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The classical isoperimetric inequality states that any bounded set
Ω ⊂ Rn>2,

per(Ω) > nω
1
n
n vol(Ω)

n−1
n ,

where ωn is the volume of the unit ball.

In this talk we discuss how this inequality may be extended to
Cartan-Hadamard manifolds, spaces of nonpositive curvature which
generalize Rn.



This is joint work with Joel Spruck (Johns Hopkins U.).



Early History and
First proofs of the isoperimetric

inequality



Queen Dido of Carthage, 9th century B.C.

According to Virgil (Aeneid, 29–19 BC) Dido was allowed to claim
as much land for Carthage as could be enclosed within an Ox’s
hide (cut into thin ribbons).



Queen Dido of Carthage, 9th century B.C.

Map of Tunis (modern Carthage) from 1535.



Archimedes: c. 287 – c. 212 B.C.

I Computes π (Measurement of a Circle, Prop. 3):
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I Computes the area and volume of sphere in his book On the
Sphere and Cylinder.
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Zendorus, 150 B.C.

In On isoperimetric figures proves the isoperimetric inequality for
polygonal curves in the plane.

Reported to have also studied the 3-dimensional problem, but the
book is lost (likely it burned with the library of Alexandra in 48
BC).



Euler 1744
Prompted by the Bernoulli brothers, proves that the area under the
graph of a smooth function is maximized by a semicircle.

y = f (x)

In the process discovers the Euler-Lagrange equation which lays
the foundations for Calculus of Variations. Let
Φ := y + λ

√
1 + y2. Then

Φy −
d

dx
Φy ′ = 0.



Steiner, 1838

Discover’s a symmetrization which preserves volume, and reduces
perimeter of any compact domain Ω ⊂ Rn with regular boundary.

So a perimeter minimizer (if it exists!) must be a sphere.



Existence of a minimizer

Existence of a minimizer is not obvious, as first pointed out and
remedied by Schwartz and Weierstrauss.

A sequence of domains with fixed volume and decreasing perimeter
may not have any reasonable limit.



Existence of a minimizer

A minimizer exists because:

I Steiner symmetrization does not increase the outradius.

I Blaschke Selection Principle: The space of compact subsets
of a metric space is locally compact with respect to Hausdorff
distance.



Applications



Applications: Sobolev Inequality (with sharp constant)

For Ω ⊂ Rn and f ∈ W1,1
0 (Ω),(∫

Ω
f

n
n−1 dµ

) n−1
n

6
1

nω
1
n
n

∫
Ω
|∇f | dµ,

with equality if and only if Ω is a ball.



Applications: Faber-Krahn Inequality

Let λ1 denote the first Dirichlet eigenvalue. Then,

λ1(Ω) > λ1(B)

where B is a ball with vol(B) = vol(Ω); furthermore, equality holds
only if Ω is a ball.

The inequality was proved in 1920s, as had been conjecture by
Lord Rayleigh in his book, Theory of Sound, in 1877.



Sobolev and Faber-Krahn inequalities both hold on
Cartan-Hadmard manifolds provided that the isoperimetric
inequality holds there as well. Many other inequalities would follow
too.



The Variational Approach
(Curvature and Quermass Integrals)



Symmetrization is a powerful tool in analysis, and can even be
used to establish the isoperimetric inequality in the hyperbolic
space Hn, but it does not work in a general Riemannian space, due
to absence of any symmetry or linear structure.

We need a more local or variational approach ...



Brunn-Minkowski (-Lyusternic) Inequality, 1887–1935

For Ω1, Ω2 ⊂ Rn

vol(Ω1 + Ω2)
1
n > vol(Ω1)

1
n + vol(Ω2)

1
n .



Brunn-Minkowski (-Lyusternic) Inequality, 1887–1935

vol(Ω1 + Ω2)
1
n > vol(Ω1)

1
n + vol(Ω2)

1
n .

+ =

Proof is immediate for rectangles. Follows for all regions by
approximation with rectangles and induction (takes only one
page!).



Proof of Isoperimetric Inequality from Brunn-Minkowski

Ωr := Ω + rB = { x ∈ Rn | dist(Ω, x) 6 r}



Proof of Isoperimetric Inequality from Brunn-Minkowski

vol(Ωr ) = vol(Ω + rB)

>
(

vol(Ω)
1
n + r vol(B)

1
n

)n
> vol(Ω) + nrvol(Ω)

n−1
n vol(B)

1
n

per(Ω) = lim
r→0

vol(Ωr )− vol(Ω)

r

> nvol(Ω)
n−1
n vol(B)

1
n



Steiner Polynomial

If Ω is a convex polyhedron in R3, with edge lengths Li and
corresponding dihedral angles θi ,

vol(Ωr ) = vol(Ω) + per(Ω)r +
(∑

Li (π − θi )
)
r2 +

4

3
πr3.

If ∂Ω is smooth,

vol(Ωr ) = vol(Ω) + per(Ω)r +

(
1

2

∫
∂Ω

H

)
r2 +

(
1

3

∫
∂Ω

GK

)
r3.



Generalized mean curvatures

If Γ is a level set of a function f , then, at twice differentiable
points, the principal curvatures of Γ

κ := (κ1, . . . , κn−1),

are given by the eigenvalues of the Hessian of f restricted to the
tangent hyperplanes of Γ. We denote the elementary symmetric
functions of these curvatures by

σ`(κ) :=
∑

i16...6i`

κi1 . . . κi` ,

and call these the (unnormalized) genralized mean curvatures of Γ.
In particular,

σ1(κ) = n H, and σn−1(κ) = GK .



Quermassintegrals

The quermassintegrals of Γ are given by

Vn−m(Ω) :=
(n −m)!(m − 1)!

n!

ωn−m
ωn

∫
Γ
σm−1(κ),

for m = 1, . . . , n − 1, and we set V0(Ω) ≡ 1. Then Steiner’s
polynomial is given by

vol(Ωr ) =
n∑

m=0

Vm(Ω)rm.

Thus the generalized mean curvatures control the variation of
volume.

We will derive a number of estimates, or Reilly type formulas, for
these quermass integrals on Riemannian manifolds.



The Cartan-Hadamard Conjecture



Cartan-Hadamard manifolds

A Cartan-Hadamard manifold is a complete simply connected
manifold of nonpositive curvature.

Negatively curved surfaces occur throughout nature. They pack
more area inside each geodesic disc, compared to surfaces of zero
curvature, through their waves or corrugations.



Cartan-Hadamard manifolds

Cartan and Hadamard showed that in a Cartan-Hadamard
manifold the exponential map is a diffeomorphism.

M

p
TpM

So Cartan-Hadamard manifolds are diffeomorphic to Rn and every
pair of points may be connected with a unique geodesic.



Cartan-Hadamard manifolds

Nonpositive curvature means that triangles are “thinner” than
those in Rn (Toponogov’s theorem).

M Rn

Alternatively, it also means that geodesics emerging from a point
diverge faster than those in Rn. That rate is measured by Riemann
curvature tensor (Jacobi’s Equation).



Cartan-Hadamard manifolds

Since in a Cartan-Hadmard manifold geodesics diverge faster than
in Rn, it follows from standard Riemannian comparison theory, that
geodesic balls satisfy the isoperimetric inequality.



Cartan-Hadamard Conjecture

In 1927 Andre Weil, who was a student of Hadamard at the time,
proved that the isoperimetric inequality holds in Cartan-Hadamard
manifolds of dimension n = 2.



Cartan-Hadamard Conjecture

In 1970s and 80s Aubin, Gromov, Burago, and Zalgaller
conjectured that the isoperimetric inequality should hold in
Cartan-Hadamard manifolds of any dimension n > 2.



Cartan-Hadamard Conjecture

The case n = 4 was proved by Chris Croke in 1984.



Cartan-Hadamard Conjecture

The case n = 3 was proved by Bruce Kleiner in 1992.



Cartan-Hadamard Conjecture

The conjecture has remained open in dimensions n > 5.



Kleiner’s Variational Approach



Isoperimetric Profile

The isoperimetric profile of any Riemannian manifold M is the
function IM : [0, vol(M))→ R given by

IM(v) := inf
{

per(Ω) | Ω ⊂ M, vol(Ω) = v , diam(Ω) <∞
}
,

Proving the isoperimetric inequality is equivalent to showing that

IM > IRn ,

for any Cartan-Hadamard manifold M of dimension n. It suffices to
show that

IB > IRn

for a family of (open) geodesic balls B ⊂ M whose radii grows
arbitrarily large and eventually covers any bounded set Ω ⊂ M.



Existence and regularity of isoperimetric regions

Fix B ⊂ M and consider its isoperimetric regions, i.e., sets Ω ⊂ B
which minimize perimeter for given volume v :

per(Ω) = IB(vol(Ω)).

I Existence of Ω follows from Blaschke selection principle.

I Γ := ∂Ω is C∞ almost everywhere, and is C1,1 near ∂B.

I Γ has constant mean curvature H0 = H0(v), in the interior of
B and its mean curvature is 6 H0 on ∂B.



Estimating the mean curvature

It turns out that
I ′B(v) = (n − 1)H0(v).

Furthermore we know that

I ′Rn(v) = (n − 1)

(
nωn

per(Ω)

) 1
n−1

.

So it suffices to show that

Hn−1
0 per(Ω) > nωn.



Estimating the Gauss-Kronecker Curvature

Set
Γ0 := ∂(conv Γ).

By the arithmetic mean versus geometric mean inequality,

Hn−1
0 per(Ω) >

∫
Γ∩Γ0

Hn−1dσ >
∫

Γ∩Γ0

GKdσ =

∫
Γ0

GKdσ

So, it is left to show: ∫
Γ0

GKdσ > nωn.



The total curvature inequality

Problem
For any convex hypersurface Γ in a Cartan-Hadamard manifold
Mn, n > 2,

G(Γ) :=

∫
Γ
GKdσ > nωn.

Then the isoperimetric inequality would follow.

I The total curvature inequality is trivial when M = Rn,
because G(Γ) is the volume of the Gauss map.

I Also when n = 3 (the case Kleiner considered) it follows
immediately from Gauss-Bonnet theorem, and Gauss’s
equation.



The Comparison Formula



Main idea for proving the total curvature inequality

Shrink Γ without increasing G(Γ) until Γ collapses to a point.

As all Riemannian manifolds are locally Euclidean to first order, we
obtain the desired inequality.

This would be a subtle procedure, because Dekster has contsructed
nested convex hypersurface γ, and Γ with γ contained inside Γ
such that G(γ) > G(Γ).



The comparison formula

We develop a formula for comparing total curvature of level sets of
a C1,1 function

u : M → R

on Riemannian manifolds. Let Γ and γ be regular level sets of u,
with Γ = ∂Ω and γ = ∂D, D ⊂ Ω.

How does G(Γ) compare with G(γ)?



The comparison formula

At every point of Ω \ D we can find a basis E1, . . . ,En for TpM
such that

En = − ∇u
|∇u|

,

and such that the Hessian of u is given by

∇2u = (uij) =



|∇u|κ1 0 u1n

. . .
...

0 |∇u|κn−1 u(n−1)n

un1 · · · u(n−1)n unn


,

where κi are principal curvatures of level sets of u.



The comparison formula

We define the self-adjoint operator T u : TpM → TpM by setting

(T u
ij ) := cofactor(uij).

Then

GK =
〈T u(∇u),∇u〉
|∇u|n+1

,

and

div

(
T u

(
∇u
|∇u|n

))
=

〈
div(T u),

∇u
|∇u|n

〉
.



The comparison formula

Then Stokes theorem shows that

G(Γ)− G(γ) =

∫
Ω\D

〈
div(T u),

∇u
|∇u|n

〉
dµ.

Furthermore we can compute that

〈
div(T u),∇u

〉
=

R
(
T u(∇u),Ei , T u(Ei ),∇u

)
det(∇2u)

,

where R is the Riemann curvature tensor of M (which vanishes
when M = Rn).

Putting everything together, we obtain ...



The Comparison Formula

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK

κr
dµ+

∫
Ω\D

Rrkrn
GK

κrκk

unk
|∇u|

dµ



The Comparison Formula

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK

κr
dµ+

∫
Ω\D

Rrkrn
GK

κrκk

unk
|∇u|

dµ

Notes:

I When M has constant curvature, Rrnrk = 0. So the second
integral vanishes, and we obtain

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK

κr
dµ.



The Comparison Formula

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK

κr
dµ+

∫
Ω\D

Rrkrn
GK

κrκk

unk
|∇u|

dµ

Notes:

I When M has constant curvature, Rrnrk = 0. So the second
integral vanishes, and we obtain

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK

κr
dµ.

I In addition we may always assume that u is convex, or κi > 0.
So

G (Γ) > G (γ)

when M = Hn.



The Comparison Formula

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK

κr
dµ+

∫
Ω\D

Rrkrn
GK

κrκk

unk
|∇u|

dµ

Notes:

I When |∇u| is constant on level sets of u, or unk = 0, then the
second integral again vanishes, and we obtain

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK

κr
dµ.

I So if in addition level sets of u are convex we obtain

G (Γ) > G (γ).



Problems

So where are we going to find a function u with |∇u| = const and
level sets of u convex?

There is only one possiblity: the distance function of Γ.

But

I Problem #1: In a Cartan-Hadamard manifold the (signed)
distance function of a convex hypersurface needs not be
convex.

I Problem #2: The distance function always develops
singularities.



The distance function

Let d : M ×M → R denote the distance function of M. Then the
unsigned distance function of Γ is

dΓ(x) := d(Γ, x),

and the signed distance function is given by setting
d̂Γ(x) = −dΓ(x) if x ∈ Ω and d̂Γ(x) = dΓ(x) otherwise.



The Convexity Problem

If Γ is a convex hypersurface in a Cartan Hadamard manifold M,
then d̂Γ is always convex outside Ω, but may not be convex on Ω.

In general d̂Γ is convex on Ω only when Ω is h-convex, i.e., through
each point of Γ there passes a supporting horosphere.



The convexity problem
We replace Γ by the outer parallel hypersurface Γ̃ε of Ω in M × R.

Γ
Ω

M

R Γ̃ε

M

R

It turns out that

G(Γ̃ε)

(n + 1)ωn+1
→ G(Γ)

nωn
.

In particular, if G(Γ̃ε) > (n + 1)ωn+1, then G(Γ) > nωn.

So we may assume that d̂Γ is convex. Then we say that Γ is
d-convex.



The singularity problem

Level sets of d̂Γ develop singularities as soon as they hit the cut
locus, cut(Γ).

cut(Γ) is the closure of the medial axis, i.e., the set of points in Ω
where the maximal geodesic sphere in Ω centered at that point
touches Γ multiple times.



The singularity problem

The graph of the distance function resembles a sand dune, and the
cut locus corresponds to the ridge.



The singularity problem

The resemblance is not accidental!



The singularity problem

The study of medial axis is of interest in pattern recognition.



The singularity problem

x

x◦

Γ

Theorem (Structure of the cut locus)

For every x ∈ Ω, let x◦ be a closest point (or footprint) on cut(Γ),
then

d(x◦, Γ) > d(x , Γ).



Approaching the Singularity Problem
via Smoothing the Distance Function



Possible plan for dealing with singularities

I Smooth the distance function u := d̂Γ by a one parameter
family of functions v r .

I Multiply v r by a cutoff function η in a neighborhood of the
singularities, away from a fixed point x0 on cut(Γ).

I Apply the comparison formula to level sets of ηv r (integrate
by parts

I Deviation of |∇v r | from 1 introduces a number of error
terms.

I Show that the error terms vanish or become nonnegative as
r → 0.



The inf-convolution
the inf-convolution (or more precisely Moreau envelope or
Moreau-Yosida regularization) of a function u : M → R is given by

ũ t(x) := inf
y

{
u(y) +

d2(x , y)

2t

}
.

ũ t is the unique viscosity solution of the Hamilton-Jacobi equation

ft +
1

2
|∇f |2 = 0

for functions f : R×M → R satisfying the initial condition

f (0, x) = u(x).

When M = Rn, epigraph of ũ t is the Minkowski sum of the
epigraphs of u and | · |2/(2t)

The point where the infimum is achieved is called the proximal
point.



The inf-convolution

A simple but highly illustrative example of inf-convolution occurs
when it is applied to ρ(x) := d(x0, x), the distance from a single
point x0 ∈ M. Then

ρ̃ t(x) =

{
ρ2(x)/(2t), if ρ(x) 6 t,
ρ(x)− t/2, if ρ(x) > t,

which is known as the Huber function.

t−t

ρ

ρ̃ t

ρ2

2t

x0
x



The inf-convolution

t−t

ρ

ρ̃ t

ρ2

2t

x0
x

ρ̃ t is C1,1 and convex, inf(ρ̃ t) = inf(ρ), |∇ρ̃ t | 6 1 everywhere,
|∇ρ̃ t | = 1 when ρ > t, and |∇2ρ̃ t | 6 C/t.

We show that all these properties are shared by the inf convolution
of d̂Γ when Γ is d-convex.



Smoothing the distance function
We pick x0 ∈ cut(Γ), set 0 < δ < 2/3, and approximate u := d̂Γ by
a family of C1,1 functions v r such that

Γ Γr

Br Br

Br2+3δ/2

I v r → u, as r → 0

I v r has a single minimum point at x0

I v r is radial on Br2+3δ/2

I v r coincides with the inf-convolution of a perturbation of u
outside Br .

The zero level set of v r will be called Γr and the domain it bounds
Ωr . We will have

G(Γr )→ G(Γ).



The Cut Off Function

Let
cutr (Γ) := cut(Γ) \ Br/2

and η be a smooth cutoff function with η ≡ 0 on Uθcutr (Γ) and
η ≡ 1 on U2θcutr (Γ)

Br

cutr (Γ)

Uθ
(
cutr (Γ)

)

We set θ := Cr1+δ/2 (so θ/r → 0 as r → 0).



The Error Terms
Applying the comparison formula to ηv r and integration by parts
yields:

G(Γr )− G(γ) = I(Ωr \ D) + II(Ωr \ D) + III(Ωr \ D),

where

I( · ) :=

∫
( · )

(
ηk

GK

κk

v rnk
|∇v r |

− ηnGK
)
dµ,

II( · ) :=

∫
( · )
ηR`k`n

GK

κ`κk

v rnk
|∇v r |

dµ,

III( · ) := −
∫

( · )
ηR`n`n

GK

κ`
dµ.

We have III > 0. Furthermore it can be shown that II vanishes, via
Reilly type formulas. But controlling I does not appear to be easier
than the original problem.



Manifolds with
small curvature variation



Theorem
Let Γ, γ be convex hypersurfaces in a Cartan-Hadamard manifold
M. Suppose that the variation of the sectional curvature of M is
small on Γ. Then

G(Γ) > G(γ).

Corollary

The isoperimetric inequality holds in Cartan-Hadamard manifolds
with small curvature variation.



The main idea of the proof is that in the comparison formula

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK

κr
dµ+

∫
Ω\D

Rrkrn
GK

κrκk

unk
|∇u|

dµ

=: I(Ω \ D) + II(Ω \ D).

The second integral will be dominated by the first, when the
variation in curvature of M is small.

Furthermore, u needs to be chosen well.



We set
u = uλ := r2 + λρ

where r is distance from Ω and ρ is distance from D.



We set
u = uλ := r2 + λρ

where r is distance from Ω and ρ is distance from D.



Let
Ωε,λ := {uλ < ε2} and Γε,λ := ∂Ωε,λ.

Then
G(Γε,λ)− G(γ) = I(Ωε,λ \ D) + II(Ωε,λ \ D).

Recall that I > 0. To illustrate the main idea, let us suppose first
that curvature is constant on a neighborhood U of Γ. We claim
that then II = 0 which will complete the proof.



To show that II = 0 note that

II(Ωε,λ \ D) = II(Ωε,λ \ Ω) + II(Ω \ D).

We may choose λ so small that Γε,λ ⊂ U. Then

II(Ωε,λ \ Ω) ⊂ II(U) =

∫
U
Rrkrn

GK

κrκk

wnk

|∇w |
dµ = 0,

since Rrkrn = 0 on U. Furthermore,

II(Ω\D) =

∫
Ω\D

Rrkrn
GK

κrκk

unk
|∇u|

dµ =

∫
Ω\D

Rrkrn
GK

κrκk

ρnk
|∇ρ|

dµ = 0,

since u = λρ and ρk = 0 on Ω \ D. So

II(Ωε,λ \ D) = 0.



To treat the general case, we analyze II more carefully:

II(Ωε,λ \ D) = II(Ωε,λ \ Ω) =

∫
Ωε,λ\Ω

Rrkrn
GK

κrκk

unk
|∇u|

dµ.

Furthermore we have

GK

κrκk

|unk |
|∇w |

6
GK

κrκk

√
ukkunn
|∇u|

=

√
GK

κrκk

√
GK

κr

√
unn
|∇u|

.

So

|II(Ωε,λ \ D)|2 6

sup
Ωε,λ\Ω

R2
rkrn

√∫
Ωε,λ\Ω

σn−2(κ)2dµ

√∫
Ωε,λ\Ω

σn−1(κ)2dµ

∫
Ωε,λ\Ω

|unn|
|∇u|

dµ

6 sup
Ωε,λ\Ω

R2
rkrnC

√
ε
√
ε

1

ε2
ε 6 C sup

Ωε,λ\Ω
R2
rkrn.



So we have shown that

|II(Ωε,λ \ D)|2 6 C1 sup
Ωε,λ\Ω

R2
rkrn.

We can also estimate that

I(Ωε,λ \ D) > inf
Ωε,λ\D

−Rrnrn

∫
Ωε,λ\D

σn−3dµ > −C2 sup
Ωε,λ\D

Rrnrn

So we have

I + II > −C1 supRrnrn − C2 sup |Rrkrn|

If the variation in sectional curvatures is small, then we can ensure
that

sup |Rrkrn| 6 −
C1

C2
supRrnrn,

which would yield that Γ has the nested property, as desired.



So how can one check that the quermass type integrals remain
finite? That is, how do we know that∫

Ω
σ`(κ)dµ 6 C

This can be shown via Reilly type formulas.



Reilly type formulas, and Newton Operators

Let u be a C1,1 function on a domain Ω ⊂ M. Set

σr (∇2u) := σr
(
λ1(∇2u), . . . , λn(∇2u)

)
,

where λi denote the eigenvalues of ∇2u. Then σr (∇2u) generate
the coefficients of the characteristic polynomial

P(λ) := det(λI n −∇2u)

= λn − σ1(∇2u)λn−1 + · · ·+ (−1)nσn(∇2u).

Let
P r (λ) := Truncation of P(λ) after power r



Reilly type formulas, and Newton Operators

The Newton operators are defined as

T u
r := P r (∇2u).

By the Cayley-Hamilton theorem, T u
n = 0. So

T u
n−1 = σn(∇2u)(∇2u)−1 = det(∇2u)(∇2u)−1 = T u,

where T u is the Hessian cofactor operator discussed earlier.



Reilly type formulas, and Newton Operators

The Newton operators satisfy the following important identities:

div
(
T u
r (∇u)

)
=
〈
T u
r ,∇2u

〉
+
〈
div(T u

r ),∇u
〉
.

〈
T u
r (∇u),∇u

〉
|∇u|r+2

= σr (κ).



Reilly type formulas, and Newton Operators

It follows from Stokes theorem that∫
Ω
σr+1(∇2u)dµ 6 C

(
r∑
`=0

∫
Γ
σ`(κ)dσ + 1

)
.

So symmetric functions of ∇2u on Ω are controlled by the
quermass integrals of Γ.

Furthermore we have

σ`(κ) 6 σ`(∇2u) + Cr δσ`−2(κ).

So we obtain ∫
Ω
σ`(κ)dµ 6 C .



Thanks for your attention!


