Theory and Applications of Numerical Algebraic Geometry

Silviana Amethyst

13 October, 2020

University of Wisconsin Eau Claire

Outline

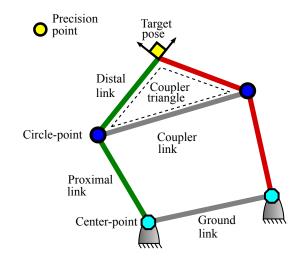
Motivation

Numerical Algebraic Geometry

Algorithms

Applications

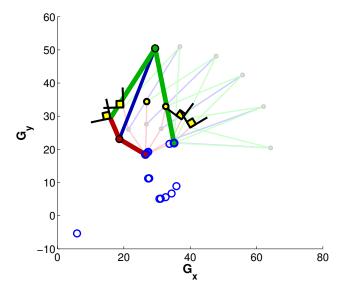
Four-bar mechanisms



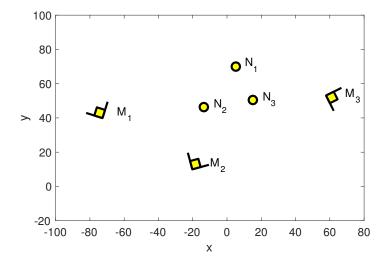
see this video, 1:37

A design problem

Design a mechanism passing through the **points** and achieving the **poses**



Challenge: design the four-bar



Can you design a four-bar satisfying these constraints?

Challenge: 3-3 fourbar system

 $\begin{array}{l} -(a_ii+a_r-d_1-t_1(x_r+x_i))(D_1+a_ii-a_r-f_1'(x_ii-x_r))+(a_ii+a_r-x_ii-x_r)(a_ii-a_r-x_ii+x_r)\\ -(a_ii+a_r-d_2-t2(x_r+x_i))(D_2+a_ii-a_r-f_2(x_ii-x_r))+(a_ii+a_r-x_ii-x_r)(a_ii-a_r-x_ii+x_r)\\ (a_ii+a_r-x_ii-x_r)(a_ii-a_r-x_ii+x_r)-(D_3+a_ii-a_r+(t_3,ii-t_3,r)(x_ii-x_r))(a_ii+a_r-d_3-(t_3,r+t_3,ii)(x_r+x_i))\\ (a_ii+a_r-x_ii-x_r)(a_ii-a_r-x_ii+x_r)-(D_3+a_ii-a_r+(t_3,ii-t_3,r)(x_ii-x_r))(a_ii+a_r-d_3-(t_3,r+t_3,ii)(x_r+x_i))\\ (a_ii+a_r-x_ii-x_r)(a_ii-a_r-x_ii+x_r)-(D_5+a_ii-a_r+(t_3,ii-t_3,r)(x_ii-x_r))(a_ii+a_r-d_5-(t_5,r+t_5,ii)(x_r+x_i))\\ -(b_ii+b_r-d_1-t_1(y_r+y_i))(D_1+b_ii-b_r-T_1(y_ii-y_r))+(b_ii+b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)\\ -(b_ii+b_r-d_2-t_2(y_r+y_i))(D_2+b_ii-b_r-f_2(y_ii-y_r))+(b_ii+b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)\\ (b_ii+b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_3+b_ii-b_r+(t_3,ii-t_3,r)(y_ii-y_r))(b_ii+b_r-d_3-(t_3,r+t_3,i)(y_r+y_i))\\ (b_ii+b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_4+b_ii-b_r+(t_5,i-t_5,r)(y_ii-y_r))(b_ii+b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii+b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_4+b_ii-b_r+(t_3,i-t_3,r)(y_ii-y_r))(b_ii+b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii+b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_4+b_ii-b_r+(t_3,i-t_3,r)(y_ii-y_r))(b_ii+b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii+b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_4+b_ii-b_r+(t_3,i-t_3,r)(y_ii-y_r))(b_ii+b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii+b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_4+b_ii-b_r+(t_3,i-t_3,r)(y_ii-y_r))(b_ii+b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii-b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_5+b_ii-b_r+(t_5,i-t_5,r)(y_i-y_r))(b_ii+b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii-b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_5+b_ii-b_r+(t_5,i-t_5,r)(y_i-y_r))(b_ii+b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii-b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(b_ii-b_r+y_i)(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii-b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_5+b_ii-b_r+(t_5,i-t_5,r)(y_i-y_r))(b_ii-b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii-b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(D_5+b_ii-b_r+(t_5,i-t_5,r)(y_i-y_r))(b_ii-b_r-d_5-(t_5,r+t_5,i)(y_r+y_i))\\ (b_ii-b_r-y_ii-y_r)(b_ii-b_r-y_ii+y_r)-(b_1i-b_r+y_i)(t_5,r+t_$

- 14 variables (a,b,x,y,t), 13 functions,
 14 numerical parameters (angles and positions)
- underdetermined, defines some positive dimensional objects
- Q: how are we to solve this???
- A: numerical algebraic geometry

Questions NAG answers

Given a polynomial system f, understand

$$\mathcal{V}(f)=\{z\in\mathbb{C}^{N}\,:\,f(z)=0\}$$

the *algebraic variety* of *f*.

- What are the dimensions of the components f defines?
- What are the *degrees* of the components of $\mathcal{V}(f)$?
- Describe the *real part* of $\mathcal{V}(f)$?
- Do the components of $\mathcal{V}(f)$ intersect?
- Given a point p on V(f), what is the local geometry around p?
- What can we do to reduce the computation time? How can we make it more convenient?

Outline

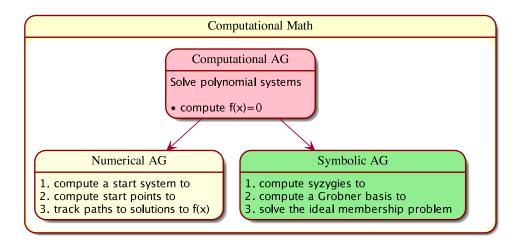
Motivation

Numerical Algebraic Geometry

Algorithms

Applications

Computational algebraic geometry is two parts



What is NAG?

numerical algebraic geometry (NAG), or **numerical nonlinear algebra** is a field of *computational algebraic geometry* which parallels symbolic algebraic geometry

Algebraic geometry studies zero sets of systems of polynomials

- Computational AG computes the zero sets
- Symbolic AG computes them via manipulation of polynomials

 \Rightarrow think gaussian elimination

Numerical AG computes them via points

Fundamental tools of NAG

- Homotopy continuation numerical path tracking
- **Form a start system** choice impacts solve time
- Bertini's theorem theoretical foundation
- Endgames tools to compute singular points

Homotopy continuation – an example Let's solve this two-variable *target system*:

$$f(x,y) = \begin{bmatrix} \sqrt{3}x^2 + 2xy - 4\\ 0.5xy - x^3 \end{bmatrix}$$

To do so, let's instead solve this easier start system:

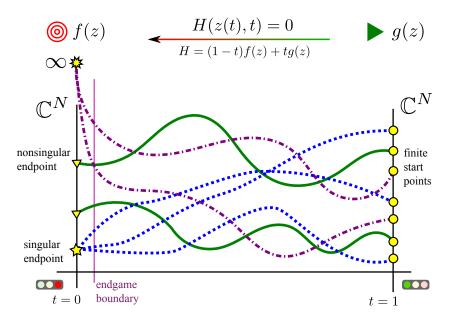
$$g(x,y) = \begin{bmatrix} x^2 - 1 \\ y^3 - 1 \end{bmatrix}$$

Then we deform g into f using this homotopy:

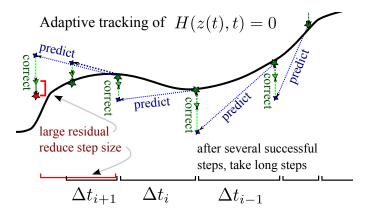
$$H(x, y, t) = (1 - t)f + tg = 0$$

starting from $t_{\text{start}} = 1$ to $t_{\text{end}} = 0$

Homotopy continuation – in general



Predictor-corrector tracking



Solve the Davidenko Differential Equation

$$\frac{\partial H}{\partial z}\frac{\mathrm{d}z}{\mathrm{d}t} + \frac{\partial H}{\partial t} = 0 \qquad \Rightarrow \qquad \frac{\mathrm{d}z}{\mathrm{d}t} = -\left[JH(z,t)^{-1}\right]\frac{\partial H(z,t)}{\partial t}$$

Start system

To solve f, we first solve g, the **start system**. Some are:

- Roots of unity high root count, closely spaced solutions, trivial to write / create, bad conditioning
- Total degree with randomization high root count, easy to form, spatially separated points
- And other more complicated ones *
 - Linear product Build up by taking products of linears. Lower root count by discarding singularities along the way
 - M-homogeneous Root count may be lower, may be higher. Combinatorially many to choose from
 - Polyhedral Very sharp root count, hard to form
- \star Better start systems reduce total track time.

Why does NAG work?

Bertini's theorem – a generalization of the fundamental theorem of algebra.

The FToA tells us that f(z) is a univariate polynomial of degree d, $\Rightarrow f$ has d roots over \mathbb{C} , counting multiplicity

Bertini's theorem tells us a system of polynomials splits over $\mathbb{C}.$

- Bertini's theorem provides upper bounds on the # of solutions a polynomial system can have.
- ► The first important one is the *Bezout bound* ⇔ total degree g(x)

Implementation

Some highlights of implementation details:

- The use of arbitrary precision arithmetic allows computation near singularities during tracking.
- Adaptive step length allows one to invent schemes for staying near target path
- Combining both adaptive step length and adaptive precision gives the best of both worlds
- **Endgames** allow one to compute singular endpoints

Bertini – software for NAG

Bertini(TM) v1.6 (February 27, 2017)

D.J. Bates, J.D. Hauenstein, A.J. Sommese, C.W. Wampler

(using GMP v6.1.2, MPFR v4.0.1)

bertini.nd.edu

Outline

Motivation

Numerical Algebraic Geometry

Algorithms

Applications

Algorithms of NAG

Witness sets

represent a positive dimensional object as (linear slice) \cap system

Regeneration

build up solution sets from nothing via \prod (linear function)

Deflation

magically make singular \rightarrow non-singular

Endgames

special methods for computing singular roots

Certification

Proving that candidates are approximate roots

Witness sets come from slicing

To **slice** is to intersect a variety and an affine space. Slicing produces a **witness (super)set**: a triple $W = \{\{w_i\}, \mathcal{L}, f\}:$

1. Linear Slice $\mathcal{L} : \mathbb{C}^N \to \mathbb{C}^{N-n}$

2. System
$$f : \mathbb{C}^N \to \mathbb{C}^n$$

3. Points
$$\{w_i\} = \mathcal{V}(f) \cap \mathcal{V}(\mathcal{L})$$

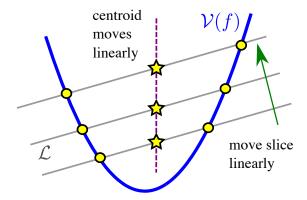
Two imporant properties, when slicing done correctly:

•
$$\#(\{w_i\}) = \sum \deg(C_j) + junk$$
,

$$\blacktriangleright \dim(C_j) = N - n = k$$

Trace Test

The trace test numerically verifies completeness of a set

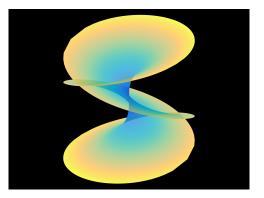


The trace is 0 \iff set of points is complete

Monodromy

To do monodromy is to walk in a circle and collect data.

- Compute new connections to known points
- Separate sets of points by connections
- Compute series expansion coefficients
- Estimate singular solutions



Regeneration

To *regenerate* is to use products of linears to build up a start system, and solve by homotoping as

• d_j is the degree of j^{th} polynomial in \tilde{f} . This permits *intersections* and other fun computations

Example – regeneration to find curve critical points (left nullspace method)

Regeneration uses products of linears to build up a start system for a homotopy. We're solving by homotoping as

$$H(x, v; t) = (1-t) \begin{bmatrix} f(x) \\ V^{\mathsf{T}} \cdot \begin{bmatrix} Jf(x) \\ J\pi_1 \end{bmatrix} \\ \mathsf{patch}_v \end{bmatrix} + t \begin{bmatrix} f(x) \\ M_1(v) \prod_{i=1}^{\delta} L_{1,i}(x) \\ \vdots \\ M_N(v) \prod_{i=1}^{\delta} L_{N,i}(x) \\ \mathsf{patch}_v \end{bmatrix} = 0$$

• δ is the maximum degree any polynomial in f.

• π is some linear projection

Deflation

Deflation

- Making the untrackable, trackable.
- Regularizing witness and other points.
- Reduces one solution component at a time.
- Produces a new system for which Newton's method hypothetically converges quadratically.
- ▶ We are deflating the multiplicity of the singularity.
- Isosingular sets are closures of sets with the same deflation sequence.

Deflation – nullspace

given $f : \mathbb{C}^N \to \mathbb{C}^n$ with dnull(*Jf*) at a generic point *x*, choose a general linear system $\mathcal{L} : \mathbb{C}^N \to \mathbb{C}^d$, and set

$$g_e(x,\eta) = egin{bmatrix} f(x) \ Jf(x) \cdot \eta \ \mathcal{L}(\eta) \end{bmatrix}$$

yields

$$g_e:\mathbb{C}^{2N} o\mathbb{C}^{2n+d}$$

[[]Leykin, Verschelde, Zhao '06]

Deflation – determinental

This method of deflations adds no variables, but instead **lots** of functions

$$g_{ ext{det}} = egin{bmatrix} f(x) \ \det J_{\sigma_1} f(x) \ dots \ \det J_{\sigma_m} f(x) \end{bmatrix}$$

where $\{\sigma_i\}$ indexes the set of (n - d + 1)x(n - d + 1)submatrices of the Jabobian. *d* is still dimnull of *Jf*.

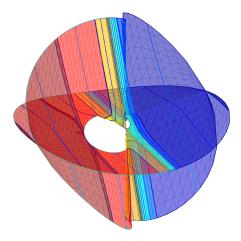
$$g_{\mathsf{det}}:\mathbb{C}^{\mathsf{N}}
ightarrow\mathbb{C}^{\mathsf{scary}}$$

[Hauenstein, Wampler '13]

Application of deflation – finding singular curves

- 1. Compute witness set for critical curve.
- 2. Separate singular witness points from nonsingular.
 - $\blacktriangleright \text{ Nonsingular} \rightarrow \text{critical curve}.$
 - Singular \rightarrow singular curve(s).
- 3. Separate singular witness points by deflation sequence.
- 4. Decompose each singular curve.

Example - Solitude



Example - Solitude

Solitude:

$$f(x, y, z) = x^2 yz + xy^2 + y^3 + y^3 z - x^2 z^2$$

$$\mathcal{D}^{1} = \begin{bmatrix} x^{2}yz + xy^{2} + y^{3} + y^{3}z - x^{2}z^{2} \\ y^{2}/4 - (xz^{2})/2 + (xyz)/2 \\ (xy)/2 + (x^{2}z)/4 + (3y^{2}z)/4 + (3y^{2})/4 \\ (x^{2}y)/4 - (x^{2}z)/2 + y^{3}/4 \end{bmatrix}$$

Example curve deflated - Solitude

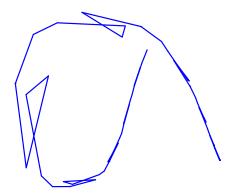
$$\mathcal{D}^{2} = \begin{bmatrix} x^{2}yz + xy^{2} + y^{3} + y^{3}z - x^{2}z^{2} \\ y^{2}/4 - (xz^{2})/2 + (xyz)/2 \\ (xy)/2 + (x^{2}z)/4 + (3y^{2})/4 + (3y^{2})/4 \\ (x^{2}y)/4 - (x^{2}z)/2 + y^{3}/4 \end{bmatrix}$$

$$\mathcal{D}^{2} = \begin{bmatrix} (y^{2}z^{2})/8 - (x^{2}z^{3})/24 + (y^{2}z^{3})/8 - (y^{3}z)/8 - (y^{3}z)/8 + y^{3}/24 + (xy^{2}z)/24 + (x^{2}yz^{2})/24 \\ (x^{2}z^{3})/12 + (y^{3}z^{2})/24 + (xy^{3})/24 - (y^{4}z)/24 - (xy^{2}z)/12 - (x^{2}yz^{2})/8 + (x^{2}y^{2}z)/24 \\ (x^{2}z^{3})/12 + (y^{3}z^{2})/24 + (xy^{3})/24 - (y^{4}z)/24 - (xy^{2}z)/12 + (xy^{3}z)/12 - (xy^{2}z^{2})/4 \\ - (x(x^{2}z^{2} - 3y^{2}z^{2} + 2xz^{2} + 6yz^{2} - 3y^{2}z + 6yz^{3} + y^{2} + xyz))/24 \\ (x^{3}z^{2})/24 - (x^{2}y^{2})/16 + (x^{3}z)/12 + (x^{4}z)/16 + (x^{4}z)^{2}/16 + (x^{4}z)^{2}/8 \\ - (x(x^{2}y^{2} + 2x^{2}z^{2} + xy^{2} - 2y^{3}z + 4^{4}y^{2})/16 + (x^{2}yz)/4 + (x^{2}yz^{2})/8 \\ - (x(x^{2}y^{2} + 2x^{2}z^{2} + xy^{2} - 2y^{3}z + y^{4} - 2yz)/6 + (xy^{2}z^{2})/8 \\ - (x(x^{2}y^{2} + 2x^{2}z^{2} + xy^{2} - 2y^{3}z + y^{4} - 2yz)/6 + (xy^{2}z^{2})/8 \\ - (x(x^{2}y^{2} + 2x^{2}z^{2} + xy^{2} - 2y^{3}z + y^{4} - 2yz)/12 \\ (x^{3}z^{2})/24 - (x^{2}y)/16 - (xy^{2})/36 - (yz^{2})/12 - (yz^{3})/12 - y^{2}/36 - (xyz)/36 \\ (x^{2}z^{2})/24 - (x^{2}y)/24 - (xy^{2})/36 + (y^{3}z)/24 - (x^{2}yz)/72 + (xyz)/18 \\ (x^{2}z)/18 - (x^{2}y)/72 - (xy^{2})/12 + (x^{3}z)/72 + y^{3}/24 + (xyz^{2})/6 - (xy^{2}z)/24 + (xyz)/6 \\ - (x^{2}(y^{2} - 3yz + 3x^{2}))/72 \\ (x^{2}z)/18 - (x^{2}y)/72 - (xy^{2})/12 + (x^{3}z)/72 + y^{3}/24 + (xyz^{2})/6 - (xy^{2}z)/24 + (xyz)/6 \\ - (xy(2x - 6yz + x^{2} + 3y^{2}))/72 \\ - (x^{2}y)/12 - (x^{2}y)/12 - x^{3}/36 - x^{4}/144 - y^{4}/16 - (x^{2}yz)/12 + (x^{2}y)/12 \\ - (x^{2}y^{2})/24 - (x^{2}y)/12 - x^{3}/36 - x^{4}/144 - y^{4}/16 - (x^{2}yz)/12 \\ \end{bmatrix}$$

Singular endpoints require special techniques to compute; using regular ODE methods will probably not work. Choices:

- 1. Power series approximate curve with a powerseries, extrapolate
- 2. Cauchy walk circles around t = 0 in complex space, integrate

a numerical homotopy path



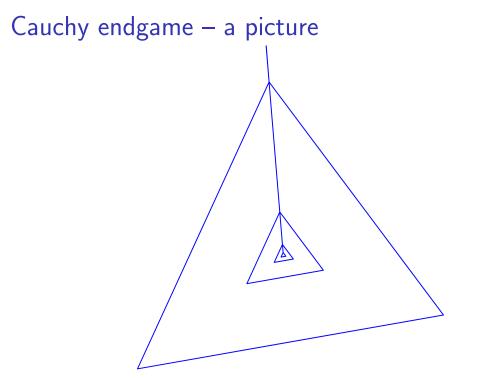
default bertini settings, a path projected onto its real coordinates

Cauchy endgame – procedure

- Fact: the path is a Puiseaux series in t.
- Method: Extrapolate to t = t₀ via a Cauchy integral (just compute the mean!)
- Tool: Walk circles around t₀ to gather numerical data to do Trapezoid Rule quadrature.

$$f(s)=\frac{1}{2\pi i}\int_{\circ}\frac{f(s)}{s-t_0}\,dz$$

- 1. Guess the cycle number
 - 1.1 Approximate the first terms of the power series
 - 1.2 Extrapolate forward to t'
 - 1.3 Track to next time
 - 1.4 Choose c which minimizes error at t'
- 2. Extrapolate to t_0



Certification – general Let

$$\beta(f, x) = ||x - \operatorname{Newtonstep}(f, x)||$$

$$\gamma(f, x) = \sup_{k \le 2} \left| \left| \frac{Jf(x)^{-1} J^k f(x)}{k!} \right| \right|^{\frac{1}{k-1}}$$

$$\alpha(f, x) = \beta(f, x) \gamma(f, x)$$

if

$$\alpha(f,x) < \frac{13 - 3\sqrt{17}}{4} \approx 0.157671$$

then Newton's method will converge to some $\boldsymbol{\xi}$ with

$$f(\xi) = 0$$
 exactly

To check that $x = \overline{x}$ – that x is an approximate solution to a real ξ :

- 1. Compute β , γ , α
- 2. If $||x real(x)|| > 2\beta$, not real
- 3. If $\alpha < 0.03$ && $||x \text{real}(x)|| < \frac{1}{20\gamma}$, real

4. take a newton step, goto 1

Alpha certified

Alpha certified - by Jon Hauenstein and Frank Sottile

- Command-line program.
- See manual for input format.
- Certifies polynomial and poly-exponential systems.
- Soft or Hard certification.

alphaCertified v1.3.0 (October 16, 2013) Jonathan D. Hauenstein and Frank Sottile GMP v6.1.2 & MPFR v4.0.1

Outline

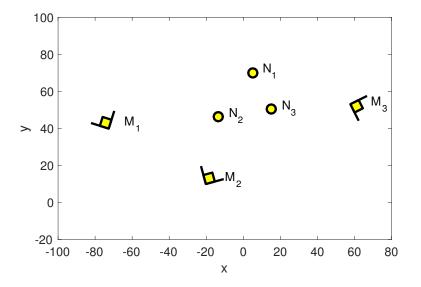
Motivation

Numerical Algebraic Geometry

Algorithms

Applications

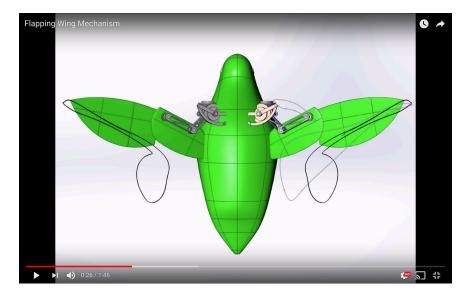
Challenge 1: design the four-bar



Challenge 1: Response

- The preceding set of 9 constraints yields a complex curve of degree 362, each point of which is a robotic design.
- We'll come to computing the real curve soon, but for now, add one more constraint to get a discrete set of solutions.

You can compute a bird wing



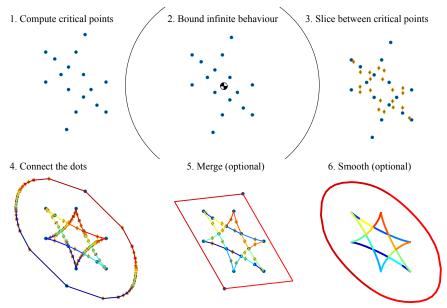
https://www.youtube.com/watch?v=7aXmze9Ynis&feature=youtu.be

Challenge 2 – Compute the real part

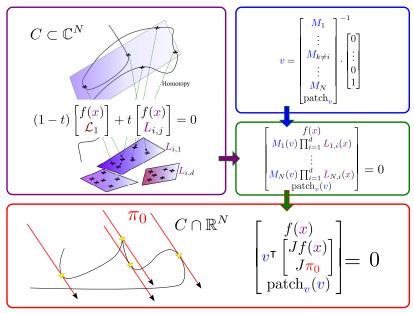
Extracting the real part of an arbitrary complex component is *very* hard. So far, we can:

- Fully decompose real curves
- ► Fully decompose real surfaces
- Compute at least one point on every part the real object
- And maybe play tricks to get other information

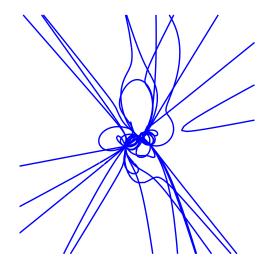
Curve decomposition



Regeneration to compute critical points



Example – Real curve decomposition



A degree 362 curve in 14-dimensional space

A point on every connected component

lf

- you just care about knowing whether there are any real solutions
- your variety or component is too complicated dimension too high, etc

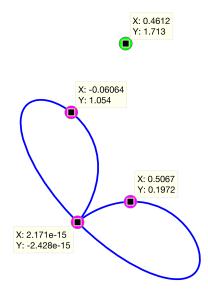
then you should probably settle for computing a point on every component.

A point on every connected component

Solve this homotopy:

$$H(x,\lambda,t) = \begin{bmatrix} f(x) - t\epsilon \\ \lambda_0(x-y) + \sum \lambda_j \nabla f_j(x)^{\mathsf{T}} \\ 1 - \sum \alpha_j \lambda_j \end{bmatrix}$$

- ϵ a random complex perturbation
- λ_j synthetic variables, representing nullvector of Jacobian
- ▶ α_j a random complex patch on the λ_j
- y a real point not on variety
- ▶ t path variable, goes to 0



Bertini_real

- Command-line MPI-parallel program.
- Uses Bertini 1 as its path tracker.
- C++ code, with options for Matlab or Python for symbolic operations.
- Matlab and Python visualization suites.
- Must self-compile. Must also self-compile B¹. Sorry.

BertiniReal(TM) v1.6.0

D.A. Brake with D.J. Bates, W. Hao, J.D. Hauenstein, A.J. Sommese, C.W. Wampler

(using GMP v6.1.2, MPFR v3.1.5)

Library-linked Bertini(TM) v1.6 (February 27, 2017)

D.J. Bates, J.D. Hauenstein, A.J. Sommese, C.W. Wampler

(using GMP v6.1.2, MPFR v3.1.5)

bertinireal.com

Outline

Numerical Algebraic Geometry

Applications

Thank you for your kind attention!

silviana.org
silviana.amethyst@gmail.com