Theory and Applications of
Numerical Algebraic Geometry

Silviana Amethyst

13 October, 2020

The Power of

University of Wisconsin

Eau Claire AND

1/53

QOutline

Motivation

2/53

Four-bar mechanisms

Prc?cision Target
O point pose

Distal

Circle-point
Proximal
link

Center-point

see this video, 1:37

3/53

https://www.youtube.com/watch?v=Z09HZZ8LA_Y

A design problem

601

501

Design a 40
mechanism o
. 30,
passing through -
the points and 20
achieving the
10+ ° 45
poses P
0,
o
-10
0 20 40 60 80

4/53

Challenge: design the four-bar

100

80

60 -

M,
N ON; q 8
> 40+ dM1 O 2 -

20
b,

0,

_20 Il Il Il Il Il Il Il Il
-100 -80 -60 -40 -20 0 20 40 60 80
X

Can you design a four-bar satisfying these constraints?

5/53

Challenge 3-3 fourbar s system

>

>

(azi +a, —dy — ty (@ + 241)) (D1 + azi — a, — it — xy)) + (ait + ap — x50 — x) (a0 — ap — x40 + 21)
—(aii + ap — dy — t2(xy + 241)) (D2 + aji — ap — To(xii — 2,)) + (@i + ap — @30 — 2,) (a0 — a, — x40 +)
(aii + a, — x40 — x,)(agi — ay — xii +) — (D3 + aji — ap + (t3,0 — t3,) (@i — x,))(aii + ap — d3 — (t3,0 + t3,0) (2, + 21))
(ait + ap — i1 — 2) (a1 — ap — x40 +) — (Da + @it — ap + (a0 — ta,) (@it — @) (@it + ar — dy — (tar + tai0) (2, + xi1))
(aii + a, — x40 — x,)(a;i — ap — xii +) — (D5 + azi — ap + (ts,50 — U5,) (@50 — @) (aii + ap — ds — (tsr + b5 30) (2 + 241))
—(bji + by — dy — ty (yr + y:7)) (D1 + bji — by — Ty (yii — yr)) + (b1+b — it — yp) (bt — by — yii + yp)
—(bji + by — do — ta(yr + yi1)) (D2 + bji — by — To(yit — yr)) + (bii + by — yit — yp) (bit — by — yii + yr)
(bid + by — it — yp) (it — by — ysi + yp) — (D3 + byi — by + (t3,61 — t3,0) (yid — yr))(bii + by — dz — (3, + t3,00) (yr + y37))
(bit + by — it — yo) (bii — by — yii + yr) — (Da + bii — by + (taii — tar) (Yid — y,))(bii + by — da — (tar + ta,i0) (yr + yii))
(bid + by = yid = yr) (bii = by = yii + ;) = (Ds + bid — by + (t5,60 — to,0) (yii = y2)) (bii + by — ds — (b5, + t5,08) (yr + i)
—(t3,i1 — t3,)(ta,r + t3,00) —
—(taid = tap)(bar +ta0) —
(5,50 = to,0) (ts,r + t5,10) —

14 variables (a,b,x,y,t), 13 functions,

14 numerical parameters (angles and positions)
underdetermined, defines some positive dimensional
objects

Q: how are we to solve this???
A: numerical algebraic geometry

6/53

Questions NAG answers

Given a polynomial system f, understand

V(f)={zeC" : f(z) =0}

the algebraic variety of f.

>

vvyyy

v

What are the dimensions of the components f defines?
What are the degrees of the components of V(f)?
Describe the real part of V(f)?

Do the components of V(f) intersect?

Given a point p on V(f), what is the local geometry
around p?

What can we do to reduce the computation time?
How can we make it more convenient?

7/53

QOutline

Numerical Algebraic Geometry

8/53

Computational algebraic geometry is two parts

(Computational Math A
(Computational AG \
Solve polynomial systems
e compute f(x)=0
(Numerical AG \ (Symbolic AG \
1. compute a start system to 1. compute syzygies to
2. compute start points to 2. compute a Grobner basis to
3. track paths to solutions to f(x) 3. solve the ideal membership problem
- v

9/53

What is NAG?

numerical algebraic geometry (NAG), or numerical
nonlinear algebra is a field of computational algebraic
geometry which parallels symbolic algebraic geometry

» Algebraic geometry studies
zero sets of systems of polynomials

» Computational AG computes the zero sets

» Symbolic AG computes them via manipulation of
polynomials
= think gaussian elimination

» Numerical AG computes them via points

10/53

Fundamental tools of NAG

» Homotopy continuation — numerical path tracking
» Form a start system — choice impacts solve time
» Bertini's theorem — theoretical foundation

» Endgames — tools to compute singular points

11/53

Homotopy continuation — an example

Let’s solve this two-variable target system:

V3x2 + 2xy — 4
fooy) = [0.5xy —);3

To do so, let's instead solve this easier start system:

glx,y) = bi _ ﬂ

Then we deform g into f using this homotopy:

H(x,y,t)=(1—1t)f +tg =0

12/53

Homotopy continuation — in general

H

'
nonsingular | v
endpoint Y=

finite
start
points
v
singular o .*
l:::::--.-.----“‘
endpoint { Stmim
as endgame @xo
t =0 boundary

13/53

Predictor-corrector tracking

Adaptive tracking of H(z(t),t) =0

large residual «
reduce step size after several successful

- steps, take long steps
4 I IL

AtH_ 1 Ati Atz —1

Solve the Davidenko Differential Equation

ORdz OH _o o Y h]

OHdz OH OH(z,t)
ozdt Ot dt

Ot

14 /53

Start system

To solve f, we first solve g, the start system. Some are:

» Roots of unity — high root count, closely spaced
solutions, trivial to write / create, bad conditioning

» Total degree with randomization — high root count, easy
to form, spatially separated points

» And other more complicated ones
» Linear product — Build up by taking products of linears. Lower
root count by discarding singularities along the way
» M-homogeneous — Root count may be lower, may be higher.
Combinatorially many to choose from
» Polyhedral — Very sharp root count, hard to form

* Better start systems reduce total track time.

15/53

Why does NAG work?

» Bertini's theorem — a generalization of the
fundamental theorem of algebra.

The FToA tells us that
f(z) is a univariate polynomial of degree d,
= f has d roots over C, counting multiplicity

Bertini's theorem tells us a system of polynomials splits
over C.

» Bertini's theorem provides upper bounds on the # of
solutions a polynomial system can have.

» The first important one is the Bezout bound <= total
degree g(x)

16 /53

Implementation

Some highlights of implementation details:

>

>

The use of arbitrary precision arithmetic allows
computation near singularities during tracking.

Adaptive step length allows one to invent schemes for
staying near target path

Combining both adaptive step length and adaptive
precision gives the best of both worlds

Endgames allow one to compute singular endpoints

17/53

Bertini — software for NAG

Bertini(TM) v1.6
(February 27, 2017)

D.J. Bates, J.D. Hauenstein,
A.J. Sommese, C.W. Wampler

Cusing GMP v6.1.2, MPFR v4.0.1)

bertini.nd.edu

18/53

bertini.nd.edu

QOutline

Algorithms

19/53

Algorithms of NAG

» Witness sets
represent a positive dimensional object as
(linear slice) N system

» Regeneration
build up solution sets from nothing via
[T (linear function)

» Deflation
magically make singular — non-singular

» Endgames
special methods for computing singular roots

» Certification
Proving that candidates are approximate roots

20/53

Witness sets come from slicing

To slice is to intersect a variety and an affine space.
Slicing produces a witness (super)set: a triple

W = {{w;}, L, f}:
1. Linear Slice £ : CN — CN-n
2. System f : CN — C”
3. Points {w;} = V(f)N V(L)

Two imporant properties, when slicing done correctly:

> #({w}) = >_ deg(() + junk,
» dim(G)=N—-n=k

21/53

Trace Test

The trace test numerically verifies completeness of a set

centroid Y (f)

moves
linearly

move slice
linearly

The trace is 0 <= set of points is complete

22/53

Monodromy
To do monodromy is to walk in a circle and collect data.

» Compute new
connections to known
points

» Separate sets of points by
connections

» Compute series expansion
coefficients

» Estimate singular
solutions

23/53

Regeneration

To regenerate is to use products of linears to build up a start
system, and solve by homotoping as

£(x) | f(x)
H(x,t) = (1 —t) ol |t H"=15Ll”'(x) =0
T Lei(x)

> d; is the degree of j™ polynomial in .
This permits intersections and other fun computations

24/53

Example — regeneration to find curve critical

points (left nullspace method)
Regeneration uses products of linears to build up a start
system for a homotopy. We're solving by homotoping as

) MO TT L 0
H(x,v;t) = (1—t) |vT- {Jj;?(:l()] +t Ii_l ’I =0
patch, MN(V)pI;[t%ﬁ L,i(x)

» ¢ is the maximum degree any polynomial in f.
» 7 is some linear projection

25/53

Deflation

Deflation

>

>
>
>

vy

Making the untrackable, trackable.
Regularizing witness and other points.
Reduces one solution component at a time.

Produces a new system for which Newton's method
hypothetically converges quadratically.

We are deflating the multiplicity of the singularity.

Isosingular sets are closures of sets with the same
deflation sequence.

26/53

Deflation — nullspace

given f : CN — C" with dnull(Jf) at a generic point x, choose
a general linear system £ : CVN — C¢, and set

f(x)
ge(Xﬂ?) = Jf(X) "N
L(n)

yields
ge CZN N (C2n+d

[Leykin, Verschelde, Zhao ‘06]

27/53

Deflation — determinental

This method of deflations adds no variables, but instead lots
of functions

f(x)
det J,, f(x
8det = . ()

det J, f(x)
where {o;} indexes the set of (n —d + 1)x(n—d + 1)

submatrices of the Jabobian. d is still dimnull of Jf.

Zdet - CN —y (Cseary

[Hauenstein, Wampler ‘13]

28/53

Application of deflation — finding singular curves

—

. Compute witness set for critical curve.

N

. Separate singular witness points from nonsingular.

» Nonsingular — critical curve.
» Singular — singular curve(s).

w

. Separate singular witness points by deflation sequence.
4. Decompose each singular curve.

29/53

Example - Solitude

30/53

Example - Solitude

Solitude:
f(x,y,z) = XPyz + xy* + y* + y’z — x*2°
- X2yz + xy2 + y3 + y37 — x222 7
D! = y2 /4 — (x2%)/2 + (xyz) /2

(xy)/2+ (x°z) /4 + (3y°z) /4 + (3y*) /4
(x%y)/4 — (x°z)/2 + y*/4

31/53

Example curve deflated - Solitude

2 _

XPyz +xy? + y3 + y3z — x222

Y2 /4 = (2%)/2 + (xv2) /2
(9)/2+(2) /4 + (3y%2) /4 + (3y°) /4
()[4 = (Pz)/2+ 2 /4

(?2%)/8 — (:22%) /24 + (y?2%) /8 — (v32%) /8 — (v32) /8 + y3 /24 + (xy%2) /24 + (xPyZ?) /24
(E23) /12 + (v322) /28 + (/%) /24 — (v*2) /24 — (xv?2) /12 — (xPy2?) /8 + (Py?z) /24
x%y?)/24 + (gyz)/ii *2y2/24 *z(xyzZ)/z4 - (X;yZ)/123+ (><y232)/12 — (022%)/4
—(x(x“z% — 3y“z° + 2xz° + 6yz° — 3y“z + 6yz> + y° + xyz))/24
(x322)/24 — (x%y?) /48 + y* /48 + (xyz) /12 + (xy2) /12 — (xy?2%)/8
(0*)/12 = (Py?) /16 + (x*2) /12 + (x*2) /48 + (v*2)/16 + y* /16 + (x°y2) /4 + (Py2°) /4
(32%)/24 — (x*y?) /16 — (/%) /8 + y* /16 + (°2) /4 + (x*y2) /6 + (x*2%) /8
7(x(x2y2 +22x2222 —+ ;(y2 - 2?}’/32 ty‘l 742x2yz))/24
—(y(4x“y” + 6x“y + 4x> + x" + 3y")) /48
(¥?2%)/12 — (x*2%) /36 — (x2?) /36 — (yz°)/12 + (y*2) /12 — (y2%) /12 — y? /36 — (xy2)/36
(x22%) /24 — (y?2%)/24 — (xy?)/36 + (yv>2)/24 — (x°yz) /72 + (xyz)/18
(22)/18 — (Py) /72 — (%) /12 + (x32) /72 + y3 /24 + (x2%) /6 — (3/%2) /24 + (xy2) /6
(x222)/24 — (y%2%) /24 — (xv?)/36 + (v32) /24 — (x%yz) /72 + (xyz)/18
7(x2(y2 — 3yz JE 322))2/36
—(xy(2x — b6yz + x“ + 3y~))/72
(?2)/18 — (2y) /72 = (?) /12 + (*2) /72 + y3 /24 + (x2°) /6 — (xv%2) /24 + (xv2) /6
—(xy(2x — byz + X2+ 3y2))/72
—(x2y?)/24 — (x%y)/12 — x3/36 — x* /144 — y* /16 — (x%yz)/12

32/53

Endgames

Singular endpoints require special techniques to compute;
using regular ODE methods will probably not work.
Choices:
1. Power series — approximate curve with a powerseries,
extrapolate

2. Cauchy — walk circles around t = 0 in complex space,
integrate

33/53

a numerical homotopy path

default bertini settings, a path projected onto its real
coordinates

34/53

Cauchy endgame — procedure

>
>

Fact: the path is a Puiseaux series in t.
Method: Extrapolate to t = t; via a Cauchy integral (just
compute the mean!)

Tool: Walk circles around t; to gather numerical data to
do Trapezoid Rule quadrature.

f(s) = — /f(s) dz

2w Jo s — 1y

Guess the cycle number

1.1 Approximate the first terms of the power series
1.2 Extrapolate forward to t/

1.3 Track to next time

1.4 Choose ¢ which minimizes error at t’

Extrapolate to t

35/53

Cauchy endgame — a picture

36/53

Certification — general

Let
B(f,x) = ||x — Newtonstep(f, x)||
(F.x) = supres Jf(x)—kll_jkf(x) pa=r
a(f,x) = B(f, x)(f, x)
if
a(f, x) < B_TW ~ 0.157671

then Newton's method will converge to some & with

f(§) =0 exactly

37/53

Certification — real

To check that x = X — that x is an approximate solution to a
real &:
1. Compute 3, v, «
f ||x — real(x)|| > 28, not real
Cf a0 <0.03 && ||x — real(x)|| < W' real

take a newton step, goto 1

~ W N

38/53

Alpha certified

Alpha certified — by Jon Hauenstein and Frank Sottile
» Command-line program.
» See manual for input format.
» Certifies polynomial and poly-exponential systems.
» Soft or Hard certification.

alphaCertified v1.3.0 (October 16, 2013)

Jonathan D. Hauenstein and Frank Sottile
GMP vo0.1.2 & MPFR v4.0.1

39/53

QOutline

Applications

40/53

Challenge 1: design the four-bar

100
80 r
oN,
60 r |\/|7
S
oN
NN« '} ,

20 ¢
b,

0,

_20 1 1 1 1 1 1 1
-100 -80 -60 -40 -20 0 20 40

60

80

41/53

Challenge 1: Response

» The preceding set of 9 constraints yields a complex curve
of degree 362, each point of which is a robotic design.

» We'll come to computing the real curve soon, but for now,
add one more constraint to get a discrete set of solutions.

42/53

You can compute a bird wing

FlappingWingMechanism

» > o) 0:26/1:46

https://www.youtube.com/watch?v=7aXmze9¥Ynis&feature=youtu.be

43/53

https://www.youtube.com/watch?v=7aXmze9Ynis&feature=youtu.be

Challenge 2 — Compute the real part

Extracting the real part of an arbitrary complex component
is very hard.
So far, we can:

» Fully decompose real curves
» Fully decompose real surfaces
» Compute at least one point on every part the real object

» And maybe play tricks to get other information

44/53

Curve decomposition

1. Compute critical points 2. Bound infinite behaviour 3. Slice between critical points
. .
L]
. . . .
° . “ .
. ° . ° : ’o' N
L] L] hd * .’ + °
3 . ° . % . * . : . . : .
L] . L] ‘.
. ° . * ,.'0 ¢
. L] - ~

4. Connect the dots 6. Smooth (optional)

45/53

Regeneration to compute critical points

M,y
: 0
v = Myzi NE
: 0
My 1
patch,,

1

f(=)
M (v) Hid:l Lyi(x)

My ()T, Lya(a) | =0
patch, (v)

o
uT { I | |= 0
patch, (v)

46 /53

Example — Real curve decomposition

et

A degree 362 curve in 14-dimensional space

47/53

A point on every connected component

If

» you just care about knowing whether there are any real
solutions

» your variety or component is too complicated — dimension
too high, etc

then you should probably settle for computing a point on every
component.

48/53

A point on every connected component

Solve this homotopy:

f(x) — te
H(X7 A t) =)‘O(X - y) + Z)‘ij(X)T
1-— Z Oéj)\j
» ¢ —a random complex perturbation
»)\ — synthetic variables, representing nullvector of
Jacobian
» «; —a random complex patch on the J;

» y — a real point not on variety

\4

t — path variable, goes to 0

49/53

X:0.4612
Y:1.713

X: -0.06064
Y: 1.054

X: 0.5067
Y:0.1972

X:2.171e-15
Y: -2.428e-15

50/53

Bertini_real

>

Command-line
MPI-parallel program.
Uses Bertini 1 as its path
tracker.

C++ code, with options
for Matlab or Python for
symbolic operations.

Matlab and Python
visualization suites.

Must self-compile. Must
also self-compile B.
Sorry.

BertiniReal(TM) v1.6.0

D.A. Brake with

D.J. Bates, W. Hao, J.D. Hauenstein,

A.J. Sommese, C.W. Wampler

(Cusing GMP v6.1.2, MPFR v3.1.5)
Library-linked Bertini(TM) v1.6
(February 27, 2017)

D.J. Bates, J.D. Hauenstein,
A.J. Sommese, C.W. Wampler

(Cusing GMP v6.1.2, MPFR v3.1.5)

bertinireal.com

51/53

QOutline

52/53

Thank you for your kind attention!

silviana.org
silviana.amethyst@gmail.com

53/53

silviana.org
silviana.amethyst@gmail.com

	Motivation
	Numerical Algebraic Geometry
	Algorithms
	Applications
	—

