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1 Introduction

In this contribution, which is based on the paper [4], we give a constructive
description of centrally symmetric equiframed curves, i.e., centrally symme-
tric closed convex curves that are touched at each of their points by some
circumscribed parallelogram of smallest area. Equiframed curves and their
higher dimensional analogues were introduced by Pe lczynski and Szarek [7].
This class of curves properly contains the Radon curves introduced by Radon
[8]. For a survey on them see [5, 6].

Clearly, any regular polygon with 2n sides is equiframed, and if n is even, the
boundary is not a Radon curve. Equiframed curves occur as the unit circles
of two-dimensional norms for which equality holds in a certain inequality in
Minkowski Geometry, recently found in [6]. This inequality bounds the ra-
tio between the area of the unit circle and a circumscribed parallelogram of
smallest area ((2) below) in terms of the circumference of the unit circle. It
can be seen as a dual to an old inequality of Lenz [3], bounding the ratio
between the area of the unit circle and an inscribed parallelogram of largest
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area in terms of the circumference (see (1)). In Section 2 we also give cha-
racterizations of equiframed curves (Proposition 2.2) similar to known ones
of Radon curves (Proposition 2.3).

In Section 3 we describe the construction of a general equiframed curve based
on the known construction of Radon curves. It turns out that equiframed
curves are Radon curves with certain triangles added to the boundary.

2 Inequalities for Radon and equiframed cur-

ves

We let C0 denote a centrally symmetric convex body in the plane and denote
its boundary curve by ∂C0. The curve ∂C0 is a Radon curve if each point of
∂C0 is a vertex of some inscribed parallelogram of maximum area. Dually, ∂C0

is an equiframed curve if each point of ∂C0 is touched by some circumscribed
parallelogram of minimum area. Note that our definition of a Radon curve
is not the standard one, but chosen so as to be dual to the definition of an
equiframed curve.

For any centrally symmetric C0 we have

4
U
≤ p−(C0) = q−(C0) with equality iff ∂C0 is a Radon curve. (1)

This was first proved by Lenz [3] and subsequently rediscovered by Yaglom
[9]. We now consider the dual of (1); see [6].

Theorem 2.1. For any centrally symmetric convex body C0 in the plane,

q+(C0) = p+(C0) ≤ 8
U

with equality iff ∂C0 is an equiframed curve. (2)

The next two propositions give various characterizations of the equality case
in (1) and (2).

Proposition 2.2. The following are equivalent for a centrally symmetric
curve ∂C0:

1. ∂C0 is equiframed,
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2. each right semi-tangent of C0 is a side of a circumscribed parallelogram
of least area,

3. α(t) is constant,

4. α(t) = 1
4
p+(C0)|C0| for all t ∈ [0, U),

5. p+(C0) = 8
U
, i.e., in (2) equality holds.

6. each boundary point of C0 lies on some circumscribed quadrilateral of
smallest area.

The following proposition shows the subtle difference between equiframed
curves and Radon curves. All of these characterizations are well-known [5, 6].
Note that 1–5 correspond to 1–5 of Proposition 2.2.
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Figure 1: Gluing a triangle to a Radon curve with wedges.

Proposition 2.3. The following are equivalent for a centrally symmetric
curve ∂C0:

1. ∂C0 is a Radon curve,

2. each supporting line of C0 is a side of some circumscribed parallelogram
of smallest area,

3. | det[u(t),v]| is constant for all t ∈ [0, U) and all unit vectors v such
that the line through u(t) parallel to v supports C0,
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4. | det[u(t),v]| = 1
4
p+(C0)|C0| for all t ∈ [0, U) and all unit vectors v as

in 3,

5. p−(C0) = 4
U
, i.e., in (1) equality holds.

6. α(t) = 1
2
p−(C0)|C0| for all t ∈ [0, U),

7. each boundary point of C0 is the midpoint of some circumscribed par-
allelogram of smallest area,

3 Construction of equiframed curves

Since equiframed curves turn out to be Radon curves, we first describe a con-
struction of the latter. The standard construction [8, 1] is based on the fact
that the “second quadrant” of a Radon curve is in some sense the rotated
polar of the “first quadrant”. Since the polar of a convex body lies strictly
speaking in the dual of the underlying space, one first has to fix a polarity,
or in the language of linear algebra, identify the space and its dual via a
nondegenerate bilinear form. In the usual construction of a Radon curve, the
bilinear form is chosen to be symmetric (with the corresponding geometry
being Euclidean), and then, as a second step in the construction, one has to
rotate by a right angle in the Euclidean structure determined by the biline-
ar form. We simplify this construction by using a skew-symmetric bilinear
form instead of a symmetric one (i.e., corresponding to symplectic geometry
instead of Euclidean geometry). The details are as follows.

We fix the bilinear form [x,y] on R2 to be the determinant det[x,y], i.e.,
after choosing a unit of area we define [x,y] to be the signed area of the
parallelogram with vertices o,x,x + y,y. If the line ℓ is polar to the point
x in the polarity defined by this form, then for any line m parallel to ℓ we
write [x, m] := [x,y] for any y ∈ m, with a similar definition for [m,x].

1 Construction of an arbitrary Radon curve

Let α > 0 and fix a parallelogram P of area 4α centred at o. The two lines
through o parallel to the sides of P divide the plane into four quadrants,
which we label I, II, III, IV in any way such that III = −I, IV = −II, and
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[x,y] ≥ 0 for any x ∈ I and y ∈ II. We consider the quadrants to be closed
sets. Let e1 be the vector on a side of P on the boundary of I and IV, and
e2 be the vector on a side of P on the boundary of I and II. Let e′

1 = −e1.

Now choose any convex curve ΓI joining e1 to e2 such that ΓI ∪ oe1 ∪ oe2

is a closed convex curve. We now define a curve ΓII in II. For each direction
v ∈ e2e

′

1 we let λv ∈ ΓII be such that [ℓ, λv] = α, where ℓ is the line
parallel to v supporting ΓI. To finish the construction we let ΓIII = −ΓI and
ΓIV = −ΓII. Then the Radon curve is ΓI ∪ ΓII ∪ ΓIII ∪ ΓIV.

Proposition 3.1. The above construction gives a Radon curve C0 with
p−(C0) = α. Furthermore, any Radon curve can be obtained in this way.

This is due to Radon [8]. A proof may be found in [2].

Figure 2: Constructing the regular octagon by gluing triangles to a Radon
curve.

2 Construction of an arbitrary equiframed curve

Choose α > 0 and ΓI and proceed as in the construction of a Radon curve.
Then glue triangles to ΓII as follows. We define a wedge on a convex curve to
be the union of two nonparallel segments on the curve joined at a common
endpoint, called the corner of the wedge. Each wedge ab ∪ bc ⊆ ΓI with
corner b on ΓI corresponds to a segment de on ΓII with nonregular endpoints
(Figure 1).

Here d is parallel to ab, e is parallel to bc, de is parallel to b, and there are
supporting lines to ΓII at d and e parallel to a and c, respectively. For each
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such segment de, choose any point p in the closed triangle bounded by de,
the supporting line at d parallel to a, and the supporting line at e parallel to
c. Replace the segment de on ΓII by dp ∪ pe. This may be done arbitrarily
for each wedge on ΓI, provided that we keep the modified ΓII convex. Note
that it is possible for a countable infinity of triangles to be added, since there
may be an infinite number of wedges on ΓI.

We denote the modified ΓII by ∆II, and let ∆IV = −∆II (and ΓIII = −ΓI as
before). Then the equiframed curve is ΓI ∪ ∆II ∪ ΓIII ∪ ∆IV.

Theorem 3.2. The above contruction gives an equiframed curve. Further-
more, any equiframed curve can be obtained in this way.

Corollary 3.3. An equiframed curve that does not contain any wedge is a
Radon curve. In particular, an equiframed curve that is smooth or strictly
convex is a Radon curve.

Corollary 3.4. An equiframed hexagon must be an affine regular hexagon or
a parallelogram (if the hexagon is degenerate).

In Figure 2 we show how a regular octagon arises as an equiframed curve in
our construction.

Two shaded triangles are added to the Radon curve in the second quadrant.
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