
Theory and Applications of
Numerical Algebraic Geometry

Silviana Amethyst

13 October, 2020

1 / 53

Outline

Motivation

Numerical Algebraic Geometry

Algorithms

Applications

—

2 / 53

Four-bar mechanisms

Center-point

Target
pose

Proximal
link

Distal

link

Precision
point

Circle-point

Ground
link

Coupler
link

Coupler
triangle

see this video, 1:37

3 / 53

https://www.youtube.com/watch?v=Z09HZZ8LA_Y

A design problem

Design a
mechanism
passing through
the points and
achieving the
poses

0 20 40 60 80
−10

0

10

20

30

40

50

60

G
x

G
y

4 / 53

Challenge: design the four-bar

-100 -80 -60 -40 -20 0 20 40 60 80

x

-20

0

20

40

60

80

100

y M
1

 M
2

 M
3

 N
1

 N
2

 N
3

Can you design a four-bar satisfying these constraints?

5 / 53

Challenge: 3-3 fourbar system


−(aii+ ar − d1 − t1(xr + xii))(D1 + aii− ar − T1(xii− xr)) + (aii+ ar − xii− xr)(aii− ar − xii+ xr)
−(aii+ ar − d2 − t2(xr + xii))(D2 + aii− ar − T2(xii− xr)) + (aii+ ar − xii− xr)(aii− ar − xii+ xr)

(aii+ ar − xii− xr)(aii− ar − xii+ xr)− (D3 + aii− ar + (t3,ii− t3,r)(xii− xr))(aii+ ar − d3 − (t3,r + t3,ii)(xr + xii))
(aii+ ar − xii− xr)(aii− ar − xii+ xr)− (D4 + aii− ar + (t4,ii− t4,r)(xii− xr))(aii+ ar − d4 − (t4,r + t4,ii)(xr + xii))
(aii+ ar − xii− xr)(aii− ar − xii+ xr)− (D5 + aii− ar + (t5,ii− t5,r)(xii− xr))(aii+ ar − d5 − (t5,r + t5,ii)(xr + xii))

−(bii+ br − d1 − t1(yr + yii))(D1 + bii− br − T1(yii− yr)) + (bii+ br − yii− yr)(bii− br − yii+ yr)
−(bii+ br − d2 − t2(yr + yii))(D2 + bii− br − T2(yii− yr)) + (bii+ br − yii− yr)(bii− br − yii+ yr)

(bii+ br − yii− yr)(bii− br − yii+ yr)− (D3 + bii− br + (t3,ii− t3,r)(yii− yr))(bii+ br − d3 − (t3,r + t3,ii)(yr + yii))
(bii+ br − yii− yr)(bii− br − yii+ yr)− (D4 + bii− br + (t4,ii− t4,r)(yii− yr))(bii+ br − d4 − (t4,r + t4,ii)(yr + yii))
(bii+ br − yii− yr)(bii− br − yii+ yr)− (D5 + bii− br + (t5,ii− t5,r)(yii− yr))(bii+ br − d5 − (t5,r + t5,ii)(yr + yii))

−(t3,ii− t3,r)(t3,r + t3,ii)− 1
−(t4,ii− t4,r)(t4,r + t4,ii)− 1
−(t5,ii− t5,r)(t5,r + t5,ii)− 1




I 14 variables (a,b,x ,y ,t), 13 functions,
14 numerical parameters (angles and positions)

I underdetermined, defines some positive dimensional
objects

Q: how are we to solve this???
A: numerical algebraic geometry

6 / 53

Questions NAG answers
Given a polynomial system f , understand

V(f) = {z ∈ CN : f (z) = 0}

the algebraic variety of f .

I What are the dimensions of the components f defines?

I What are the degrees of the components of V(f)?

I Describe the real part of V(f)?

I Do the components of V(f) intersect?

I Given a point p on V(f), what is the local geometry
around p?

I What can we do to reduce the computation time?
How can we make it more convenient?

7 / 53

Outline

Motivation

Numerical Algebraic Geometry

Algorithms

Applications

—

8 / 53

Computational algebraic geometry is two parts

9 / 53

What is NAG?

numerical algebraic geometry (NAG), or numerical
nonlinear algebra is a field of computational algebraic
geometry which parallels symbolic algebraic geometry

I Algebraic geometry studies
zero sets of systems of polynomials

I Computational AG computes the zero sets

I Symbolic AG computes them via manipulation of
polynomials

⇒ think gaussian elimination

I Numerical AG computes them via points

10 / 53

Fundamental tools of NAG

I Homotopy continuation – numerical path tracking

I Form a start system – choice impacts solve time

I Bertini’s theorem – theoretical foundation

I Endgames – tools to compute singular points

11 / 53

Homotopy continuation – an example
Let’s solve this two-variable target system:

f (x , y) =

[√
3x2 + 2xy − 4
0.5xy − x3

]

To do so, let’s instead solve this easier start system:

g(x , y) =

[
x2 − 1
y 3 − 1

]

Then we deform g into f using this homotopy:

H(x , y , t) = (1− t)f + tg = 0

starting from tstart = 1 to tend = 0
12 / 53

Homotopy continuation – in general

singular
endpoint

endgame
boundary

nonsingular
endpoint

finite
start
points

13 / 53

Predictor-corrector tracking

after several successful

steps, take long steps

Adaptive tracking of

pr
ed

ic
tco

rrect

p
re

d
ic

t

predict

co
rrect

co
rrect

large residual

reduce step size

predictco
rrect

Solve the Davidenko Differential Equation

∂H

∂z

dz

dt
+
∂H

∂t
= 0 ⇒ dz

dt
= −

[
JH(z , t)−1

] ∂H(z , t)

∂t

14 / 53

Start system
To solve f , we first solve g , the start system. Some are:

I Roots of unity – high root count, closely spaced
solutions, trivial to write / create, bad conditioning

I Total degree with randomization – high root count, easy
to form, spatially separated points

I And other more complicated ones ?
I Linear product – Build up by taking products of linears. Lower

root count by discarding singularities along the way
I M-homogeneous – Root count may be lower, may be higher.

Combinatorially many to choose from
I Polyhedral – Very sharp root count, hard to form

? Better start systems reduce total track time.
15 / 53

Why does NAG work?
I Bertini’s theorem – a generalization of the

fundamental theorem of algebra.

The FToA tells us that
f (z) is a univariate polynomial of degree d ,

⇒ f has d roots over C, counting multiplicity

Bertini’s theorem tells us a system of polynomials splits
over C.

I Bertini’s theorem provides upper bounds on the # of
solutions a polynomial system can have.

I The first important one is the Bezout bound ⇐⇒ total
degree g(x)

16 / 53

Implementation

Some highlights of implementation details:

I The use of arbitrary precision arithmetic allows
computation near singularities during tracking.

I Adaptive step length allows one to invent schemes for
staying near target path

I Combining both adaptive step length and adaptive
precision gives the best of both worlds

I Endgames allow one to compute singular endpoints

17 / 53

Bertini – software for NAG

bertini.nd.edu

18 / 53

bertini.nd.edu

Outline

Motivation

Numerical Algebraic Geometry

Algorithms

Applications

—

19 / 53

Algorithms of NAG

I Witness sets
represent a positive dimensional object as

(linear slice) ∩ system

I Regeneration
build up solution sets from nothing via∏

(linear function)

I Deflation
magically make singular → non-singular

I Endgames
special methods for computing singular roots

I Certification
Proving that candidates are approximate roots

20 / 53

Witness sets come from slicing

To slice is to intersect a variety and an affine space.
Slicing produces a witness (super)set: a triple
W = {{wi},L, f }:

1. Linear Slice L : CN → CN−n

2. System f : CN → Cn

3. Points {wi} = V(f) ∩ V(L)

Two imporant properties, when slicing done correctly:

I #({wi}) =
∑

deg(Cj) + junk,

I dim(Cj) = N − n = k

21 / 53

Trace Test

The trace test numerically verifies completeness of a set

centroid

moves

linearly

move slice

linearly

The trace is 0 ⇐⇒ set of points is complete

22 / 53

Monodromy

To do monodromy is to walk in a circle and collect data.

I Compute new
connections to known
points

I Separate sets of points by
connections

I Compute series expansion
coefficients

I Estimate singular
solutions

23 / 53

Regeneration

To regenerate is to use products of linears to build up a start
system, and solve by homotoping as

H(x , t) = (1− t)




f (x)
f̃ (x)





 + t




f (x)∏d1
i=1 L1,i(x)

...∏dk
i=1 Lk,i(x)


 = 0

I dj is the degree of j th polynomial in f̃ .

This permits intersections and other fun computations

24 / 53

Example – regeneration to find curve critical
points (left nullspace method)

Regeneration uses products of linears to build up a start
system for a homotopy. We’re solving by homotoping as

H(x , v ; t) = (1−t)




f (x)

vᵀ ·
[
Jf (x)
Jπ1

]

patchv


+ t




f (x)

M1(v)
∏δ

i=1 L1,i(x)
...

MN(v)
∏δ

i=1 LN,i(x)
patchv




= 0

I δ is the maximum degree any polynomial in f .

I π is some linear projection
25 / 53

Deflation

Deflation

I Making the untrackable, trackable.

I Regularizing witness and other points.

I Reduces one solution component at a time.

I Produces a new system for which Newton’s method
hypothetically converges quadratically.

I We are deflating the multiplicity of the singularity.

I Isosingular sets are closures of sets with the same
deflation sequence.

26 / 53

Deflation – nullspace

given f : CN → Cn with dnull(Jf) at a generic point x , choose
a general linear system L : CN → Cd , and set

ge(x , η) =




f (x)
Jf (x) · η
L(η)




yields
ge : C2N → C2n+d

[Leykin, Verschelde, Zhao ‘06]

27 / 53

Deflation – determinental

This method of deflations adds no variables, but instead lots
of functions

gdet =




f (x)
det Jσ1f (x)

...
det Jσmf (x)




where {σi} indexes the set of (n − d + 1)x(n − d + 1)
submatrices of the Jabobian. d is still dimnull of Jf .

gdet : CN → Cscary

[Hauenstein, Wampler ‘13]

28 / 53

Application of deflation – finding singular curves

1. Compute witness set for critical curve.

2. Separate singular witness points from nonsingular.
I Nonsingular → critical curve.
I Singular → singular curve(s).

3. Separate singular witness points by deflation sequence.

4. Decompose each singular curve.

29 / 53

Example - Solitude

30 / 53

Example - Solitude

Solitude:

f (x , y , z) = x2yz + xy 2 + y 3 + y 3z − x2z2

D1 =




x2yz + xy 2 + y 3 + y 3z − x2z2

y 2/4− (xz2)/2 + (xyz)/2
(xy)/2 + (x2z)/4 + (3y 2z)/4 + (3y 2)/4

(x2y)/4− (x2z)/2 + y 3/4




31 / 53

Example curve deflated - Solitude

D2 =



x2yz + xy2 + y3 + y3z − x2z2

y2/4− (xz2)/2 + (xyz)/2

(xy)/2 + (x2z)/4 + (3y2z)/4 + (3y2)/4

(x2y)/4− (x2z)/2 + y3/4

(y2z2)/8− (x2z3)/24 + (y2z3)/8− (y3z2)/8− (y3z)/8 + y3/24 + (xy2z)/24 + (x2yz2)/24

(x2z3)/12 + (y3z2)/24 + (xy3)/24− (y4z)/24− (xy2z)/12− (x2yz2)/8 + (x2y2z)/24

(x2y2)/24 + (xy3)/8− y4/24− (xy2z)/4− (x2yz)/12 + (xy3z)/12− (xy2z2)/4

−(x(x2z2 − 3y2z2 + 2xz2 + 6yz2 − 3y2z + 6yz3 + y2 + xyz))/24

(x3z2)/24− (x2y2)/48 + y4/48 + (x2yz)/12 + (xy3z)/12− (xy2z2)/8

(xy3)/12− (x2y2)/16 + (x3z)/12 + (x4z)/48 + (y4z)/16 + y4/16 + (x2yz)/4 + (x2yz2)/4

(x3z2)/24− (x2y2)/16− (xy3)/8 + y4/16 + (xy2z)/4 + (x2yz)/6 + (xy2z2)/8

−(x(x2y2 + 2x2z2 + xy2 − 2y3z + y4 − 2x2yz))/24

−(y(4x2y2 + 6x2y + 4x3 + x4 + 3y4))/48

(y2z2)/12− (x2z2)/36− (xz2)/36− (yz2)/12 + (y2z)/12− (yz3)/12− y2/36− (xyz)/36

(x2z2)/24− (y2z2)/24− (xy2)/36 + (y3z)/24− (x2yz)/72 + (xyz)/18

(x2z)/18− (x2y)/72− (xy2)/12 + (x3z)/72 + y3/24 + (xyz2)/6− (xy2z)/24 + (xyz)/6

(x2z2)/24− (y2z2)/24− (xy2)/36 + (y3z)/24− (x2yz)/72 + (xyz)/18

−(x2(y2 − 3yz + 3z2))/36

−(xy(2x − 6yz + x2 + 3y2))/72

(x2z)/18− (x2y)/72− (xy2)/12 + (x3z)/72 + y3/24 + (xyz2)/6− (xy2z)/24 + (xyz)/6

−(xy(2x − 6yz + x2 + 3y2))/72

−(x2y2)/24− (x2y)/12− x3/36− x4/144− y4/16− (x2yz)/12



32 / 53

Endgames

Singular endpoints require special techniques to compute;
using regular ODE methods will probably not work.
Choices:

1. Power series – approximate curve with a powerseries,
extrapolate

2. Cauchy – walk circles around t = 0 in complex space,
integrate

33 / 53

a numerical homotopy path

default bertini settings, a path projected onto its real
coordinates

34 / 53

Cauchy endgame – procedure
I Fact: the path is a Puiseaux series in t.

I Method: Extrapolate to t = t0 via a Cauchy integral (just
compute the mean!)

I Tool: Walk circles around t0 to gather numerical data to
do Trapezoid Rule quadrature.

f (s) =
1

2πi

∫

◦

f (s)

s − t0
dz

1. Guess the cycle number
1.1 Approximate the first terms of the power series
1.2 Extrapolate forward to t ′

1.3 Track to next time
1.4 Choose c which minimizes error at t ′

2. Extrapolate to t0
35 / 53

Cauchy endgame – a picture

integrate around the triangles to extrapolate

36 / 53

Certification – general
Let

β(f , x) = ||x − Newtonstep(f , x)||

γ(f , x) = supk≤2

∣∣∣∣
∣∣∣∣
Jf (x)−1Jk f (x)

k!

∣∣∣∣
∣∣∣∣

1
k−1

α(f , x) = β(f , x) γ(f , x)

if

α(f , x) <
13− 3

√
17

4
≈ 0.157671

then Newton’s method will converge to some ξ with

f (ξ) = 0 exactly

37 / 53

Certification – real

To check that x = x̄ – that x is an approximate solution to a
real ξ:

1. Compute β, γ, α

2. If ||x − real(x)|| > 2β, not real

3. If α < 0.03 && ||x − real(x)|| < 1
20γ , real

4. take a newton step, goto 1

38 / 53

Alpha certified

Alpha certified – by Jon Hauenstein and Frank Sottile

I Command-line program.

I See manual for input format.

I Certifies polynomial and poly-exponential systems.

I Soft or Hard certification.

39 / 53

Outline

Motivation

Numerical Algebraic Geometry

Algorithms

Applications

—

40 / 53

Challenge 1: design the four-bar

-100 -80 -60 -40 -20 0 20 40 60 80

x

-20

0

20

40

60

80

100

y M
1

 M
2

 M
3

 N
1

 N
2

 N
3

41 / 53

Challenge 1: Response

I The preceding set of 9 constraints yields a complex curve
of degree 362, each point of which is a robotic design.

I We’ll come to computing the real curve soon, but for now,
add one more constraint to get a discrete set of solutions.

42 / 53

You can compute a bird wing

https://www.youtube.com/watch?v=7aXmze9Ynis&feature=youtu.be

43 / 53

https://www.youtube.com/watch?v=7aXmze9Ynis&feature=youtu.be

Challenge 2 – Compute the real part

Extracting the real part of an arbitrary complex component
is very hard.
So far, we can:

I Fully decompose real curves

I Fully decompose real surfaces

I Compute at least one point on every part the real object

I And maybe play tricks to get other information

44 / 53

Curve decomposition
1. Compute critical points 2. Bound infinite behaviour 3. Slice between critical points

4. Connect the dots 5. Merge (optional) 6. Smooth (optional)

45 / 53

Regeneration to compute critical points

opy

46 / 53

Example – Real curve decomposition

A degree 362 curve in 14-dimensional space

47 / 53

A point on every connected component

If

I you just care about knowing whether there are any real
solutions

I your variety or component is too complicated – dimension
too high, etc

then you should probably settle for computing a point on every
component.

48 / 53

A point on every connected component

Solve this homotopy:

H(x , λ, t) =




f (x)− tε
λ0(x − y) +

∑
λj∇fj(x)ᵀ

1−∑αjλj




I ε – a random complex perturbation

I λj – synthetic variables, representing nullvector of
Jacobian

I αj – a random complex patch on the λj
I y – a real point not on variety

I t – path variable, goes to 0

49 / 53

50 / 53

Bertini real

I Command-line
MPI-parallel program.

I Uses Bertini 1 as its path
tracker.

I C++ code, with options
for Matlab or Python for
symbolic operations.

I Matlab and Python
visualization suites.

I Must self-compile. Must
also self-compile B1.
Sorry.

bertinireal.com

51 / 53

Outline

Motivation

Numerical Algebraic Geometry

Algorithms

Applications

—

52 / 53

Thank you for your kind attention!

silviana.org

silviana.amethyst@gmail.com

53 / 53

silviana.org
silviana.amethyst@gmail.com

	Motivation
	Numerical Algebraic Geometry
	Algorithms
	Applications
	—

