Ivan Izmestiev

TU Wien

Differential Geometry Seminar

TU Wien, May 6, 2020

Regge symmetries: part one

Let Δ be a tetrahedron in \mathbb{R}^3 , \mathbb{S}^3 , or \mathbb{H}^3 with edge lengths a, b, c, d, x, y as shown on the left. Put

$$s=\frac{a+b+c+d}{2}.$$

Then there is $\overline{\Delta}$ with edge lengths s-a, s-b, s-c, s-d, x, y, and:

• Tetrahedra Δ and $\overline{\Delta}$ have equal volumes.

Regge symmetries: part two

• The dihedral angles at the *x*-edges in Δ and $\bar{\Delta}$ are equal. The same holds for the angles at the *y*-edges.

Ivan Izmestiev (TU Wien)

Regge symmetries: part two

- The dihedral angles at the *x*-edges in Δ and $\bar{\Delta}$ are equal. The same holds for the angles at the *y*-edges.
- If α , β , γ , δ are the dihedral angles at the edges a, b, c, d of Δ , then the angles at the edges s-a, s-b, s-c, s-d of $\bar{\Delta}$ are equal to $\sigma-\alpha$, $\sigma-\beta$, $\sigma-\gamma$, $\sigma-\delta$, where $\sigma=\frac{\alpha+\beta+\gamma+\delta}{2}$.

Where does it come from

- Ponzano, Regge, Semiclassical limit of Racah coefficients, 1968.
- Roberts, Classical 6j-symbol and the tetrahedron, 1999.
- Taylor, Woodward, 6*j-symbols for* $U_q(\mathfrak{sl}_2)$ and non-Euclidean tetrahedra, 2005.

Fig. 1. Three-dimensional representation of the 6*j*-symbol $\begin{cases} ab & c \\ de & f \end{cases}$.

Where does it come from

- Ponzano, Regge, Semiclassical limit of Racah coefficients, 1968.
- Roberts, Classical 6j-symbol and the tetrahedron, 1999.
- Taylor, Woodward, 6*j-symbols for* $U_q(\mathfrak{sl}_2)$ and non-Euclidean tetrahedra, 2005.

6j-symbols are related to angular momenta in quantum mechanics.

Their asymptotics produces volumes and angles in a tetrahedron.

Symmetries of 6i-symbols \Rightarrow Regge symmetries for tetrahedra.

Regge symmetries imply that Δ and $\overline{\Delta}$ have equal Dehn invariants

$$\sum_{i}\ell_{i}\otimes\theta_{i}.$$

In \mathbb{R}^3 this implies that Δ and $\overline{\Delta}$ are scissors congruent, that is can be glued from the same set of pieces.

Regge symmetries imply that Δ and $\overline{\Delta}$ have equal Dehn invariants

$$\sum_{i}\ell_{i}\otimes\theta_{i}.$$

In \mathbb{R}^3 this implies that Δ and $\overline{\Delta}$ are scissors congruent, that is can be glued from the same set of pieces. However, no explicit cut-and-paste procedure in \mathbb{R}^3 or \mathbb{S}^3 is known.

Regge symmetries imply that Δ and $\overline{\Delta}$ have equal Dehn invariants

$$\sum_{i}\ell_{i}\otimes\theta_{i}.$$

In \mathbb{R}^3 this implies that Δ and $\overline{\Delta}$ are scissors congruent, that is can be glued from the same set of pieces. However, no explicit cut-and-paste procedure in \mathbb{R}^3 or \mathbb{S}^3 is known.

It is known in the hyperbolic case (makes use of ideal polyhedra):

 Mohanty, The Regge symmetry is a scissors congruence in hyperbolic space, 2003.

Regge symmetries imply that Δ and $\overline{\Delta}$ have equal Dehn invariants

$$\sum_{i}\ell_{i}\otimes\theta_{i}.$$

In \mathbb{R}^3 this implies that Δ and $\overline{\Delta}$ are scissors congruent, that is can be glued from the same set of pieces. However, no explicit cut-and-paste procedure in \mathbb{R}^3 or \mathbb{S}^3 is known.

It is known in the hyperbolic case (makes use of ideal polyhedra):

 Mohanty, The Regge symmetry is a scissors congruence in hyperbolic space, 2003.

Potentially, by cut-and-paste one could also prove the angle relations...

In this talk, I will present an elementary proof of Regge symmetries:

• Akopyan, Izmestiev, *The Regge symmetry, confocal conics, and the Schläfli formula*, 2019.

Volumes of Euclidean tetrahedra

Brute-force computation of the Cayley-Menger determinant:

$$\begin{aligned} \operatorname{vol}(\Delta)^2 &= \frac{1}{288} \begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & a^2 & b^2 & y^2 \\ 1 & a^2 & 0 & x^2 & d^2 \\ 1 & b^2 & x^2 & 0 & c^2 \\ 1 & y^2 & d^2 & c^2 & 0 \end{vmatrix} \\ &= \frac{1}{288} \begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & (s-a)^2 & (s-b)^2 & y^2 \\ 1 & (s-a)^2 & 0 & x^2 & (s-d)^2 \\ 1 & (s-b)^2 & x^2 & 0 & (s-c)^2 \\ 1 & y^2 & (s-d)^2 & (s-c)^2 & 0 \end{vmatrix} = \operatorname{vol}(\overline{\Delta})^2 \end{aligned}$$

Ivan Izmestiev (TU Wien)

The degenerate case

If (a,b,c,d)-quadrilateral and (s-a,s-b,s-c,s-d)-quadrilateral have equal x-diagonals, then they have equal y-diagonals. (Volumes vanish, angles $\in \{0,\pi\}$.)

That is, the dashed segments have equal length.

$$a+b=(s-c)+(s-d), c+d=(s-a)+(s-b),$$

 $a-b=(s-b)-(s-a), c-d=(s-d)-(s-c)$

Get two ellipses and two hyperbolas with the same foci.

$$a+b=(s-c)+(s-d), c+d=(s-a)+(s-b),$$

 $a-b=(s-b)-(s-a), c-d=(s-d)-(s-c)$

Get two ellipses and two hyperbolas with the same foci.

But this is the Ivory theorem:

a curved quadrilateral between two confocal ellipses and hyperbolas has diagonals of equal lengths.

But this is the Ivory theorem:

a curved quadrilateral between two confocal ellipses and hyperbolas has diagonals of equal lengths.

Dihedral angles at the x- and y-edges

Ivory's theorem holds for confocal quadrics in \mathbb{R}^3 , \mathbb{S}^3 , \mathbb{H}^3 . The confocal family can degenerate to prolate spheroids, hyperboloids of rotation, planes through the axis. Thus one has $KL = \overline{KL}$.

Dihedral angles at the x- and y-edges

Thus if $\Delta = F_1 F_2 KL$ with $|F_1 F_2| = x$, then $F_1 F_2 \overline{KL} = \overline{\Delta}$. The angles at x in Δ and $\overline{\Delta}$ are equal by construction. Similarly, the angles at the y-edges are equal.

Other dihedral angles

Relations between other dihedral angles are equivalent to:

$$\bullet \ \alpha + \delta = \overline{\beta} + \overline{\gamma}, \ \alpha - \delta = \overline{\delta} - \overline{\alpha} \ \text{etc.}$$

In particular, the solid angles in the figure are equal.

On the area of a spherical triangle

For a triangle with fixed angle ϕ :

Area is a function of
$$\tan \frac{z}{2} \tan \frac{t}{2}$$

On the area of a spherical triangle

For a triangle with fixed angle ϕ :

Area is a function of
$$\tan \frac{z}{2} \tan \frac{t}{2}$$

The actual formula is:

$$\tan\frac{\mathsf{Area}}{2} = \frac{\tan\frac{z}{2}\tan\frac{t}{2}\sin\phi}{1+\tan\frac{z}{2}\tan\frac{t}{2}\cos\phi}$$

Sums and differences of angles

For a triangle with fixed angle ϕ :

$$lpha + \delta$$
 is a function of $\tan \frac{z}{2} \tan \frac{t}{2}$
$$\alpha - \delta \quad \text{is a function of} \quad \frac{\tan \frac{z}{2}}{\tan \frac{t}{2}}$$

Dual version

For a \mathbb{R}^2 , \mathbb{S}^2 or \mathbb{H}^2 triangle with fixed side x:

$$a+d$$
 is a function of $\tan \frac{\alpha}{2} \tan \frac{\delta}{2}$ $a-d$ is a function of $\frac{\tan \frac{\alpha}{2}}{\tan \frac{\delta}{2}}$

Proof of the angle relations

(Here ∠ etc. denote the tangent of the corresponding half-angle.)

Proof of $vol(\Delta) = vol(\overline{\Delta})$ in \mathbb{S}^3 and \mathbb{H}^3

Theorem (Schläfli)

For every smooth deformation of a tetrahedron in $\mathbb{R}^3, \mathbb{S}^3$ or \mathbb{H}^3 one has

$$2K \cdot d \text{ vol} = \sum_{i=1}^{6} \ell_i d\theta_i.$$

 $K \in \{0, 1, -1\}$: the curvature, ℓ_i : edge lengths, θ_i : dihedral angles.

During any deformation of Δ the volume derivatives are equal:

$$\begin{split} &\frac{d}{dt}\operatorname{vol}(\Delta_t) = \frac{1}{2K}(a\dot{\alpha} + b\dot{\beta} + c\dot{\gamma} + d\dot{\delta} + x\dot{\phi} + y\dot{\psi}) \\ &= \frac{1}{2K}\left((s-a)(\dot{\sigma} - \dot{\alpha}) + \dots + (s-d)(\dot{\sigma} - \dot{\delta}) + x\dot{\phi} + y\dot{\psi}\right) = \frac{d}{dt}\operatorname{vol}(\overline{\Delta_t}) \end{split}$$

If Δ flattens in the end, then $\overline{\Delta}$ flattens as well \Rightarrow vol(Δ) = vol($\overline{\Delta}$).

Ivan Izmestiev (TU Wien)