On Orthogonality-preserving Plücker transformations of Hyperbolic Spaces

Klaus List

July 29, 1999

Abstract

A complete overview of all orthogonality-preserving Plücker transformations in finite dimensional hyperbolic spaces with dimension other than three is given. In the Cayley-Klein model of such a hyperbolic space all Plücker transformations are induced by collineations of the ambient projective space.

1 Introduction

Let G be an arbitrary non-empty set and \sim a binary relation on G which is symmetric and reflexive. Following [3] we call the structure (G, \sim) a Plücker space, if for each pair $a, b \in G$ there exists a finite number of elements $c_{1}, c_{2}, \ldots, c_{n} \in G$ with

$$
a \sim c_{1} \sim c_{2} \sim \ldots \sim c_{n} \sim b .
$$

A Plücker transformation of (G, \sim) is a bijection $\varphi: G \rightarrow G$ with

$$
\begin{equation*}
a \sim b \Longleftrightarrow a^{\varphi} \sim b^{\varphi} \text { for all } a, b \in G . \tag{1}
\end{equation*}
$$

All such Plücker transformations form the Plücker group of (G, \sim).
Orthogonality-preserving Plücker transformations of Euclidean spaces have been discussed by W. Benz and E.M. Schröder in [3, 4]. Here G is the set of lines and $a \sim b$ means that either $a=b$ or that a and b meet orthogonally. Similar results for elliptic and symplectic spaces are due to H. Havlicek [10, 11]. One result of all these papers is that dimension three is, in some sense, exceptional. For example the 3 -dimensional elliptic spaces are the only ones with Plücker transformations not induced by collineations and dualities [10]. More examples of Plücker spaces can be found in $[3,5,13,15]$.

In this paper we discuss orthogonality-preserving Plücker transformations of finite dimensional hyperbolic spaces with a Euclidean ground field. For dimension other than three all Plücker transformations are determined. In the Cayley-Klein model they are induced by collineations of the ambient projective space. Moreover, condition (1) can be reduced to

$$
a \sim b \Longrightarrow a^{\varphi} \sim b^{\varphi} \quad \forall a, b \in G
$$

2 Plücker spaces on hyperbolic spaces

Let $\Pi:=\Pi(\mathcal{P}, \mathcal{G})$ be a Pappian projective space $(2 \leq \operatorname{dim} \Pi:=n<\infty)$ with point set \mathcal{P}, line set \mathcal{G} and Euclidean ground field \mathbb{K}. The characteristic of a Euclidean field is always 0 . Moreover, the set \mathcal{H} of internal points of an oval quadric \mathcal{Q} in Π never is empty [2, p.54]. Now the linear space $\Pi_{h}(\mathcal{H}, \overline{\mathcal{G}})$ with

$$
\overline{\mathcal{G}}:=\{\bar{g}=g \cap \mathcal{H} \mid \bar{g} \neq \varnothing, g \in \mathcal{G}\}
$$

is the Cayley-Klein model of the n-dimensional hyperbolic space over \mathbb{K}; cf. [8] or [14] for an axiomatic approach. We call \mathcal{Q} the absolute quadric and denote its polarity by π. Since \mathbb{K} is Euclidean, each hyperbolic line \bar{g} has two ideal points $\{A, B\}:=g \cap \mathcal{Q}[2, \mathrm{p} .54]$. We define a mapping of the lattice of subspaces onto itself by setting

$$
\mathcal{U} \mapsto \bigcap\left\{P^{\pi} \mid P \in \mathcal{U}\right\} \text { for all subspaces } \mathcal{U} \neq \varnothing \text { and } \varnothing \mapsto \Pi .
$$

This mapping is again denoted by π.
Since the ground field \mathbb{K} of Π is Euclidean, it can be ordered uniquely. Therefore only one separation function can be defined on \mathcal{P} [2, p.60]. Pairs A, B and C, D with $A, B \neq C, D$ on a line or a conic are called separated, denoted by $(A, B \mid C, D)=-1$, if and only if the cross-ratio $C R(A, B, C, D)<0$. Otherwise we write $(A, B \mid C, D)=1$. Two coplanar hyperbolic lines with ideal points A, B and C, D intersect in \mathcal{H} if and only if $(A, B \mid C, D)=-1[2$, p. 62 ff$]$.

In the following we will distinguish between a secant $g \in \mathcal{G}$ of \mathcal{Q} and the hyperbolic line $\bar{g}:=g \cap \mathcal{H}$.

The polarity π gives rise to the following binary relations \sim and \approx on $\overline{\mathcal{G}}$: For $\bar{a}, \bar{b} \in \overline{\mathcal{G}}$ put

$$
\begin{array}{ll}
\bar{a} \approx \bar{b}: \Longleftrightarrow a \cap b^{\pi} \neq \varnothing \text { and } \bar{a} \cap \bar{b} \neq \varnothing & \text { (orthogonally intersecting lines) } \\
\bar{a} \sim \bar{b}: \Longleftrightarrow \bar{a} \approx \bar{b} \text { or } a=b & \text { (related lines). }
\end{array}
$$

Both relations are symmetric and, by definition, \sim is reflexive. Now we can show:

Proposition 1. The structure ($\overline{\mathcal{G}}, \sim$) is a Plücker space.
Proof. Let $\bar{a}, \bar{b} \in \overline{\mathcal{G}}$ be distinct. First we assume that a, b are in a plane ε with $\mathcal{Q}_{\varepsilon}:=\mathcal{Q} \cap \varepsilon$. We are looking for a finite sequence of lines $\bar{n}_{1}, \bar{n}_{2}, \ldots, \bar{n}_{k} \in \overline{\mathcal{G}}$ with

$$
\begin{equation*}
\bar{a} \sim \bar{n}_{1} \sim \ldots \sim \bar{n}_{k} \sim \bar{b} \tag{2}
\end{equation*}
$$

1. For hyperparallel lines \bar{a}, \bar{b}, the intersection point $a \cap b$ is an external point. Hence the line $n:=(a \cap b)^{\pi} \cap \varepsilon$ fulfills $\bar{a} \sim \bar{n} \sim \bar{b}$.
2. Now let \bar{a}, \bar{b} be parallel and $A \in a \cap \mathcal{Q}_{\varepsilon}, B \in b \cap \mathcal{Q}_{\varepsilon}$ and $C:=a \cap b \in$ $\mathcal{Q}_{\varepsilon}$ with $A \neq C \neq B$. Furthermore we choose $D, E \in \mathcal{Q}_{\varepsilon}$ with $D \neq$ E such that the pairs $(A, D),(C, B)$ and $(A, E),(C, B)$ are separated. From $(C, B \mid D, A)=-1,(C, B \mid A, E)=-1,(A, C \mid D, B)=1$, and
$(A, C \mid B, E)=1$ the multiplication theorem for separation functions gives $(C, B \mid D, E)=1$ and $(A, C \mid D, E)=1$. So the line $\bar{n}_{2}:=D E \cap \mathcal{H}$ is hyperparallel to \bar{a} and \bar{b}. Now we have reduced the problem to case 1 .
3. \bar{a}, \bar{b} intersect: We choose B in $b \cap \mathcal{Q}_{\varepsilon}$. Then $\bar{n}_{1}:=\left(\left(a^{\pi} \cap \varepsilon\right) B\right) \cap \mathcal{H}$ is parallel to \bar{b} and $\bar{a} \sim \bar{n}_{1}$. Again, we have reduced the problem to case 2 .

If a, b are skew lines we choose a line \bar{c} intersecting \bar{a} and \bar{b}. So the assertion follows from case 3 . Any two lines in $\overline{\mathcal{G}}$ are either hyperparallel, or parallel, or intersecting, or skew.

In the proof of Proposition 1 we saw that for any two skew lines $\bar{a}, \bar{b} \in \overline{\mathcal{G}}$ there exists a sequence of orthogonally intersecting lines that connect \bar{a} and \bar{b}. By $[7$, p.64, (1)] it is always possible to reduce this sequence to one line:

Lemma 1. Let \bar{a}, \bar{b} be two given skew lines of a hyperbolic space Π_{h}. Then there exists a line \bar{n} intersecting \bar{a} and \bar{b} orthogonally.

Now we want to discuss Plücker transformations of $(\overline{\mathcal{G}}, \sim)$. We use the term \mathcal{Q}-collineation for any collineation of Π leaving the quadric \mathcal{Q} invariant. It is obvious that \mathcal{Q}-collineations induce Plücker transformations:

Proposition 2. Let $\psi: \Pi \rightarrow \Pi$ be a \mathcal{Q}-collineation. Then the line mapping $\varphi: \overline{\mathcal{G}} \rightarrow \overline{\mathcal{G}}, \bar{g} \mapsto g^{\psi} \cap \mathcal{H}$ which is induced by ψ is a Plücker transformation of ($\overline{\mathcal{G}}, \sim$).

Now the question is the following: Are all Plücker transformations induced by \mathcal{Q}-collineations.

3 Plücker transformations in hyperbolic spaces with $\operatorname{dim} \Pi_{h} \geq 4$

Let $\Pi_{h}(\mathcal{H}, \overline{\mathcal{G}})$ be a hyperbolic space $\left(\operatorname{dim} \Pi_{h} \geq 2\right)$ with the relations \sim and \approx.
Lemma 2. Given mutually distinct $\bar{a}, \bar{b}, \bar{c} \in \overline{\mathcal{G}}$ with \bar{a}, \bar{b} concurrent and \bar{c} intersecting \bar{a} and \bar{b} orthogonally, then $\bar{a} \cap \bar{b} \subset \bar{c}$.

Proof. Since $\bar{a}, \bar{b}, \bar{c}$ are mutually distinct, $|\bar{a} \cap \bar{b}|=|\bar{a} \cap \bar{c}|=|\bar{b} \cap \bar{c}|=1$. In Π_{h} there exists no triangle with two right angles. Therefore the point $\bar{a} \cap \bar{b}$ is on \bar{c}.

Proposition 3. Let $\operatorname{dim} \Pi_{h} \geq 4$ and $\varphi: \overline{\mathcal{G}} \rightarrow \overline{\mathcal{G}}$ be a bijection ${ }^{1}$ with

$$
\begin{equation*}
\bar{a} \sim \bar{b} \Longrightarrow \bar{a}^{\varphi} \sim \bar{b}^{\varphi} \quad \forall \bar{a}, \bar{b} \in \overline{\mathcal{G}} \tag{3}
\end{equation*}
$$

Then for every point $A \in \mathcal{H}$ there exists an A^{\prime} such that $\bar{g} \in \mathcal{G}$ and $A \in \bar{g}$ implies $A^{\prime} \in \bar{g}^{\varphi}$.

[^0]Proof. We choose $\bar{a}, \bar{b} \in \overline{\mathcal{G}}$ with $\bar{a} \cap \bar{b}=A$ and $\bar{a} \approx \bar{b}$. Hence $\bar{a}^{\varphi} \approx \bar{b}^{\varphi}$ and we are able to define $A^{\prime}:=\bar{a}^{\varphi} \cap \bar{b}^{\varphi}$. Now it remains to be shown that ${ }^{2} \bar{g} \in \overline{\mathcal{G}}_{A}$ implies $\bar{g}^{\varphi} \in \overline{\mathcal{G}}_{A^{\prime}}$.

1. If \bar{g} is related to \bar{a} and \bar{b}, then $\bar{a}^{\varphi} \sim \bar{g}^{\varphi} \sim \bar{b}^{\varphi}$. By Lemma $2, A^{\prime} \in \bar{g}^{\varphi}$.
2. Let \bar{g} be not related to \bar{a} and \bar{b}. Since $\operatorname{dim} \Pi_{h}=n \geq 4$, all lines passing A, and orthogonal to \bar{a} and \bar{b}, span a subspace β of Π of dimension $n-2 \geq 2$. We put $a \vee b=: \alpha$ and choose $c, d \in \beta$ such that $\bar{c} \approx \bar{d}$ and $A \in c, d$ (see Figure 1). Additionally, there exist lines $e, f \ni A$ with $e \in \alpha, f \in \beta$ and $\bar{e} \approx \bar{g}, \bar{f} \approx \bar{g}$. Now the lines $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ and $\bar{e}, \bar{f}, \bar{g}$ as well as $\bar{a}, \bar{b}, \bar{f}$ and $\bar{c}, \bar{d}, \bar{e}$ are mutually orthogonal. This is also true for their φ-images. Together with Lemma 2 we get step by step: $A^{\prime} \in \bar{c}^{\varphi}, A^{\prime} \in \bar{d}^{\varphi}$, whence $A^{\prime} \in \bar{e}^{\varphi}, A^{\prime} \in \bar{f}^{\varphi}$, and finally $A^{\prime} \in \bar{g}^{\varphi}$.

Figure 1: Step 2 of the proof of Proposition 3

In step 2 we used $\operatorname{dim} \Pi_{h} \geq 4$. Therefore, we cannot use the same methods for solving the 2 - and 3 -dimensional case.

With the help of φ we are able to define a mapping $\bar{\psi}$ on the point set of $\Pi_{h}:$

Proposition 4. Let Π_{h} be a hyperbolic space with $\operatorname{dim} \Pi_{h} \geq 4$. If $\varphi: \overline{\mathcal{G}} \rightarrow \overline{\mathcal{G}}$ is a bijection satisfying property (3), then φ is induced by a collineation $\bar{\psi}$ of Π_{h}.

Proof. We define $\bar{\psi}: \mathcal{H} \rightarrow \mathcal{H}, A \mapsto A^{\bar{\psi}}:=A^{\prime}$. This $\bar{\psi}$ is well defined by Proposition 3 and collinearity of points is invariant under φ.

1. Assume to the contrary that there exist two different points $A, B \in \mathcal{H}$ with $A^{\bar{\psi}}=B^{\bar{\psi}}$. For all $X \in \mathcal{H} \backslash A B$ we obtain $\overline{X B}^{\varphi} \neq \overline{X A}^{\varphi}$ by the injectivity

[^1]of φ. Further $X^{\bar{\psi}}=A^{\bar{\psi}}=B^{\bar{\psi}}$. So, for every $\bar{g} \in \overline{\mathcal{G}}$ we get $A^{\bar{\psi}} \in \underline{g}^{\varphi}$, which is a contradiction to the surjectivity of φ. Thus the mapping $\bar{\psi}$ is injective.
2. Let the points $A, B, C \in \mathcal{H}$ be non-collinear and let their images $A^{\bar{\psi}}, B^{\bar{\psi}}$, $C^{\bar{\psi}}$ be on a line \bar{g}. Since $\bar{\psi}$ is injective, these points are mutually distinct. Now $\overline{A B} \neq \overline{A C}$ and
$$
\overline{A B^{\varphi}}=\overline{A^{\bar{\psi}} B^{\bar{\psi}}}=\bar{g}=\overline{A^{\bar{\psi}} C^{\bar{\psi}}}=\overline{A C^{\varphi}}
$$
is a contradiction to the injectivity of φ.
3. The surjectivity of $\bar{\psi}$ remains to be shown:
(a) First we prove that the restriction of φ to $\overline{\mathcal{G}}_{A}(A \in \mathcal{H})$ is a bijection onto $\overline{\mathcal{G}}_{A^{\bar{\phi}}}$. For any two lines $\bar{a} \neq \bar{b}$ through A it follows that $\bar{a}^{\varphi} \neq \bar{b}^{\varphi}$ and so $A^{\bar{\psi}}=\bar{a}^{\varphi} \cap \bar{b}^{\varphi}$. Supposing $A^{\bar{\psi}} \in \bar{c}^{\varphi}$ but $A \notin \bar{c}$, we can also assume without loss of generality that \bar{c} intersects \bar{a} and \bar{b}. Hence $\bar{a} \cap \bar{c}=B \neq A$ and $A^{\bar{\psi}}=B^{\bar{\psi}}$. This contradicts the injectivity of $\bar{\psi}$.
(b) Now we will show that the φ-preimages of parallel lines are again parallel: If two lines are hyperparallel or skew, then they have a common orthogonal line (Proposition 1 and Lemma 1), intersecting the lines in two different points. This is also true for their images. Concurrent and parallel lines do not have such a common orthogonal line (Lemma 2). Therefore, their φ-preimages are again concurrent or parallel. In Proposition 3 we proved that φ maps intersecting lines to intersecting lines. Hence the assertion follows.
(c) In the next step we prove that
$$
\bar{a}^{\bar{\psi}}=\left\{X^{\bar{\psi}} \mid X \in \bar{a}\right\}=\bar{a}^{\varphi} \text { for all } \bar{a} \in \overline{\mathcal{G}} .
$$

Let us take a look at a star with center $A \notin \bar{a}$. In (b) we saw that a line \bar{b}, with $\bar{b}^{\varphi} \cap \bar{a}^{\varphi} \neq \varnothing$, is necessarily parallel or concurrent to \bar{a}. But the only two lines in $\overline{\mathcal{G}}_{A}$ being parallel to \bar{a} are the φ-preimages of the parallel lines to \bar{a}^{φ}. Therefore \bar{a} and \bar{b} intersect and $\bar{\psi} \mid \bar{a}: \bar{a} \rightarrow \bar{a}^{\varphi}$ is surjective.
(d) If B^{\prime} is an arbitrary point in \mathcal{H}, then we are able to choose a line $\bar{a}^{\varphi} \ni B^{\prime}$. In (c) we proved the existence of a point $B \in \bar{a}$ with $B^{\bar{\psi}}=B^{\prime}$.

Finally, we extend the collineation $\bar{\psi}: \mathcal{H} \rightarrow \mathcal{H}$ into the ambient projective space Π. The main tool will be a Theorem due to R. Frank [6].

Proposition 5. Let φ be a bijection satisfying (3) in a hyperbolic space Π_{h} with $\operatorname{dim} \Pi_{h} \geq 4$. Then φ is induced by a \mathcal{Q}-collineation ψ of Π. Moreover, φ is a Plücker transformation.

Proof. We already know that φ is induced by a collineation $\bar{\psi}: \mathcal{H} \rightarrow \mathcal{H}$. Using the terminology of [6], such a collineation can be extended to a projection $\bar{\psi}$: $\mathcal{H} \rightarrow \Pi$.

The Euclidean ground field \mathbb{K}, together with the order topology, is a topological field [17]. So Π becomes a topological projective space with the coordinate topology τ [16]. The set of internal points of any oval quadric, for example \mathcal{H}, is an open set of τ. Since \mathcal{H} is not contained in a hyperplane, $\operatorname{span} \mathcal{H}^{\bar{\psi}}=\operatorname{span} \mathcal{H}=\Pi$. The induced topologies on the lines of Π form a linear topology in the sense of [6]. Because \mathcal{H} is an open set, the intersection set of every line g with \mathcal{H} is an open set with respect to the induced topology on g. So \mathcal{H} is linearly open. If \bar{g} is a hyperbolic line, then $\bar{g}^{\bar{\psi}}=(\mathcal{H} \cap g)^{\bar{\psi}}=\mathcal{H} \cap g^{\varphi} \neq \varnothing$ is again open with respect to the linear topology of Π. Therefore we can use Theorem 2 of [6]:

There exist subspaces $Z \subset \Pi \backslash \mathcal{H}$ and $D \subset \Pi \backslash Z$ with span $D \vee Z=\Pi$. Moreover there exists a collineation $\psi: D \rightarrow D^{\prime}$ with $\bar{\psi}=p \psi \iota$ where $p: \mathcal{H} \rightarrow D$ is a central projection with center Z, D^{\prime} is a subspace of Π and $\iota: D^{\prime} \rightarrow \Pi$ is the canonical injection. In our case Z is empty, otherwise each hyperbolic line \bar{g} with $g \cap Z \neq \varnothing$ would be mapped onto a point. Furthermore, span $D \vee Z=\Pi$ implies $D=\Pi=D^{\prime}$ and ι is the identity. Hence the central projection $p: \mathcal{H} \rightarrow \Pi$ is the canonical injection and $\psi \mid \mathcal{H}=\bar{\psi}$.

Under the collineation ψ hyperplanes are mapped onto hyperplanes. There is a one-to-one correspondence between external points A of \mathcal{Q} and hyperplanes $\varepsilon=A^{\pi}$ which contain internal points. If $I_{1}, I_{2} \in \varepsilon$ are two different internal points, ε is spanned by all lines $a \in \mathcal{G} \cap \varepsilon$ with $\bar{a} \approx \overline{A I_{1}}, \bar{a} \approx \overline{A I_{2}}$ respectively. Orthogonality is invariant under ψ. That means $\overline{A^{\psi} I_{1}^{\psi}}\left(\overline{A^{\psi} I_{2}^{\psi}}\right)$ is the only line through $I_{1}^{\psi}\left(I_{2}^{\psi}\right)$, that is orthogonal to all lines of the star with center $I_{1}^{\psi}\left(I_{2}^{\psi}\right)$ in ε^{ψ}. Therefore $A^{\psi}=\varepsilon^{\psi \pi}$ is an external point. Since ψ and $\bar{\psi}$ are collineations, ψ yields also a bijection on the set of external points of \mathcal{Q}. So, ψ is a \mathcal{Q}-collineation. Proposition 2 shows that $\varphi: \overline{\mathcal{G}} \rightarrow \overline{\mathcal{G}}$ is a Plücker transformation.

Remark. For real hyperbolic spaces we could show Proposition 5 also with Theorem 2 in [12] by R. Höfer.

4 The 2-dimensional case

4.1 A characterization of Plücker transformations

If $\operatorname{dim} \Pi_{h}=2$, then the absolute quadric \mathcal{Q} is a conic with polarity π. For an arbitrary line $\bar{g} \in \overline{\mathcal{G}}$ all orthogonal lines are running through the point g^{π}. By $\operatorname{dim} \Pi_{h}=2$, orthogonal hyperbolic lines are intersecting. Therefore there exists no common orthogonal transversal for $\bar{a}, \bar{b} \in \overline{\mathcal{G}}$ being parallel or concurrent. But the sequence (2) of related lines connecting \bar{a}, \bar{b} can be reduced to two lines $\overline{n_{1}}, \overline{n_{2}}$:

Lemma 3. In a hyperbolic plane let $\bar{a}, \bar{b} \in \overline{\mathcal{G}}$ be two different lines, that are parallel or intersecting, but not orthogonal. Then there exist $\overline{n_{1}}, \overline{n_{2}} \in \overline{\mathcal{G}}$ with

$$
\bar{a} \approx \overline{n_{1}} \approx \overline{n_{2}} \approx \bar{b} .
$$

Proof. In both cases we will show the existence of a line $\overline{n_{1}}$ with $\bar{a} \approx \overline{n_{1}}$ that is hyperparallel to \bar{b}.

1. \bar{a}, \bar{b} are parallel: Let $A \in a \cap \mathcal{Q}, B \in b \cap \mathcal{Q}$ and $C:=a \cap b \in \mathcal{Q}$ with $A \neq C \neq B$. There exists a $D \in \mathcal{Q}$ such that the pairs (A, B) and (C, D) are seperated. The line $a^{\pi} D$ meets \mathcal{Q} residually at a point E, say. Then $(A, C \mid D, E)=-1$, because $\overline{A C}$ and $\overline{D E}$ intersect orthogonally. Thus

$$
(C, D \mid B, E)=(C, D \mid B, A) \cdot(C, D \mid A, E)=(-1) \cdot 1=-1
$$

and $(B, C \mid D, E)=1$, which means, \bar{b} and $\overline{n_{1}}:=\overline{D E}$ are hyperparallel.
2. \bar{a}, \bar{b} are intersecting (Figure 2): Let $A \neq B$ and $C \neq D$ be the intersection points of a and b with \mathcal{Q}. Because \bar{a}, \bar{b} intersect, $(A, B \mid C, D)=-1$. Choose $E \in a^{\pi} D \cap \mathcal{Q}$ with $D \neq E$. So the lines $\overline{A B}$ and $\overline{D E}$ intersect, i.e. $(A, B \mid D, E)=-1$. From $a \nsim b$ follows $C \neq E$. Without loss of generality we can assume that $(A, C \mid D, E)=-1$: If $(A, C \mid D, E)=1$ then the multiplication theorem for seperation functions gives:

$$
(B, C \mid D, E)=(B, A \mid D, E) \cdot(A, C \mid D, E)=(-1) \cdot 1=-1
$$

Moreover, we choose F such that $(A, D \mid C, F)=-1$. For the second intersection point $G \in a^{\pi} F \cap \mathcal{Q}$ we get $(E, D \mid F, G)=1$, since $E D, F G$ intersect in the external point a^{π} of \mathcal{Q}. Now we get step by step:

$$
\begin{aligned}
& (A, D \mid E, F)=(A, D \mid C, F) \cdot(A, D \mid E, C)=(-1) \cdot 1=-1, \\
& (D, E \mid A, G)=(D, E \mid F, G) \cdot(D, E \mid A, F)=1 \cdot 1=1, \\
& (D, E \mid C, G)=(D, E \mid A, G) \cdot(D, E \mid C, A)=1 \cdot(-1)=-1, \\
& (D, E \mid C, F)=(D, E \mid C, G) \cdot(D, E \mid G, F)=(-1) \cdot 1=-1 .
\end{aligned}
$$

Thus $(C, D \mid F, G)=(C, D \mid E, G) \cdot(C, D \mid F, E)=1 \cdot 1=1$ and therefore \bar{b} and $\overline{n_{1}}:=\overline{G F}$ are hyperparallel.

Proposition 6. In every hyperbolic plane Π_{h} a bijection

$$
\varphi: \overline{\mathcal{G}} \rightarrow \overline{\mathcal{G}} \text { with } \bar{g} \sim \bar{h} \Longrightarrow \bar{g}^{\varphi} \sim \bar{h}^{\varphi}
$$

is a Plücker transformation of $(\overline{\mathcal{G}}, \sim)$.
Proof. For two arbitrary lines $\bar{g}, \bar{h} \in \overline{\mathcal{G}}$ we show

$$
\bar{g} \nsim \bar{h} \Longrightarrow \bar{g}^{\varphi} \nsim \bar{h}^{\varphi} .
$$

Figure 2: \bar{a}, \bar{b} are intersecting

1. For every two hyperparallel lines \bar{g}, \bar{h} there exists a line $\overline{n_{1}} \in \overline{\mathcal{G}}$ with $\bar{g} \approx \overline{n_{1}} \approx \bar{h}$ and furthermore $\bar{g}^{\varphi} \approx{\overline{n_{1}}}^{\varphi} \approx \bar{h}^{\varphi}$. Therefore $n_{1}^{\varphi \pi}=g^{\varphi} \cap h^{\varphi}$ is an external point of \mathcal{Q} and $\bar{g}^{\varphi}, \bar{h}^{\varphi}$ are hyperparallel as well.
2. If \bar{g}, \bar{h} are parallel or intersecting then, by Lemma 3, there exist lines $\overline{n_{1}}, \overline{n_{2}} \in \overline{\mathcal{G}}$ with $\bar{g} \approx \overline{n_{1}} \approx \overline{n_{2}} \approx \bar{h}$. Our assumptions lead to $\bar{g}^{\varphi} \approx \overline{n_{1}} \varphi \approx$ $\overline{n_{2}}{ }^{\varphi} \approx \bar{h}^{\varphi}$. But in a hyperbolic plane there exists no rectangle.

So in both cases $\bar{g}^{\varphi} \nsim \bar{h}^{\varphi}$ is true.
In this proof the crucial point is that $\operatorname{dim} \Pi_{h}=2$. Otherwise two intersecting lines have a common orthogonal line and there is even the possibility of \bar{g}, \bar{h} being skew. Therefore we cannot use the same methods for $\operatorname{dim} \Pi_{h} \geq 3$.

4.2 Induced collineations on Π_{h} and Π

Together with every Plücker transformation φ of $(\overline{\mathcal{G}}, \sim)$ we have the bijection

$$
\left(\pi \mid A_{\mathcal{Q}}\right) \varphi \pi: A_{\mathcal{Q}} \rightarrow A_{\mathcal{Q}}
$$

on the set of external points $A_{\mathcal{Q}}$. We denote this bijection again by φ. From now on let φ be the mapping

$$
\varphi: \overline{\mathcal{G}} \cup A_{\mathcal{Q}} \rightarrow \overline{\mathcal{G}} \cup A_{\mathcal{Q}}
$$

with $\overline{\mathcal{G}}^{\varphi}=\overline{\mathcal{G}}$ and $A_{\mathcal{Q}}^{\varphi}=A_{\mathcal{Q}}$. For every $A \in A_{\mathcal{Q}}$ and every secant g of \mathcal{Q} there is

$$
\begin{equation*}
A \in g \Longleftrightarrow \bar{g} \approx \overline{A^{\pi}} \Longleftrightarrow \bar{g}^{\varphi} \approx{\overline{A^{\pi}}}^{\varphi} \Longleftrightarrow A^{\pi \varphi \pi} \in g^{\varphi}: \Longleftrightarrow A^{\varphi} \in g^{\varphi} . \tag{4}
\end{equation*}
$$

Proposition 7. Assume that φ satisfies the conditions of Proposition 6. Then for each point $A \in \mathcal{H}$ there exists an $A^{\prime} \in \mathcal{H}$ with $\overline{\mathcal{G}}_{A}^{\varphi} \subset \overline{\mathcal{G}}_{A^{\prime}}$.

Using the polarity π we are able to translate Proposition 7 into an equivalent proposition concerning external points of \mathcal{Q} :

Proposition 8. Let G, H and I be three distinct points on an external line of \mathcal{Q}. Then there exists an external line of \mathcal{Q} that contain G^{φ}, H^{φ}, and I^{φ}.

Proof. We will establish Proposition 8 by constructing a nontrivial Desargues configuration $Z, P_{j}, Q_{j}(j \in\{1,2,3\})$ such that corresponding edges $p_{j}, q_{j}(j \in$ $\{1,2,3\}$) meet at G, H and I. The vertices of the triangles P_{1}, P_{2}, P_{3} and Q_{1}, Q_{2}, Q_{3} will be external points and the edges $p_{j}, q_{j}(j \in\{1,2,3\})$ will be secants of \mathcal{Q} (see Figure 3).

Figure 3: Desargues configuration with P_{j}, Q_{j} external points and p_{j}, q_{j} secants of $\mathcal{Q}(j \in\{1,2,3\})$

1. Through each point G, H, and I we choose a tangent line of $\mathcal{Q}\left(t_{G}, t_{H}\right.$ and t_{I}). Since $u:=G H$ does not intersect \mathcal{Q}, the points of tangency T_{G}, T_{H}, T_{I} as well as $G_{0}:=t_{H} \cap t_{I}, H_{0}:=t_{G} \cap t_{I}$ and $I_{0}:=t_{G} \cap t_{H}$ are mutually distinct and form a triangle ${ }^{3}$ (see Figure 4).
If we choose u as the line at infinity, we get the affine plane $\mathcal{A}:=\mathcal{P} \backslash u$.

[^2]

Figure 4: Step 1 of the proof of Proposition 8
We endow \mathcal{A} with a \mathbb{K}-metric ${ }^{4}$

$$
\sigma: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{K}
$$

in the sense of S. Gudder [9].
2. Since G_{0}, H_{0}, I_{0} are external points of \mathcal{Q} and $A_{\mathcal{Q}} \backslash u$ is an open set, there exists a $\rho \in \mathbb{K}$ with $\rho>0$ such that the open disks $K\left(G_{0}, \rho\right), K\left(H_{0}, \rho\right)$, and $K\left(I_{0}, \rho\right)$ are subsets of $A_{\mathcal{Q}}$. Now we construct, for example, the line p_{1} : Inside the disk $K\left(T_{G}, \frac{\rho}{3}\right)$ we choose the points G_{H}, G_{I} such that $G_{H} \in T_{G} H$ and $G_{I} \in T_{G} I$ are internal points of \mathcal{Q} (see Figure 5).
Without loss of generality $p_{1}:=G_{H} G$ is between t_{G} and $G_{I} G$. Therefore the intersection point $p_{1} \cap T_{G} I$ lies between T_{G} and G_{I}. Furthermore $p_{1} \cap T_{G} I$ is an internal point of $K\left(T_{G}, \frac{\rho}{3}\right)$. But since \mathbb{K} is a Euclidean field and p_{1} has at least one internal point, p_{1} is a secant of \mathcal{Q}. Analogously we are able to construct p_{2} and p_{3}.
3. In the next step we will show that the three points $P_{i}:=p_{j} \cap p_{k}(\{i, j, k\}=$ $\{1,2,3\}$) are external points of \mathcal{Q} (see Figure 6). With

$$
\sigma\left(G_{0}, p_{2} \cap G_{0} T_{I}\right)=\sigma\left(T_{H}, H_{I}\right)<\frac{\rho}{3}
$$

and

$$
\sigma\left(p_{2} \cap G_{0} T_{I}, P_{1}\right)=\sigma\left(T_{I}, I_{H}\right)<\frac{\rho}{3}
$$

we get

$$
\sigma\left(G_{0}, P_{1}\right) \leq \sigma\left(G_{0}, p_{2} \cap G_{0} T_{I}\right)+\sigma\left(p_{2} \cap G_{0} T_{I}, P_{1}\right)<\frac{\rho}{3}+\frac{\rho}{3}<\rho
$$

[^3]

Figure 5: Step 2 of the proof of Proposition 8

Figure 6: Step 3 of the proof of Proposition 8

Therefore $P_{1} \in K\left(G_{0}, \rho\right)$ is an external point of \mathcal{Q}. Analogously this can be shown for P_{2} and P_{3}.
4. Let us choose $\widehat{\rho} \in \mathbb{K}$ with $0<\widehat{\rho}<\frac{\rho}{3}$ such that there exist points $\widehat{M}_{i} \in p_{i}$ $(i \in\{1,2,3\})$ with $K\left(\widehat{M}_{i}, \widehat{\rho}\right) \subset \mathcal{H}$. Furthermore let $Q_{1} \in K\left(P_{1}, \widehat{\rho}\right)$ neither be on $P_{1} H$ nor on $P_{1} I$ and let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be the translation with $\tau\left(P_{1}\right)=$ Q_{1}. Then Q_{1} is again an external point of \mathcal{Q} since

$$
\sigma\left(G_{0}, Q_{1}\right) \leq \sigma\left(G_{0}, P_{1}\right)+\sigma\left(P_{1}, Q_{1}\right)<\frac{2 \rho}{3}+\frac{\rho}{3}=\rho .
$$

Likewise we are able to see that $Q_{2}:=P_{2}^{\tau}$ and $Q_{3}:=P_{3}^{\tau}$ are external points. The lines $q_{j}:=p_{j}^{\tau}(j \in\{1,2,3\})$ are secants of \mathcal{Q}, since they carry internal points.

Now we have found a non-trivial Desargues configuration with the required properties.

The property of being a secant line of \mathcal{Q} does not change when we apply φ. Furthermore, φ maps external points $A \in g$ to external points $A^{\varphi} \in g^{\varphi}$ (see (4)). Therefore φ maps the Desargues configuration from above onto a Desargues configuration with the same properties. But \mathcal{P} is a Desarguesian plane, so that G^{φ}, H^{φ}, and I^{φ} are again collinear.

It remains to be shown that $G^{\varphi} H^{\varphi}$ is an external line of \mathcal{Q}. Every two orthogonally intersecting lines determine an external line. On every external line there is a pair of points A, B such that A^{π} intersects B^{π} orthogonally. Since φ maps orthogonally intersecting lines onto orthogonally intersecting lines, the φ-images of external lines are again external lines.

Now we achieved the aim of this paper. Using Proposition 7, we can show Proposition 4 and 5 in exactly the same way as we did above. Altogether we get an extension of Proposition 5:

Theorem 1. Let φ be a bijection satisfying

$$
\begin{equation*}
\bar{a} \sim \bar{b} \Longrightarrow \bar{a}^{\varphi} \sim \bar{b}^{\varphi} \quad \forall \bar{a}, \bar{b} \in \overline{\mathcal{G}} . \tag{5}
\end{equation*}
$$

in a hyperbolic space Π_{h} with $\operatorname{dim} \Pi_{h} \neq 3$. Then φ is induced by a Q-collineation ψ of Π. Moreover, φ is a Plücker transformation.

Remark. Plücker transformations in hyperbolic spaces with $\operatorname{dim} \Pi_{h}=3$ cannot be investigated with the methods introduced in this paper. In Proposition 3 the crucial property of \mathcal{H} is $\operatorname{dim} \Pi_{h} \geq 4$. In section 4.1 and 4.2 we use more than once that hyperbolic spaces with $\operatorname{dim} \Pi_{h}=2$ are the only ones in which no skew lines exist. Moreover we use that two intersecting lines do not have a common orthogonal line. Therefore we will have to use completely different methods for the 3 -dimensional case, which will be discussed in a forthcoming paper.

References

[1] Brauner H.: Geometrie projektiver Räume I, B.I. Wissenschaftsverlag, Mannheim Wien Zürich, 1976.
[2] Brauner H.: Geometrie projektiver Räume II, B.I. Wissenschaftsverlag, Mannheim Wien Zürich, 1976.
[3] Benz W.: Geometrische Transformationen, B.I. Wissenschaftsverlag, Mannheim Leipzig Zürich, 1992.
[4] Benz W., Schröder E.M.: Bestimmung der orthogonalitätstreuen Permutationen euklidischer Räume, Geom. Dedicata 21, 265 - 276, 1986.
[5] Chow W.L.: On the geometry of algebraic homogeneous spaces, Ann. of Math. 50, 32 - 67, 1949.
[6] Frank R.: Ein lokaler Fundamentalsatz für Projektionen, Geometriae Dedicata 44, 53-66, 1992.
[7] Friedlein H.-R.: Normalformen für Bewegungen in hyperbolischen Räumen, J. Geom. 23, 61 - 71, 1984.
[8] Giering O.: Vorlesungen über höhere Geometrie, Vieweg, Braunschweig/ Wiesbaden, 1982.
[9] Gudder S.: Metric Spaces over ordered Fields, Demonstr. Math. 19, No. 1, 165 - 183, 1996.
[10] Havlicek H.: On Plücker Transformations of generalized elliptic spaces, Rend. Mat. Appl., VII Ser. 14, 39 - 56, 1994.
[11] Havlicek H.: Symplectic Plücker Transformations, Math. Pannonica 6, $145-153,1995$.
[12] HöFER R.: Kennzeichnungen hyperbolischer Bewegungen durch Lineationen, J. Geom. 61, 56 - 61, 1998.
[13] Huang W.-L.: Adjacency Preserving Transformations of Grassmann Spaces, Abh. Math. Sem. Univ. Hamburg (in print).
[14] Kroll H.-J., Sörensen K.: Hyperbolische Räume, J. Geom. 61, 141 149, 1998.
[15] Lester J.: On Distance Preserving Transformations of Lines in Euclidean Three-Space, Aequat. Math. 18, $69-72,1985$.
[16] Lenz H.: Vorlesungen über projektive Geometrie, Akademische Verlagsgesellschaft Geest \& Portig K.-G., Leipzig, 1965.
[17] WiȩsŁaw W.: Topological Fields, Marcel Dekker, Inc., New York-Basel, 1988.

Anschrift des Autors: K. List, Institut für Geometrie, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien

[^0]: ${ }^{1}$ The mapping φ may also be seen as a bijection on secants $s \in \mathcal{G}$. By abuse of notation, we define the line s^{φ} as the unique projective line such that $\bar{s}^{\varphi}=s^{\varphi} \cap \mathcal{H}$.

[^1]: ${ }^{2}$ By $\overline{\mathcal{G}}_{A}$ we denote the star of hyperbolic lines centered in A.

[^2]: ${ }^{3}$ Just if $G H$ is a tangent line $T_{G}=T_{H}$ is possible.

[^3]: ${ }^{4} \mathcal{A}$ is isomorphic to the affine plane $\mathcal{A}\left(\mathbb{K}^{2}\right)$ over the field \mathbb{K}. $\mathcal{A}\left(\mathbb{K}^{2}\right)$ together with σ : $\mathbb{K}^{2} \times \mathbb{K}^{2} \rightarrow \mathbb{K},\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mapsto \sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-y_{2}\right)^{2}}$ forms a so called \mathbb{K}-metric space fulfilling the usual conditions of a metric space. It turns out [9] that for a \mathbb{K}-metric space there exists a cardinal α, such that the intersection of a family, with the cardinality less than α, of open sets is open. Such α-topological spaces over \mathbb{K}-metric spaces have a lot of properties with topological spaces over metric spaces in common. For example they are Hausdorff, and they are even normal. For a detailed description see [9].

