The motion of billiards in ellipses
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1. Metric properties of confocal conics

P
AV,
yd e
//
,/ Y _ _ _|_ a
Fl F2

The optical property of ellipses is well known, and also the equivalence:
equal angles <— FH P+ P =const. < Pce.

There Is a generalization:
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1. Metric properties of confocal conics

Charles Graves (1812-1899), bishop of
Limerick and mathematician:

The locus of point P used to pull the
string taut around c Is a confocal ellipse e.

If any ray Is reflected in a conic e then
the incoming and the outgoing ray are
tangent to the same confocal conic c, N
called caustic. D, = PQ{+ PQ> — Q1Q> = const.
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1. Metric properties of confocal conics

Billiards in an ellipse e are always tangent to a confocal ellipse or hyperbola.

If one billiard closes after N reflections, then all billiards close, independent of the initial
point on ¢ (Poncelet porism), and all these closed loops have the same length.
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1. Metric properties of confocal conics

For centuries, billiards attracted the attention of mathe-
maticians, beginning with J.-V. Poncelet and A. Cayley.

S. Tabachnikov: Geometry and Billiards.
American Mathematical Society, 2005

Recently, Dan Reznik revitalized the interest by
computer animations showing the variation of periodic
billiards. He identified 40 invariants, e.g., a constant
sum of Cosines of interior angles.

Sum of square altitudes to N-periodic tangents Is invariant

The two types of self-intersected 7-periodics in the Elliptic Billiard
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https://www.youtube.com/watch?v=btexFUUBpjQ
https://youtu.be/yzBG8rgPUP4

1. Metric properties of confocal conics

A family of confocal central conics

X2 y2

a2+ k T +k
k € R\ {—a° —b?} sends through
each point P outside the axes
one ellipse and one orthogonally
Intersecting hyperbola.

The parameters (ke, k) define the
elliptic coordinates of P with

—a’ < ky, < —b* < k.

1,

We specify the caustic ¢ (semiaxes ac, b.) as kK = 0 and the ellipse e with semiaxes
3¢, be as k = k. = ke=a2—a>=b2—b2>0.
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1. Metric properties of confocal conics

From giijn:((/;ez, —/:h/l)f( (;llorlih) ' ‘ | s &
: (b2+ki§(b2+kh), "" I\, A\\‘
perition 0T RIS

\

e %
Conversely, P = (accost, besint) " N “L/—.: ] i\/\
SoEa B AN
|

with tangent vector i
¥ - | \/@F_(}k/ M
te(t) = (—aesint, becost) X)\\EQL
and t.(t)=(—acsint, b.cost) yield \ \>% , |

|tc(t)||2 — _”te(t)”2 + ke .

kp(t) = — (a2sin®t + b2 cos’ t) = —

Points on confocal ellipses e and ¢ with the same parameter t have the same coordinate
kp, 1.e., they belong to the same confocal hyperbola.
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1. Metric properties of confocal conics

Given P = (ascost, besint),
the tangents from P to ¢ (k = 0)
include the angle 6(t) where

L, 0(1) k
2 e
SIn = :
2 [te(t)]]?
o(t vV Ke
tanﬁ = =+ ,
2 [te(t)]
cosf—1_ 2K, B kh(t) + ke

lte(OI2  kn(t) — ke
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1. Metric properties of confocal conics

The signed distances of the side
to = PP from the center O
and the pole Ry w.r.t. e have the
constant product —k..

For Q1 = (accosty, besint]),

—_— _acbc
Ol’Q:
[tc(t1)]]
— Kelltc(t1)l]
Rto = R{Q1 = .
O T b
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1. Metric properties of confocal conics
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The side PP, (parameters t;, t5)
contacts the caustic c iff

. 2t1—t2 ke (t1+t2)
te >

sin =
2 debe

If t; is the parameter of the

tangency point Q1 € ¢, then

b-a £t
Cetan 1+ b
acbe 2

‘ 2

tant] =

Half angle substitution yields . ..

g 10/34



1. Metric properties of confocal conics

The half-angle substitution 7; := tang yields for P, and A a symmetric biquadratic
equation In projective coordinates on e, namely

BRke272 — D222 + 72) + 2(a2ke + a2b2)TiTs + b2ke = O,

Cc

which defines a 2-2-correspondence between consecute points Py, P of a billiard. The
same holds after \V iteration between P; and Ppy1.

We recall a classical algebraic argument for the Poncelet porism:

A 2-2-correspondence (= id) has at most four fixed points. However, four fixed points
are already known as contact points between e and the common (isotropic) tangents
with the caustic c. Hence, if one N-sided billiard closes, then the correspondence s
the identity, and each billiard inscribed in e with caustic ¢ must close.
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2. Confocal conics and billiards

S. Tabachnikov: the key result for the integrability of billiards is the Joachimsthal

integral J. := —(u;, n;) with u; as unit vector of PP ;1 and n; = (cost/a., sint/b,)
as a normal vector of e. This holds in all dimensions (n; = Ap; = p;). In the plane
T 0 N Vke lltel]]  Vke
Je = —(u;, n, :—cos(— —) n;|| =sin—=|n;|| = = .
o (uj, n;) 2"‘ 5 || | > ]| [t acbe  a.b.
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2. Confocal conics and billiards
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The extended sides of a billiard intersect at
points of confocal ellipses and hyperbolas
and form a Poncelet grid.

affinely transformed 72-sided periodic billiard with
associated Poncelet grid (G. Glaeser, B. Odehnal,
H.S.. The Universe of Conics, 7KB!)
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2. Confocal conics and billiards

A
ty Theorem:
| f Given a quadrilateral tq, .. ., ty of
| 1 tangents to ¢ from A;, By € ¢.
g Ay sl Then the range R, spanned by
\ c and ¢; contains conics oo,
: /n

1 c3 passing through the remain-

Ing pairs of opposite vertices
(A2, Bo) and (As, Bs).

<

_ _ _ _ + _ _ _ )‘ 83 .

¢ (range = ‘dual pencil’)

= summary of results from M. Chasles (1843), W. Bohm (1961), |zmestiev & Tabachnikov (2016),
Akopyan & Bobenko (2017).
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2. Confocal conics and billiards

. span a net N (2-parameter set).

| In A/, the line elements of ¢; at
A1 and B; span a range which
contains the rank-1 conic R.
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2. Confocal conics
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and billiards

Ao

In N, the line pencils A;, B,
and the pencil R (2-fold) span
a range which intersects R, at
¢;. The range contains conics

sharing the line elements at A,
and B, .

The tangents to ¢; at A; and B,
pass through R.

Confocal ¢, = concyclic
quadrilateral.

This holds also when B>, € ¢
(t1 = ).
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2. Confocal conics and billiards

I
|
|
)
|
I

S(l) — [P1 P N [P3, P, on the confocal hyperbola through @»,
[Py, P 1 N [Ps, Ps] € e on the confocal hyperbola through Ps.
g 17/34

5(2)
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Sfl) =[P4, P] N [Piy1, Pryo] on the confocal ellipse eV for all i,

and e is invariant of the initial data, Kej1 = ke 2acbcacbe

2hH2 _ 2
acbc ke
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2. Confocal conics and billiards

Surprisingly, the distance w
between Sél) and the contact
point with the ncircle s
iInvariant; the same for w;.

Graves's construction —
7 N\

De:= Q1P+ PQ; — Qi_1Q;
7\
= + // - Q/—lQi

IS constant.
Similarly, for e(!) follows

A e, <) P P
Do =015+ 5,7Q3 — QiQ3 = (nt+h+w) + (n+h+w) — Q1Q3= 2D + 2w.
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The same invariants show up
on the sphere. All circular
arcs In black have the same
length. The same ‘Iin green’.

Qaebe\/k?

2h2 _ |2
aCbC ke

Aé 20,34

In the plane: w =




2. Confocal conics and billiards

Ros 6:/2 o For each biliard PP . ..
=i in the ellipse e with caustic
c, there exists a conjugate

billiard PLPIP, . ..

The axial scaling with ¢ — ¢,
OC:Q/"_>'D,'/, Q§_1'_>'D/,
transforms tangents P P, of
c to tangents P/P;. This
results from the symmetry

between t; and t' in the
] | equation

beae cos tjcost! + acbessin tjsint! = acb., which expresses that F; lies on the tangent
to c at Q; and P’ on the tangent at Q’.
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2. Confocal conics and billiards

One might say, point P/ is

/

halfway from P, to P;.

In the sequence of para-
meters ty, ti, to, t), ...
for P1, P[(Q1), P, P3(Q2),
..., the transition P — P’
means a shift ¢; — t/.

|. Izmestiev, S. Tabachnikov (2017): There exists a canonical parametrization of
e such that the billiard transformation P, — P, 1 corresponds to a shift
Ui — Uip1 = U + 2 Au.

Above, an example of canonical parameters: P, ~ 0, Py ~ %, P3 ~ 1.
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3. Periodic N-sided billiards
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The turning number T of a
periodic billiard counts the loops
around the center.

Theorem:
(i) A periodic billiard with even N
and odd T I1s centrally symmetric.

(i) For odd N and odd 7, the
billlard 1s centrally symmetric to
the conjugate billiard.

(ii) For odd N and even T
the billiard conincides with the
conjugate billiard.

g 23/34



3. Periodic N-sided billiards

From Graves' theorem

N\
De=Qi-1F + PQ; — Qi—1Q;
follows for the perimeter of the -
sided billiard

Q Le — N ° De —|_ T - PC
(1) . :
Q9 35/9 with P, as perimeter of e.

lvory's theorem implies for odd
N = 2n + 1: the length /; equals
symmetric /{,_, of the conjugate
billiard and rj; .1 of the original

one.

Theorem: ) =) r=1./2.
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3. Periodic N-sided billiards

23D
PFi+PFiy = Vk
P Hte(ti)”2 °

0,/2 o<1 F;_
#9"/2/ ,§\ = Le= le\il ('D/F/+ 'D/'F/'—l) —

7 Qi \ e
P/+1 ¢ [

_aebezN: 2k,
T Ve & Ite(8)IP

/-
. ache w
e = == 1 — cos 0;
N IZ_;( )
Ke
Theorem [Akopyan, Schwartz, Tabachnikov, Bialy] le-vzl cosf, = N — e\;/b_ Le.
eve
1 N ——2 N N2/3 : :
with SV, TYOIE also > ., Otp~ and > _, ke(t;)° areinvariant.
e
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4. A switch to Analysis

With a billiard motion we denote
a variation of the billiard and the
Poncelet grid induced by the variation
of a single vertex.

According to Graves' construction,
the v, of P can be decomposed as
Vo = vtl + an — vt2 + Vn2 ,
where due to the constant length
Ve, || = [lve || and [[vn,[| = [lvy, |

w /
/2&12 = Ih Wi, hence 1= —2.
) )

If the billiard is periodic, then the product of all ratios /;/r; yields

h b In  wn Wi WN-1
A C— =1, hence hb...Iy=nrnrn...ry.
o v W1 W2 W
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4. A switch to Analysis

Vtz

~ 0 /2
Vn P, 2{/ Nael
» o= Ny €
IR

R2 — T~ ﬁl’

3 /QQ . v w'Dl
/ ' 5 «
P Ao 91/2
T ——————of o
V3 \Q3 1‘./.'
Sy Wy - /A N5
Ry WAL, 3 ‘ ¥
4 - T

ST
PR~
R

Dec. 9, 2020: Differential Geometry Seminar, TU Wien

For periodic billiards, a given
velocity vector v, of any
vertex defines all velocities.

In terms of the exterior angles

01,...,0y we obtain
sin® = hwa _nwr g
2 Vo Vo
cos@ — @, where
2 Vo
Vo 1= |[vaoll, Ve = [[vepall.

From PP, 1 (Q1R; follows

— 0 0
R:Q1 = |, tan 51 = rptan 52
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4. A switch to Analysis

~ 65 /2
Vn> P o
/ s r
R = l' r <
c
/ ! 7 ' Vl‘
" ———— | —— 0 Wi
3 Q o 4 Q
P // 2 1 (,d5/._\\
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After
follows

some  manipulations

@
2

—=: C.

Vg1 tan? % = vy tan®
ke
[t ()2
Instead of a free choice of vy,

we set C = k..

e o o — Vt‘/

veji=ltcll® vi=Ilec] [Itell,

. 0
Vpli = Visin = Itel| vke

for all t = t; and for all confocal

ellipses e.
g 0834



4. A switch to Analysis

To each point
p=(x,y)=(accost, besint)

we assign a velocity vector

v =t te =

. a bex
\/agsmzt—kbgcos%(— ey, - )
be  ac

Theorem:
This vector field defines an infinitesimal motion which preserves confocal ellipses and
permutes the confocal hyperbolas and the tangents of the caustic c.

The infinitesimal motion generates a one-parameter Liegroup [ which carries out the
billiard transformation along e and simultaneously that of the associated Poncelet grid.
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4. A switch to Analysis

We set V:(il_szp' Then, uisa
canonical parameter of e and of ',
e, Y(uz) oy(ur) = y(u1 + w2).

v(t)=|ltc(t)ll te(t) = tte(t)

: dt .
t = i \/a§S|n2t—|—b§c052t.

Proof: [ permutes hyperbolas since £ (and kj) is independent of e (and k).

The condition b.a.costcost + acbesintsint’ = a.b. is equivalent to the fact that
P = (ascost, besint) lies on the tangent to of Q = (a.cos t’ + bcsint’). Differen-
tiation by v yields an identity. Hence, [ permutes the tangents of c.
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4. A switch to Analysis

In order to express the action of y(u) € ' on (3. cost, besint), we integrate

dt . .
o \/agsmthtbgcos?t = \/agsmthr(ag — d?)cos? t = acV/1 — m?cos’ t

with m := d/a. < 1 as numeric eccentricity of the caustic c. We substitute ¢ := t—g
and get under the initial condition ¢ =0 for u =0

de /@ de
= ac.du, hence a.u = F(p, m) =
V1= m2sin’y ) c u(®) (. m) 0 V1—m2sin’y

with F (@, m) as the elliptic integral of the first kind with the modulus m. This function
shows the canonical coordinate u in terms of ¢ with the quarter period

/2
de
K:=a u(f) :/ .
: 2 0 V1 — m2sin’ @
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4. A switch to Analysis

For the sake of simplicity, we define () := a. u(y) as a new canonical coordinate.

The inverse function of u = F (@, m), the Jacobian amplitude ¢ = am(u) leads to
the Jacobian elliptic functions,

snu =sin(am(u)) and cnu = cos(am(u)),

which can be extended in R to periodic functions with period 4K.
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4. A switch to Analysis

Theorem:

For the ellipse ¢ with semiaxes (ac, bc) and eccentricity d = /a2 — b2 and all confocal
ellipses e with semiaxes (ae, be), the inscribed billiards with caustic ¢ can be canonically
parametrized as (—aesnu, becnu), using the Jacobian elliptic functions to the
modulus m = d/ac.

If be = b.cn(Au ), then the vertices of the billiard in e have the canonical parameters
U= (Ug+ 2kAu) for k € Z and any given initial uj.
y
I,

(0)

Conversely, we obtain an N-sided billiard with
turning number 7, where gcd(N,T7) = 1, by
the choice Au = % with K as the complete
elliptic integral of the first kind to the modulus A(24u)

m, provided that b. = b./cn(Au).

Q1(Au)
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Schonbrunn Castle, Vienna

Thank you for your attention!
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