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Smooth conformality
Definition
Let M be a smooth manifold and g0, g1 be two Riemannian metrics on
M . They are called pointwise conformally equivalent if

g0 = e2ug1

for a smooth function u on M .

Theorem
Two Riemannian metrics on M are pointwise conformally equivalent if
and only if the angles between any two smooth curves are the same in
both metrics.

Definition
A conformal structure on M is a pointwise conformal equivalence
class of Riemannian metrics on M .
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Smooth conformality
Definition
A smooth map F : (M1, g1)→ (M2, g2) between two Riemannian
manifolds is called conformal if it is a local diffeomorphism and

F ∗g2 = e2ug1

for a smooth function u on M1.
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Smooth conformality: uniformization

Theorem (Uniformization Theorem)
Let (S, g) be a closed orientable Riemannian surface. Then it is
pointwise conformally equivalent to a unique metric of constant
Gaussian curvature equal to −1, 0 or 1 (in case of 0 curvature the
uniqueness is up to scaling). The sign is equal to the sign of the Euler
characteristic of S.

Definition
The Teichmüller space T (S) is the space of conformal structures on
S modulo diffeomorphisms of S to itself isotopic to identity.

One can attempt to understand Riemannian metrics on S as follows:
Understand the Teichmüller space
Understand diffeomorphisms
Understand the conformal classes
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Smooth conformality: prescribing Gaussian curvature

Problem
Let K be a smooth function on S. Does there exist a Riemannian
metric g on S such that K is the Gaussian curvature of g?

Theorem (The Gauss-Bonnet theorem)∫
S
KgdAg = 2πχ(S).

The Gauss-Bonnet condition:
χ(S) > 0: K is positive somewhere;
χ(S) = 0: K changes sign unless K ≡ 0;
χ(S) < 0: K is negative somewhere.
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Smooth conformality: prescribing Gaussian curvature

Theorem (Berger, 1971)
Let χ(S) < 0, g0 be a Riemannian metric on S and K be a non-
positive smooth function on S such that K 6≡ 0. Then there exists a
unique metric g on S in the conformal class of g0 with K = Kg.

Theorem (Kazdan–Warner, 1974)
Let χ(S) = 0, g0 be a Riemannian metric on S and K be a smooth
function on S such that K changes sign and

∫
S KdA0 < 0. Then there

exists a metric g on S in the conformal class of g0 with K = Kg.

Theorem (Kazdan–Warner, 1975)
Let g0 be a Riemannian metric on S and K be a smooth function on S
satisfying the Gauss-Bonnet condition. Then there exists a metric g on
S with K = Kg and a conformal diffeomorphism (S, g0)→ (S, g).
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Discrete conformality: cone-metrics

Definition
A Euclidean (resp. hyperbolic or spherical) cone-metric d on a
surface S is locally isometric to the Euclidean plane E2 (resp. the
hyperbolic plane H2 or the standard sphere S2) except finitely many
points called conical or singular points. At a conical point v the
metric d is locally isometric to a cone with angle λv(d) 6= 2π.

The number κv(d) := 2π − λv(d) is called the curvature of v.
Let V ⊂ S be a set of marked points. We say that d is a cone-metric
on (S, V ) if the set of conical points of d is a subset of V .

Example
The induced metric on the boundary of a convex polytope in E3 is a
Euclidean cone-metric. Moreover, it is convex, i.e., for all conical
points we have κv(d) > 0.
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Discrete conformality: cone-metrics

Theorem
For each cone metric d on (S, V ) there exists a geodesic triangulation
of (S, V, d) with vertices at V .
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Discrete conformality

Definition
Two Euclidean cone-metrics d, d′ on (S, V ) with a common
triangulation T are discretely conformally equivalent with respect to T
if there exists a function u : V → R such that for every edge e with the
ends v1 and v2 we have

l(e, d) = eu(v1)+u(v2)l(e, d′).
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Discrete conformality: Delaunay triangulations
Definition
Let d be a cone-metric on (S, V ). A decomposition of (S, d, V ) into
geodesic polygons with vertices at V is called Delaunay if each polygon
can be inscribed in a circle and all vertices of V except the vertices of
the polygon lie outside the circle.

A Delaunay triangulation of (S, d, V ) is any triangulation refining
the Delaunay decomposition.

A Delaunay decomposition always exists and is unique.
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Discrete conformality

Definition
Two Euclidean cone-metrics d and d′ on (S, V ) are discretely
conformally equivalent if there is a sequence of metrics with
triangulations (d1, T1), . . . , (dm, Tm) on (S, V ) such that

(i) d1 = d, dm = d′;

(ii) Ti is Delaunay for di;

(iii) either Ti = Ti+1 and di, di+1 are discretely conformally equivalent
with respect to Ti;

(iv) or Ti 6= Ti+1, but di = di+1 and Ti, Ti+1 are two different Delaunay
triangulations of the same metric.
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Discrete conformality: discussion

Ptolemy’s relation
ABCD is cyclic iff
AC ·BD = AB · CD +BC ·AD.

If T1, T2 be two triangulations of (S, V, d) distinct by a diagonal flip in
a quadrilateral Q and d′ is d.c.e. to d with respect to T1, then d′ is
d.c.e to d with respect to T2 iff Q is cyclic.
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Discrete conformality: curvature

Theorem (The Gauss–Bonnet theorem for Euclidean cone-metrics)∑
v∈V

κv(d) = 2πχ(S).

Theorem (Gu–Luo–Sun–Wu, 2018)
Let κ̃ : V → (−∞; 2π) be a function such that

∑
v∈V κ̃v(d) = 2πχ(S).

Then in every class of discrete conformal class of Euclidean cone-
metrics there exists a unique up to scaling metric d with κv(d) = κ̃(v)
for each v ∈ V . Moreover, there exists an algorithm to construct d.

Corollary (Discrete uniformization on a torus)
Each Euclidean cone-metric on a torus is discretely conformally
equivalent to a unique up to scaling Euclidean metric.
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Discrete conformality: discussion

Theorem
There exists an algorithm to decide if two cone-metrics on (S, V ) are
discretely conformally equivalent.

Theorem (Smooth uniformization)
Let S be the (open) disk and g be a Riemannian metric on the closure
of S. Then (S, g) is conformally diffeomorphic to the (open) unit disk
in E2.

Theorem
There exists an algorithm, which computes the uniformization map
from Theorem above.
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Discrete conformality: the hyperbolic case
Definition
Two hyperbolic cone-metrics d and d′ on (S, V ) are discretely
conformally equivalent if there is a sequence of metrics with
triangulations (d1, T1), . . . , (dm, Tm) on (S, V ) such that

(i) d1 = d, dm = d′;

(ii) Ti is Delaunay for di;

(iii) either Ti = Ti+1 and there exists a function u : V → R such that
for every edge e with the ends v1 and v2 we have

sinh l(e, di)
2 = eu(v1)+u(v2) sinh l(e, di+1)

2 ;

(iv) or Ti 6= Ti+1, but di = di+1 and Ti, Ti+1 are two different Delaunay
triangulations of the same metric.
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Discrete conformality: curvature

Theorem (The Gauss–Bonnet theorem for hyperbolic
cone-metrics) ∑

v∈V

κv(d) = 2πχ(S) + area(S, d).

Theorem (Gu–Guo–Luo–Sun–Wu, 2018)
Let κ̃ : V → (−∞; 2π) be a function such that

∑
v∈V κ̃v(d) > 2πχ(S).

Then in every class of discrete conformal class of hyperbolic cone-
metrics there exists a unique metric d with κv(d) = κ̃(v) for each
v ∈ V . Moreover, there exists an algorithm to construct d.

Corollary (Discrete uniformization with genus ≥ 2)
Each hyperbolic cone-metric on Sg, g ≥ 2, is discretely conformally
equivalent to a unique hyperbolic metric.
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Approach: Ideal prisms

An ideal prism is a prism in H3 with two triangular faces, all
vertices of the upper face are ideal, all lateral edges are orthogonal
to the lower face. It is uniquely determined by the lower face.
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Approach: Ideal Fuchsian cone-manifolds

I Sg is a closed surface of genus g ≥ 2;
I V is a set of marked points;
I d is a hyperbolic cone-metric on (Sg, V );
I T be a geodesic triangulation of (Sg, V, d).

Take each triangle T of T and construct the ideal prism with T as
the lower boundary. Glue all these prisms according to T . We
obtain a hyperbolic cone-3-manifold. It is called an ideal Fuchsian
cone-manifold P↓(d, T ). It is homeomorphic to Sg × [0; 1] minus
points at the upper boundary.
If T is Delaunay, then it is denoted just as P↓(d) and it is convex.
The upper boundary of P↓(d, T ) is glued from ideal hyperbolic
triangles. The obtained metric on the upper boundary is called a
hyperbolic cusp-metric on Sg. In the case of P↓(d) we denote it by
d̃.

Roman Prosanov Discrete conformality and ideal cone-manifolds 18 / 24



Approach: Ideal Fuchsian cone-manifolds

I Sg is a closed surface of genus g ≥ 2;
I V is a set of marked points;
I d is a hyperbolic cone-metric on (Sg, V );
I T be a geodesic triangulation of (Sg, V, d).

Take each triangle T of T and construct the ideal prism with T as
the lower boundary. Glue all these prisms according to T . We
obtain a hyperbolic cone-3-manifold. It is called an ideal Fuchsian
cone-manifold P↓(d, T ). It is homeomorphic to Sg × [0; 1] minus
points at the upper boundary.

If T is Delaunay, then it is denoted just as P↓(d) and it is convex.
The upper boundary of P↓(d, T ) is glued from ideal hyperbolic
triangles. The obtained metric on the upper boundary is called a
hyperbolic cusp-metric on Sg. In the case of P↓(d) we denote it by
d̃.

Roman Prosanov Discrete conformality and ideal cone-manifolds 18 / 24



Approach: Ideal Fuchsian cone-manifolds

I Sg is a closed surface of genus g ≥ 2;
I V is a set of marked points;
I d is a hyperbolic cone-metric on (Sg, V );
I T be a geodesic triangulation of (Sg, V, d).

Take each triangle T of T and construct the ideal prism with T as
the lower boundary. Glue all these prisms according to T . We
obtain a hyperbolic cone-3-manifold. It is called an ideal Fuchsian
cone-manifold P↓(d, T ). It is homeomorphic to Sg × [0; 1] minus
points at the upper boundary.
If T is Delaunay, then it is denoted just as P↓(d) and it is convex.

The upper boundary of P↓(d, T ) is glued from ideal hyperbolic
triangles. The obtained metric on the upper boundary is called a
hyperbolic cusp-metric on Sg. In the case of P↓(d) we denote it by
d̃.

Roman Prosanov Discrete conformality and ideal cone-manifolds 18 / 24



Approach: Ideal Fuchsian cone-manifolds

I Sg is a closed surface of genus g ≥ 2;
I V is a set of marked points;
I d is a hyperbolic cone-metric on (Sg, V );
I T be a geodesic triangulation of (Sg, V, d).

Take each triangle T of T and construct the ideal prism with T as
the lower boundary. Glue all these prisms according to T . We
obtain a hyperbolic cone-3-manifold. It is called an ideal Fuchsian
cone-manifold P↓(d, T ). It is homeomorphic to Sg × [0; 1] minus
points at the upper boundary.
If T is Delaunay, then it is denoted just as P↓(d) and it is convex.
The upper boundary of P↓(d, T ) is glued from ideal hyperbolic
triangles. The obtained metric on the upper boundary is called a
hyperbolic cusp-metric on Sg. In the case of P↓(d) we denote it by
d̃.

Roman Prosanov Discrete conformality and ideal cone-manifolds 18 / 24



Approach: Hyperbolic cusp-metric

On a hyperbolic cusp-metric d̃ marked points are at infinite distance
from each other.
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Approach: Ideal Fuchsian cone-manifolds
Theorem
Let d, d′ be two hyperbolic cone-metrics on (Sg, V ). Then they are
discretely conformally equivalent iff d̃ is isometric to d̃′.

Thus, to study a discrete conformal class one can study convex
ideal Fuchsian cone-manifolds with a fixed upper boundary metric.
Discrete uniformization. We have a hyperbolic cone-metric d and
we try to uniformize it. Construct P↓(d), obtain d̃. To uniformize
d means to deform P↓(d), while preserving the upper boundary, so
that cone-singularities dissolve.
d̃ is a hyperbolic cusp-metric on (Sg, V ). Let H(d̃) be the set of
convex ideal Fuchsian cone-manifolds having d̃ at its upper
boundary.

Theorem
H(d̃) can be identified with RV with the help of hyperbolic decorations.
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Approach: the discrete curvature

Let P be an ideal Fuchsian cone-manifold. Define the discrete
curvature S(P ) as the sum of its total discrete scalar curvature
and total discrete mean curvature of its boundary.

Consider S as a function over H(d̃) = RV .
Fact: ∂S

∂hv
= κv. Proof: The Schläfli formula.

Corollary: critical points of S in RV correspond to metrics in the
given discrete conformal class without cone-singularities.
Fact: S is strictly concave over RV .
Corollary: uniqueness in the discrete uniformization.
Task: Prove existence.
Follow the gradient flow of S!
Prove that it stays in a compact convex subset of RV .
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Corollary: critical points of S in RV correspond to metrics in the
given discrete conformal class without cone-singularities.
Fact: S is strictly concave over RV .
Corollary: uniqueness in the discrete uniformization.
Task: Prove existence.
Follow the gradient flow of S!
Prove that it stays in a compact convex subset of RV .

Roman Prosanov Discrete conformality and ideal cone-manifolds 21 / 24



Approach: the discrete curvature

Let P be an ideal Fuchsian cone-manifold. Define the discrete
curvature S(P ) as the sum of its total discrete scalar curvature
and total discrete mean curvature of its boundary.
Consider S as a function over H(d̃) = RV .
Fact: ∂S

∂hv
= κv. Proof: The Schläfli formula.
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Step aside: isometric realizations
Problem
Let M be a compact 3-manifold with boundary and d be a metric on
∂M . Does there exist a constant curvature metric on M such that the
induced metric on ∂M is d? Is it unique?

Theorem (Alexandrov, 1942; Volkov, ∼ 50s; Bobenko–Izmestiev,
2008)
For every convex Euclidean (resp. hyperbolic) cone-metric d on S2

there exists a unique convex polyhedron P ⊂ E3 (resp. P ⊂ H3) such
that (S2, d) is isometric to the boundary of P .

Theorem (Rivin, 1994; Springborn 2020)
For every hyperbolic cusp-metric d on S2 there exists a unique ideal
convex polyhedron P ⊂ H3 such that (S2, d) is isometric to the
boundary of P .
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Step aside: geometrization

Our case: the manifold is Sg × [0; 1], d is a hyperbolic cusp metric
on Sg × {1}. Additional condition: Sg × {0} is geodesic. It turns
out that this is equivalent to the discrete uniformization.

In 70s Thurston proposed an analogue of the unformization for
3-manifolds: each 3-manifold can be decomposed canonically into
pieces and each piece can be endowed with one of 8 canonical
geometries. Among all of them hyperbolic manifolds are the most
mysterious.
Hyperbolic structures on closed 3-manifolds are unique. On
manifolds with convex boundary they should be determined by the
boundary metric.
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The end

Thank you!

Roman Prosanov
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