On Orthogonality-preserving Plücker transformations of Hyperbolic Spaces

Klaus List

July 29, 1999

Abstract

A complete overview of all orthogonality-preserving Plücker transformations in finite dimensional hyperbolic spaces with dimension other than three is given. In the Cayley-Klein model of such a hyperbolic space all Plücker transformations are induced by collineations of the ambient projective space.

1 Introduction

Let G be an arbitrary non-empty set and \sim a binary relation on G which is symmetric and reflexive. Following [3] we call the structure (G, \sim) a *Plücker space*, if for each pair $a, b \in G$ there exists a finite number of elements $c_1, c_2, \ldots, c_n \in G$ with

$$a \sim c_1 \sim c_2 \sim \ldots \sim c_n \sim b.$$

A Plücker transformation of (G, \sim) is a bijection $\varphi: G \to G$ with

$$a \sim b \iff a^{\varphi} \sim b^{\varphi} \text{ for all } a, b \in G.$$
 (1)

All such Plücker transformations form the *Plücker group* of (G, \sim) .

Orthogonality-preserving Plücker transformations of Euclidean spaces have been discussed by W. BENZ and E.M. SCHRÖDER in [3, 4]. Here G is the set of lines and $a \sim b$ means that either a = b or that a and b meet orthogonally. Similar results for elliptic and symplectic spaces are due to H. HAVLICEK [10, 11]. One result of all these papers is that dimension three is, in some sense, exceptional. For example the 3-dimensional elliptic spaces are the only ones with Plücker transformations not induced by collineations and dualities [10]. More examples of Plücker spaces can be found in [3, 5, 13, 15].

In this paper we discuss orthogonality-preserving Plücker transformations of finite dimensional hyperbolic spaces with a Euclidean ground field. For dimension other than three all Plücker transformations are determined. In the Cayley-Klein model they are induced by collineations of the ambient projective space. Moreover, condition (1) can be reduced to

$$a \sim b \Longrightarrow a^{\varphi} \sim b^{\varphi} \qquad \forall a, b \in G.$$

2 Plücker spaces on hyperbolic spaces

Let $\Pi := \Pi(\mathcal{P}, \mathcal{G})$ be a Pappian projective space $(2 \leq \dim \Pi := n < \infty)$ with point set \mathcal{P} , line set \mathcal{G} and Euclidean ground field \mathbb{K} . The characteristic of a Euclidean field is always 0. Moreover, the set \mathcal{H} of internal points of an oval quadric \mathcal{Q} in Π never is empty [2, p.54]. Now the linear space $\Pi_h(\mathcal{H}, \overline{\mathcal{G}})$ with

$$\overline{\mathcal{G}} := \{\overline{g} = g \cap \mathcal{H} \mid \overline{g} \neq arnothing, g \in \mathcal{G}\}$$

is the Cayley-Klein model of the n-dimensional hyperbolic space over \mathbb{K} ; cf. [8] or [14] for an axiomatic approach. We call \mathcal{Q} the absolute quadric and denote its polarity by π . Since \mathbb{K} is Euclidean, each hyperbolic line \overline{g} has two ideal points $\{A, B\} := g \cap \mathcal{Q}$ [2, p.54]. We define a mapping of the lattice of subspaces onto itself by setting

$$\mathcal{U} \mapsto \bigcap \{ P^{\pi} \mid P \in \mathcal{U} \}$$
 for all subspaces $\mathcal{U} \neq \emptyset$ and $\emptyset \mapsto \Pi$.

This mapping is again denoted by π .

Since the ground field \mathbb{K} of Π is Euclidean, it can be ordered uniquely. Therefore only one separation function can be defined on \mathcal{P} [2, p.60]. Pairs A, Band C, D with $A, B \neq C, D$ on a line or a conic are called *separated*, denoted by $(A, B \mid C, D) = -1$, if and only if the cross-ratio CR(A, B, C, D) < 0. Otherwise we write $(A, B \mid C, D) = 1$. Two coplanar hyperbolic lines with ideal points A, B and C, D intersect in \mathcal{H} if and only if $(A, B \mid C, D) = -1$ [2, p.62ff].

In the following we will distinguish between a secant $g \in \mathcal{G}$ of \mathcal{Q} and the hyperbolic line $\overline{g} := g \cap \mathcal{H}$.

The polarity π gives rise to the following binary relations \sim and \approx on $\overline{\mathcal{G}}$: For $\overline{a}, \overline{b} \in \overline{\mathcal{G}}$ put

$$\overline{a} \approx \overline{b} : \iff a \cap b^{\pi} \neq \emptyset \text{ and } \overline{a} \cap \overline{b} \neq \emptyset \quad \text{(orthogonally intersecting lines)} \\ \overline{a} \sim \overline{b} : \iff \overline{a} \approx \overline{b} \text{ or } a = b \quad \text{(related lines)}.$$

Both relations are symmetric and, by definition, \sim is reflexive. Now we can show:

Proposition 1. The structure $(\overline{\mathcal{G}}, \sim)$ is a Plücker space.

Proof. Let $\overline{a}, \overline{b} \in \overline{\mathcal{G}}$ be distinct. First we assume that a, b are in a plane ε with $\mathcal{Q}_{\varepsilon} := \mathcal{Q} \cap \varepsilon$. We are looking for a finite sequence of lines $\overline{n}_1, \overline{n}_2, \ldots, \overline{n}_k \in \overline{\mathcal{G}}$ with

$$\overline{a} \sim \overline{n}_1 \sim \ldots \sim \overline{n}_k \sim \overline{b}.$$
 (2)

- 1. For hyperparallel lines $\overline{a}, \overline{b}$, the intersection point $a \cap b$ is an external point. Hence the line $n := (a \cap b)^{\pi} \cap \varepsilon$ fulfills $\overline{a} \sim \overline{n} \sim \overline{b}$.
- 2. Now let $\overline{a}, \overline{b}$ be parallel and $A \in a \cap Q_{\varepsilon}, B \in b \cap Q_{\varepsilon}$ and $C := a \cap b \in Q_{\varepsilon}$ with $A \neq C \neq B$. Furthermore we choose $D, E \in Q_{\varepsilon}$ with $D \neq E$ such that the pairs (A, D), (C, B) and (A, E), (C, B) are separated. From $(C, B \mid D, A) = -1, (C, B \mid A, E) = -1, (A, C \mid D, B) = 1$, and

 $(A, C \mid B, E) = 1$ the multiplication theorem for separation functions gives $(C, B \mid D, E) = 1$ and $(A, C \mid D, E) = 1$. So the line $\overline{n}_2 := DE \cap \mathcal{H}$ is hyperparallel to \overline{a} and \overline{b} . Now we have reduced the problem to case 1.

3. $\overline{a}, \overline{b}$ intersect: We choose B in $b \cap \mathcal{Q}_{\varepsilon}$. Then $\overline{n}_1 := ((a^{\pi} \cap \varepsilon)B) \cap \mathcal{H}$ is parallel to \overline{b} and $\overline{a} \sim \overline{n}_1$. Again, we have reduced the problem to case 2.

If a, b are skew lines we choose a line \overline{c} intersecting \overline{a} and \overline{b} . So the assertion follows from case 3. Any two lines in $\overline{\mathcal{G}}$ are either hyperparallel, or parallel, or intersecting, or skew.

In the proof of Proposition 1 we saw that for any two skew lines $\overline{a}, \overline{b} \in \overline{\mathcal{G}}$ there exists a sequence of orthogonally intersecting lines that connect \overline{a} and \overline{b} . By [7, p.64, (1)] it is always possible to reduce this sequence to one line:

Lemma 1. Let \overline{a} , \overline{b} be two given skew lines of a hyperbolic space Π_h . Then there exists a line \overline{n} intersecting \overline{a} and \overline{b} orthogonally.

Now we want to discuss Plücker transformations of $(\overline{\mathcal{G}}, \sim)$. We use the term \mathcal{Q} -collineation for any collineation of Π leaving the quadric \mathcal{Q} invariant. It is obvious that \mathcal{Q} -collineations induce Plücker transformations:

Proposition 2. Let $\psi : \Pi \to \Pi$ be a Q-collineation. Then the line mapping $\varphi : \overline{\mathcal{G}} \to \overline{\mathcal{G}}, \overline{\mathcal{g}} \mapsto g^{\psi} \cap \mathcal{H}$ which is induced by ψ is a Plücker transformation of $(\overline{\mathcal{G}}, \sim)$.

Now the question is the following: Are all Plücker transformations induced by Q-collineations.

3 Plücker transformations in hyperbolic spaces with $\dim \Pi_h \geq 4$

Let $\Pi_h(\mathcal{H}, \overline{\mathcal{G}})$ be a hyperbolic space (dim $\Pi_h \geq 2$) with the relations ~ and ~.

Lemma 2. Given mutually distinct $\overline{a}, \overline{b}, \overline{c} \in \overline{\mathcal{G}}$ with $\overline{a}, \overline{b}$ concurrent and \overline{c} intersecting \overline{a} and \overline{b} orthogonally, then $\overline{a} \cap \overline{b} \subset \overline{c}$.

Proof. Since $\overline{a}, \overline{b}, \overline{c}$ are mutually distinct, $|\overline{a} \cap \overline{b}| = |\overline{a} \cap \overline{c}| = |\overline{b} \cap \overline{c}| = 1$. In Π_h there exists no triangle with two right angles. Therefore the point $\overline{a} \cap \overline{b}$ is on \overline{c} .

Proposition 3. Let dim $\Pi_h \geq 4$ and $\varphi : \overline{\mathcal{G}} \to \overline{\mathcal{G}}$ be a bijection¹ with

$$\overline{a} \sim \overline{b} \Longrightarrow \overline{a}^{\varphi} \sim \overline{b}^{\varphi} \qquad \forall \overline{a}, \overline{b} \in \overline{\mathcal{G}}.$$
(3)

Then for every point $A \in \mathcal{H}$ there exists an A' such that $\overline{g} \in \mathcal{G}$ and $A \in \overline{g}$ implies $A' \in \overline{g}^{\varphi}$.

¹The mapping φ may also be seen as a bijection on secants $s \in \mathcal{G}$. By abuse of notation, we define the line s^{φ} as the unique projective line such that $\overline{s}^{\varphi} = s^{\varphi} \cap \mathcal{H}$.

Proof. We choose $\overline{a}, \overline{b} \in \overline{\mathcal{G}}$ with $\overline{a} \cap \overline{b} = A$ and $\overline{a} \approx \overline{b}$. Hence $\overline{a}^{\varphi} \approx \overline{b}^{\varphi}$ and we are able to define $A' := \overline{a}^{\varphi} \cap \overline{b}^{\varphi}$. Now it remains to be shown that $\overline{a} \in \overline{\mathcal{G}}_A$ implies $\overline{g}^{\varphi} \in \overline{\mathcal{G}}_{A'}$.

- 1. If \overline{g} is related to \overline{a} and \overline{b} , then $\overline{a}^{\varphi} \sim \overline{g}^{\varphi} \sim \overline{b}^{\varphi}$. By Lemma 2, $A' \in \overline{g}^{\varphi}$.
- 2. Let \overline{g} be not related to \overline{a} and \overline{b} . Since dim $\Pi_h = n \ge 4$, all lines passing A, and orthogonal to \overline{a} and \overline{b} , span a subspace β of Π of dimension $n-2 \ge 2$. We put $a \lor b =: \alpha$ and choose $c, d \in \beta$ such that $\overline{c} \approx \overline{d}$ and $A \in c, d$ (see Figure 1). Additionally, there exist lines $e, f \ni A$ with $e \in \alpha, f \in \beta$ and $\overline{e} \approx \overline{g}, \overline{f} \approx \overline{g}$. Now the lines $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ and $\overline{e}, \overline{f}, \overline{g}$ as well as $\overline{a}, \overline{b}, \overline{f}$ and $\overline{c}, \overline{d}, \overline{e}$ are mutually orthogonal. This is also true for their φ -images. Together with Lemma 2 we get step by step: $A' \in \overline{c}^{\varphi}, A' \in \overline{d}^{\varphi}$, whence $A' \in \overline{e}^{\varphi}, A' \in \overline{f}^{\varphi}$, and finally $A' \in \overline{g}^{\varphi}$.

Figure 1: Step 2 of the proof of Proposition 3

In step 2 we used dim $\Pi_h \ge 4$. Therefore, we cannot use the same methods for solving the 2- and 3-dimensional case.

With the help of φ we are able to define a mapping $\overline{\psi}$ on the point set of Π_h :

Proposition 4. Let Π_h be a hyperbolic space with dim $\Pi_h \geq 4$. If $\varphi : \overline{\mathcal{G}} \to \overline{\mathcal{G}}$ is a bijection satisfying property (3), then φ is induced by a collineation $\overline{\psi}$ of Π_h .

Proof. We define $\overline{\psi} : \mathcal{H} \to \mathcal{H}, A \mapsto A^{\overline{\psi}} := A'$. This $\overline{\psi}$ is well defined by Proposition 3 and collinearity of points is invariant under φ .

1. Assume to the contrary that there exist two different points $A, B \in \mathcal{H}$ with $A^{\overline{\psi}} = B^{\overline{\psi}}$. For all $X \in \mathcal{H} \setminus AB$ we obtain $\overline{XB}^{\varphi} \neq \overline{XA}^{\varphi}$ by the injectivity

²By $\overline{\mathcal{G}}_A$ we denote the star of hyperbolic lines centered in A.

of φ . Further $X^{\overline{\psi}} = A^{\overline{\psi}} = B^{\overline{\psi}}$. So, for every $\overline{g} \in \overline{\mathcal{G}}$ we get $A^{\overline{\psi}} \in \overline{g}^{\varphi}$, which is a contradiction to the surjectivity of φ . Thus the mapping $\overline{\psi}$ is injective.

2. Let the points $A, B, C \in \mathcal{H}$ be non-collinear and let their images $A^{\overline{\psi}}, B^{\overline{\psi}}, C^{\overline{\psi}}$ be on a line \overline{g} . Since $\overline{\psi}$ is injective, these points are mutually distinct. Now $\overline{AB} \neq \overline{AC}$ and

$$\overline{AB}^{\varphi} = \overline{A^{\overline{\psi}}B^{\overline{\psi}}} = \overline{g} = \overline{A^{\overline{\psi}}C^{\overline{\psi}}} = \overline{AC}^{\varphi}$$

is a contradiction to the injectivity of φ .

- 3. The surjectivity of $\overline{\psi}$ remains to be shown:
 - (a) First we prove that the restriction of φ to $\overline{\mathcal{G}}_A$ $(A \in \mathcal{H})$ is a bijection onto $\overline{\mathcal{G}}_{A\overline{\psi}}$. For any two lines $\overline{a} \neq \overline{b}$ through A it follows that $\overline{a}^{\varphi} \neq \overline{b}^{\varphi}$ and so $A^{\overline{\psi}} = \overline{a}^{\varphi} \cap \overline{b}^{\varphi}$. Supposing $A^{\overline{\psi}} \in \overline{c}^{\varphi}$ but $A \notin \overline{c}$, we can also assume without loss of generality that \overline{c} intersects \overline{a} and \overline{b} . Hence $\overline{a} \cap \overline{c} = B \neq A$ and $A^{\overline{\psi}} = B^{\overline{\psi}}$. This contradicts the injectivity of $\overline{\psi}$.
 - (b) Now we will show that the φ -preimages of parallel lines are again parallel: If two lines are hyperparallel or skew, then they have a common orthogonal line (Proposition 1 and Lemma 1), intersecting the lines in two different points. This is also true for their images. Concurrent and parallel lines do not have such a common orthogonal line (Lemma 2). Therefore, their φ -preimages are again concurrent or parallel. In Proposition 3 we proved that φ maps intersecting lines to intersecting lines. Hence the assertion follows.
 - (c) In the next step we prove that

$$\overline{a}^{\psi} = \{ X^{\psi} \mid X \in \overline{a} \} = \overline{a}^{\varphi} \text{ for all } \overline{a} \in \overline{\mathcal{G}}.$$

Let us take a look at a star with center $A \notin \overline{a}$. In (b) we saw that a line \overline{b} , with $\overline{b}^{\varphi} \cap \overline{a}^{\varphi} \neq \emptyset$, is necessarily parallel or concurrent to \overline{a} . But the only two lines in $\overline{\mathcal{G}}_A$ being parallel to \overline{a} are the φ -preimages of the parallel lines to \overline{a}^{φ} . Therefore \overline{a} and \overline{b} intersect and $\overline{\psi} | \overline{a} : \overline{a} \to \overline{a}^{\varphi}$ is surjective.

(d) If B' is an arbitrary point in \mathcal{H} , then we are able to choose a line $\overline{a}^{\varphi} \ni B'$. In (c) we proved the existence of a point $B \in \overline{a}$ with $B^{\overline{\psi}} = B'$.

Finally, we extend the collineation $\overline{\psi} : \mathcal{H} \to \mathcal{H}$ into the ambient projective space II. The main tool will be a Theorem due to R. FRANK [6].

Proposition 5. Let φ be a bijection satisfying (3) in a hyperbolic space Π_h with dim $\Pi_h \geq 4$. Then φ is induced by a Q-collineation ψ of Π . Moreover, φ is a Plücker transformation.

Proof. We already know that φ is induced by a collineation $\overline{\psi} : \mathcal{H} \to \mathcal{H}$. Using the terminology of [6], such a collineation can be extended to a projection $\overline{\psi} : \mathcal{H} \to \Pi$.

The Euclidean ground field \mathbb{K} , together with the order topology, is a topological field [17]. So Π becomes a topological projective space with the coordinate topology τ [16]. The set of internal points of any oval quadric, for example \mathcal{H} , is an open set of τ . Since \mathcal{H} is not contained in a hyperplane, span $\mathcal{H}^{\overline{\psi}} = \operatorname{span} \mathcal{H} = \Pi$. The induced topologies on the lines of Π form a *linear topology* in the sense of [6]. Because \mathcal{H} is an open set, the intersection set of every line g with \mathcal{H} is an open set with respect to the induced topology on g. So \mathcal{H} is linearly open. If \overline{g} is a hyperbolic line, then $\overline{g^{\psi}} = (\mathcal{H} \cap g)^{\overline{\psi}} = \mathcal{H} \cap g^{\varphi} \neq \emptyset$ is again open with respect to the linear topology of Π . Therefore we can use Theorem 2 of [6]:

There exist subspaces $Z \subset \Pi \setminus \mathcal{H}$ and $D \subset \Pi \setminus Z$ with span $D \vee Z = \Pi$. Moreover there exists a collineation $\psi : D \to D'$ with $\overline{\psi} = p\psi\iota$ where $p : \mathcal{H} \to D$ is a central projection with center Z, D' is a subspace of Π and $\iota : D' \to \Pi$ is the *canonical injection*. In our case Z is empty, otherwise each hyperbolic line \overline{g} with $g \cap Z \neq \emptyset$ would be mapped onto a point. Furthermore, span $D \vee Z = \Pi$ implies $D = \Pi = D'$ and ι is the identity. Hence the central projection $p : \mathcal{H} \to \Pi$ is the canonical injection and $\psi \mid \mathcal{H} = \overline{\psi}$.

Under the collineation ψ hyperplanes are mapped onto hyperplanes. There is a one-to-one correspondence between external points A of Q and hyperplanes $\varepsilon = A^{\pi}$ which contain internal points. If $I_1, I_2 \in \varepsilon$ are two different internal points, ε is spanned by all lines $a \in \mathcal{G} \cap \varepsilon$ with $\overline{a} \approx \overline{AI_1}, \overline{a} \approx \overline{AI_2}$ respectively. Orthogonality is invariant under ψ . That means $\overline{A^{\psi}I_1^{\psi}}$ ($\overline{A^{\psi}I_2^{\psi}}$) is the only line through I_1^{ψ} (I_2^{ψ}), that is orthogonal to all lines of the star with center I_1^{ψ} (I_2^{ψ}) in ε^{ψ} . Therefore $A^{\psi} = \varepsilon^{\psi\pi}$ is an external point. Since ψ and $\overline{\psi}$ are collineations, ψ yields also a bijection on the set of external points of Q. So, ψ is a Q-collineation. Proposition 2 shows that $\varphi : \overline{\mathcal{G}} \to \overline{\mathcal{G}}$ is a Plücker transformation.

Remark. For real hyperbolic spaces we could show Proposition 5 also with Theorem 2 in [12] by R. HÖFER.

4 The 2-dimensional case

4.1 A characterization of Plücker transformations

If dim $\Pi_h = 2$, then the absolute quadric \mathcal{Q} is a conic with polarity π . For an arbitrary line $\overline{g} \in \overline{\mathcal{G}}$ all orthogonal lines are running through the point g^{π} . By dim $\Pi_h = 2$, orthogonal hyperbolic lines are intersecting. Therefore there exists no common orthogonal transversal for $\overline{a}, \overline{b} \in \overline{\mathcal{G}}$ being parallel or concurrent. But the sequence (2) of related lines connecting $\overline{a}, \overline{b}$ can be reduced to two lines $\overline{n_1}, \overline{n_2}$:

Lemma 3. In a hyperbolic plane let $\overline{a}, \overline{b} \in \overline{\mathcal{G}}$ be two different lines, that are parallel or intersecting, but not orthogonal. Then there exist $\overline{n_1}, \overline{n_2} \in \overline{\mathcal{G}}$ with

$$\overline{a} \approx \overline{n_1} \approx \overline{n_2} \approx \overline{b}.$$

Proof. In both cases we will show the existence of a line $\overline{n_1}$ with $\overline{a} \approx \overline{n_1}$ that is hyperparallel to \overline{b} .

1. $\overline{a}, \overline{b}$ are parallel: Let $A \in a \cap Q$, $B \in b \cap Q$ and $C := a \cap b \in Q$ with $A \neq C \neq B$. There exists a $D \in Q$ such that the pairs (A, B) and (C, D) are seperated. The line $a^{\pi}D$ meets Q residually at a point E, say. Then $(A, C \mid D, E) = -1$, because \overline{AC} and \overline{DE} intersect orthogonally. Thus

$$(C, D \mid B, E) = (C, D \mid B, A) \cdot (C, D \mid A, E) = (-1) \cdot 1 = -1$$

and $(B, C \mid D, E) = 1$, which means, \overline{b} and $\overline{n_1} := \overline{DE}$ are hyperparallel.

2. $\overline{a}, \overline{b}$ are intersecting (Figure 2): Let $A \neq B$ and $C \neq D$ be the intersection points of a and b with Q. Because $\overline{a}, \overline{b}$ intersect, $(A, B \mid C, D) = -1$. Choose $E \in a^{\pi}D \cap Q$ with $D \neq E$. So the lines \overline{AB} and \overline{DE} intersect, i.e. $(A, B \mid D, E) = -1$. From $a \not\sim b$ follows $C \neq E$. Without loss of generality we can assume that $(A, C \mid D, E) = -1$: If $(A, C \mid D, E) = 1$ then the multiplication theorem for separation functions gives:

$$(B, C \mid D, E) = (B, A \mid D, E) \cdot (A, C \mid D, E) = (-1) \cdot 1 = -1.$$

Moreover, we choose F such that (A, D | C, F) = -1. For the second intersection point $G \in a^{\pi}F \cap \mathcal{Q}$ we get (E, D | F, G) = 1, since ED, FG intersect in the external point a^{π} of \mathcal{Q} . Now we get step by step:

$$\begin{array}{rcl} (A,D \mid E,F) &=& (A,D \mid C,F) \cdot (A,D \mid E,C) = (-1) \cdot 1 = -1, \\ (D,E \mid A,G) &=& (D,E \mid F,G) \cdot (D,E \mid A,F) = 1 \cdot 1 = 1, \\ (D,E \mid C,G) &=& (D,E \mid A,G) \cdot (D,E \mid C,A) = 1 \cdot (-1) = -1, \\ (D,E \mid C,F) &=& (D,E \mid C,G) \cdot (D,E \mid G,F) = (-1) \cdot 1 = -1. \end{array}$$

Thus $(C, D | F, G) = (C, D | E, G) \cdot (C, D | F, E) = 1 \cdot 1 = 1$ and therefore \overline{b} and $\overline{n_1} := \overline{GF}$ are hyperparallel.

Proposition 6. In every hyperbolic plane Π_h a bijection

$$\varphi:\overline{\mathcal{G}}\to\overline{\mathcal{G}} \text{ with } \overline{g}\sim\overline{h}\Longrightarrow\overline{g}^{\varphi}\sim\overline{h}^{\varphi}$$

is a Plücker transformation of $(\overline{\mathcal{G}}, \sim)$.

Proof. For two arbitrary lines $\overline{g}, \overline{h} \in \overline{\mathcal{G}}$ we show

$$\overline{g} \not\sim \overline{h} \Longrightarrow \overline{g}^{\varphi} \not\sim \overline{h}^{\varphi}.$$

7

Figure 2: $\overline{a}, \overline{b}$ are intersecting

- 1. For every two hyperparallel lines $\overline{g}, \overline{h}$ there exists a line $\overline{n_1} \in \overline{\mathcal{G}}$ with $\overline{g} \approx \overline{n_1} \approx \overline{h}$ and furthermore $\overline{g}^{\varphi} \approx \overline{n_1}^{\varphi} \approx \overline{h}^{\varphi}$. Therefore $n_1^{\varphi\pi} = g^{\varphi} \cap h^{\varphi}$ is an external point of \mathcal{Q} and $\overline{g}^{\varphi}, \overline{h}^{\varphi}$ are hyperparallel as well.
- 2. If $\overline{g}, \overline{h}$ are parallel or intersecting then, by Lemma 3, there exist lines $\overline{n_1}, \overline{n_2} \in \overline{\mathcal{G}}$ with $\overline{g} \approx \overline{n_1} \approx \overline{n_2} \approx \overline{h}$. Our assumptions lead to $\overline{g}^{\varphi} \approx \overline{n_1}^{\varphi} \approx \overline{n_2}^{\varphi} \approx \overline{n_2}^{\varphi} \approx \overline{h}^{\varphi}$. But in a hyperbolic plane there exists no rectangle.

So in both cases $\overline{g}^{\varphi} \not\sim \overline{h}^{\varphi}$ is true.

In this proof the crucial point is that dim $\Pi_h = 2$. Otherwise two intersecting lines have a common orthogonal line and there is even the possibility of $\overline{g}, \overline{h}$ being skew. Therefore we cannot use the same methods for dim $\Pi_h \geq 3$.

4.2 Induced collineations on Π_h and Π

Together with every Plücker transformation φ of $(\overline{\mathcal{G}}, \sim)$ we have the bijection

$$(\pi | A_Q) \varphi \pi : A_Q \to A_Q$$

on the set of external points A_Q . We denote this bijection again by φ . From now on let φ be the mapping

$$\varphi:\overline{\mathcal{G}}\cup A_{\mathcal{Q}}\to\overline{\mathcal{G}}\cup A_{\mathcal{Q}}$$

with $\overline{\mathcal{G}}^{\varphi} = \overline{\mathcal{G}}$ and $A_{\mathcal{Q}}^{\varphi} = A_{\mathcal{Q}}$. For every $A \in A_{\mathcal{Q}}$ and every secant g of \mathcal{Q} there is

$$A \in g \Longleftrightarrow \overline{g} \approx \overline{A^{\pi}} \Longleftrightarrow \overline{g}^{\varphi} \approx \overline{A^{\pi}}^{\varphi} \Longleftrightarrow A^{\pi\varphi\pi} \in g^{\varphi} : \Longleftrightarrow A^{\varphi} \in g^{\varphi}.$$
(4)

Proposition 7. Assume that φ satisfies the conditions of Proposition 6. Then for each point $A \in \mathcal{H}$ there exists an $A' \in \mathcal{H}$ with $\overline{\mathcal{G}}_A^{\varphi} \subset \overline{\mathcal{G}}_{A'}$.

Using the polarity π we are able to translate Proposition 7 into an equivalent proposition concerning external points of Q:

Proposition 8. Let G, H and I be three distinct points on an external line of Q. Then there exists an external line of Q that contain G^{φ}, H^{φ} , and I^{φ} .

Proof. We will establish Proposition 8 by constructing a nontrivial Desargues configuration Z, P_j, Q_j $(j \in \{1, 2, 3\})$ such that corresponding edges p_j, q_j $(j \in \{1, 2, 3\})$ meet at G, H and I. The vertices of the triangles P_1, P_2, P_3 and Q_1, Q_2, Q_3 will be external points and the edges p_j, q_j $(j \in \{1, 2, 3\})$ will be secants of Q (see Figure 3).

Figure 3: Desargues configuration with P_j, Q_j external points and p_j, q_j secants of \mathcal{Q} $(j \in \{1, 2, 3\})$

1. Through each point G, H, and I we choose a tangent line of \mathcal{Q} (t_G, t_H) and t_I). Since u := GH does not intersect \mathcal{Q} , the points of tangency T_G, T_H, T_I as well as $G_0 := t_H \cap t_I, H_0 := t_G \cap t_I$ and $I_0 := t_G \cap t_H$ are mutually distinct and form a triangle³ (see Figure 4).

If we choose u as the line at infinity, we get the affine plane $\mathcal{A} := \mathcal{P} \setminus u$.

³Just if GH is a tangent line $T_G = T_H$ is possible.

Figure 4: Step 1 of the proof of Proposition 8

We endow \mathcal{A} with a \mathbb{K} -metric⁴

 $\sigma:\mathcal{A}\times\mathcal{A}\to\mathbb{K}$

in the sense of S. GUDDER [9].

2. Since G_0, H_0, I_0 are external points of \mathcal{Q} and $A_{\mathcal{Q}} \setminus u$ is an open set, there exists a $\rho \in \mathbb{K}$ with $\rho > 0$ such that the open disks $K(G_0, \rho), K(H_0, \rho)$, and $K(I_0, \rho)$ are subsets of $A_{\mathcal{Q}}$. Now we construct, for example, the line p_1 : Inside the disk $K(T_G, \frac{\rho}{3})$ we choose the points G_H, G_I such that $G_H \in T_G H$ and $G_I \in T_G I$ are internal points of \mathcal{Q} (see Figure 5).

Without loss of generality $p_1 := G_H G$ is between t_G and $G_I G$. Therefore the intersection point $p_1 \cap T_G I$ lies between T_G and G_I . Furthermore $p_1 \cap T_G I$ is an internal point of $K(T_G, \frac{\rho}{3})$. But since \mathbb{K} is a Euclidean field and p_1 has at least one internal point, p_1 is a secant of \mathcal{Q} . Analogously we are able to construct p_2 and p_3 .

3. In the next step we will show that the three points $P_i := p_j \cap p_k$ ($\{i, j, k\} = \{1, 2, 3\}$) are external points of \mathcal{Q} (see Figure 6). With

$$\sigma(G_0, p_2 \cap G_0 T_I) = \sigma(T_H, H_I) < \frac{\rho}{3}$$

and

$$\sigma(p_2 \cap G_0 T_I, P_1) = \sigma(T_I, I_H) < \frac{\rho}{3}$$

we get

$$\sigma(G_0, P_1) \le \sigma(G_0, p_2 \cap G_0 T_I) + \sigma(p_2 \cap G_0 T_I, P_1) < \frac{\rho}{3} + \frac{\rho}{3} < \rho$$

⁴ \mathcal{A} is isomorphic to the affine plane $\mathcal{A}(\mathbb{K}^2)$ over the field \mathbb{K} . $\mathcal{A}(\mathbb{K}^2)$ together with σ : $\mathbb{K}^2 \times \mathbb{K}^2 \to \mathbb{K}$, $((x_1, x_2), (y_1, y_2)) \mapsto \sqrt{(y_1 - x_1)^2 + (y_2 - y_2)^2}$ forms a so called \mathbb{K} -metric space fulfilling the usual conditions of a metric space. It turns out [9] that for a \mathbb{K} -metric space there exists a cardinal α , such that the intersection of a family, with the cardinality less than α , of open sets is open. Such α -topological spaces over \mathbb{K} -metric spaces have a lot of properties with topological spaces over metric spaces in common. For example they are Hausdorff, and they are even normal. For a detailed description see [9].

Figure 5: Step 2 of the proof of Proposition 8

Figure 6: Step 3 of the proof of Proposition 8

Therefore $P_1 \in K(G_0, \rho)$ is an external point of \mathcal{Q} . Analogously this can be shown for P_2 and P_3 .

4. Let us choose $\widehat{\rho} \in \mathbb{K}$ with $0 < \widehat{\rho} < \frac{\rho}{3}$ such that there exist points $\widehat{M}_i \in p_i$ $(i \in \{1, 2, 3\})$ with $K(\widehat{M}_i, \widehat{\rho}) \subset \mathcal{H}$. Furthermore let $Q_1 \in K(P_1, \widehat{\rho})$ neither be on P_1H nor on P_1I and let $\tau : \mathcal{A} \to \mathcal{A}$ be the translation with $\tau(P_1) = Q_1$. Then Q_1 is again an external point of \mathcal{Q} since

$$\sigma(G_0, Q_1) \le \sigma(G_0, P_1) + \sigma(P_1, Q_1) < \frac{2\rho}{3} + \frac{\rho}{3} = \rho.$$

Likewise we are able to see that $Q_2 := P_2^{\tau}$ and $Q_3 := P_3^{\tau}$ are external points. The lines $q_j := p_j^{\tau}$ $(j \in \{1, 2, 3\})$ are secants of \mathcal{Q} , since they carry internal points.

Now we have found a non-trivial Desargues configuration with the required properties.

The property of being a secant line of \mathcal{Q} does not change when we apply φ . Furthermore, φ maps external points $A \in g$ to external points $A^{\varphi} \in g^{\varphi}$ (see (4)). Therefore φ maps the Desargues configuration from above onto a Desargues configuration with the same properties. But \mathcal{P} is a Desarguesian plane, so that G^{φ} , H^{φ} , and I^{φ} are again collinear.

It remains to be shown that $G^{\varphi}H^{\varphi}$ is an external line of Q. Every two orthogonally intersecting lines determine an external line. On every external line there is a pair of points A, B such that A^{π} intersects B^{π} orthogonally. Since φ maps orthogonally intersecting lines onto orthogonally intersecting lines, the φ -images of external lines are again external lines.

Now we achieved the aim of this paper. Using Proposition 7, we can show Proposition 4 and 5 in exactly the same way as we did above. Altogether we get an extension of Proposition 5:

Theorem 1. Let φ be a bijection satisfying

$$\overline{a} \sim \overline{b} \Longrightarrow \overline{a}^{\varphi} \sim \overline{b}^{\varphi} \qquad \forall \overline{a}, \overline{b} \in \overline{\mathcal{G}}.$$
(5)

in a hyperbolic space Π_h with dim $\Pi_h \neq 3$. Then φ is induced by a Q-collineation ψ of Π . Moreover, φ is a Plücker transformation.

Remark. Plücker transformations in hyperbolic spaces with dim $\Pi_h = 3$ cannot be investigated with the methods introduced in this paper. In Proposition 3 the crucial property of \mathcal{H} is dim $\Pi_h \geq 4$. In section 4.1 and 4.2 we use more than once that hyperbolic spaces with dim $\Pi_h = 2$ are the only ones in which no skew lines exist. Moreover we use that two intersecting lines do not have a common orthogonal line. Therefore we will have to use completely different methods for the 3-dimensional case, which will be discussed in a forthcoming paper.

References

- [1] BRAUNER H.: Geometrie projektiver Räume I, B.I. Wissenschaftsverlag, Mannheim Wien Zürich, 1976.
- [2] BRAUNER H.: Geometrie projektiver Räume II, B.I. Wissenschaftsverlag, Mannheim Wien Zürich, 1976.
- [3] BENZ W.: Geometrische Transformationen, B.I. Wissenschaftsverlag, Mannheim Leipzig Zürich, 1992.

- [4] BENZ W., SCHRÖDER E.M.: Bestimmung der orthogonalitätstreuen Permutationen euklidischer Räume, Geom. Dedicata 21, 265 – 276, 1986.
- [5] CHOW W.L.: On the geometry of algebraic homogeneous spaces, Ann. of Math. 50, 32 - 67, 1949.
- [6] FRANK R.: Ein lokaler Fundamentalsatz f
 ür Projektionen, Geometriae Dedicata 44, 53 – 66, 1992.
- [8] GIERING O.: Vorlesungen über höhere Geometrie, Vieweg, Braunschweig/ Wiesbaden, 1982.
- [9] GUDDER S.: Metric Spaces over ordered Fields, Demonstr. Math. 19, No. 1, 165 183, 1996.
- [10] HAVLICEK H.: On Plücker Transformations of generalized elliptic spaces, Rend. Mat. Appl., VII Ser. 14, 39 – 56, 1994.
- [11] HAVLICEK H.: Symplectic Plücker Transformations, Math. Pannonica 6, 145 – 153, 1995.
- [12] HÖFER R.: Kennzeichnungen hyperbolischer Bewegungen durch Lineationen, J. Geom. 61, 56 – 61, 1998.
- [13] HUANG W.-L.: Adjacency Preserving Transformations of Grassmann Spaces, Abh. Math. Sem. Univ. Hamburg (in print).
- [14] KROLL H.-J., SÖRENSEN K.: Hyperbolische Räume, J. Geom. 61, 141 149, 1998.
- [15] LESTER J.: On Distance Preserving Transformations of Lines in Euclidean Three-Space, Aequat. Math. 18, 69 – 72, 1985.
- [16] LENZ H.: Vorlesungen über projektive Geometrie, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1965.
- [17] WIĘSŁAW W.: Topological Fields, Marcel Dekker, Inc., New York-Basel, 1988.

Anschrift des Autors: K. List, Institut für Geometrie, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien