# The motion of billiards in ellipses

#### Hellmuth Stachel





stachel@dmg.tuwien.ac.at — https://www.geometrie.tuwien.ac.at/stachel

Differential Geometry Seminar Dec. 9, 2020, Vienna University of Technology



### **Table of contents**

- 1. Metric properties of confocal conics
- 2. Confocal conics and billiards
- 3. Periodic N-sided billiards
- 4. A switch to Analysis

#### Acknowledgement:

Dan Reznik, Data Science Consulting, Rio de Janeiro, Brazil Ronaldo Garcia, Universidade Federal de Goiás, Goiania, Brazil



The optical property of ellipses is well known, and also the equivalence: equal angles  $\iff \overline{F_1P} + \overline{F_2P} = \text{const.} \iff P \in e$ .

There is a generalization:





If any ray is reflected in a conic e then the incoming and the outgoing ray are tangent to the same confocal conic c, called **caustic**.



Charles **Graves** (1812-1899), bishop of Limerick and mathematician:

The locus of point *P* used to pull the string taut around *c* is a confocal ellipse *e*.  $D_e := \overline{PQ_1} + \overline{PQ_2} - \overline{Q_1Q_2} = \text{const.}$ 





**Billiards** in an ellipse *e* are always tangent to a confocal ellipse or hyperbola.

If one billiard closes after N reflections, then all billiards close, independent of the initial point on c (**Poncelet porism**), and all these closed loops have the same length.



For centuries, billiards attracted the attention of mathematicians, beginning with J.-V. Poncelet and A. Cayley.

S. Tabachnikov: *Geometry and Billiards.* American Mathematical Society, 2005

Recently, Dan Reznik revitalized the interest by computer animations showing the variation of periodic billiards. He identified 40 invariants, e.g., a constant sum of Cosines of interior angles.

Sum of square altitudes to N-periodic tangents is invariant The two types of self-intersected 7-periodics in the Elliptic Billiard





#### A family of confocal central conics

$$\frac{x^2}{a^2+k} + \frac{y^2}{b^2+k} = 1,$$

 $k \in \mathbb{R} \setminus \{-a^2, -b^2\}$  sends through each point *P* outside the axes one ellipse and one orthogonally intersecting hyperbola.

The parameters  $(k_e, k_h)$  define the *elliptic coordinates* of *P* with

 $-a^2 < k_h < -b^2 < k_e$ .



We specify the caustic *c* (semiaxes  $a_c$ ,  $b_c$ ) as k = 0 and the ellipse *e* with semiaxes  $a_e$ ,  $b_e$  as  $k = k_e \implies k_e = a_e^2 - a_c^2 = b_e^2 - b_c^2 > 0$ .



From given 
$$(k_e, k_h)$$
 follows  

$$x^2 = \frac{(a^2 + k_e)(a^2 + k_h)}{d^2},$$

$$y^2 = -\frac{(b^2 + k_e)(b^2 + k_h)}{d^2}.$$
Conversely,  $P = (a_e \cos t, b_e \sin t)$ 
with tangent vector  

$$\mathbf{t}_e(t) = (-a_e \sin t, b_e \cos t)$$
and  $\mathbf{t}_c(t) = (-a_c \sin t, b_c \cos t)$  yield  

$$k_h(t) = -(a_c^2 \sin^2 t + b_c^2 \cos^2 t) = -\|\mathbf{t}_c(t)\|^2 = -\|\mathbf{t}_e(t)\|^2 + k_e.$$

Points on confocal ellipses e and c with the same parameter t have the same coordinate  $k_h$ , i.e., they belong to the same confocal hyperbola.



Given  $P = (a_e \cos t, b_e \sin t)$ , the tangents from P to  $c \ (k = 0)$ include the angle  $\theta(t)$  where

$$\sin^2 \frac{\theta(t)}{2} = \frac{k_e}{\|\mathbf{t}_e(t)\|^2},$$
$$\tan \frac{\theta(t)}{2} = \pm \frac{\sqrt{k_e}}{\|\mathbf{t}_c(t)\|},$$
$$\cos \theta = 1 - \frac{2k_e}{\|\mathbf{t}_e(t)\|^2} = \frac{k_h(t) + k_e}{k_h(t) - k_e}.$$





The signed distances of the side  $t_Q = P_1P_2$  from the center *O* and the pole  $R_1$  w.r.t. *e* have the constant product  $-k_e$ .

For 
$$Q_1 = (a_c \cos t'_1, b_c \sin t'_1),$$
  
 $\overline{Ot_Q} = \frac{-a_c b_c}{\|\mathbf{t}_c(t'_1)\|}$   
 $\overline{Rt_Q} = \overline{R_1 Q_1} = \frac{k_e \|\mathbf{t}_c(t'_1)\|}{a_c b_c}.$ 





The side  $P_1P_2$  (parameters  $t_1, t_2$ ) contacts the caustic c iff  $\sin^2 \frac{t_1 - t_2}{2} = \frac{k_e}{a_e b_e} \left\| \mathbf{t}_e \left( \frac{t_1 + t_2}{2} \right) \right\|^2$ . If  $t'_1$  is the parameter of the tangency point  $Q_1 \in c$ , then  $\tan t'_1 = \frac{b_c a_e}{a_c b_e} \tan \frac{t_1 + t_2}{2}$ .

Half angle substitution yields ...



The half-angle substitution  $\tau_i := \tan \frac{t_i}{2}$  yields for  $P_1$  and  $P_2$  a symmetric biquadratic equation in projective coordinates on e, namely

 $b_e^2 k_e \tau_1^2 \tau_2^2 - b_c^2 a_e^2 (\tau_1^2 + \tau_2^2) + 2(a_e^2 k_e + a_c^2 b_e^2) \tau_1 \tau_2 + b_e^2 k_e = 0,$ 

which defines a 2-2-correspondence between consecute points  $P_1$ ,  $P_2$  of a billiard. The same holds after N iteration between  $P_1$  and  $P_{N+1}$ .

We recall a classical algebraic argument for the Poncelet porism:

A 2-2-correspondence ( $\neq$  id) has at most four fixed points. However, four fixed points are already known as contact points between *e* and the common (isotropic) tangents with the caustic *c*. Hence, if one *N*-sided billiard closes, then the correspondence is the identity, and each billiard inscribed in *e* with caustic *c* must close.





S. Tabachnikov: the key result for the integrability of billiards is the **Joachimsthal** integral  $J_e := -\langle \mathbf{u}_i, \mathbf{n}_i \rangle$  with  $\mathbf{u}_i$  as unit vector of  $P_i P_{i+1}$  and  $\mathbf{n}_i = (\cos t/a_e, \sin t/b_e)$ as a normal vector of e. This holds in all dimensions  $(\mathbf{n}_i = \mathbf{A} \mathbf{p}_i = \mathbf{p}_i^*)$ . In the plane

$$J_e = -\langle \mathbf{u}_i, \mathbf{n}_i \rangle = -\cos\left(\frac{\pi}{2} + \frac{\theta_i}{2}\right) \|\mathbf{n}_i\| = \sin\frac{\theta_i}{2} \|\mathbf{n}_i\| = \frac{\sqrt{k_e}}{\|\mathbf{t}_e\|} \frac{\|\mathbf{t}_e\|}{a_e b_e} = \frac{\sqrt{k_e}}{a_e b_e}$$



The extended sides of a billiard intersect at points of confocal ellipses and hyperbolas and form a **Poncelet grid**.

affinely transformed 72-sided periodic billiard with associated Poncelet grid (G. Glaeser, B. Odehnal, H.S.: *The Universe of Conics*, 7KB!)





#### Theorem:

Given a quadrilateral  $t_1, \ldots, t_4$  of tangents to c from  $A_1, B_1 \in c_1$ .

Then the range  $\mathcal{R}_c$  spanned by c and  $c_1$  contains conics  $c_2$ ,  $c_3$  passing through the remaining pairs of opposite vertices  $(A_2, B_2)$  and  $(A_3, B_3)$ .

(**range** = 'dual pencil')

= summary of results from M. Chasles (1843), W. Böhm (1961), Izmestiev & Tabachnikov (2016), Akopyan & Bobenko (2017).



 $\mathcal{R}_{c} \cap \mathcal{R}_{t} = \{c\} \implies \text{they}$ span a net  $\mathcal{N}$  (2-parameter set).

In  $\mathcal{N}$ , the line elements of  $c_1$  at  $A_1$  and  $B_1$  span a range which contains the rank-1 conic R.







In  $\mathcal{N}$ , the line pencils  $A_i$ ,  $B_i$ and the pencil R (2-fold) span a range which intersects  $\mathcal{R}_c$  at  $c_i$ . The range contains conics sharing the line elements at  $A_i$ and  $B_i$ .

The tangents to  $c_i$  at  $A_i$  and  $B_i$  pass through R.

Confocal  $c, c_1 \implies$  concyclic quadrilateral.

This holds also when  $B_2 \in c$  $(t_1 = t_2)$ .













 $D_{e|1} := \overline{Q_1 S_2^{(1)}} + \overline{S_2^{(1)} Q_3} - Q_1 Q_3 = (r_2 + l_2 + w) + (r_3 + l_3 + w) - Q_1 Q_3 = 2D_e + 2w.$ 



The same invariants show up on the sphere. All circular arcs in black have the same length. The same 'in green'.

In the plane: w =

$$=\frac{2a_eb_e\sqrt{k_e^3}}{a_c^2b_c^2-k_e^2}$$





For each billiard  $P_0P_1P_2...$ in the ellipse *e* with caustic *c*, there exists a **conjugate** billiard  $P'_0P'_1P'_2...$ 

The axial scaling with  $c \rightarrow e$ ,

 $lpha\colon Q_i\mapsto P_i',\quad Q_{i-1}'\mapsto P_i$  ,

transforms tangents  $P_1P_2$  of c to tangents  $P'_1P'_2$ . This results from the symmetry between  $t_i$  and  $t'_i$  in the equation

 $b_c a_e \cos t_i \cos t'_i + a_c b_e \sin t_i \sin t'_i = a_c b_c$ , which expresses that  $P_i$  lies on the tangent to c at  $Q_i$  and  $P'_i$  on the tangent at  $Q'_i$ .





One might say, point  $P'_i$  is halfway from  $P_i$  to  $P_{i+1}$ .

In the sequence of parameters  $t_1$ ,  $t'_1$ ,  $t_2$ ,  $t'_2$ , ... for  $P_1$ ,  $P'_1(Q_1)$ ,  $P_2$ ,  $P'_2(Q_2)$ , ..., the transition  $P_i \mapsto P'_i$ means a shift  $t_i \mapsto t'_i$ .

I. Izmestiev, S. Tabachnikov (2017): There exists a **canonical parametrization** of *e* such that the billiard transformation  $P_i \rightarrow P_{i+1}$  corresponds to a shift  $u_i \rightarrow u_{i+1} = u_i + 2\Delta u$ .

Above, an example of canonical parameters:  $P_1 \sim 0$ ,  $P_2 \sim \frac{1}{2}$ ,  $P_3 \sim 1$ .



# **3. Periodic N-sided billiards**



The **turning number**  $\tau$  of a periodic billiard counts the loops around the center.

#### Theorem:

(i) A periodic billiard with even N and odd  $\tau$  is centrally symmetric.

(ii) For odd N and odd  $\tau$ , the billiard is centrally symmetric to the conjugate billiard.

(iii) For odd N and even  $\tau$  the billiard conincides with the conjugate billiard.



# **3. Periodic N-sided billiards**



From Graves' theorem

$$D_e = \overline{Q_{i-1}P_i} + \overline{P_iQ_i} - Q_{i-1}Q_i$$

follows for the perimeter of the *N*-sided billiard

 $L_e = N \cdot D_e + \tau \cdot P_c$ 

with  $P_c$  as perimeter of e.

**Ivory's theorem** implies for **odd** N = 2n + 1: the length  $l_i$  equals symmetric  $l'_{i+n}$  of the conjugate billiard and  $r_{i+n+1}$  of the original one.

**Theorem:**  $\sum l_i = \sum r_i = L_e/2.$ 



# 3. Periodic N-sided billiards



**Theorem** [Akopyan, Schwartz, Tabachnikov, Bialy]  $\sum_{i=1}^{N} \cos \theta_i = N - \frac{\sqrt{k_e}}{a_e b_e} L_e$ .

With 
$$\sum_{i=1}^{N} \frac{1}{\|\mathbf{t}_e(t_i)\|^2}$$
 also  $\sum_{i=1}^{N} \overline{Ot_P}^2$  and  $\sum_{i=1}^{N} \kappa_e(t_i)^{2/3}$  are invariant.





With a **billiard motion** we denote a variation of the billiard and the Poncelet grid induced by the variation of a single vertex.

According to Graves' construction, the  $\mathbf{v}_2$  of  $P_2$  can be decomposed as

 $\mathbf{v}_2 = \mathbf{v}_{t_1} + \mathbf{v}_{n_1} = \mathbf{v}_{t_2} + \mathbf{v}_{n_2},$ where due to the constant length  $\|\mathbf{v}_{t_2}\| = \|\mathbf{v}_{t_1}\|$  and  $\|\mathbf{v}_{n_2}\| = \|\mathbf{v}_{n_1}\|$  $l_2 \omega_2 = r_2 \omega_1,$  hence  $\frac{\omega_1}{\omega_2} = \frac{l_2}{r_2}.$ 

If the billiard is periodic, then the product of all ratios  $I_i/r_i$  yields

$$\frac{l_1}{r_1} \cdot \frac{l_2}{r_2} \cdots \frac{l_N}{r_N} = \frac{\omega_N}{\omega_1} \cdot \frac{\omega_1}{\omega_2} \cdots \frac{\omega_{N-1}}{\omega_N} = 1, \text{ hence } l_1 l_2 \dots l_N = r_1 r_2 \dots r_N$$



For periodic billiards, a given velocity vector  $\mathbf{v}_2$  of any vertex defines all velocities.

In terms of the exterior angles  $\theta_1, \ldots, \theta_N$  we obtain  $\sin \frac{\theta_2}{2} = \frac{l_2 \omega_2}{v_2} = \frac{r_2 \omega_1}{v_2}$  and  $\cos \frac{\theta_2}{2} = \frac{v_{t|2}}{v_2}$ , where  $v_2 := ||\mathbf{v}_2||, v_{t|2} := ||\mathbf{v}_{t|2}||.$ From  $P_1 P_2 \perp Q_1 R_1$  follows  $\overline{R_1 Q_1} = l_1 \tan \frac{\theta_1}{2} = r_2 \tan \frac{\theta_2}{2}.$ 





After some manipulations follows  $v_{t|1} \tan^2 \frac{\theta_1}{2} = v_{t|2} \tan^2 \frac{\theta_2}{2}$  $\dots = v_{t|i} \frac{k_e}{\|\mathbf{t}_c(t_i)\|^2} =: C.$ Instead of a free choice of  $v_2$ , we set  $C = k_e$ .

 $v_{t|i} = \|\mathbf{t}_{c}\|^{2}, \quad v_{i} = \|\mathbf{t}_{c}\| \|\mathbf{t}_{e}\|,$  $v_{n|i} = v_{i} \sin \frac{\theta}{2} = \|\mathbf{t}_{c}\| \sqrt{k_{e}}$ for all  $t = t_{i}$  and for all confocal ellipses e.





To each point  $\mathbf{p} = (x, y) = (a_e \cos t, b_e \sin t)$ we assign a velocity vector  $\mathbf{v} = \|\mathbf{t}_c\| \mathbf{t}_e = \sqrt{a_c^2 \sin^2 t + b_c^2 \cos^2 t} \left(-\frac{a_e y}{b_e}, \frac{b_e x}{a_e}\right).$ 

#### Theorem:

This vector field defines an infinitesimal motion which preserves confocal ellipses and permutes the confocal hyperbolas and the tangents of the caustic *c*.

The infinitesimal motion generates a one-parameter Liegroup  $\Gamma$  which carries out the billiard transformation along e and simultaneously that of the associated Poncelet grid.





We set  $\mathbf{v} = \frac{\mathrm{d} \mathbf{p}}{\mathrm{d} u} = \mathbf{p}$ . Then, u is a canonical parameter of e and of  $\Gamma$ , i.e.,  $\gamma(u_2) \circ \gamma(u_1) = \gamma(u_1 + u_2)$ .  $\mathbf{v}(t) = \|\mathbf{t}_c(t)\| \mathbf{t}_e(t) = t \mathbf{t}_e(t)$  $\dot{t} = \frac{\mathrm{d} t}{\mathrm{d} u} = \sqrt{a_c^2 \sin^2 t + b_c^2 \cos^2 t}$ .

*Proof:*  $\Gamma$  permutes hyperbolas since  $\dot{t}$  (and  $\dot{k}_h$ ) is independent of e (and  $k_e$ ).

The condition  $b_c a_e \cos t \cos t' + a_c b_e \sin t \sin t' = a_c b_c$  is equivalent to the fact that  $P = (a_e \cos t, b_e \sin t)$  lies on the tangent  $t_Q$  of  $Q = (a_c \cos t' + b_c \sin t')$ . Differentiation by u yields an identity. Hence,  $\Gamma$  permutes the tangents of c.

In order to express the action of  $\gamma(u) \in \Gamma$  on  $(a_e \cos t, b_e \sin t)$ , we integrate

$$\frac{\mathrm{d}t}{\mathrm{d}u} = \sqrt{a_c^2 \sin^2 t + b_c^2 \cos^2 t} = \sqrt{a_c^2 \sin^2 t + (a_c^2 - d^2) \cos^2 t} = a_c \sqrt{1 - m^2 \cos^2 t}$$

with  $m := d/a_c < 1$  as numeric eccentricity of the caustic *c*. We substitute  $\varphi := t - \frac{\pi}{2}$ and get under the initial condition  $\varphi = 0$  for u = 0

$$\frac{\mathrm{d}\varphi}{\sqrt{1-m^2\sin^2\varphi}} = a_c\,\mathrm{d}u\,, \text{ hence } a_c\,u(\varphi) = F(\varphi,\,m) = \int_0^\varphi \frac{\mathrm{d}\varphi}{\sqrt{1-m^2\sin^2\varphi}}$$

with  $F(\varphi, m)$  as the elliptic integral of the first kind with the modulus m. This function shows the canonical coordinate u in terms of  $\varphi$  with the quarter period

$$K := a_c u\left(\frac{\pi}{2}\right) = \int_0^{\pi/2} \frac{\mathrm{d}\varphi}{\sqrt{1 - m^2 \sin^2 \varphi}}$$



For the sake of simplicity, we define  $\tilde{u}(\varphi) := a_c u(\varphi)$  as a new canonical coordinate.

The inverse function of  $\tilde{u} = F(\varphi, m)$ , the Jacobian amplitude  $\varphi = \operatorname{am}(\tilde{u})$  leads to the Jacobian elliptic functions,

 $\operatorname{sn} \widetilde{u} = \operatorname{sin}(\operatorname{am}(\widetilde{u}))$  and  $\operatorname{cn} \widetilde{u} = \operatorname{cos}(\operatorname{am}(\widetilde{u}))$ ,

which can be extended in  $\mathbb{R}$  to periodic functions with period 4K.



#### Theorem:

For the ellipse c with semiaxes  $(a_c, b_c)$  and eccentricity  $d = \sqrt{a_c^2 - b_c^2}$  and all confocal ellipses e with semiaxes  $(a_e, b_e)$ , the inscribed billiards with caustic c can be canonically parametrized as  $(-a_e \operatorname{sn} \widetilde{u}, b_e \operatorname{cn} \widetilde{u})$ , using the Jacobian elliptic functions to the modulus  $m = d/a_c$ .

If  $b_c = b_e \operatorname{cn}(\Delta \widetilde{u})$ , then the vertices of the billiard in *e* have the canonical parameters  $\widetilde{u} = (\widetilde{u}_0 + 2k\Delta \widetilde{u})$  for  $k \in \mathbb{Z}$  and any given initial  $\widetilde{u}_0$ .

Conversely, we obtain an *N*-sided billiard with turning number  $\tau$ , where  $gcd(N, \tau) = 1$ , by the choice  $\Delta \widetilde{u} = \frac{2\tau K}{N}$  with *K* as the complete elliptic integral of the first kind to the modulus *m*, provided that  $b_e = b_c/cn(\Delta \widetilde{u})$ .







Schönbrunn Castle, Vienna

### Thank you for your attention!



### References

#### References

- [1] A.W. Akopyan, A.I. Bobenko: Incircular nets and confocal conics. Trans. Amer. Math. Soc., Nov. 16, 2017 (arXiv:1602.04637v2[math.DS]270ct2017).
- [2] A. Akopyan, R. Schwartz, S. Tabachnikov: *Billiards in ellipses revisited*. arXiv:2001.02934v2[math.MG], 2020.
- [3] M. Bialy, S. Tabachnikov: *Dan Reznik's identities and more*. arXiv:2001.08469v2[math.DG], 2020.
- [4] W. Böhm: *Ein Analogon zum Satz von Ivory*. Ann. Mat. Pura Appl. (4) **54**, 221–225 (1961).



Dec. 9, 2020: Differential Geometry Seminar, TU Wien

- [5] W. Böhm: Verwandte Sätze über Kreisvierseitnetze. Arch. Math. 21, 326–330 (1970).
- [6] M. Chasles: Propriétés générales des arcs d'une section conique, dont la difference est rectifiable. Comptes Rendus hebdomadaires de séances de l'Académie des sciences 17, 838–844 (1843).
- [7] M. Chasles: *Résumé d'une théorie des coniques sphériques homofocales*. Comptes Rendus des séances de l'Académie des Sciences **50**, 623–633 (1860).
- [8] A. Chavez-Caliz: *More about areas and centers of Poncelet polygons.* arXiv:2004.05404, (2020).
- [9] G. Glaeser, H. Stachel, B. Odehnal: *The Universe of Conics*. Springer Spectrum, Berlin, Heidelberg 2016.
- [10] Ph. Griffiths, J. Harris: On Cayley's explicit solution to Poncelet's porism.
   L'Enseignement Mathématique 24/1-2, 31–40 (1978).



Dec. 9, 2020: Differential Geometry Seminar, TU Wien

- [11] L. Halbeisen, N. Hungerbühler: A Simple Proof of Poncelet's Theorem (on the occasion of its bicentennial). Amer. Math. Monthly 122/6, 537–551 (2015).
- [12] I. Izmestiev, S. Tabachnikov: *Ivory's Theorem revisited*. J. Integrable Syst. 2/1, xyx006 (2017), https://doi.org/10.1093/integr/xyx006.
- [13] D. Reznik, R. Garcia, J. Koiller: *Forty New Invariants of N-Periodics in the Elliptic Billiard*. arXiv:2004.12497[math.DS], 2020.
- [14] H. Stachel: *Recalling Ivory's Theorem*. FME Transactions **47**, No 2, 355–359 (2019).
- [15] S. Tabachnikov: *Geometry and Billiards*. American Mathematical Society, Providence/Rhode Island 2005.

