
Flavors of bicycle mathematics

TU Wien, May 2020

Based on joint work with G. Bor, M. Levi, and R. Perline

(latest: IMRN v. 2020, Issue 9, 2698–2768).
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The model

R

F

Segment RF moves so that the trajectory of point R is tangent
to the segment. Notation: γ is the rear wheel track, Γ is the
front wheel track. γ may have cusps, when the steering angle is
90◦ (not recommended in real life!) Likewise, in Rn.
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Contact geometry:

In the plane, the configuration space of a bicycle is the space of

contact elements. It has a non-integrable distribution, a contact

structure, given by a “skating” constraint.

Bicycle motion is a smooth horizontal (Legendrian) curve in this

contact space. The projection on the front end point is always

smooth, and the projection on the rear end point may have cusps.

Likewise, in n-dimensional case, one has a non-integrable n-

dimensional distribution in the (2n−1)-dimensional configuration

space.
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Classical connection: the tractrix is the rear wheel track γ, when

the front one, Γ, is a straight line.

Teaser: what’s the area under the tractrix (assuming the bicycle

being of unit length)?
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Classical connection: the tractrix is the rear wheel track γ, when

the front one, Γ, is a straight line.

Teaser: what’s the area under the tractrix?

Answer: π/2 (the segments, translated to one point, cover half

the unit disk).
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Hatchet, or Prytz, Planimeter: Holger Prytz, a Danish cavalry
officer and engineer, 1886, published under the pseudonym “Z”.

How it works:

Area = `2θ +O

(
1

`

)
,

actually, a power series in 1/`.

A consequence for parallel parking: maximize the area bounded
by the trajectory of the front wheels (remark by Andy Ruina).
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Differential equation and bicycle monodromy

Determining rear wheel track γ from the front wheel track Γ:
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α is the steering angle, x is the arc length parameter on Γ and t
on γ, and k and κ are the curvatures of the tracks.
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Then

dα(x)

dx
+

sinα(x)

`
= κ(x), (∗)

and also,
∣∣∣∣
dt

dx

∣∣∣∣ = | cosα|, k =
tanα

`
.

Cusps ≡ infinite curvature ≡ {α = π/2}.

Consequence: the front wheel goes faster and should wear out

sooner (does it, really?)

Equation (*) also describes the overdamped case of the Joseph-

son effect (current through a very narrow insulator separating

two superconductors); Nobel Prize 1973. Recent work: V. Buch-

staber, A. Glutsyuk, and others.
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Monodromy M : initial position 7→ terminal position (in higher

dimensions, M : Sn−1 → Sn−1).

Γ

Theorem (in dim 2, R. Foote, 1998; M. Levi & S. T., 2009):

M is a Möbius transformation.

Möbius group O(n,1): isometries of the hyperbolic space Hn (in

the hyperboloid model), acting on the sphere Sn−1 at infinity.
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In dimension 2, if y = tan(α/2), then (*) becomes a Riccati

equation:

y′(x) = −
y(x)

`
+

1

2
(y2(x) + 1)κ(x).

In this case, S1 = RP1, and M is a real fractional-linear trans-

formation. Concerning the number of fixed points, one has the

trichotomy: elliptic, parabolic, hyperbolic.

Likewise, in dimension 3, S2 = CP1, and the monodromy is a

complex fractional-linear transformation. It always has two fixed

points (maybe, coinciding).
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Planimeters revisited: what does (a long) bicycle measure in

higher dimensions?

The area bivector of a curve:

AΓ =
1

2

∫
Γ(x) ∧ Γ′(x) dx

(thought of as a skew symmetric linear operator).

Theorem: Upon traversing a curve Γ, the bicycle segment r

undergoes a net rigid rotation:

r 7→ r +
1

`2
AΓ(r) +O

(
1

`3

)
.
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Rolling interpretation. Rolling a ball, without sliding and spin-

ning, along a curve in the plane results in the change of its

orientation, an element of SO(3).
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Likewise, riding a bike of length `, one “rolls” the hyperbolic

plane (of curvature −1/`2) along the front wheel track Γ. De-

velop the front track Γ in the hyperbolic plane as the an isometric

curve C ⊂ H2.

v

x

u
yC

Theorem: The bicycle monodromy is the (unique) isometry of

the hyperbolic plane M : (y, v) 7→ (x, u).
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Corollary: The monodromy is the identity iff the developed

curve C is C1-closed.

It never happens if Γ is closed and convex: in the Euclidean

plane,
∫
k ds = 2π, and in the hyperbolic plane,

∫
k ds = 2π +A,

due to the Gauss-Bonnet theorem.

The rolling interpretation holds in all dimensions!
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Menzin’s conjecture

Hyperbolic monodromy:

R

R

F

F
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Elliptic monodromy:

A

B

1 2

3 4

Figure 2: Examples 1 and 4 are hyperbolic; 2 and 3 are elliptic. The areas
bounded by the two curves in 1 differ by π"2.
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Figure 2: Examples 1 and 4 are hyperbolic; 2 and 3 are elliptic. The areas
bounded by the two curves in 1 differ by π"2.
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Theorem: The monodromy is parabolic iff the signed length of

the rear track is zero. (The sign changes upon passing a cusp).
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Menzin’s Conjecture (1906): If ` = 1 and Γ is an oval of area

> π, then the monodromy is hyperbolic.

... the tractrix will approach, asymptotically, a limit-

ing closed curve. From purely empirical observations, it

seems that this effect can be obtained so long as the

length of arm does not exceed the radius of a circle of

area equal to the area of the base curve.

Proved by M. Levi & S.T., 2009 (the heart of the proof is

Wirtinger’s inequality).
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Spherical and hyperbolic versions (S. Howe, M. Pancia, V. Za-

kharevich, 2011).

The monodromy is still Möbius. Master equations:

dα(x)

dx
+ cot ` sinα(x) = κ(x),

dα(x)

dx
+ coth ` sinα(x) = κ(x).

Theorem: 1). in S2: if Γ is a simple convex curve bounding

area > 2π(1− cos `), then the monodromy is hyperbolic;

2). in H2: if Γ is a simple horocyclically convex (curvature

greater than 1) curve bounding area > 2π(cosh ` − 1), then the

monodromy is hyperbolic.

The areas are those of the disks of radius `.
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Bicycle (Darboux, Bäcklund) transformation

The two front tracks that share the rear one: “Pushmi-Pullyu”
kinematics.
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If two front tracks share the rear track, with the opposite orien-

tations, write: B2`(Γ1,Γ2), the bicycle correspondence.

Equivalently, two points, x1 and x2, traverse the curves Γ1 and

Γ2 in such a way that the distance x1x2 is equal to 2`, and the

velocity of the midpoint of the segment x1x2 is aligned with the

segment.

In dimension 2, to get a mapping Γ1 7→ Γ2, one should assume

that Γ1 has a hyperbolic monodromy; in dimension 3, the mon-

odromy always has a fixed point, and no assumptions are needed.
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Properties, valid in all dimensions

Theorem: If closed curves Γ1 and Γ2 are in the bicycle corre-
spondence, then MΓ1,λ and MΓ2,λ are conjugated for all values
of λ.

Thus the conjugacy invariants of MΓ,λ, as functions of λ (the
spectral parameter), are integrals of the bicycle correspondence.

Theorem: (Bianchi permutability). Let Γ1,Γ2 and Γ3 be three
closed curves, such that B`(Γ1,Γ2) and Bλ(Γ1,Γ3) hold. Then
there exists a closed curve Γ4, such that Bλ(Γ2,Γ4) and B`(Γ3,Γ4)
hold (commutative square).

That is, the bicycle transformations with different length param-
eters commute.
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Other integrals of the bicycle transformation:

∫

Γ
Γ(t) ∧ Γ′(t) dt

(area bivector), and
∫

Γ
(Γ(t) · Γ′(t)) Γ(t) dt

(centroid). Overall,

(n
2

)
+ n =

(n+ 1

2

)
,

the dimension of the group of motions (in agreement with Noether’s

theorem).
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(Pre)symplectic geometry of the bicycle transformation

Two differential 2-forms on the space of smooth curves in R3:

ω(u, v) =
∫
u′(x) ·v(x) dx, Ω(u, v) =

∫
det(Γ′(x), u(x), v(x)) dx,

where u(x), v(x) are vector fields along a curve Γ(x). Both forms

are closed (in fact, exact).

The form ω depends on the metric, but exists in all dimensions;

Ω (the Marsden-Weinstein form) depends only on the volume

element, but is specifically 3-dimensional.

Theorem: The bicycle transformation preserves both forms ω

and Ω.
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Relation with the filament (binormal, smoke ring, LIE) equation

Γ̇ = Γ′ × Γ′′.

Equation introduced by L. Da Rios (a student of Levi-Civita) in

1906 to model the motion of vortices (the same year as Menzin!).

It is a well studied completely integrable systems of soliton type.
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Theorem: (i) The filament equation also preserves the 2-forms
ω and Ω.
(ii) The two systems, the bicycle transformation and the filament
equation, commute and share integrals.

Integrals of the filament equation Fn:
∫

1 dx,
∫
τ dx,

∫
κ2 dx,

∫
κ2τ dx,

∫ (
(κ′)2 + κ2τ2 −

1

4
κ4
)
dx, . . .

where τ is the torsion and κ is the curvature of a curve. The
corresponding commuting Hamiltonian vector fields Xn:

−T, κB,
κ2

2
T + κ′N + κτB, . . .

they satisfy the recurrence relation

ω(Xn−1, ·) = Ω(Xn, ·) = dFn.

In dimension 2, every other integral is non-trivial.

25



Which way did the bicycle go?

In “The Adventure of the Priory School” by A. Conan Doyle,
Sherlock Holmes did not do very well:

No, no, my dear Watson. The more deeply sunk impression is,

of course, hind wheel, upon which the weight rests. You perceive

several places where it has passed across and obliterated the more

shallow mark of the front one. It was undoubtedly heading away

from the school.
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Usually, you can tell which way the bicycle went, but sometimes

you cannot. Trivial example: concentric circles. But also

Two dimensional bodies which can float in all directions are given by ψper =
2π/n, thus for m = 1 and sufficiently small ε. In this limit the δu can be
determined from eq. (141) with

ζ(ω′ + δz) =
n2

12
(ω′ + δz) − ni − n

2
tan(

nδz

2
) + O(q), (199)

σ(ω′ + δz) =
2i

nq̂
e−inδz cos(

nδz

2
)en2(ω′+δz)2/24 + O(q̂), (200)

where eqs. (349) and (355) and π
ω3

= n, η3

ω3
= n2

12 have been used. Then eq.
(141) yields

tan(n δu ) = n tan( δu ), (201)

in agreement with the results obtained in refs. [7, 12, 8], where δu corresponds
to π

2 − δ0 and in ref. [6], where δu corresponds to πρ.
A few cross-sections of the bodies are shown in figs. 10 to 23. For odd n the

innermost envelope corresponds to density ρ = 1/2.

Fig. 10 m/n = 1/3,
ε = 0.1

Fig. 11 m/n = 1/3,
ε = 0.2

Fig. 12 m/n = 1/3,
ε = 0.5

Fig. 13 m/n = 1/4,
ε = 0.1

Fig.∗ 14
m/n = 1/4, ε = 0.1

Fig. 15 m/n = 1/4,
ε = 0.2
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Fig. 16 m/n = 1/5,
ε = 0.1

Fig.∗ 17
m/n = 1/5, ε = 0.1

Fig.∗ 18
m/n = 1/5, ε = 0.1

Fig.∗ 19
m/n = 1/5, ε = 0.2

Fig. 20 m/n = 1/6,
ε = 0.05

Fig.∗ 21
m/n = 1/6, ε = 0.05

Fig.∗ 22
m/n = 1/6, ε = 0.05

Fig. 23 m/n = 1/7,
ε = 0.1

7.2 Periodicity

In eq. (115) an angle of periodicity ψc has been defined. Here the periodicity is
discussed for several regions in fig. 4. The angle of periodicity ψper is defined
as the change of the angle ψ, as one moves from a point of extremal radius ri

along the curve until a point of this extremal radius is reached again. Its sign
is defined by the requirement that watching from the origin one starts moving
counterclockwise. This yields

ψper =
∆ψ

sign (dψ
du )

∣∣∣
r=ri

, (202)

∆ψ = ψ(u + 2ω3) − ψ(u) (203)
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and many more: F. Wegner, Three Problems – One Solution

http://www.tphys.uni-heidelberg.de/~wegner/Fl2mvs/Movies.html
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Ulam’s problem: which homogeneous bodies float in equilib-
rium in all positions? (“Scottish Book”, Problem No 19)

In dimension two (floating log), it’s the same problem!

The role of relative density is played by the relative length of the
arc of Γ, subtended by the moving segment.
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Classical elastica: extremize the bending energy
∫
k2dx with fixed

length, satisfy the Euler-Lagrange equation k′′+ 1
2k

3 + λk = 0.

Buckled rings (pressurized elastica): relative extrema of the total
squared curvature with perimeter and area constraints:

k′′+
1

2
k3 + λk + µ = 0,

where λ, µ are Lagrange multipliers.

Studied by M. Lévy (1884), G. Halphen (1888), and A. Greenhill
(1889).
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Wegner’s curves: in polar coordinates r = r(ψ),

1√
r2 + r2

ψ

= ar2 + b+
c

r2

with parameters a, b, c.

Recall X2 = k2

2 T + k′N, the planar filament vector field.

Theorem: The Wegner curves are solitons: under X2, they

evolve by rigid rotation and parameter shift. They are buckled

rings: their curvature satisfies

k′′+
1

2
k3 + λk = µ

with λ = 8ac− 2b2, µ = 8a.
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Discrete version: polygons instead of curves
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Thank you, and stay healthy!
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