Pascal's triangle, normal rational curves, and their invariant subspaces

Johannes Gmainer *

August 20, 1999

Abstract

Each normal rational curve Γ in $\operatorname{PG}(n, F)$ admits a group $\operatorname{P\Gamma L}(\Gamma)$ of automorphic collineations. It is well known that for characteristic zero only the empty and the entire subspace are $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant. In case of characteristic $p>0$ there may be further invariant subspaces. For $\# F \geq n+2$, we give a construction of all $\mathrm{P} Г \mathrm{~L}(\Gamma)$-invariant subspaces. It turns out that the corresponding lattice is totally ordered in special cases only.

1 Introduction

If the (commutative) ground field F of a projective space $\mathrm{PG}(n, F)$ has characteristic zero, then only the trivial subspaces are fixed by the group $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$ of automorphic collineations of a normal rational curve Γ. However, in case of non-zero characteristic there may be further $\mathrm{P} Г \mathrm{~L}(\Gamma)$-invariant subspaces. A well known example is the intersecting point of the tangents of a conic, the so-called nucleus, in a projective plane of characteristic two.

In the present paper we show that every non-trivial $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant subspace is included in the nucleus of a normal rational curve, which is the intersection of all osculating hyperplanes. Our results are valid, if the ground field has sufficiently many elements ($\# F \geq n+2$). However, in case of a small ground field the problem is more complicated, since $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$ needs not be isomorphic to $\mathrm{P} \Gamma \mathrm{L}(2, F)$.
Note, that normal rational curves are just specific examples of Veronese varieties. In case of non-zero characteristic all Veronese varieties with empty nucleus have been determined independently by H. Timmermann [9], [10], A. Herzer [6], and H. Karzel [8]. In [10] and [4] one can find an explicit formula for the

[^0]dimension of the nucleus of a normal rational curve; in [3] this is generalized to arbitrary Veronese varieties. The term nucleus can be extended in the following way [4]: Define the intersection over all k-dimensional osculating subspaces of the curve Γ to be a k-nucleus. Obviously, these subspaces are further examples of $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant subspaces.

In the present paper we give a construction of all $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant subspaces of a normal rational curve Γ with the usual parametric representation

$$
\begin{equation*}
\Gamma=\left\{F\left(1, t, \ldots, t^{n}\right) \mid t \in F \cup\{\infty\}\right\} . \tag{1}
\end{equation*}
$$

Note that ∞ yields the point $F(0, \ldots, 0,1)$. We show that in case of $\# F \geq$ $n+2$ each $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant subspace \mathcal{U} is spanned by points $P_{\lambda}(\lambda \in \Lambda)$ of the standard basis. In Theorem 2 we characterize those index sets $\Lambda \subset\{0,1, \ldots, n\}$ which yield invariant subspaces in terms of two closure operators.
In Section 3 we give examples of non-trivial index sets $\Lambda=\Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$. It turns out that their construction is closely related to Pascal's triangle modulo char $F=p$ and, on the other hand, to the representation of the integer $b:=n+1$ in base p.
The lattice of all $\mathrm{P} Г \mathrm{~L}(\Gamma)$-invariant subspaces is investigated in Section 4. We show that the invariant subspaces constructed in Section 3 are exactly the irreducible elements of the lattice.

2 Necessary and sufficient conditions

Let $\mathrm{PG}(n, F)$ be the n-dimensional projective space on F^{n+1}, where $n \geq 2$ and F is a (commutative) field with $\# F \geq n+2$. In this section the characteristic (char F) of the ground field is arbitrary.
We put $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$ for the group of all collineations fixing the normal rational curve (1) as a set and $\mathrm{PGL}(\Gamma)$ for the subgroup of all projective collineations in $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$. Due to $\# F \geq n+2, \operatorname{PGL}(\Gamma)$ and $\operatorname{PGL}(2, F)$ are isomorphic transformation groups on Γ and $\mathrm{PG}(1, F)$, respectively; cf. [5] and [7, 307-308].
The collineations induced by matrices of the form

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right)
$$

where $a \in F \backslash\{0\}, t \in F$, generate the group $\operatorname{PGL}(2, F)$, cf. [1, 320-321]. So the projective collineations induced by matrices of the form

$$
\begin{equation*}
A_{a}=\operatorname{diag}\left(1, a, \ldots, a^{n}\right) \tag{2}
\end{equation*}
$$

$$
\begin{align*}
B & =\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 1 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0
\end{array}\right) \tag{3}\\
C_{t} & =\left(\begin{array}{ccccc}
\binom{0}{0} & 0 & 0 & \ldots & 0 \\
\binom{1}{0} t & \binom{1}{1} & 0 & \ldots & 0 \\
\binom{2}{0} t^{2} & \binom{2}{1} t & \binom{2}{2} & \ldots & 0 \\
\vdots & & & \ddots & \vdots \\
\binom{n}{0} t^{n} & \binom{n}{1} t^{n-1} & \binom{n}{2} t^{n-2} & \ldots & \binom{n}{n}
\end{array}\right) \tag{4}
\end{align*}
$$

generate $\mathrm{PGL}(\Gamma)$.
The automorphic collineations arising from (2) form a subgroup G_{A} of $\mathrm{P} Г \mathrm{~L}(\Gamma)$. In an analogous manner the subgroup G_{C} is the set of all collineations induced by matrices (4).

THEOREM 1 Let Γ be the normal rational curve (1) in $\operatorname{PG}(n, F)$ and $\# F \geq$ $n+2$. A subspace \mathcal{U} is G_{A}-invariant if and only if \mathcal{U} is spanned by points P_{λ} $(\lambda \in \Lambda)$ of the standard basis.

Proof. For all cases of char F we are able to find an element $\alpha \in F$ with the powers $\alpha^{0}, \alpha^{1}, \ldots, \alpha^{n}$ being mutually different. If char $F=0$, the element $\alpha=2$ is appropriate. For char $F=p>0$ we have to distinguish three possibilities.

1) For a finite field $F=G F(q)$ the multiplicative group is cyclic with a generating element α. As $\# F \geq n+2$, the powers $\alpha^{0}, \alpha^{1}, \ldots, \alpha^{n}$ are mutually different.
2) If $\# F=\infty$ and $G F(q) \subset F$ for $q \geq n+2$, the same argument holds.
3) Now let $\# F=\infty$ and $q \leq n+1$ maximal, so that $G F(q) \subset F$. Each $\alpha \in$ $F \backslash G F(q)$ is transcendental over F, because otherwise the field $F(\alpha)$ would have finite degree over F and q would not be maximal. Again, the powers $\alpha^{0}, \alpha^{1}, \ldots, \alpha^{n}$ are mutually different.

Now we investigate the collineation given by the matrix $A_{\alpha}=\operatorname{diag}\left(1, \alpha^{1}, \ldots, \alpha^{n}\right)$. As the eigenvalues are mutually different, exactly the points of the standard basis are fixed by the induced collineation. So, if \mathcal{U} is spanned by base points, we certainly get $G_{A}(\mathcal{U})=\mathcal{U}$.
On the other hand, let the subspace \mathcal{U} be $G_{A^{-}}$invariant. If $\operatorname{dim} \mathcal{U} \in\{-1,0, n\}$, the assertion is either already shown or trivial. So, consider a k-dimensional
$(1 \leq k \leq n-1)$ invariant subspace \mathcal{U} and choose two hyperplanes \mathcal{H}_{1} and \mathcal{H}_{2}, spanned by points of the standard basis, such that

$$
\mathcal{U}_{1}:=\mathcal{U} \cap \mathcal{H}_{1} \neq \mathcal{U} \cap \mathcal{H}_{2}=: \mathcal{U}_{2}, \quad \operatorname{dim} \mathcal{U}_{i}=k-1
$$

As $G_{A}(\mathcal{U})=\mathcal{U}$ and $G_{A}\left(\mathcal{H}_{i}\right)=\mathcal{H}_{i}$, also the subspaces $\mathcal{U}_{i}(i=1,2)$ are $G_{A^{-}}$ invariant. However, by the induction hypothesis, each \mathcal{U}_{i} is spanned by points of the standard basis and, by $\mathcal{U}=\mathcal{U}_{1} \vee \mathcal{U}_{2}$, so is \mathcal{U}.

REMARK 1 From now on we know that in case of $\# F \geq n+2$ an invariant subspace can be written as $\mathcal{U}=\left[\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}\right]$, so that finding invariant subspaces means characterizing the appropriate sets $\Lambda \subset\{0, \ldots, n\}$.

Before we are able to characterize the subspaces \mathcal{U} which are also G_{C}-invariant, we need some preparations.

DEFINITION 1 Given char F and a non-negative integer n, then define for $j \in \mathbb{N}:=\{0,1, \ldots\}$:

$$
\begin{equation*}
\Omega(j):=\left\{m \in \mathbb{N} \mid 0 \leq m \leq n,\binom{m}{j} \not \equiv 0 \quad(\bmod \operatorname{char} F)\right\} . \tag{5}
\end{equation*}
$$

Moreover, put $\Omega(J):=\bigcup_{j \in J} \Omega(j)$ for every subset $J \subset\{0, \ldots, n\}$.
Note, that $\Omega(\emptyset)=\emptyset$. As the sets $\Omega(j)$ are crucial for the rest of the paper, they have to be investigated thoroughly. If char $F=0$, we get $\Omega(j)=\{m \in \mathbb{N} \mid j \leq$ $m \leq n\}$. In case of characteristic $p>0$, the following lemma of Lucas, cf. [2, 364], is very helpful:

$$
\begin{equation*}
\binom{m}{j} \equiv \prod_{\sigma=0}^{\infty}\binom{m_{\sigma}}{j_{\sigma}} \quad(\bmod p) . \tag{6}
\end{equation*}
$$

Here j_{σ} and m_{σ} are the digits of the representations of j and m in base p. Now, $\binom{m}{j} \not \equiv 0$ modulo p, if and only if $j_{\sigma} \leq m_{\sigma}$ for all σ.
This gives rise to a half order \preceq_{F} on \mathbb{N}. We have

$$
\begin{equation*}
j \preceq_{F} m \quad: \Leftrightarrow \quad j_{\sigma} \leq m_{\sigma} \text { for all } \sigma \in \mathbb{N} \text {. } \tag{7}
\end{equation*}
$$

LEMMA 1 For fixed n and given char F the following antitonicity holds:

$$
\begin{equation*}
i_{1} \preceq_{F} i_{2} \Leftrightarrow \Omega\left(i_{1}\right) \supset \Omega\left(i_{2}\right) \tag{8}
\end{equation*}
$$

Here \preceq_{F} is the above mentioned half order for char $F=p$, and the canonical half order " \leq " in case of characteristic zero.

Proof. The case of char $F=0$ is trivial, whereas the assertion in case of char $F=$ p is a consequence of (5) and (7).

The mapping Ω is a closure operator on the set $\{0,1, \ldots, n\}$, because for arbitrary elements A and B of the power set of $\{0,1, \ldots, n\}$ the following three conditions hold:

$$
\begin{aligned}
A & \subset \Omega(A) \\
\Omega(\Omega(A)) & =\Omega(A) \\
A \subset B & \Rightarrow \Omega(A) \subset \Omega(B)
\end{aligned}
$$

Now we characterize those G_{A}-invariant subspaces that are also G_{C}-invariant.
LEMMA $2 A$ subspace $\mathcal{U}=\left[\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}\right]$ is G_{C}-invariant if and only if the following condition holds:

$$
j \in \Lambda \Rightarrow \Omega(j) \subset \Lambda
$$

Proof. If $j \in \Lambda$, we investigate the j-th column of a matrix (4) in the general case $(t \neq 0)$. As \mathcal{U} is spanned by base points, it is G_{C}-invariant if and only if the condition

$$
\binom{m}{j} \not \equiv 0 \quad(\bmod \operatorname{char} F) \quad \Rightarrow \quad m \in \Lambda
$$

holds. However, $\binom{m}{j} \not \equiv 0 \quad(\bmod \operatorname{char} F) \Leftrightarrow m \in \Omega(j)$.
If \mathcal{U} is $\operatorname{PGL}(\Gamma)$-invariant, it has to be invariant under the collineation B in (3), which leads us to the next lemma.

LEMMA $3 A$ subspace $\mathcal{U}=\left[\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}\right]$ is invariant under the collineation B if and only if the following symmetry-condition holds:

$$
\begin{equation*}
j \in \Lambda \Leftrightarrow j^{*}:=n-j \in \Lambda \quad \forall j \in\{0,1, \ldots, n\} . \tag{9}
\end{equation*}
$$

Proof. This condition is an immediate consequence of the structure of the matrix B in (3).

In analogy to the operator Ω we may define another closure operator Σ, also called "the symmetry operator", on the power set of $\{0,1, \ldots, n\}$:

$$
\begin{equation*}
\Sigma(A):=\bigcup_{a \in A}\left\{a, a^{*}\right\} \tag{10}
\end{equation*}
$$

Now we are able to formulate the main theorem for invariant subspaces.
THEOREM 2 (main theorem) If F has at least $n+2$ elements, then the $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant subspaces can be characterized in the following way:

1. The subspace $\mathcal{U}=\left[\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}\right]$ with $\Lambda \subset\{0,1, \ldots, n\}$ is spanned by base points of the standard frame of reference.
2. The symmetry-condition $\Sigma(\Lambda) \subset \Lambda$ holds .
3. The set Λ has the closure property $\Omega(\Lambda) \subset \Lambda$.

Proof. Note, that PGL (Γ) is generated by the 3 types of collineations induced by (2),(3), and (4). Due to $\# F \geq n+2$, we may apply Theorem 1, Lemma 2, and Lemma 3 to find out that the above theorem characterizes the PGL(Γ)-invariant subspaces. However, $\operatorname{PGL}(\Gamma)$ is a subgroup of $\operatorname{P\Gamma L}(\Gamma)$ and each collineation $\kappa \in \operatorname{P\Gamma L}(\Gamma)$ can be written as a product $\kappa=\kappa_{1} \circ \kappa_{2}$; here $\kappa_{1} \in \operatorname{PGL}(\Gamma)$ and κ_{2} is fixing each point of the standard frame of reference. Thus each PGL(Γ)-invariant subspace is also κ_{2}-invariant and therefore $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant.

REMARK 2 The trivial subspaces $\mathcal{U}=\emptyset$ and $\mathcal{U}=\mathcal{P}$ are certainly $\mathrm{P} \Gamma \mathrm{L}(\Gamma)-$ invariant and the corresponding trivial index sets are $\Lambda=\emptyset$ and $\Lambda=\{0,1, \ldots, n\}$. We easily show that in case of char $F=0$ these subspaces are the only ones:

$$
\exists j \in \Lambda \stackrel{\Omega}{\Rightarrow} n \in \Omega(j) \stackrel{\Sigma}{\Rightarrow} 0 \in \Lambda \stackrel{\Omega}{\Rightarrow} \Omega(0)=\{0, \ldots, n\} \subset \Lambda .
$$

Thus we are going to concentrate on the case char $F>0$ for the rest of the paper. The main theorem enables us to decide for given dimension n, whether a given index set Λ represents a $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant subspace, or not. However, we aim at a construction of all appropriate sets Λ, which we are going to give in the following section.

3 Examples of invariant subspaces

Throughout this section the projective space $\operatorname{PG}(n, F)$ has fixed dimension n and prime-number characteristic $p=$ char F. For $j \in\{0,1, \ldots, n\}$ the symmetric index $n-j$ is written as j^{*}. The representation of a non-negative integer $b \in \mathbb{N}$ in base p has the form

$$
\begin{equation*}
b=\sum_{\sigma=0}^{\infty} b_{\sigma} p^{\sigma}=:\left\langle b_{\sigma}\right\rangle . \tag{11}
\end{equation*}
$$

We are going to construct index sets Λ, for which the last two conditions of the main theorem hold. As Ω and Σ are both closure operators, suitable sets Λ can be created in the following way:

The starting point is a set $J_{0}:=\left\{j_{0}\right\}$. Now compute $\Omega\left(J_{0}\right)$ and $J_{1}:=\Sigma\left(\Omega\left(J_{0}\right)\right)$. If $J_{0}=J_{1}$ we have found a suitable set $\Lambda:=J_{1}$. Otherwise, repeat the two operations from above to get J_{2} and so on. As Ω and Σ are closure operators acting
on a finite set, there exists an index α, so that $J_{\alpha+1}=J_{\alpha}$ and the construction is successful. We are going to follow up this idea later on; cf. Theorem 6.

Right now, our starting point are sets of the form $\Lambda=\bigcup_{\sigma} \Omega(\sigma)$ with the property $\Sigma(\Lambda)=\Lambda$. Later on we are able to show that these sets Λ are exactly those that we get by the above mentioned method.
Right at the beginning we have to give some definitions and notations:
DEFINITION 2 Given an expansion of the form (11) we define the function $V(i, b)$ as follows:

$$
\begin{align*}
V(i, b): \quad \mathbb{N} \times \mathbb{N} & \rightarrow \mathbb{N} \\
(i, b) & \mapsto \sum_{\sigma=0}^{i-1} b_{\sigma} p^{\sigma} \tag{12}
\end{align*}
$$

From now on, the second argument $b:=n+1$ of the function V is constant. Note, that for variable i the values $V(i, b)$ are not necessarily different, but we need a consistent description of these values. Let $N_{1}<N_{2}<\ldots<N_{d}$ be the positions of the non-zero digits of b in base p. Then we have

$$
\begin{array}{rll}
V(i, b)=0 & \text { if } & i \leq N_{1} \\
V(i, b)=b=n+1 & \text { if } & i \geq N_{d}+1 \tag{14}
\end{array}
$$

and for all $\alpha \in\{1,2, \ldots, d-1\}$ the relation

$$
V\left(N_{\alpha}+1, b\right)=V\left(N_{\alpha}+2, b\right)=\ldots=V\left(N_{\alpha+1}, b\right)<V\left(N_{\alpha+1}+1, b\right)
$$

REMARK 3 Observe that (13) and (14) describe the trivial index sets $\Omega(0)=$ $\{0,1, \ldots, n\}$ and $\Omega(n+1)=\emptyset$, in which we are no longer interested, cf. Remark 2 .

With the settings from above, the different values of $V(i, b)$ besides 0 and $n+1$ are denoted by $V\left(N_{2}, b\right), \ldots, V\left(N_{d}, b\right)$. Each $V(i, b)$ will lead us to a $\mathrm{P} \Gamma \mathrm{L}(\Gamma)-$ invariant subspace.

THEOREM 3 The sets of the form $\Lambda=\Omega(V(i, b))$ are symmetric.
Proof. We have to investigate, if $j^{*} \in \Lambda$ for each index $j \in \Lambda$. The digits of j in base p satisfy:

$$
\begin{array}{rlrl}
j_{\alpha} & \in\{0,1, \ldots, p-1\} & & 0 \leq \alpha \leq N_{1}-1 \\
j_{N_{1}} & >n_{N_{1}} & & \\
j_{\beta} & \geq n_{\beta}+1 \leq \beta \leq i-1 \\
j_{i} & \in\{0,1, \ldots, p-1\} &
\end{array}
$$

For the symmetric index $j^{*}=n-j$ we get digits:

$$
\begin{aligned}
j_{\alpha}^{*} & =n_{\alpha}-j_{\alpha} & & 0 \leq \alpha \leq N_{1}-1 \\
j_{N_{1}}^{*} & >n_{N_{1}} & & \\
j_{\beta}^{*} & \geq n_{\beta} & & N_{1} \leq \beta \leq i-1
\end{aligned}
$$

With these inequalities the assertion $j^{*} \in \Omega(V(i, b))$ is shown.
Note, that $n_{\alpha}=p-1$ in case of $0 \leq \alpha \leq N_{1}-1$ and that for $N_{1} \leq \beta \leq i-1$ there is always a "carry" in the p-adic addition $j_{\beta}+j_{\beta}^{*}$.

The following example illustrates the general situation:
With $p=5$ and $n=1424=\langle 2,1,1,4,4\rangle$ we get $n+1=b=1425=\langle 2,1,2,0,0\rangle$. The interesting values $V(i, b)$ are

$$
\begin{aligned}
V(3, b) & =\langle 2,0,0\rangle \\
V(4, b) & =\langle 1,2,0,0\rangle
\end{aligned}
$$

We get $\Omega(V(4, b))=\left\{j=\left\langle j_{4}, j_{3}, j_{2}, j_{1}, j_{0}\right\rangle \mid j \leq n, j_{2} \geq 2, j_{3} \geq 1\right\}$. The digits of the symmetric index j^{*} are:

$$
\begin{aligned}
n_{0}-j_{0}=4-j_{0} & =j_{0}^{*} \\
n_{1}-j_{1}=4-j_{1} & =j_{1}^{*} \\
j_{2}=2 & \Leftrightarrow j_{2}^{*}=4 \\
j_{2}=3 & \Leftrightarrow j_{2}^{*}=3 \\
j_{2}=4 & \Leftrightarrow j_{2}^{*}=2 \\
j_{3}=1 & \Leftrightarrow j_{3}^{*}=4 \\
j_{3}=2 & \Leftrightarrow j_{3}^{*}=3 \\
j_{3}=3 & \Leftrightarrow j_{3}^{*}=2 \\
j_{3}=4 & \Leftrightarrow j_{3}^{*}=1
\end{aligned}
$$

However, the values $V(i, b)$ are just the starting points for the construction of all invariant subspaces, and that is why further values $V\left(I_{1}, \ldots, I_{L} ; i, b\right)$ are defined.

DEFINITION 3 Given a set $\{0,1, \ldots, i\}$ we consider for $\sigma=1,2, \ldots, L$ subsets of the form $I_{\sigma}:=\left\{i_{\sigma}, i_{\sigma}+1, \ldots, i_{\sigma}+k_{\sigma}\right\}$. With the conditions

$$
\begin{align*}
i_{\sigma}, k_{\sigma} & \in \mathbb{N} & & \sigma=1, \ldots, L \tag{15}\\
i_{\sigma}+k_{\sigma} & \leq i_{\sigma+1}-2 & & \sigma=1, \ldots, L-1 \tag{16}\\
i_{L}+k_{L} & \leq i-2 & & \tag{17}\\
b_{i_{\sigma}} & >0 & & \sigma=1, \ldots, L \tag{18}\\
b_{i_{\sigma}+k_{\sigma}+1} & <p-1 & & \sigma=1, \ldots, L \tag{19}
\end{align*}
$$

we define

$$
\begin{equation*}
V\left(I_{1}, \ldots, I_{L} ; i, b\right):=V(i, b)-\sum_{\sigma=1}^{L} \sum_{\mu=0}^{k_{\sigma}} b_{i_{\sigma}+\mu} p^{i_{\sigma}+\mu}+\sum_{\sigma=1}^{L} p^{i_{\sigma}+k_{\sigma}+1} . \tag{20}
\end{equation*}
$$

For each I_{σ} we have a system $\mathcal{T}\left(I_{\sigma}\right)$ of subsets:

$$
\begin{equation*}
\mathcal{T}\left(I_{\sigma}\right):=\left\{T_{\sigma ; t_{\sigma}}=\left\{i_{\sigma}, i_{\sigma}+1, \ldots, i_{\sigma}+t_{\sigma}\right\} \mid t_{\sigma}=-1,0, \ldots, k_{\sigma}\right\} \tag{21}
\end{equation*}
$$

The value $t_{\sigma}=-1$ describes the empty set and $\mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right)$ is a shorthand for the product $\mathcal{T}\left(I_{1}\right) \times \ldots \times \mathcal{T}\left(I_{L}\right)$.

Now we check, if we can apply Definition 3 to $\left(T_{1}, \ldots, T_{L}\right) \in \mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right)$ to obtain a number $V\left(T_{1}, \ldots, T_{L} ; i, b\right)$. Of course, this is only possible, if all the conditions in Definition 3 are fulfilled, in other words $t_{\sigma} \geq 0$ and $b_{i_{\sigma}+t_{\sigma}+1}<p-1$ for all $\sigma \in\{1,2, \ldots, L\}$. This means that all sets T_{σ} have to be non-empty. However, we want to get

$$
V\left(\ldots, T_{\alpha-1}, T_{\alpha}, T_{\alpha+1}, \ldots ; i, b\right)=V\left(\ldots, T_{\alpha-1}, T_{\alpha+1}, \ldots ; i, b\right)
$$

if a set T_{α} is empty, and so Definition 3 has to be modified in the following sense: "Take an L-tuple $\left(T_{1}, \ldots, T_{L}\right) \in \mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right)$. If there are empty sets T_{α}, then ignore these sets and apply Definition 3 to the remaining tuple with only non-empty sets."

Again, a short example for illustration: We consider $p=2$ and $b=372=$ $\langle 1,0,1,1,1,0,1,0,0\rangle$. Taking $V(8, b)=\langle 0,1,1,1,0,1,0,0\rangle$ as a starting point, it is not possible to generate a value $V\left(I_{1}, I_{2}, I_{3} ; 8, b\right)$: As the conditions in Definition 3 imply $i_{2} \geq i_{1}+2, i_{3} \geq i_{2}+2$ and $b_{i_{\mu}}>0$, the only permissible triple $\left(i_{3}, i_{2}, i_{1}\right)$ and $\left(k_{3}, k_{2}, k_{1}\right)$ are $(6,4,2)$ and $(0,0,0)$. However, we are not allowed to define $V(\{2\},\{4\},\{6\} ; 8, b)$ due to $b_{i_{2}+k_{2}+1}=b_{5}=p-1=1$.

In an analogous manner we are restricted to $i_{1}=2$ in defining a value $V\left(I_{1}, I_{2} ; 8, b\right)$. For i_{2} we may choose $i_{2}=4$, but then again have to decide on $k_{2}=2$ due to (19). We get $V(\{2\},\{4,5,6\} ; 8, b)=\langle 1,0,0,0,1,0,0,0\rangle$. The subsets $\left(T_{1}, T_{2}\right) \in$ $\mathcal{T}\left(I_{1} \times I_{2}\right)$, for which we are able to define $V\left(T_{1}, T_{2} ; 8, b\right)$ are $(\{2\}, \emptyset),(\emptyset,\{4,5,6\})$ and (\emptyset, \emptyset) :

$$
\begin{aligned}
V(\{2\} ; 8, b) & =\langle 0,1,1,1,1,0,0,0\rangle \\
V(\{4,5,6\} ; 8, b) & =\langle 1,0,0,0,0,1,0,0\rangle \\
V(8, b) & =\langle 0,1,1,1,0,1,0,0\rangle
\end{aligned}
$$

After all these preparations, the indices $V\left(I_{1}, \ldots, I_{L} ; i, b\right)$ will lead us to further non-trivial $\mathrm{P} Г \mathrm{~L}(\Gamma)$-invariant subspaces.

THEOREM 4 For each $\left(T_{1}, \ldots, T_{L}\right) \in \mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right)$, such that $V\left(T_{1}, \ldots, T_{L} ; i, b\right)$ is defined, there exists a number $j \in \Omega\left(V\left(I_{1}, \ldots, I_{L} ; i, b\right)\right)$, with

$$
\begin{array}{ll}
j^{*} \in \Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right) & \text { but } \\
j^{*} \notin \Omega\left(V\left(S_{1}, \ldots, S_{L} ; i, b\right)\right) & \text { for all }\left(S_{1}, \ldots, S_{L}\right) \in \\
& \mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right) \backslash\left(T_{1}, \ldots, T_{L}\right)
\end{array}
$$

Proof. With $T_{\mu}:=T_{\mu ; t_{\mu}}$ for all $\mu \in\{1,2, \ldots, L\}$, we are going to choose $j \in$ $\Omega\left(V\left(I_{1}, \ldots, I_{L} ; i, b\right)\right)$, such that $j^{*}=V\left(T_{1}, \ldots, T_{L} ; i, b\right)$. Define j in terms of its digits in base p :

$$
\begin{array}{rlrl}
j_{\alpha} & =n_{\alpha}=p-1 & 0 \leq \alpha \leq N_{1}-1 \\
\underline{\text { iff } i_{1}>N_{1}} \\
\underline{\text { iff } i_{1}=N_{1}}
\end{array}\left\{\begin{array}{rlrl}
j_{\beta} & =p-1 & N_{1} \leq \beta \leq i_{1}-1 \\
j_{i_{1}} & =n_{i_{1}}-1 & \\
j_{i_{1}} & =n_{i_{1}} & \\
j_{\gamma} & =n_{\gamma} & i_{1}+1 \leq \gamma \leq i_{1}+t_{1} \\
j_{\delta} & =p-1 & i_{1}+t_{1}+1 \leq \delta \leq i_{2}-1 \\
j_{i_{2}} & =n_{i_{2}-1} & i_{2}+1 \leq \gamma \leq i_{2}+t_{2} \\
j_{\gamma} & =n_{\gamma} & i_{2}+t_{2}+1 \leq \delta \leq i_{3}-1 \\
j_{\delta} & =p-1 & \\
& \vdots & \\
j_{i_{L}} & =n_{i_{L}}-1 & i_{L}+1 \leq \gamma \leq i_{L}+t_{L} \\
j_{\gamma} & =n_{\gamma} & i_{L}+t_{L}+1 \leq \delta \leq i-1 \\
j_{\delta} & =p-1 & \\
j_{i} & =n_{i}-1 & i+1 \leq \gamma \leq N_{d}
\end{array}\right.
$$

In case of $t_{\sigma}=-1$ we simply omit the line $j_{i_{\sigma}}=n_{i_{\sigma}}-1$, respectively $j_{i_{1}}=n_{i_{1}}$ (if $t_{1}=-1$ and $\left.i_{1}=N_{1}\right)$.

For the symmetric index j^{*} we get:

$$
\begin{array}{rlrl}
j_{\alpha}^{*} & =0 & 0 \leq \alpha \leq N_{1}-1 \\
\underline{\text { iff } i_{1}>N_{1}}
\end{array}\left\{\begin{array}{rlr}
j_{N_{1}}^{*} & =n_{N_{1}}+1 \\
j_{\beta}^{*} & =n_{\beta} & N_{1}+1 \leq \beta \leq i_{1}-1
\end{array}\right.
$$

$$
\begin{array}{rlrl}
j_{i_{1}}^{*} & =0 & \\
j_{\gamma}^{*} & =0 & i_{1}+1 \leq \gamma \leq i_{1}+t_{1} \\
j_{i_{1}+t_{1}+1}^{*} & =n_{i_{1}+t_{1}+1}+1 & & \\
j_{\gamma}^{*} & =n_{\delta} & i_{1}+t_{1}+2 \leq \delta \leq i_{2}-1 \\
j_{\gamma}^{*} & =0 & i_{2} \leq \gamma \leq i_{2}+t_{2} \\
j_{i_{2}+t_{2}+1}^{*} & =n_{i_{2}+t_{2}+1}+1 & \\
j_{\delta}^{*} & =n_{\delta} & & i_{2}+t_{2}+2 \leq \delta \leq i_{3}-1 \\
& \vdots & \\
j_{\gamma}^{*} & =0 & & \\
i_{L} \leq \gamma \leq i_{L}+t_{L} \\
j_{i_{L}+t_{L}+1}^{*} & =n_{i_{L}+t_{L}+1}+1 & & \\
j_{\delta}^{*} & =n_{\delta} & i_{L}+t_{L}+2 \leq \delta \leq i-1
\end{array}
$$

It is obvious that we have $j^{*}=V\left(T_{1}, \ldots, T_{L} ; i, b\right) \in \Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right)$.
It remains to show that $V\left(T_{1}, \ldots, T_{L} ; i, b\right) \in \Omega\left(V\left(S_{1}, \ldots, S_{L} ; i, b\right)\right)$ if and only if $\left(S_{1}, \ldots, S_{L}\right)=\left(T_{1}, \ldots, T_{L}\right)$: So we assume that there exists Y with $S_{Y} \neq T_{Y}$ and $V\left(T_{1}, \ldots, T_{L} ; i, b\right) \in \Omega\left(V\left(S_{1}, \ldots, S_{L} ; i, b\right)\right)$. There are two possibilities, i) $s_{Y}<t_{Y}$ and ii) $s_{Y}>t_{Y}$.
i) If $s_{Y}=-1$, we have $h_{i_{Y}} \geq b_{i_{Y}}>0$ for all $h \in \Omega\left(V\left(S_{1}, \ldots, S_{L} ; i, b\right)\right)$, whereas $V\left(T_{1}, \ldots, T_{L} ; i, b\right)_{i_{Y}}=0$. Otherwise $\left(s_{Y} \geq 0\right)$ we have $h_{i_{Y}+s_{Y}+1}>b_{i_{Y}+s_{Y}+1}$, but $V\left(T_{1}, \ldots, T_{L} ; i, b\right)_{i_{Y}+s_{Y}+1}=0 \leq b_{i_{Y}+s_{Y}+1}$, which is always a contradiction.
ii) Similarly $h_{i_{Y}+s_{Y}+1}>b_{i_{Y}+s_{Y}+1}$, but $V\left(T_{1}, \ldots, T_{L} ; i, b\right)_{i_{Y}+s_{Y}+1}=b_{i_{Y}+s_{Y}+1}$, if $t_{Y}=-1 ;$ and otherwise $h_{i_{Y}+s_{Y}+1}>b_{i_{Y}+s_{Y}+1}$, but $V\left(T_{1}, \ldots, T_{L} ; i, b\right)_{i_{Y}+s_{Y}+1}=$ $b_{i_{Y}+s_{Y}+1}$, which is again a contradiction.

Theorem 4 tells us that starting with $\Omega\left(V\left(I_{1}, \ldots, I_{L} ; i, b\right)\right)$, the smallest set which might pass the conditions of the main theorem is

$$
\begin{equation*}
\Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right):=\bigcup \Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right) \tag{22}
\end{equation*}
$$

taking the union over all L-tuples $\left(T_{1}, \ldots, T_{L}\right) \in \mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right)$. In fact, these sets $\Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$ meet the symmetry-condition of the main theorem. This will be proved by the help of the following two lemmas.

LEMMA 4 Let j be an element of $\Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$. Then we have

$$
j \notin \Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right)
$$

for all

$$
\left(T_{1}, \ldots, T_{L}\right) \in\left(\mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right) \backslash\left(I_{1}, \ldots, I_{L}\right)\right)
$$

if and only if

$$
\begin{equation*}
\nu_{\mu}:=\max \left\{\alpha \in\left\{0,1, \ldots, k_{\mu}\right\} \mid j_{i_{\mu}+\alpha}<b_{i_{\mu}+\alpha}\right\} \tag{23}
\end{equation*}
$$

exists for all $\mu \in\{1,2, \ldots, L\}$ and

$$
\begin{equation*}
\min \left\{\beta \in\left\{\nu_{\mu}+1, \ldots, k_{\mu}+1\right\} \mid j_{i_{\mu}+\beta}>b_{i_{\mu}+\beta}\right\}=k_{\mu}+1 \tag{24}
\end{equation*}
$$

Proof. Assume $j \in \Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$ and $j \notin \Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right)$ for all $\left(T_{1}, \ldots, T_{L}\right) \in\left(\mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right) \backslash\left(I_{1}, \ldots, I_{L}\right)\right)$. If there were $Y \in\{1,2, \ldots, L\}$ with $j_{i_{Y}+\alpha} \geq b_{i_{Y}+\alpha}$ for $\alpha=0,1, \ldots, k_{Y}$, then we would get the contradiction $j \in \Omega\left(V\left(I_{1}, \ldots, I_{Y-1}, \emptyset, I_{Y+1}, \ldots, I_{L} ; i, b\right)\right)$. So the maximum ν_{μ} exists for all indices. Now assume, that for $Y \in\{1,2, \ldots, L\}$ we have

$$
\min \left\{\beta \in\left\{\nu_{Y}+1, \ldots, k_{Y}+1\right\} \mid j_{i_{Y}+\beta}>b_{i_{Y}+\beta}\right\}=: t_{Y}+1<k_{Y}+1 .
$$

However, this results in $j \in \Omega\left(V\left(I_{1}, \ldots, I_{Y-1}, T_{Y}, I_{Y+1}, \ldots, I_{L} ; i, b\right)\right)$ with $\left(T_{Y} \neq\right.$ I_{Y}), which is also a contradiction.

Now let us have $j \in \Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$ with conditions (23) and (24). Assume to the contrary that $j \in \Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right)$ with $\left(T_{1}, \ldots, T_{L}\right) \neq\left(I_{1}, \ldots, I_{L}\right)$. So there exists $Y \in\{1,2, \ldots, L\}$ with $T_{Y} \neq I_{Y}$. Note that an element $h \in$ $\Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right)$ fulfills:

$$
\begin{aligned}
h_{i_{Y}+t_{Y}+1} & >b_{i_{Y}+t_{Y}+1} \\
h_{i_{Y}+\alpha} & \geq b_{i_{Y}+\alpha} \quad t_{Y}+2 \leq \alpha \leq k_{Y}+1
\end{aligned}
$$

However, the inequality $j_{i_{Y}+\nu_{Y}}<b_{i_{Y}+\nu_{Y}}$ in the case $\nu_{Y} \geq t_{Y}+1$, respectively the identity $j_{i_{Y}+t_{Y}+1}=b_{i_{Y}+t_{Y}+1}$ in case of $\nu_{Y}<t_{Y}+1<k_{Y}+1$ leads to an absurdity.

LEMMA 5 Let $j \in \Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$ and

$$
j \notin \Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right)
$$

for all

$$
\left(T_{1}, \ldots, T_{L}\right) \in\left(\mathcal{T}\left(I_{1} \times \ldots \times I_{L}\right) \backslash\left(I_{1}, \ldots, I_{L}\right)\right)
$$

Then the symmetric index j^{*} has the same properties.
Proof. As the index j meets the conditions of the lemma, we have:

$$
\begin{aligned}
& j_{\alpha} \in\{0,1, \ldots, p-1\} \quad 0 \leq \alpha \leq N_{1}-1 \\
& \underline{\text { iff } i_{1}>N_{1}} \quad\left\{\begin{aligned}
j_{N_{1}} & >n_{N_{1}} \\
j_{\beta} & \geq n_{\beta}
\end{aligned}\right. \\
& N_{1}+1 \leq \beta \leq i_{1}-1 \\
& j_{i_{1}+k_{1}+1}>n_{i_{1}+k_{1}+1} \\
& j_{i_{2}+k_{2}+1}>n_{i_{2}+k_{2}+1} \\
& j_{\delta} \geq n_{\delta} \quad i_{2}+k_{2}+2 \leq \delta \leq i_{3}-1 \\
& j_{i_{L}+k_{L}+1}>n_{i_{L}+k_{L}+1} \\
& j_{\delta} \geq n_{\delta} \\
& i_{1}+k_{1}+2 \leq \delta \leq i_{2}-1 \\
& i_{L}+k_{L}+2 \leq \delta \leq i-1
\end{aligned}
$$

As a result we get $j_{\alpha}^{*}=n_{\alpha}-j_{\alpha}=p-1-j_{\alpha}$ with $0 \leq \alpha \leq N_{1}-1$, and for the other digits of j^{*} the same inequalities are valid, as above. This gives

$$
j^{*} \in \Omega\left(V\left(I_{1}, \ldots, I_{L} ; i, b\right)\right) \subset \Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right) .
$$

With the notations in Lemma 4 and fixed $\mu \in\{1,2, \ldots, L\}$ there are two possibilities: Either there is a "carry" in the addition

$$
j_{i_{\mu}+\nu_{\mu}-1}+j_{i_{\mu}+\nu_{\mu}-1}^{*}=n_{i_{\mu}+\nu_{\mu}-1},
$$

or there is not. It turns out, that in both cases we get

$$
\begin{aligned}
\nu_{\mu}^{*} & =\max \left\{\alpha \in\left\{0,1, \ldots, k_{\mu}\right\} \mid j_{i_{\mu}+\alpha}^{*}<n_{i_{\mu}+\alpha}\right\} \geq \nu_{\mu} \\
k_{\mu}+1 & =\min \left\{\beta \in\left\{\nu_{\mu}^{*}+1, \ldots, k_{\mu}+1\right\} \mid j_{i_{\mu}+\beta}^{*}>n_{i_{\mu}+\beta}\right\},
\end{aligned}
$$

and with Lemma 4 we obtain the assertion.
With the aid of these two lemmas we are now able to formulate
THEOREM 5 The subspaces $\mathcal{U}=\left[\left\{P_{\lambda} \mid \lambda \in \Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)\right\}\right]$ are invariant under the group $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$ of automorphic collineations.

Proof. As $\Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$ is a union of sets $\Omega(V(*, b))$, we just have to investigate, if the symmetry-condition of Theorem 2 holds. Given $j \in \Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$, there exists one and only one L-tuple $\left(T_{1}, \ldots, T_{L}\right)$ with

$$
j \in \Omega\left(V\left(T_{1}, \ldots, T_{L} ; i, b\right)\right) \quad \text { and } \quad \sum_{\mu=1}^{L} \# T_{\mu} \quad \longrightarrow \quad \text { minimum. }
$$

i) If this minimum equals 0 or, in other words, $j \in \Omega(V(i, b))$, then we get $j^{*} \in \Omega(V(i, b))$ by Theorem 3 .
ii) For a positive value of this minimum, we only write down non-empty sets and get an H-tuple $\left(T_{i_{1}}, \ldots, T_{i_{H}}\right)$ with $H \leq L$ and $T_{i_{\mu}} \neq \emptyset(\mu=1,2, \ldots, H)$. Now we apply Lemma 5 to the set $\left(T_{i_{1}} \times \ldots \times T_{i_{H}}\right)$, which completes the proof.

4 The lattice of the invariant subspaces

If we want to determine the lattice of all $\mathrm{P} Г \mathrm{~L}(\Gamma)$-invariant subspaces, it is sufficient to characterize those "irreducible" elements, which cannot be written as a non-trivial sum of invariant subspaces. As the lattice has only finitely many elements, each "non-irreducible" subspace can be constructed as a sum of "irreducible" ones.

THEOREM 6 The subspaces of the form

$$
\mathcal{U}:=\left[\left\{P_{\lambda} \mid \lambda \in \Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)\right\}\right]
$$

are exactly the non-trivial irreducible invariant subspaces.
Proof. We are going to follow up the idea explained at the beginning of Section 3. For every index j in the set $\{0,1, \ldots, n\}$ we construct the minimal index set Λ with $\Omega(\Lambda)=\Lambda$ and $\Sigma(\Lambda)=\Lambda$. If $\binom{n}{j} \not \equiv 0(\bmod p)$, we get

$$
\begin{equation*}
j \in \Lambda \stackrel{\Omega}{\Rightarrow} n \in \Omega(j) \stackrel{\Sigma}{\Rightarrow} 0 \in \Lambda \stackrel{\Omega}{\Rightarrow} \Omega(0)=\{0, \ldots, n\} \subset \Lambda, \tag{25}
\end{equation*}
$$

the entire space, a trivial irreducible invariant subspace.
Now take j with $\binom{n}{j} \equiv 0(\bmod p)$ and define:

$$
\begin{aligned}
\text { iff } j_{N_{1}} \leq n_{N_{1}} & i_{1} \\
\text { iff } j_{N_{1}}>n_{N_{1}} & :=N_{1} \\
i_{1} & :=\min \left\{\alpha \in\left\{N_{1}+1, \ldots, N_{d}\right\} \mid j_{\alpha}<n_{\alpha}\right\} \\
i_{1}+k_{1}+1 & :=\min \left\{\beta \in\left\{i_{1}+1, \ldots, N_{d}\right\} \mid j_{\beta}>n_{\beta}\right\} \\
i_{2} & :=\min \left\{\gamma \in\left\{i_{1}+k_{1}+2, \ldots, N_{d}\right\} \mid j_{\gamma}<n_{\gamma}\right\} \\
i_{2}+k_{2}+1 & :=\min \left\{\delta \in\left\{i_{2}+1, \ldots, N_{d}\right\} \mid j_{\delta}>n_{\delta}\right\} \\
& \vdots \\
i:=i_{L+1} & :=\min \left\{\omega \in\left\{i_{L}+k_{L}+2, \ldots, N_{d}\right\} \mid j_{\omega}<n_{\omega}\right\}
\end{aligned}
$$

The index j^{\prime} with

$$
\begin{array}{rlr}
j_{\alpha}^{\prime} & =n_{\alpha}=p-1 & 0 \leq \alpha \leq N_{1}-1 \\
\underline{\text { iff } i_{1}>N_{1}} \\
\underline{\text { iff } i_{1}=N_{1}}
\end{array}\left\{\begin{array}{rlr}
j_{\beta}^{\prime} & =p-1 & N_{1} \leq \beta \leq i_{1}-1 \\
j_{i_{1}}^{\prime} & =n_{i_{1}}-1 & \\
j_{i_{1}}^{\prime} & =n_{i_{1}} & \\
j_{\gamma}^{\prime} & =n_{\gamma} & i_{1}+1 \leq \gamma \leq i_{1}+k_{1} \\
j_{\delta}^{\prime} & =p-1 & i_{1}+k_{1}+1 \leq \delta \leq i_{2}-1 \\
j_{i_{2}}^{\prime} & =n_{i_{2}}-1 & \\
j_{\gamma}^{\prime} & =n_{\gamma} & i_{2}+1 \leq \gamma \leq i_{2}+k_{2} \\
j_{\delta}^{\prime} & =p-1 & i_{2}+k_{2}+1 \leq \delta \leq i_{3}-1 \\
& \vdots & \\
j_{i_{L}}^{\prime} & =n_{i_{L}}-1 & \\
j_{\gamma}^{\prime} & =n_{\gamma} \\
j_{\delta}^{\prime} & =p-1 & i_{L}+1 \leq \gamma \leq i_{L}+k_{L} \\
j_{i}^{\prime} & =n_{i}-1 & i+1 \leq \gamma \leq k_{L}+1 \leq \delta \leq i-1 \\
j_{\gamma}^{\prime} & =n_{\gamma}
\end{array}\right.
$$

has the properties

$$
\begin{aligned}
j^{\prime} & \in \Omega(j) \\
j^{\prime *} & =V\left(I_{1}, \ldots, I_{L} ; i, b\right)
\end{aligned}
$$

So we get $\Lambda=\Lambda\left(I_{1}, \ldots, I_{L} ; i, b\right)$, and due to Theorem 4 and Theorem 5 the corresponding subspace is $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant and irreducible. Note, that for each $V\left(I_{1}, \ldots, I_{L} ; i, b\right)$, which can be defined by (20), we find an appropriate j, so that the above construction is possible.

Having determined all irreducible invariant subspaces in the ambient space of a normal rational curve, it is a natural question to ask, in which cases the accompanying lattice is totally ordered.
THEOREM 7 Let the positions of the non-zero digits of $b:=n+1$ in base p be denoted by $N_{1}, N_{2}, \ldots, N_{d}$. Then the lattice of the PГL(Г)-invariant subspaces is totally ordered if and only if one of the following cases occurs:

1. $d \in\{1,2\}$.
2. $d \geq 3, N_{d}-N_{1}=d-1$, and $N_{2}=\ldots=N_{d-1}=p-1$.

Proof. We are going to discuss all the cases of $d \geq 1$:

1) If $d=1$, the representation of n in base p has the form $\left\langle n_{Y}, p-1, \ldots, p-1\right\rangle$. Only if $b_{N_{1}}=1$ we get $Y=N_{1}-1$, in all other cases Y equals N_{1}. By formula (6) we get $\binom{n}{j} \not \equiv 0(\bmod p)$ for all $j \in\{0,1, \ldots, n\}$. With (25) merely the trivial subspaces are $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant. If $d=2$, the only index sets Λ that can be constructed according to Definition 3 and formula (22) are of the form $\Lambda\left(I_{1} ; N_{2}, b\right)$ with $I_{1}=\left\{N_{1}, \ldots, i_{1}+k_{1}\right\}$. As $i_{1}=N_{1}$ is constant, the lattice is totally ordered.
2) $d \geq 3:$ i) Assume $N_{d}>N_{1}+d-1$ or $N_{d}=N_{1}+d-1$ and that there is an $\alpha \in\{2,3, \ldots, d-1\}$ with $b_{N_{\alpha}}<p-1$. In both cases there exists an index Y, with $N_{1}<Y<N_{d}$ and $b_{Y}<p-1$. Now put $I_{1}:=\left\{N_{1}, \ldots, Y-1\right\}$, to get

$$
\Lambda\left(N_{2}, b\right) \not \underset{\not \supset}{\not \supset} \Lambda\left(I_{1} ; N_{d}, b\right) .
$$

ii) In the case $N_{d}-N_{1}=d-1$ and $N_{2}=\ldots=N_{d-1}=p-1$, the only non-trivial index sets we may construct are

$$
\Lambda\left(N_{2}, b\right) \subset \Lambda\left(N_{3}, b\right) \subset \ldots \subset \Lambda\left(N_{d}, b\right)
$$

which completes the proof.
In conclusion we give according to char $F=p$ the minimal dimension n, so that the lattice of $\mathrm{P} \Gamma \mathrm{L}(\Gamma)$-invariant subspaces is not totally ordered:

1. $p=2: b=\langle 1,0,1,1\rangle=11$, which means $n=p^{3}+p=p\left(p^{2}+1\right)$.
2. $p \geq 3: b=\langle 1,1,1\rangle$, so $n=p(p+1)$.

References

[1] Benz, W., Vorlesungen über Geometrie der Algebren, Springer, Berlin Heidelberg New York, 1973.
[2] Brouwer, A.E., and Wilbrink, H.A., Block designs, in Handbook of incidence geometry, Buekenhout, F., ed., Elsevier, Amsterdam, 1995, ch. 8, pp. 349-382.
[3] Gmainer, J., and Havlicek, H., A dimension formula for the nucleus of a Veronese variety. submitted.
[4] Gmainer, J., and Havlicek, H., Nuclei of normal rational curves. J. Geom., in print.
[5] Havlicek, H., Die automorphen Kollineationen nicht entarteter Normkurven, Geom. Dedicata, 16 (1984), pp. 85-91.
[6] Herzer, A., Die Schmieghyperebenen an die Veronese-Mannigfaltigkeit bei beliebiger Charakteristik, J. Geom., 18 (1982), pp. 140-154.
[7] Hirschfeld, J.W.P., and Thas, J.A., General Galois geometries, Oxford University Press, Oxford, 1991.
[8] Karzel, H., Über einen Fundamentalsatz der synthetischen algebraischen Geometrie von W. Burau und H. Timmermann, J. Geom., 28 (1987), pp. 86101.
[9] Timmermann, H., Descrizioni geometriche sintetiche di geometrie proiettive con caratteristica $p>0$, Ann. Mat. Pura Appl., IV. Ser. 114, (1977), pp. 121-139.
[10] Timmermann, H., Zur Geometrie der Veronesemannigfaltigkeit bei endlicher Charakteristik, Habilitationsschrift, Univ. Hamburg, 1978.

[^0]: *Research supported by the Austrian National Science Fund (FWF), project P-12353-MAT, and by the City of Vienna (Hochschuljubiläumsstiftung der Stadt Wien), project H-39/98.

