Discrete conformality and ideal cone-manifolds

Roman Prosanov

Technische Universität Wien Institut für Diskrete Mathematik und Geometrie

ъ

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

Let M be a smooth manifold and g_0 , g_1 be two Riemannian metrics on M. They are called **pointwise conformally equivalent** if

$$g_0 = e^{2u}g_1$$

for a smooth function u on M.

3 × 4 3 ×

Definition

Let M be a smooth manifold and g_0 , g_1 be two Riemannian metrics on M. They are called **pointwise conformally equivalent** if

$$g_0 = e^{2u}g_1$$

for a smooth function u on M.

Theorem

Two Riemannian metrics on M are pointwise conformally equivalent if and only if the angles between any two smooth curves are the same in both metrics.

3 × 4 3 ×

Definition

Let M be a smooth manifold and g_0 , g_1 be two Riemannian metrics on M. They are called **pointwise conformally equivalent** if

$$g_0 = e^{2u}g_1$$

for a smooth function u on M.

Theorem

Two Riemannian metrics on M are pointwise conformally equivalent if and only if the angles between any two smooth curves are the same in both metrics.

Definition

A conformal structure on M is a pointwise conformal equivalence class of Riemannian metrics on M.

Definition

A smooth map $F: (M_1, g_1) \to (M_2, g_2)$ between two Riemannian manifolds is called **conformal** if it is a local diffeomorphism and

$$F^*g_2 = e^{2u}g_1$$

for a smooth function u on M_1 .

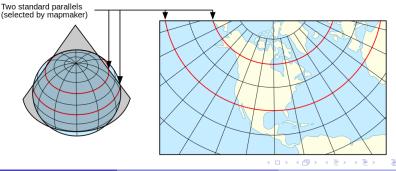
(4月) トイヨト イヨト

Definition

A smooth map $F: (M_1, g_1) \to (M_2, g_2)$ between two Riemannian manifolds is called **conformal** if it is a local diffeomorphism and

$$F^*g_2 = e^{2u}g_1$$

for a smooth function u on M_1 .



Discrete conformality and ideal cone-

Smooth conformality: uniformization

Theorem (Uniformization Theorem)

Let (S,g) be a closed orientable Riemannian surface. Then it is pointwise conformally equivalent to a unique metric of constant Gaussian curvature equal to -1, 0 or 1 (in case of 0 curvature the uniqueness is up to scaling). The sign is equal to the sign of the Euler characteristic of S.

(人間) とうき くうり

Smooth conformality: uniformization

Theorem (Uniformization Theorem)

Let (S,g) be a closed orientable Riemannian surface. Then it is pointwise conformally equivalent to a unique metric of constant Gaussian curvature equal to -1, 0 or 1 (in case of 0 curvature the uniqueness is up to scaling). The sign is equal to the sign of the Euler characteristic of S.

Definition

The **Teichmüller space** T(S) is the space of conformal structures on S modulo diffeomorphisms of S to itself isotopic to identity.

・ロッ ・回 ・ ・ ヨ ・ ・ 日 ・

Smooth conformality: uniformization

Theorem (Uniformization Theorem)

Let (S,g) be a closed orientable Riemannian surface. Then it is pointwise conformally equivalent to a unique metric of constant Gaussian curvature equal to -1, 0 or 1 (in case of 0 curvature the uniqueness is up to scaling). The sign is equal to the sign of the Euler characteristic of S.

Definition

The **Teichmüller space** T(S) is the space of conformal structures on S modulo diffeomorphisms of S to itself isotopic to identity.

One can attempt to understand Riemannian metrics on S as follows:

- Understand the Teichmüller space
- Understand diffeomorphisms
- Understand the conformal classes

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Problem

Let K be a smooth function on S. Does there exist a Riemannian metric g on S such that K is the Gaussian curvature of g?

(4) E (4) E (4)

Problem

Let K be a smooth function on S. Does there exist a Riemannian metric g on S such that K is the Gaussian curvature of g?

Theorem (The Gauss-Bonnet theorem)

$$\int_{S} K_g dA_g = 2\pi \chi(S).$$

(人間) とうき くうり

Problem

Let K be a smooth function on S. Does there exist a Riemannian metric g on S such that K is the Gaussian curvature of g?

Theorem (The Gauss-Bonnet theorem)

$$\int_{S} K_g dA_g = 2\pi \chi(S).$$

The Gauss-Bonnet condition:

- $\chi(S) > 0$: K is positive somewhere;
- $\chi(S) = 0$: K changes sign unless $K \equiv 0$;
- $\chi(S) < 0$: K is negative somewhere.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (Berger, 1971)

Let $\chi(S) < 0$, g_0 be a Riemannian metric on S and K be a nonpositive smooth function on S such that $K \neq 0$. Then there exists a unique metric g on S in the conformal class of g_0 with $K = K_q$.

- 4 同 1 4 日 1 4 日 1

Theorem (Berger, 1971)

Let $\chi(S) < 0$, g_0 be a Riemannian metric on S and K be a nonpositive smooth function on S such that $K \neq 0$. Then there exists a unique metric g on S in the conformal class of g_0 with $K = K_q$.

Theorem (Kazdan–Warner, 1974)

Let $\chi(S) = 0$, g_0 be a Riemannian metric on S and K be a smooth function on S such that K changes sign and $\int_S K dA_0 < 0$. Then there exists a metric g on S in the conformal class of g_0 with $K = K_g$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Theorem (Berger, 1971)

Let $\chi(S) < 0$, g_0 be a Riemannian metric on S and K be a nonpositive smooth function on S such that $K \neq 0$. Then there exists a unique metric g on S in the conformal class of g_0 with $K = K_q$.

Theorem (Kazdan–Warner, 1974)

Let $\chi(S) = 0$, g_0 be a Riemannian metric on S and K be a smooth function on S such that K changes sign and $\int_S K dA_0 < 0$. Then there exists a metric g on S in the conformal class of g_0 with $K = K_g$.

Theorem (Kazdan–Warner, 1975)

Let g_0 be a Riemannian metric on S and K be a smooth function on S satisfying the Gauss-Bonnet condition. Then there exists a metric g on S with $K = K_g$ and a conformal diffeomorphism $(S, g_0) \to (S, g)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

A Euclidean (resp. hyperbolic or spherical) cone-metric d on a surface S is locally isometric to the Euclidean plane \mathbb{E}^2 (resp. the hyperbolic plane \mathbb{H}^2 or the standard sphere \mathbb{S}^2) except finitely many points called **conical or singular points**. At a conical point v the metric d is locally isometric to a cone with angle $\lambda_v(d) \neq 2\pi$.

(4) E (4) E (4)

Definition

A Euclidean (resp. hyperbolic or spherical) cone-metric d on a surface S is locally isometric to the Euclidean plane \mathbb{E}^2 (resp. the hyperbolic plane \mathbb{H}^2 or the standard sphere \mathbb{S}^2) except finitely many points called **conical or singular points**. At a conical point v the metric d is locally isometric to a cone with angle $\lambda_v(d) \neq 2\pi$.

The number $\kappa_v(d) := 2\pi - \lambda_v(d)$ is called the **curvature** of v. Let $V \subset S$ be a set of marked points. We say that d is a cone-metric on (S, V) if the set of conical points of d is a subset of V.

Definition

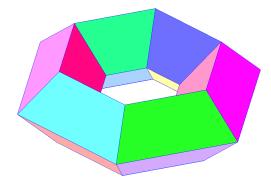
A Euclidean (resp. hyperbolic or spherical) cone-metric d on a surface S is locally isometric to the Euclidean plane \mathbb{E}^2 (resp. the hyperbolic plane \mathbb{H}^2 or the standard sphere \mathbb{S}^2) except finitely many points called **conical or singular points**. At a conical point v the metric d is locally isometric to a cone with angle $\lambda_v(d) \neq 2\pi$.

The number $\kappa_v(d) := 2\pi - \lambda_v(d)$ is called the **curvature** of v. Let $V \subset S$ be a set of marked points. We say that d is a cone-metric on (S, V) if the set of conical points of d is a subset of V.

Example

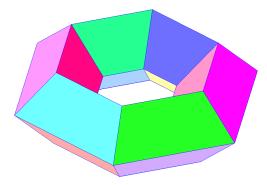
The induced metric on the boundary of a convex polytope in \mathbb{E}^3 is a Euclidean cone-metric. Moreover, it is **convex**, i.e., for all conical points we have $\kappa_v(d) > 0$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ



ъ

イロト イヨト イヨト イヨト



Theorem

For each cone metric d on (S, V) there exists a geodesic triangulation of (S, V, d) with vertices at V.

Roman Prosanov

★ E → < E →</p>

< 🗇 >

Discrete conformality

Definition

Two Euclidean cone-metrics d, d' on (S, V) with a common triangulation \mathcal{T} are discretely conformally equivalent with respect to \mathcal{T} if there exists a function $u: V \to \mathbb{R}$ such that for every edge e with the ends v_1 and v_2 we have

$$l(e,d) = e^{u(v_1) + u(v_2)} l(e,d').$$

Definition

Let d be a cone-metric on (S, V). A decomposition of (S, d, V) into geodesic polygons with vertices at V is called **Delaunay** if each polygon can be inscribed in a circle and all vertices of V except the vertices of the polygon lie outside the circle.

Definition

Let d be a cone-metric on (S, V). A decomposition of (S, d, V) into geodesic polygons with vertices at V is called **Delaunay** if each polygon can be inscribed in a circle and all vertices of V except the vertices of the polygon lie outside the circle.

A **Delaunay triangulation** of (S, d, V) is any triangulation refining the Delaunay decomposition.

ヘロト ヘポト ヘヨト ヘヨト

Definition

Let d be a cone-metric on (S, V). A decomposition of (S, d, V) into geodesic polygons with vertices at V is called **Delaunay** if each polygon can be inscribed in a circle and all vertices of V except the vertices of the polygon lie outside the circle.

A **Delaunay triangulation** of (S, d, V) is any triangulation refining the Delaunay decomposition.

A Delaunay decomposition always exists and is unique.

A B N A B N

Definition

Let d be a cone-metric on (S, V). A decomposition of (S, d, V) into geodesic polygons with vertices at V is called **Delaunay** if each polygon can be inscribed in a circle and all vertices of V except the vertices of the polygon lie outside the circle.

A **Delaunay triangulation** of (S, d, V) is any triangulation refining the Delaunay decomposition.

A Delaunay decomposition always exists and is unique.

A B N A B N

Discrete conformality

Definition

Two Euclidean cone-metrics d and d' on (S, V) are discretely conformally equivalent if there is a sequence of metrics with triangulations $(d_1, \mathcal{T}_1), \ldots, (d_m, \mathcal{T}_m)$ on (S, V) such that

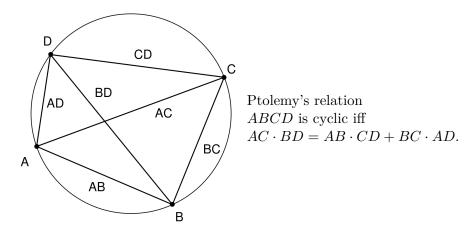
(i) $d_1 = d, d_m = d';$

(ii) \mathcal{T}_i is Delaunay for d_i ;

(iii) either $\mathcal{T}_i = \mathcal{T}_{i+1}$ and d_i , d_{i+1} are discretely conformally equivalent with respect to \mathcal{T}_i ;

(iv) or $\mathcal{T}_i \neq \mathcal{T}_{i+1}$, but $d_i = d_{i+1}$ and \mathcal{T}_i , \mathcal{T}_{i+1} are two different Delaunay triangulations of the same metric.

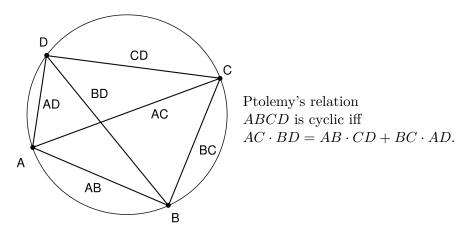
・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ



э

→ ∃→

< 1[™] ▶



If \mathcal{T}_1 , \mathcal{T}_2 be two triangulations of (S, V, d) distinct by a diagonal flip in a quadrilateral Q and d' is d.c.e. to d with respect to \mathcal{T}_1 , then d' is d.c.e to d with respect to \mathcal{T}_2 iff Q is cyclic.

Theorem (The Gauss–Bonnet theorem for Euclidean cone-metrics)

$$\sum_{v \in V} \kappa_v(d) = 2\pi \chi(S).$$

(4月) キョン イヨン

Theorem (The Gauss–Bonnet theorem for Euclidean cone-metrics)

$$\sum_{v \in V} \kappa_v(d) = 2\pi \chi(S).$$

Theorem (Gu–Luo–Sun–Wu, 2018)

Let $\tilde{\kappa}: V \to (-\infty; 2\pi)$ be a function such that $\sum_{v \in V} \tilde{\kappa}_v(d) = 2\pi\chi(S)$. Then in every class of discrete conformal class of Euclidean conemetrics there exists a unique up to scaling metric d with $\kappa_v(d) = \tilde{\kappa}(v)$ for each $v \in V$. Moreover, there exists an algorithm to construct d.

Theorem (The Gauss–Bonnet theorem for Euclidean cone-metrics)

$$\sum_{v \in V} \kappa_v(d) = 2\pi \chi(S).$$

Theorem (Gu–Luo–Sun–Wu, 2018)

Let $\tilde{\kappa}: V \to (-\infty; 2\pi)$ be a function such that $\sum_{v \in V} \tilde{\kappa}_v(d) = 2\pi\chi(S)$. Then in every class of discrete conformal class of Euclidean conemetrics there exists a unique up to scaling metric d with $\kappa_v(d) = \tilde{\kappa}(v)$ for each $v \in V$. Moreover, there exists an algorithm to construct d.

Corollary (Discrete uniformization on a torus)

Each Euclidean cone-metric on a torus is discretely conformally equivalent to a unique up to scaling Euclidean metric.

・ロト ・四ト ・ヨト ・ヨト

Theorem

There exists an algorithm to decide if two cone-metrics on (S, V) are discretely conformally equivalent.

(3)

< 🗇 🕨

Theorem

There exists an algorithm to decide if two cone-metrics on (S, V) are discretely conformally equivalent.

Theorem (Smooth uniformization)

Let S be the (open) disk and g be a Riemannian metric on the closure of S. Then (S,g) is conformally diffeomorphic to the (open) unit disk in \mathbb{E}^2 .

Theorem

There exists an algorithm to decide if two cone-metrics on (S, V) are discretely conformally equivalent.

Theorem (Smooth uniformization)

Let S be the (open) disk and g be a Riemannian metric on the closure of S. Then (S,g) is conformally diffeomorphic to the (open) unit disk in \mathbb{E}^2 .

Theorem

There exists an algorithm, which computes the uniformization map from Theorem above.

・ロト ・ 同ト ・ ヨト ・ ヨト

Discrete conformality: the hyperbolic case

Definition

Two hyperbolic cone-metrics d and d' on (S, V) are discretely conformally equivalent if there is a sequence of metrics with triangulations $(d_1, \mathcal{T}_1), \ldots, (d_m, \mathcal{T}_m)$ on (S, V) such that

(i) $d_1 = d, d_m = d';$

(ii) \mathcal{T}_i is Delaunay for d_i ;

(iii) either $\mathcal{T}_i = \mathcal{T}_{i+1}$ and there exists a function $u: V \to \mathbb{R}$ such that for every edge e with the ends v_1 and v_2 we have

$$\sinh \frac{l(e,d_i)}{2} = e^{u(v_1) + u(v_2)} \sinh \frac{l(e,d_{i+1})}{2};$$

(iv) or $\mathcal{T}_i \neq \mathcal{T}_{i+1}$, but $d_i = d_{i+1}$ and \mathcal{T}_i , \mathcal{T}_{i+1} are two different Delaunay triangulations of the same metric.

Theorem (The Gauss–Bonnet theorem for hyperbolic cone-metrics)

$$\sum_{v \in V} \kappa_v(d) = 2\pi\chi(S) + \operatorname{area}(S, d).$$

3

・ロト ・回ト ・ヨト ・ヨト

Discrete conformality: curvature

Theorem (The Gauss–Bonnet theorem for hyperbolic cone-metrics)

$$\sum_{v \in V} \kappa_v(d) = 2\pi\chi(S) + \operatorname{area}(S, d).$$

Theorem (Gu–Guo–Luo–Sun–Wu, 2018)

Let $\tilde{\kappa}: V \to (-\infty; 2\pi)$ be a function such that $\sum_{v \in V} \tilde{\kappa}_v(d) > 2\pi\chi(S)$. Then in every class of discrete conformal class of hyperbolic conemetrics there exists a unique metric d with $\kappa_v(d) = \tilde{\kappa}(v)$ for each $v \in V$. Moreover, there exists an algorithm to construct d.

・ロト ・回ト ・ヨト ・ヨト

Discrete conformality: curvature

Theorem (The Gauss–Bonnet theorem for hyperbolic cone-metrics)

$$\sum_{v \in V} \kappa_v(d) = 2\pi\chi(S) + \operatorname{area}(S, d).$$

Theorem (Gu–Guo–Luo–Sun–Wu, 2018)

Let $\tilde{\kappa}: V \to (-\infty; 2\pi)$ be a function such that $\sum_{v \in V} \tilde{\kappa}_v(d) > 2\pi\chi(S)$. Then in every class of discrete conformal class of hyperbolic conemetrics there exists a unique metric d with $\kappa_v(d) = \tilde{\kappa}(v)$ for each $v \in V$. Moreover, there exists an algorithm to construct d.

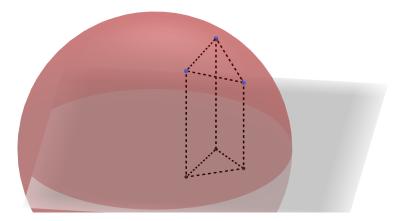
Corollary (Discrete uniformization with genus ≥ 2)

Each hyperbolic cone-metric on S_g , $g \ge 2$, is discretely conformally equivalent to a unique hyperbolic metric.

э

・ロト ・回ト ・ヨト ・ヨト

Approach: Ideal prisms



• An **ideal prism** is a prism in \mathbb{H}^3 with two triangular faces, all vertices of the upper face are ideal, all lateral edges are orthogonal to the lower face. It is uniquely determined by the lower face.

- • S_g is a closed surface of genus $g \ge 2$;
 - ▶ V is a set of marked points;
 - d is a hyperbolic cone-metric on (S_g, V) ;
 - \mathcal{T} be a geodesic triangulation of (S_g, V, d) .

イボト イヨト イヨト

- • S_g is a closed surface of genus $g \ge 2$;
 - V is a set of marked points;
 - d is a hyperbolic cone-metric on (S_g, V) ;
 - \mathcal{T} be a geodesic triangulation of (S_g, V, d) .
- Take each triangle T of \mathcal{T} and construct the ideal prism with T as the lower boundary. Glue all these prisms according to \mathcal{T} . We obtain a hyperbolic cone-3-manifold. It is called an *ideal Fuchsian* cone-manifold $P_{\downarrow}(d, \mathcal{T})$. It is homeomorphic to $S_g \times [0; 1]$ minus points at the upper boundary.

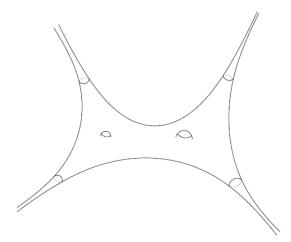
▲御★ ▲注★ ▲注★

- • S_g is a closed surface of genus $g \ge 2$;
 - V is a set of marked points;
 - d is a hyperbolic cone-metric on (S_g, V) ;
 - \mathcal{T} be a geodesic triangulation of (S_g, V, d) .
- Take each triangle T of \mathcal{T} and construct the ideal prism with T as the lower boundary. Glue all these prisms according to \mathcal{T} . We obtain a hyperbolic cone-3-manifold. It is called an *ideal Fuchsian cone-manifold* $P_{\downarrow}(d,\mathcal{T})$. It is homeomorphic to $S_g \times [0;1]$ minus points at the upper boundary.
- If \mathcal{T} is Delaunay, then it is denoted just as $P_{\downarrow}(d)$ and it is convex.

・ロト ・四ト ・ヨト ・ヨト

- • S_g is a closed surface of genus $g \ge 2$;
 - V is a set of marked points;
 - d is a hyperbolic cone-metric on (S_g, V) ;
 - \mathcal{T} be a geodesic triangulation of (S_g, V, d) .
- Take each triangle T of \mathcal{T} and construct the ideal prism with T as the lower boundary. Glue all these prisms according to \mathcal{T} . We obtain a hyperbolic cone-3-manifold. It is called an *ideal Fuchsian cone-manifold* $P_{\downarrow}(d,\mathcal{T})$. It is homeomorphic to $S_g \times [0;1]$ minus points at the upper boundary.
- If \mathcal{T} is Delaunay, then it is denoted just as $P_{\downarrow}(d)$ and it is convex.
- The upper boundary of $P_{\downarrow}(d, \mathcal{T})$ is glued from ideal hyperbolic triangles. The obtained metric on the upper boundary is called a hyperbolic cusp-metric on S_g . In the case of $P_{\downarrow}(d)$ we denote it by \tilde{d} .

Approach: Hyperbolic cusp-metric



On a hyperbolic cusp-metric \tilde{d} marked points are at infinite distance from each other.

Roman Prosanov

Theorem

Let d, d' be two hyperbolic cone-metrics on (S_g, V) . Then they are discretely conformally equivalent iff \tilde{d} is isometric to $\tilde{d'}$.

(4) (2) (4) (3) (4)

Theorem

Let d, d' be two hyperbolic cone-metrics on (S_g, V) . Then they are discretely conformally equivalent iff \tilde{d} is isometric to $\tilde{d'}$.

• Thus, to study a discrete conformal class one can study convex ideal Fuchsian cone-manifolds with a fixed upper boundary metric.

Theorem

Let d, d' be two hyperbolic cone-metrics on (S_g, V) . Then they are discretely conformally equivalent iff \tilde{d} is isometric to $\tilde{d'}$.

- Thus, to study a discrete conformal class one can study convex ideal Fuchsian cone-manifolds with a fixed upper boundary metric.
- Discrete uniformization. We have a hyperbolic cone-metric d and we try to uniformize it. Construct $P_{\downarrow}(d)$, obtain \tilde{d} . To uniformize d means to deform $P_{\downarrow}(d)$, while preserving the upper boundary, so that cone-singularities dissolve.

- 4 回 2 4 日 2 4 日 2

Theorem

Let d, d' be two hyperbolic cone-metrics on (S_g, V) . Then they are discretely conformally equivalent iff \tilde{d} is isometric to $\tilde{d'}$.

- Thus, to study a discrete conformal class one can study convex ideal Fuchsian cone-manifolds with a fixed upper boundary metric.
- Discrete uniformization. We have a hyperbolic cone-metric d and we try to uniformize it. Construct $P_{\downarrow}(d)$, obtain \tilde{d} . To uniformize d means to deform $P_{\downarrow}(d)$, while preserving the upper boundary, so that cone-singularities dissolve.
- \tilde{d} is a hyperbolic cusp-metric on (S_g, V) . Let $H(\tilde{d})$ be the set of convex ideal Fuchsian cone-manifolds having \tilde{d} at its upper boundary.

・ロト ・回ト ・ヨト ・ヨト

Theorem

Let d, d' be two hyperbolic cone-metrics on (S_g, V) . Then they are discretely conformally equivalent iff \tilde{d} is isometric to $\tilde{d'}$.

- Thus, to study a discrete conformal class one can study convex ideal Fuchsian cone-manifolds with a fixed upper boundary metric.
- Discrete uniformization. We have a hyperbolic cone-metric d and we try to uniformize it. Construct $P_{\downarrow}(d)$, obtain \tilde{d} . To uniformize d means to deform $P_{\downarrow}(d)$, while preserving the upper boundary, so that cone-singularities dissolve.
- \tilde{d} is a hyperbolic cusp-metric on (S_g, V) . Let $H(\tilde{d})$ be the set of convex ideal Fuchsian cone-manifolds having \tilde{d} at its upper boundary.

Theorem

 $H(\tilde{d})$ can be identified with \mathbb{R}^V with the help of hyperbolic decorations.

• Let P be an ideal Fuchsian cone-manifold. Define the *discrete* curvature S(P) as the sum of its total discrete scalar curvature and total discrete mean curvature of its boundary.

▲ 国 ▶ | ▲ 国 ▶ |

- Let P be an ideal Fuchsian cone-manifold. Define the *discrete* curvature S(P) as the sum of its total discrete scalar curvature and total discrete mean curvature of its boundary.
- Consider S as a function over $H(\tilde{d}) = \mathbb{R}^V$.

- Let P be an ideal Fuchsian cone-manifold. Define the *discrete* curvature S(P) as the sum of its total discrete scalar curvature and total discrete mean curvature of its boundary.
- Consider S as a function over $H(\tilde{d}) = \mathbb{R}^V$.
- Fact: $\frac{\partial S}{\partial h_v} = \kappa_v$. Proof: The Schläfli formula.

▲御▶ ▲注≯ ▲注≯

- Let P be an ideal Fuchsian cone-manifold. Define the *discrete* curvature S(P) as the sum of its total discrete scalar curvature and total discrete mean curvature of its boundary.
- Consider S as a function over $H(\tilde{d}) = \mathbb{R}^V$.
- Fact: $\frac{\partial S}{\partial h_v} = \kappa_v$. Proof: The Schläfli formula.
- Corollary: critical points of S in \mathbb{R}^V correspond to metrics in the given discrete conformal class without cone-singularities.

(本部) (本語) (本語) (語)

- Let P be an ideal Fuchsian cone-manifold. Define the *discrete* curvature S(P) as the sum of its total discrete scalar curvature and total discrete mean curvature of its boundary.
- Consider S as a function over $H(\tilde{d}) = \mathbb{R}^V$.
- Fact: $\frac{\partial S}{\partial h_v} = \kappa_v$. Proof: The Schläfli formula.
- Corollary: critical points of S in \mathbb{R}^V correspond to metrics in the given discrete conformal class without cone-singularities.
- Fact: S is strictly concave over \mathbb{R}^V .

(本間) (本語) (本語) (語)

- Let P be an ideal Fuchsian cone-manifold. Define the *discrete* curvature S(P) as the sum of its total discrete scalar curvature and total discrete mean curvature of its boundary.
- Consider S as a function over $H(\tilde{d}) = \mathbb{R}^V$.
- Fact: $\frac{\partial S}{\partial h_v} = \kappa_v$. Proof: The Schläfli formula.
- Corollary: critical points of S in \mathbb{R}^V correspond to metrics in the given discrete conformal class without cone-singularities.
- Fact: S is strictly concave over \mathbb{R}^V .
- Corollary: uniqueness in the discrete uniformization.

(本間) (本語) (本語) (語)

- Let P be an ideal Fuchsian cone-manifold. Define the *discrete* curvature S(P) as the sum of its total discrete scalar curvature and total discrete mean curvature of its boundary.
- Consider S as a function over $H(\tilde{d}) = \mathbb{R}^V$.
- Fact: $\frac{\partial S}{\partial h_v} = \kappa_v$. Proof: The Schläfli formula.
- Corollary: critical points of S in \mathbb{R}^V correspond to metrics in the given discrete conformal class without cone-singularities.
- Fact: S is strictly concave over \mathbb{R}^V .
- Corollary: uniqueness in the discrete uniformization.
- *Task*: Prove existence.

(本間) (本語) (本語) (二語)

- Let P be an ideal Fuchsian cone-manifold. Define the *discrete* curvature S(P) as the sum of its total discrete scalar curvature and total discrete mean curvature of its boundary.
- Consider S as a function over $H(\tilde{d}) = \mathbb{R}^V$.
- Fact: $\frac{\partial S}{\partial h_v} = \kappa_v$. Proof: The Schläfli formula.
- Corollary: critical points of S in \mathbb{R}^V correspond to metrics in the given discrete conformal class without cone-singularities.
- Fact: S is strictly concave over \mathbb{R}^V .
- Corollary: uniqueness in the discrete uniformization.
- *Task*: Prove existence.
- Follow the gradient flow of S! Prove that it stays in a compact convex subset of \mathbb{R}^V .

ロトスロトスモトスモトーモ

Step aside: isometric realizations

Problem

Let M be a compact 3-manifold with boundary and d be a metric on ∂M . Does there exist a constant curvature metric on M such that the induced metric on ∂M is d? Is it unique?

Step aside: isometric realizations

Problem

Let M be a compact 3-manifold with boundary and d be a metric on ∂M . Does there exist a constant curvature metric on M such that the induced metric on ∂M is d? Is it unique?

Theorem (Alexandrov, 1942; Volkov, $\sim 50 \mathrm{s};$ Bobenko–Izmestiev, 2008)

For every convex Euclidean (resp. hyperbolic) cone-metric d on S^2 there exists a unique convex polyhedron $P \subset \mathbb{E}^3$ (resp. $P \subset \mathbb{H}^3$) such that (S^2, d) is isometric to the boundary of P.

・ロト ・ 同ト ・ ヨト ・ ヨト

Step aside: isometric realizations

Problem

Let M be a compact 3-manifold with boundary and d be a metric on ∂M . Does there exist a constant curvature metric on M such that the induced metric on ∂M is d? Is it unique?

Theorem (Alexandrov, 1942; Volkov, $\sim 50 \mathrm{s};$ Bobenko–Izmestiev, 2008)

For every convex Euclidean (resp. hyperbolic) cone-metric d on S^2 there exists a unique convex polyhedron $P \subset \mathbb{E}^3$ (resp. $P \subset \mathbb{H}^3$) such that (S^2, d) is isometric to the boundary of P.

Theorem (Rivin, 1994; Springborn 2020)

For every hyperbolic cusp-metric d on S^2 there exists a unique ideal convex polyhedron $P \subset \mathbb{H}^3$ such that (S^2, d) is isometric to the boundary of P.

Step aside: geometrization

• Our case: the manifold is $S_g \times [0; 1]$, d is a hyperbolic cusp metric on $S_g \times \{1\}$. Additional condition: $S_g \times \{0\}$ is geodesic. It turns out that this is equivalent to the discrete uniformization.

Step aside: geometrization

- Our case: the manifold is $S_g \times [0; 1]$, d is a hyperbolic cusp metric on $S_g \times \{1\}$. Additional condition: $S_g \times \{0\}$ is geodesic. It turns out that this is equivalent to the discrete uniformization.
- In 70s Thurston proposed an analogue of the unformization for 3-manifolds: each 3-manifold can be decomposed canonically into pieces and each piece can be endowed with one of 8 canonical geometries. Among all of them hyperbolic manifolds are the most mysterious.

・ロト ・四ト ・ヨト ・ヨト

Step aside: geometrization

- Our case: the manifold is $S_g \times [0; 1]$, d is a hyperbolic cusp metric on $S_g \times \{1\}$. Additional condition: $S_g \times \{0\}$ is geodesic. It turns out that this is equivalent to the discrete uniformization.
- In 70s Thurston proposed an analogue of the unformization for 3-manifolds: each 3-manifold can be decomposed canonically into pieces and each piece can be endowed with one of 8 canonical geometries. Among all of them hyperbolic manifolds are the most mysterious.
- Hyperbolic structures on closed 3-manifolds are unique. On manifolds with convex boundary they should be determined by the boundary metric.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The end

Thank you!

Roman Prosanov

(人間) (人) (人) (人) (人)

Discrete conformality and ideal cone-

2