 0 we compute B4. Now P15 = 0 can only
vanish (w.c.) for K3 = 0 or B3 = Bj . For K3 = 0 the equation P6 = 0
implies a2 = ai. This yields solution S1 for k = i with the additional
condition K1 = 0. For B3 = Bj and K3 6= 0 the equation P4 = 0 yields
the contradiction.

• a4 = a5B4/B5, b4b5 6= 0:

(α) Assuming b5B4−b4B5 6= 0 we can compute a5 from P5 = 0. Now P1 =
0 implies b4 = [B3b5 +b3(B4−B5)]/B3. P7 = 0 implies B4 = sinφA4/ cosφ
and P8 = 0 yields the contradiction.

(β) b4 = b5B4/B5: Now P5 = 0 can only vanish for a3 = 0 or b3 = B3b5/B5.
In both cases we compute A2 from the only non-contradicting factor of
P7 = 0. P8 = 0 yields the contradiction.

Part [B2] K4 = 0 and b4a5 − b5a4 = 0, K1 6= 0:

(i) With a5 6= 0 we can set b4 = b5a4/a5. Now P1 = 0 vanishes without
contradiction for a4 = 0, a4B5 − B4a5 = 0 or K1b5 −K2A2a5 = 0.

• a4 = 0: As P5 = 0 yields a contradiction if we set a3 = 0 or b3 = b5B3/B5,
we can assume a3(b3B5−b5B3) 6= 0. Now we can compute A2 from P5 = 0.
P7 = 0 implies A4. P14 = 0 yields a contradiction.

• B4 = a4B5/a5, a4 6= 0: For the same reason as above we can again assume
a3(b3B5 − b5B3) 6= 0 and compute A2 from P5 = 0. From the only non-
contradicting factor of P15 = 0 we compute

B5 = (K2A4a2a5 −K3a4b5) sinφ/(K2a2a4 cosφ).

P8 = 0 can only vanish without contradiction for b3 = 0 or F8[8] = 0.

(α) P7 = 0 implies K3 = 0 for b3 = 0. Then P6 = 0 implies a2 = a3 which
corresponds with solution S1 for k = 3 with the additional condition
B4 = a4B5/a5.

(β) Now we can assume b3 6= 0 for the case F8 = 0. We can compute B3

from F8 = 0. Plugging this into P2 = 0 yields the contradiction.
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• K1b5 − K2A2a5 = 0, a4(a4B5 − B4a5) 6= 0: We set A2 = K1b5/(K2a5)
and compute P5 = 0 which yields b3 = 0. From P7 = 0 we get B4 =
sinφA4/ cosφ and plug this into P2 = 0, which can only vanish (w.c.) for
K3 = 0 or B5 = A4 sinφ/ cosφ, respectively.

(α) For K3 = 0 we obtain from P6 = 0 the condition a2 = a3, which
corresponds with solution S1 for k = 3.

(β) Now we can assume K3 6= 0 and set B5 = A4 sinφ/ cosφ. Again P6 = 0
implies a2 = a3, but now P4 = 0 yields a contradiction.

(ii) Assuming a5 = 0 yields b5 = 0 or a4 = 0.

• b5 = 0: We obtain B4 = [K2(a2A4 − a4A2) +K1b4] sinφ/(a2K2 cosφ) from
P15 = 0. Now P7 = 0 can only vanish for K1bi −K2A2ai = 0 with i = 3, 4
or F7[4] = 0. If we set ai = K1bi/(K2A2) the equation P8 = 0 yields
the contradiction. Therefore we compute B3 from F7 = 0 which yields
B3 = b3[K2(A4a2 −A2a4) +K1b4)] sinφ/(a2b4K2 cos φ). Plugging this into
P5 = 0 yields the contradiction.

• a4 = 0, b5 6= 0: Now P1 = 0 can only vanish (w.c.) for b4 = 0 or b5 =
b4B5/B4. For both cases P5 = 0 yields the contradiction.

Part [C] a4 = a5, K4 6= 0

Now the condition of case II can only vanish (w.c.) for K1 = 0 and a4 = 0.

(i) K1 = 0: P5 = 0 can only vanish (w.c.) for a4 = −a2K4/(A2K2) or
b4 = B4b5/B5.

• a4 = −a2K4/(A2K2): We get B4 = (K2A4 + K4) sinφ/(K2 cosφ) from
P7 = 0. Now P8 = 0 can only vanish (w.c.) for b3 = 0.

(α) K3 6= 0: We can compute b4 from the only non-contradicting factor
F4[9] = 0 of P4 = 0. Moreover if we assume a3(a2 − a3) 6= 0 we can
compute B5 from F6[5] = 0, which is the only factor of P6 = 0, which
does not yield a direct contradiction. Plugging this into P2 = 0 yields the
contradiction. For both remaining cases (a3 = 0 and a2 = a3) the equation
F6 = 0 already yields the contradiction.
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(β) K3 = 0: Now F4 = 0 can only vanish (w.c.) for A2 = −K4/K2

or B5 = sinφ(K2A4 + K4)/(K2 cos φ). For A2 = −K4/K2 the equation
P6 = 0 implies a3 = 0, which yields solution S2 for k = 3 with the
additional condition K1 = K3 = 0. Now we can assume A2 6= −K4/K2

and set B5 = sin φ(K2A4 +K4)/(K2 cosφ). From P6 = 0 we can compute
B3. Plugging this into P2 = 0 yields the contradiction.

• b4 = B4b5/B5, a4 6= −a2K4/(A2K2): We get B4 = (a2A4 −
a4A2) sinφ/(a2 cosφ) from P7 = 0. Now P4 = 0 can only vanish (w.c.)
for a4 = 0 or a4 = a2. For both cases we compute B3 from the non-
contradicting factor of P18 = 0 and plug the obtained expression into
P1 = 0 which yields the contradiction.

(ii) a4 = 0, K1 6= 0: As P5 = 0 yields the contradiction if we set b4 =
b5B4/B5, we can assume b4B5 − b5B4 6= 0. Now we can compute a2 from
P5 = 0. P1 = 0 can only vanish (w.c.) for bi = 0 (i, j ∈ {4, 5}, i 6= j). Then
P14 = 0 can only vanish (w.c.) forK1(bj − b3) + A2a3K2 = 0 and a second
factor F14 = 0.

• If we solve F14 = 0 for B4 we get from P4 = 0 the condition K1 = −K3.
From P3 = 0 we compute b3 and plug the obtained expression into P17 = 0,
which can only vanish (w.c.) for A2 = −K4/K2. This corresponds with
solution S2 for k = i with the additional condition aj = 0.

• A2 = K1(b3 − bj)/(K2a3), F14 6= 0: From P18 = 0 we get K1 = −K3.
P7 = 0 yields the contradiction.

Case III) bi = 0 for i = 4, 5

For bi = 0 the factor R2 simplifies to

R2 := b3bjaiBi[K4a2(a3 − aj) +K1(b3aj − bja3)] (62)

with i, j ∈ {4, 5} and i 6= j. Therefore the two possibilities are ai = 0 or
K4a2(a3 − aj) + K1(b3aj − bja3) = 0. The latter was already done in case II
just for another indexing. Therefore we obtain the same solutions as in case
II just for another index k.
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The remaining discussion of ai = 0 can be done under the assumption
K4a2(a4−a5)+K1(b4a5−b5a4) 6= 0 due to case II. If we consider P15 = 0 and
P16 = 0 we see that these equations can only vanish (w.c.) for K1 = −K3

and A2 = −K4/K2 or for the common factor G = 0.

Part [A] G = 0: From this equation we compute B4.

(i) K1 6= 0: We can compute b3 from P8 = 0. From P5 = 0 we get aj.

• Assuming K2A2(a2K4 + bjK3) − K4(K1bj − a2K4) 6= 0 we can compute
B3 from P6 = 0. P4 = 0 yields the contradiction.

• K2A2(a2K4 + bjK3) −K4(K1bj − a2K4) = 0:

(α) Assuming A2K2 + K4 6= 0 we can compute a2. P3 = 0 yields the
contradiction.

(β) A2 = −K4/K2 implies K1 = −K3. We get solution S2 for k = i.

(ii) K1 = 0: Now we can compute a3 from P8 = 0. From P5 = 0 we get
a2 = −K2A2aj/K4.

• K3 6= 0: We compute aj from P4 = 0. Then P6 = 0 yields a contradiction.

• K3 = 0: Now P4 = 0 can only vanish for A2 = −K4/K2, which yield
solution S2 for k = i with the additional condition K1 = K3 = 0, or B3 =
Bj. For the later P20 = 0 yields the contradiction under the assumption
A2 6= −K4/K2.

Part [B] K1 = −K3, A2 = −K4/K2, G 6= 0:

(i) Assuming b3ajBj − bjB3a3 6= 0 we can compute a2 from P5 = 0. Now
P8 = 0 can only vanish (w.c.) for K3(bj − b3) −K4(aj − a3) = 0 or a second
factor F8 = 0.

• aj = (K3(bj − b3) + K4a3)/K4: Now P12 = 0 yields K3 = 0. Then the
equation P7 = 0 yields the contradiction.

• F8 = 0, K3(bj − b3) − K4(aj − a3) 6= 0: From F8 = 0 we compute A4.
P4 = 0 implies a3 = 0 and P6 = 0 yields the contradiction.
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(ii) a3 = b3ajBj/(bjB3): From P5 = 0 we compute Bj = bjB3[K3(b3 − bj) +
K4aj ]/(K4ajb3). Now P14 = 0 implies a2 = (ajK4 − bjK3)/K4. P7 = 0 yields
the contradiction.

Case IV) a3 = 0, N := b4b5[K4a2(a4 − a5) +K1(b4a5 − b5a4)] 6= 0

Now R2 splits up into a4a5b3(K1b3 −K4a2)(b4B5 − b5B4).

Part [A] b3 = 0: As P5 = 0 yields a contradiction if we set a5 = 0 or
b4 = b5B4/B5 we can assume a5(b4B5 − b5B4) 6= 0. Now we can com-
pute A2 from P5 = 0. P14 and P8 factors into Ncoll(3, 4, 5)B3B5F14[8]
and Ncoll(3, 4, 5)B3B5F8[8]. Computing F8 − 2F14 = 0 yields the equation
a2a5B4K2(b4B5 − b5B4) cosφ = 0 and therefore a contradiction.

Part [B] a5 = 0, b3 6= 0: Assuming K1b3−K4a2 6= 0 we can compute B5 from
P5 = 0. P1 = 0 yields the contradiction. Therefore we assume K4 6= 0 and set
a2 = K1b3/K4. P5 = 0 implies b3 = b4 and P1 = 0 yields the contradiction.
For K4 = 0 we get K1b3 which is a contradiction.

Part [C] b4 = b3B4/B5, a5b3 6= 0: We can solve P5 = 0 for B3. P1 = 0 yields
the contradiction.

Part [D] K1b3 −K4a2 = 0, b3a5(b4B5 − b5B4) 6= 0: We can assume K4 6= 0
otherwise we get a contradiction. So we can set a2 = K1b3/K4. From P5 = 0
we can compute A2. Then we compute A4 from the only factor of P8 = 0
which does not yield a direct contradiction. Now we can compute B4 from
P7 = 0. P11 = 0 yields the contradiction. End of all cases.

The close of the proof was already done by the author in [5], by showing
that the solutions S1 and S2 imply contradictions for the choice of M6 and
m6, respectively. This finishes the proof of the given Theorem. �

4 Conclusion

We proved that there do not exist non-architecturally singular Stewart Gough
Platforms with planar base and platform and no four anchor points collinear
which possess a cylindrical singularity surface with rulings parallel to a given
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fixed direction p in the space of translations.

A complete list of planar parallel manipulators with such a singularity surface
is in preparation [6].
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