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Abstract. This survey discusses rational surfaces with rational offset surfaces in Euclidean 3-space. These
surfaces can be characterized by possessing a field of rational unit normal vectors, and are called Pythagorean
normal surfaces. The procedure of offsetting curves and surfaces is present in most modern 3d-modeling tools.
Since piecewise polynomial and rational surfaces are the standard representation of parameterized surfaces in CAD
systems, the rationality of offset surfaces plays an important role in geometric modeling. Simple examples show that
considering surfaces as envelopes of their tangent planes is most fruitful in this context. The concept of Laguerre
geometry combined with universal rational parametrizations helps to treat several different results in a uniform
way. The rationality of the offsets of rational pipe surfaces, ruled surfaces and quadrics are a specialization of a
result about the envelopes of one-parameter families of cones of revolution. Moreover a couple of new results are
proved: the rationality of the envelope of a quadratic two-parameter family of spheres and the characterization of
classes of Pythagorean normal surfaces of low parametrization degree.
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1. Introduction and the history of rational offset surfaces. When modeling real world
objects one not only uses surfaces but has to take into account the material thickness. Thus
offsetting curves and surfaces is a frequently used tool and it is present in most of the 3d-geometry-
modeling software nowadays. These systems typically represent parameterized curves and surfaces
as B-splines or piecewise rational (NURBS) curves and surfaces. This motivated several researchers
[10, 7, 8, 9, 22, 20, 21, 27, 28, 34, 35], just to name a few of them, to study rational curves and
surfaces with rational offsets.

Given a parametric rational surface f(u, v) with unit normal vector field n(u, v), the offset
surfaces at distance d can be represented parametrically by

fd(u, v) = f(u, v) + dn(u, v). (1.1)

Because of the normalization of the normal vector n, the offset surfaces of rational surfaces f(u, v)
are typically non-rational. This also holds for curves. For instance the offsets of an ellipse are
non-rational algebraic curves of degree eight. But even if the rational surface f(u, v) possesses
rational offsets, the representation (1.1) is typically non-rational. This can already be realized for
a parabola c(t) = (t, t2), whose offsets are rational curves of degree six, but the parametrization
cd(t) = c(t)+dn(t) with n(t) = 1/

√
1 + 4t2(−2t, 1) is non-rational. An appropriate reparametriza-

tion of the parabola is required to represent the offsets by rational parametrizations. Thus it is
necessary to study this subject in more detail to be able to decide whether the offset surfaces of
a given rational surface are rational and how to derive and construct rational parametrizations.

The rationality of a surface is determined by vanishing genus and second plurigenus. But the
computation of these invariants is quite complex for surfaces given by parametric representations,
such that determining the rationality of offset surfaces is difficult. Additionally we note that here
we will denote a real surface as rational if and only if it admits a real rational parametrization.
There exist real surfaces possessing rational (improper) parametrizations but their genus does not
vanish, for instance offsets of ellipsoids.

The analogous questions for curves have been studied for a long time within the computer-
aided-geometric-design community. Farouki [10, 7] introduced the notion of PH curves, see also
the survey [8] and the recent book [9]. This term denotes polynomial curves p(t) with the prop-
erty that the norm of the tangent vector ṗ(t) is polynomial. This implies that the arc length
of p(t) is a polynomial. Setting ṗ = w(t)

(
u(t)2 − v(t)2, 2u(t)v(t)

)
with arbitrary polynomials
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u(t), v(t) and w(t), the norm ‖ṗ‖ as well as the norm of the normal vector equals the polynomial
w(t)(u(t)2 + v(t)2). Consequently the unit normal vector is rational. The concept of PH curves is
also generalized to space curves, see e.g. [8].

Rational surfaces with rational offsets are more involved and the techniques used for curves
do not apply to surfaces directly. An explicit representation of all rational surfaces with rational
offsets has been given in [38]. Nevertheless it is not obvious how to decide the rationality of
the offsets for particular classes of surfaces. It has been proved that rational pipe surfaces [28],
rational ruled surfaces [42] and all regular quadrics [30] possess rational offsets. These statements
can also be found in [35] as specializations of a more general result concerning envelopes of rational
one-parameter families of cones of revolution.

Since any cone of revolution is the envelope of a one-parameter family of spheres as well as
planes, the envelope is also generated by a two-parameter family of spheres. Using the affine space
R4 as model of the four-dimensional manifold of spheres in Euclidean R3, the mentioned result
reads: A rational ruled surface in the model space R4 represents a two-parameter family of spheres
whose envelope surface as well as its offset surfaces possess rational parametrizations and these
parametrizations can be constructed explicitly. This result is a general statement about a class of
surfaces in R4 and their corresponding envelopes in R3.

The article describes the current status of research in the field of rational offset surfaces and
it points to some new results and open questions. It will provide a short introduction to some
theoretical tools which are necessary for their treatment. Section 2 provides a first and elementary
introduction to rational offset surfaces which are constructed using the Blaschke image of the
space of planes. Section 3 deals with the special family of rational surfaces possessing a ’linear
normal vector field’. In Section 4 we provide a theoretical investigation of the subject introducing
to Euclidean Laguerre geometry, the geometry of oriented spheres and planes in R3 and its models.
Section 5 gives rational parametrizations in full generality and Section 6 deals with several special
families of rational offset surfaces. Section 7 is devoted to modeling applications and finally we
conclude this article and discuss some open problems.

2. Different approaches to rational offset surfaces. We start with defining rational
surfaces with rational offsets, discuss these surfaces as envelopes of spheres and planes and derive
concepts to obtain an elegant approach to deal with these surfaces.

Definition 2.1. A surface F in R3 is a Pythagorean normal surface or PN surface if it pos-
sesses a rational parametrization f(u, v) and a rational unit normal vector field n(u, v) correspond-
ing to f(u, v). The offset surface Fd of F at oriented distance d admits a rational parametrization
fd(u, v) = f(u, v) + dn(u, v).

The rationality of a surface does not depend on a particular parametrization. Since we take a
constructive viewpoint we like to construct parametrizations f(u, v) which directly lead to rational
parametrizations fd(u, v) of the offsets. The correspondence noted in Definition 2.1 means that
n(u, v) is computed via normalizing the cross product fu × fv,

n(u, v) =
1

‖fu(u, v)× fv(u, v)‖ fu(u, v)× fv(u, v), (2.1)

with fu and fv as partial derivatives of f with respect to u and v, respectively. If the norm
‖fu(u, v) × fv(u, v)‖ is a rational function, the parametrization (1.1) is a rational representation
of the offsets Fd of F and is called PN-parametrization. But typically this norm involves square
roots even for rational offset surfaces and appropriate reparametrizations have to be performed.

2.1. Offsets as envelopes of spheres and planes. Assuming f(u, v) is a PN-parametri-
zation of a rational offset surface F , the tangent planes E(u, v) of F admit the rational represen-
tation

E(u, v) : n0(u, v) + n(u, v) · x = 0, with ‖n(u, v)‖2 = 1. (2.2)

The rational support function n0 = −n · f expresses the oriented distance of the origin from E.
Eqn. (2.2) interprets the surface F as the envelope of the two-parameter family of tangent planes
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E(u, v). Likewise let the offset surface Fd of F be considered as the envelope of its tangent planes.
Translating the planes E by the constant oriented distance d in direction of the normal vector n
results in the tangent planes Ed of the offset surface Fd, with

Ed(u, v) : n0(u, v)− d + n(u, v) · x = 0. (2.3)

Given a parameterized surface F with representation f(u, v), the offset surface Fd at distance
d can be considered as the envelope of a two-parameter family of spheres

S : (x− f(u, v)) · (x− f(u, v))− d2 = 0, (2.4)

of radius d which are centered at the surface F . According to the envelope condition an implicit
equation of the offset surface Fd is obtained by eliminating the surface parameters u and v from
the system of equations

S : (x− f) · (x− f)− d2 = 0,
∂S

∂u
: (x− f) · fu = 0,

∂S

∂v
: (x− f) · fv = 0. (2.5)

Note that these two approaches are not equivalent. The first interpretation (2.3) yields one-sided
offsets whereas the second one (2.5) results typically in two sheets of the offset surface at both
sides of F . If we consider rational surfaces, both approaches might yield the same result if the
original surface F is traced twice and thus both orientations of the normal vector field n(u, v)
appear.

Now we focus on the interpretation of offset surfaces as the envelopes of their tangent
planes (2.3). For this reason we introduce to the manifold of oriented planes of R3. Later we
will see the close connection between oriented planes and spheres in Section 4.

2.2. The space of oriented planes and the Blaschke model. We consider the family of
oriented planes E : e0 + e · x = 0, where e denotes the unit normal vector of E, similar to (2.2).
The real numbers e0, and e = (e1, e2, e3) determine the oriented plane. We use (e1, e2, e3, e0) ∈ R4

with ‖e‖ = 1 as coordinates of oriented planes. Denoting the family of planes of R3 by E , this
defines the Blaschke mapping

β : E → R4, E : e0 + e · x = 0 7→ β(E) = (e1, e2, e3, e0), (2.6)

which identifies oriented planes E ∈ E of R3 with the family of points β(E) ∈ R4. According to
the normalization condition ‖e‖ = 1 the image points β(E) are contained in the quadratic cone

B : y2
1 + y2

2 + y2
3 = 1, (2.7)

called the Blaschke cylinder B. Here we use y1, . . . , y4 as Cartesian coordinates in R4.
The intersections of B with 3-spaces y4 = constant are copies of the unit sphere S2 : x2

1 +
x2

2 + x2
3 = 1 and B is a cylinder over S2. Consider two parallel planes E : e0 + n · x = 0 and

F : f0 +n ·x = 0 with coinciding unit normal n. Their image points β(E) and β(F ) are contained
in a generating line of B.

2.3. The Blaschke image of a PN surface. The introduction of the Blaschke mapping
provides a theoretical background for the study of PN surfaces and applies also to find rational
parametrizations of these surfaces.

Let F be a PN surface with representation f(u, v) and tangent planes E(u, v) : e0(u, v) +
e(u, v) ·x = 0. The unit normal vector field e(u, v) is a rational parametrization of the unit sphere
S2. The Blaschke image β(F ) = β(E(u, v)) is a rational surface in B with rational parametrization
β(E) = (e1, e2, e3, e0)(u, v).

Theorem 2.1. The Blaschke image β(F ) of a PN surface F is a rational surface in B.
Conversely, any rational surface in B is the Blaschke image of a PN surface.

Given any rational two-dimensional surface S in the Blaschke cylinder B, we have to consider
it as image points of tangent planes. The envelope of this two-parameter family of planes corre-
sponding to the surface S ⊂ B is a PN surface in R3. Let S(u, v) = (s1, . . . , s4)(u, v) be a rational
parametrization of S. The corresponding family of tangent planes is

T (u, v) : s4(u, v) + s(u, v) · x = 0,
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where s = (s1, s2, s3) denotes the unit normal vector of T . Computing the partial derivatives
Tu(u, v) and Tv(u, v) of T (u, v) gives a PN-parametrization f(u, v) of the surface F as solution of
the system of linear equations

T (u, v) : s4(u, v) + s(u, v) · x = 0,

Tu(u, v) :s4u(u, v) + su(u, v) · x= 0,

Tv(u, v) :s4v(u, v) + sv(u, v) · x= 0. (2.8)

Until now we have restricted our interest to two-dimensional surfaces in B. But what about curves?
Consider a rational curve C ⊂ B with representation C(t) = (c1, . . . , c4)(t). The corresponding
surface β−1(C) = D is the envelope of a one-parameter family of planes and thus a developable
PN surface. The generating lines g(t) are obtained as intersections T ∩Tt and are the solutions of
the system of equations

T (t) : c4(t) + c(t)T · x = 0,

Tt(t) :c4t(t) + ct(t)T · x= 0. (2.9)

By the way, the intersection v(t) = T ∩ Tt ∩ Ttt is in general the singular curve V of D. For
special developable surfaces like cones and cylinders, V degenerates to a point or an ideal point,
respectively. We summarize these results.

Theorem 2.2. The Blaschke image β(F ) of a developable PN surface F is a rational curve
in B. Conversely, any rational curve in B is the Blaschke image of a developable PN surface. The
Theorems 2.1 and 2.2 can be found in a different form in [35]. There the stereographic projection
of the Blaschke cylinder to a 3-space and the corresponding projections of the curves and surfaces
β(F ) are investigated.

In the sequel we do not pay much attention to developable surfaces and thus we assume that
the family of tangent planes of considered surfaces is two-dimensional, unless explicitly mentioned.

2.4. The Gaussian image of a PN surface. We consider a rational offset surface F ⊂ R3

whose tangent planes have the form T (u, v) : e0(u, v)+e(u, v) ·x = 0, with ‖e‖ = 1. The Blaschke
image β(F ) = (e1, e2, e3, e0) of F consists of

• a rational parametrization e(u, v) of the unit sphere S2, and
• the support function e0(u, v) of F .

The parametrization e(u, v) of the unit normal vector field of F is the Gaussian image of F . One
can take apart the Blaschke image β(F ) and study the Gaussian image e(u, v) and the support
function e0(u, v) separately. This constructive approach to PN surfaces is based on the study of
rational parametrizations of the unit sphere through the Gauss map.

2.5. Rational parametrizations of the unit sphere via stereographic projection.
The easiest way to construct rational parametrizations of unit sphere S2 is as follows. Let
a(u, v), b(u, v) and c(u, v) be relatively prime bivariate polynomials. Then a rational parametriza-
tion e = (e1, e2, e3) of S2 is obtained by

e1 =
2ac

n
, e2 =

2bc

n
, e3 =

a2 + b2 − c2

n
, with n = a2 + b2 + c2. (2.10)

This parametrization is a composition of a rational parametrization x = (a
c , b

c ) of R2 and the
stereographic projection σ : R2 → S2 with center (0, 0, 1)

σ(x) =
(

2x1

x2
1 + x2

2 + 1
,

2x2

x2
1 + x2

2 + 1
,
x2

1 + x2
2 − 1

x2
1 + x2

2 + 1

)
.

The parametrization (2.10) is geometrically evident but has the drawback that it is dependent not
only on the coordinate system but also on the choice of the center for the stereographic projection.
To avoid this we will introduce universal rational parametrizations of S2 in Section 5. This leads
to universal parametrizations of the Blaschke cylinder B ⊂ R4 which represent the most general
approach to PN surfaces.
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2.6. Rational parametrizations of PN surfaces in the simple form. Starting from the
parametrization (2.10) of the unit sphere one can derive rational parametrizations of PN-surfaces
as already developed in [38]. Prescribing a rational function h(u, v) = f(u, v)/g(u, v), the tangent
planes of a rational offset surface take the form

T (u, v) : h +
2ac

n
x1 +

2bc

n
x2 +

a2 + b2 − c2

n
x3 = 0.

Multiplying by the denominator n gives a polynomial representation of the tangent planes in the
form

T (u, v) : fn + 2acgx1 + 2bcgx2 + g(a2 + b2 − c2)x3 = 0,

where f and g are polynomials without a common factor. This approach is best illustrated by an
example.

Example 1. Assume that a = u, b = v and c = 1. This leads to the standard form of a
rational parametrization of S2 by

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1
u2 + v2 + 1

)
.

Further we assume g = 1 and choose f as an arbitrary quadratic polynomial q(u, v). The surfaces
whose tangent planes can be parameterized by

T (u, v) : q(u, v) + 2ux1 + 2vx2 + (u2 + v2 − 1)x3 = 0 (2.11)

are known as parabolic Dupin cyclides. These surfaces are of algebraic order 3 and form a family
of surfaces which is closed under taking offsets (see Fig. 1). The real singularities of the surfaces
and their offsets might be different.

Fig. 1. Parabolic Dupin cyclides and their offsets

3. Rational Surfaces with a linear normal vector field. A special class of rational offset
surfaces is formed by the offsets of rational surfaces which possess a linear normal vector field, see
[13]. Moreover it has been shown in [48] that the convolutions of these surfaces with all rational
surfaces are again rational.

A rational surface F is called an LN surface if there exists a rational parametrization s(u, v)
such that a normal vector field n(u, v) of S can be linearly parameterized as

n(u, v) = pu + qv + r, with p,q, r ∈ R3. (3.1)

Note that the normal vector field n(u, v) is in general not normalized and not oriented. This is
quite different from the previous approach to rational offset surfaces via PN surfaces in Section 2.3.
Later on we show how this class of surfaces fits to the presented concept and how the Blaschke
images β(F ) of LN surfaces look like.

In the following we assume that rank(p,q, r) = 3, the coordinate vectors n(u, v) parameterize
points of an affine plane. This implies that the unit normal vectors of F parameterize a two-
dimensional subset of S2. Otherwise the corresponding surface F is either a cylinder or a plane.
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An appropriate choice of the coordinate system is p = (1, 0, 0), q = (0, 1, 0), and r = (0, 0, 1),
and the normal vector becomes n(u, v) = (u, v, 1)T , which we assume below. The tangent planes
T (u, v) of an LN surface F have the quite simple representation

T (u, v) : h(u, v) + ux + vy + z = 0, (3.2)

where h(u, v) is a rational function. With respect to the chosen coordinate system, the tangent
planes T are graphs of linear functions over the xy-plane. The representation (3.2) allows it to
treat (u, v, h(u, v)) as affine coordinates of T . Using (U, V,W ) as coordinate functions of planes,
the dual affine equation of an LN surface F is W = h(U, V ). This representation says that the
tangent planes of LN surfaces are graphs of rational functions.

This property has the following important consequence: For any vector n = (u, v, 1)T there
exists a unique tangent plane T (u, v) of F having n as normal vector and there exists exactly one
point of contact of F and T . This unique-tangent-plane-property is the reason for the rationality
of the convolution surfaces with any arbitrary rational surface, see [48]. Summarizing we obtain

Corollary 3.1. The family of tangent planes T (u, v) of an LN surface F can be represented
in plane coordinates by the graph (u, v, h(u, v)) of a rational function h. Conversely, the graph of
a rational function represents the tangent planes (3.2) of an LN surface. The convolution surface
F ? G of an LN surface F and any arbitrary rational surface G is a rational surface.

3.1. The Blaschke image of LN surfaces. Since LN surfaces F are very special concerning
their normal vectors and tangent planes, also their Blaschke image β(F ) is of a special kind. To
obtain rational parametrizations of their Blaschke image β(F ) we have to reparameterize and
normalize the unit normal vector field. Inserting the rational reparametrization

u =
2s

1− s2 − t2
, v =

2t

1− s2 − t2
(3.3)

into the representation (3.2) and normalizing the normal vector leads to

T (s, t) :
1− s2 − t2

1 + s2 + t2
h(s, t) +

2s

1 + s2 + t2
x +

2t

1 + s2 + t2
y +

1− s2 − t2

1 + s2 + t2
z = 0, (3.4)

which exhibits that LN surfaces are rational offset surfaces (PN surfaces). The reparametriza-
tion (3.3) induces an orientation to the plane T (s, t) as well as to the surface F . The substitu-
tion (3.3) is not one-to-one, but there exist parameters

s′ =
−s

s2 + t2
, and t′ =

−t

s2 + t2
,

for which u(s, t) = u(s′, t′) and v(s, t) = v(s′, t′) holds. The normal vector n(u, v) = (u, v, 1)
corresponds to and is parallel to the two oriented unit normal vectors

n(s, t) = −n(s′, t′) =
(

2s

1 + s2 + t2
,

2t

1 + s2 + t2
,
1− s2 − t2

1 + s2 + t2

)
= (n1, n2, n3). (3.5)

This further implies that the function h satisfies h(s, t) = h(s′, t′). Putting things together we see
that T (s, t) and

T (s′, t′) : −1− s2 − t2

1 + s2 + t2
h(s′, t′)− (n1x + n2y + n3z) = 0

describe the same carrier plane but have different orientations according to oppositely pointing unit
normals n(s, t) = −n(s′, t′). Finally we realize that the Blaschke image β(F ) = (n1, n2, n3, n0)
of an LN surface has the special property that n0 is a rational function over the unit sphere S2

satisfying n0(x) = −n0(−x), if x and −x are antipodal points in S2.
Corollary 3.2. Let F be an LN surface whose tangent planes T are given by (3.2). There

exists a reparametrization (3.3) which shows the rational offset property of LN surfaces. The
Blaschke image β(F ) = (n, n0) is a function over S2 which satisfies n0(x) = −n0(−x) for x ∈ S2.
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4. Laguerre geometry approach. Thinking about surface offsets as wave fronts in different
time moments naturally leads to the notion of 4-dimensional Minkowski space. This section
explains duality between the Gaussian sphere and the Blaschke cylinder in terms of projective
Minkowski space and its dual. Relations with the three main models of the classical Laguerre
geometry are established.

4.1. Gaussian sphere in projective Minkowski space. The classical 4-dimensional Min-
kowski space M is an affine space R4 with a Minkowski scalar product defined for every pair of
vectors v and w by

〈v,w〉 = v1w1 + v2w2 + v3w3 − v4w4. (4.1)

A vector v (or a line with a direction v) is called isotropic (light-like) if 〈v,v〉 = 0. The Euclidean
space R3 will be embedded as hyperplane x4 = 0 in M. Restricting the Minkowski scalar product
(4.1) to R3 gives the Euclidean scalar product.

The projective Minkowski space MP is a projective closure of M with the infinite hyperplane
ω: x0 = 0 containing the absolute quadric Ω: x2

1 + x2
2 + x2

3 − x2
4 = 0. Points and vectors of the

affine Minkowski space M will be treated differently. Points (x1, . . . , x4) ∈ M will be identified
with points [1, x1, . . . , x4] in the affine part of MP , and vectors (x1, . . . , x4) ∈ M will be used to
represent points [0, x1, . . . , x4] in ω. Then the equation of Ω ⊂ ω has a compact form 〈v,v〉 = 0,
for vectors v in M. Futhermore, it will be convenient to identify the absolute quadric Ω with the
Gaussian sphere S2 in R3 using the following bijective correspondence:

S2 → Ω, n 7→ n+ = (n, 1). (4.2)

An oriented surface F ◦ in R3 is a surface F and a field of unit normals n : x 7→ n(x), i.e.
the classical Gaussian map n : F → S2. By the identification (4.2) this is a map n+ : F → Ω.
Define an isotropic hypersurface Γ(F ◦) ⊂ MP as a union of isotropic lines connecting all points
x ∈ F with n+(x) ∈ Ω. The affine part of any such line can be parametrized by x+ tn+(x), t ∈ R.
Hence the orthogonal projection of any hyperplane section Γ(F ◦) ∩ {x4 = d} to R3 is exactly the
offset F ◦d of F ◦ at the signed distance d.

The isotropic hypersurface Γ(S◦) of an oriented sphere S◦: (x−m)2 = r2 in R3 is the union
of all isotropic lines intersecting at the point s = (m,±r) ∈ M, where m is the center and |r|
is the radius of S. It is easy to check that the outward pointing normals correspond to negative
radius (in other sources of Laguerre geometry this choice might be opposite). Therefore, Γ(S◦)
coincides with the isotropic cone Γ(s) with vertex s defined by the equation

Γ(s) : 〈x− s,x− s〉 = 0. (4.3)

Laguerre transformations of MP are projective transformations that preserve Ω. Lines in
MP are called space-like, isotropic, or time-like depending whether their ideal points are outside
of Ω, at Ω or is inside the quadric Ω. Similarly planes and hyperplanes in MP are classified as
space-like, isotropic, or time-like if they do not intersect Ω, are tangent to Ω or intersect Ω in more
than one point, respectively.

For an oriented plane E◦ : e0 + eT · x = 0 in R3 with normal vector e, ‖e‖ = 1, its isotropic
hypersurface E+ = Γ(E◦) is the hyperplane

E+ : e0 + 〈e+,x〉 = 0, x ∈M. (4.4)

Let −E◦ : −e0−eT ·x = 0 be the same plane E with the opposite orientation. Then E− = Γ(−E◦)
is different from E+. Both E+ and E− are the unique isotropic hyperplanes that contain E and
are tangent to Ω.

4.2. Dual projective Minkowski space and the Blaschke cylinder. Let MP ∗ be the
space dual to the projective Minkowski spaceMP . Points inMP ∗ are hyperplanes H ⊂MP . The
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set of oriented planes in R3 is in 1–1 correspondence E◦ 7→ E+ (4.4) with the set of hyperplanes
in MP that are tangent to Ω. The latter set by duality

Γ(E◦) : e0 + 〈e+,x〉 = 0 7→ [1, e, e0] = β(E◦) (4.5)

defines the dual quadric Ω∗ ⊂MP ∗ with the equation y2
0 = y2

1 + y3
2 + y2

3 . The affine part y0 6= 0
of Ω∗ is exactly the Blaschke cylinder defined in Section 2.2 by the equation (2.7). Note that Ω∗

has just one additional real point [0, 0, 0, 1] at infinity. Therefore, it is natural to call the dual
Gaussian sphere Ω∗ the Blaschke cylinder and denote it by the same letter B.

An oriented surface F ◦ considered as family of oriented tangent planes, defines a surface
β(F ◦) ⊂ B, which is called the Blaschke image of F ◦. Going back to the point representation, one
can check that the dual of the Blaschke image β(F ◦)∗ is an isotropic hypersurface Γ(F ◦). This
means that Γ(F ◦) can be calculated as envelope of all isotropic hyperplanes H, H ∈ β(F ◦)∗.

For any surface Φ or curve in M, define the isotropic hypersurface Γ(Φ) = (Φ∗ ∩B)∗. This is
the envelope of all isotropic hyperplanes tangent to both Φ and Ω. Γ(Φ) can be calculated as an
envelope of all isotropic cones Γ(x), x ∈ Φ, as well. The cyclographic image of Φ ⊂ M in R3 is
defined as intersection γ(Φ) = Γ(Φ) ∩ R3.

Remark 4.1. In general γ(Φ) is an oriented surface of two sheets. Indeed, any of its tangent
planes inherits orientation from the unique isotropic tangent hyperplane of Γ(Φ) at the same point.
There are exactly two tangent hyperplanes at any point of Φ (it is a double surface of Γ(Φ)). For
example, if F ◦1 and F ◦2 are two oriented surfaces in R3 then Φ = Γ(F ◦1 ) ∩ Γ(F ◦2 ) is a surface in
M, and γ(Φ) = F ◦1 ∪ F ◦2 . The case of two cylinders will be considered in Example 6. In a recent
paper [17] sufficient conditions are derived when a rational parametrization of Φ generates PN
parametrizations on F ◦1 and F ◦2 .

4.3. Three models of Laguerre geometry. The classical Laguerre geometry has three
main models that are described in the following table.

Euclidean model Cyclographic model Blaschke model

Ambient space Euclidean space R3 Minkowski space M Blaschke cylinder B
Basic elements oriented planes E◦ isotropic hyperplanes points

oriented spheres S◦ points hyperplane sections
Basic relations oriented contact incidence incidence

The correspondence between the Euclidean and the cyclographic model is defined by the
maps E◦ 7→ E+ and S◦ 7→ Γ(S◦) = Γ(x),x ∈ M. The cyclographic mapping E+ 7→ γ(E+) and
x 7→ γ(x) establishes the inverse correspondence. Thereby γ(E+) = E◦ denotes the oriented plane
E◦ ∈ R3 corresponding to E+ ∈ M and γ(x) denotes the oriented sphere in R3 corresponding to
the point x ∈ M. For the computation of the cyclographic image γ(Φ) of a surface Φ ∈ M see
Section 4.4.

The Blaschke model is focusing on the dual point of view. It is related to the cyclographic
model via duality. Laguerre transformations appear in the cyclographic model as special affine
transformations of M

L(x) = λA · x + a, with AT · Ic ·A = Ic, Ic = diag(1, 1, 1,−1), λ ∈ R (4.6)

where x 7→ Ax is a Lorentz transformation, i.e. a linear transformation preserving the Minkowski
scalar product (4.1). Laguerre transformations in the Blaschke model are defined by duality.

Laguerre transformations in the Euclidean model can be defined indirectly as follows. For
an oriented surface F ◦ ⊂ R3, its Laguerre transformation L(F ◦) is computed by the formula
L(F ◦) = L(Γ(F ◦))∩R3. For example, let L be the translation in x4-direction by −d: x4 7→ x4−d.
Then L(F ◦) = F ◦d is the offset surface of F ◦ at distance d.

4.4. Cyclographic images of parametric curves and surfaces in M. A two-parameter
family of spheres S(u, v) : (x − m(u, v))2 = r(u, v)2 with centers m(u, v) and radii r(u, v) cor-
responds to a parametrized surface Φ : f(u, v) = (m, r)(u, v) in M. Let F (u, v) = Γ(f(u, v)) be
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the corresponding two-parameter family of isotropic cones with vertices f(u, v). Then Γ(Φ) is the
envelope of this family, which can be computed as solution of

F : 〈x− f,x− f〉 = 0,

Fu : 〈x− f, fu〉 = 0, (4.7)
Fv : 〈x− f, fv〉 = 0,

where Fu and Fv denote the partial derivatives of F with respect to u and v. The solution of (4.7)
consists of all isotropic lines that are orthogonal to Φ in the Minkowski sense (4.1).

Comparing systems (4.7) and (2.5) we recognize that the cyclographic image γ(Φ) = Γ(Φ)∩R3

of the parametrized surface Φ : f(u, v) = (m, r)(u, v) is the envelope of the two-parameter system
of spheres S(u, v) in R3. We note that only the points f of Φ whose tangent planes Tf spanned
by fu and fv are space-like or isotropic, will contribute to the real part of the cyclographic image
γ(Φ) .

A one-parameter family of spheres S(t) : (x −m(t))2 = r(t)2 corresponds to a curve s(t) =
(m, r)(t) inM. By similar calculations the isotropic hypersurface Γ(s) consists of all isotropic lines
that intersect the curve orthogonally. The cyclographic image γ(s) = Γ(s) ∩R3 is the envelope of
the family of spheres S(t) and is called canal surface. It is real exactly if tangent vectors ṡ are
space-like or isotropic

〈ṡ(t), ṡ(t)〉 = ||ṁ(t)||2 − ṙ(t)2 ≥ 0. (4.8)

5. Universal rational parametrizations of the sphere and the Blaschke cylinder.
Dietz, Hoschek and Jüttler [6] noticed that Bézier curves and surface patches on the unit sphere S2

can be represented uniformly by introducing the generalized stereographic projection δ : R4 → S2

δ(a, b, c, d) = (a2 + b2 + c2 + d2, 2ac + 2bd, 2bc− 2ad, a2 + b2 − c2 − d2). (5.1)

In complex notations z = a + bi, w = c + di this construction has the following form [18]

PS(z, w) = (|z|2 + |w|2, 2Re(zw̄), 2Im(zw̄), |z|2 − |w|2), (5.2)

and is called a universal rational parametrization of S2 (see [4, 19] for details). Since PS : C2 → S2

is homogeneous PS(λz, λw) = |λ|2PS(z, w), λ ∈ C, PS defines also a map from a complex projective
line CP 1 to S2, which is essentially the Riemann sphere construction.

The universal property of PS is formulated in the following theorem. Here we call a finite
collection of polynomials (f0, f1, . . .) irreducible if gcd(f0, f1, . . .) = 1.

Theorem 5.1. Any irreducible solution f = (f0, . . . , f3) ∈ R[t1, . . . , tk]4 of the unit sphere
equation f2

0 = f2
1 + f2

2 + f2
3 has the form f = PS(F) with an irreducible F = (z, w) ∈ C[t1, . . . , tk]2,

which is determined uniquely up to a complex constant multiplier λ, |λ| = 1.
We call F = (z, w) a lifting of f and denote it by f̃ = F. The lifting can be calculated using a

simple formula [20]

f̃ =
(
h(f0 + f3)/(f1 − f2i), h

)
, h = gcd(f1 − f2i, f0 − f3). (5.3)

The formula (5.3) enables the lifting of rational Bézier curves of degree 2k and tensor product
patches of degree (2k, 2l) on S2 to the corresponding polynomial curves of degree k and surfaces
of bi-degree (k, l) in C2, respectively. This universal rational parametrization technique was used
to find Bézier patches on S2 of minimal degree with given boundary curves, see [19]. Theorem 5.1
can be applied for polynomials of arbitrary number of variables.

Example 2. Consider a parametrization f which is the opposite on S2 to PS(z, w):

f = (−|z|2 − |w|2, 2Re(zw̄), 2Im(zw̄), |z|2 − |w|2)

Let us calculate a lifting: h = gcd(2z̄w,−2|z|2) = z̄, and f̃ = (z̄(−2|w|2)/(2z̄w), z̄) = (−w̄, z̄).
Therefore, a point PS(−w̄, z̄) is the opposite of PS(z, w).
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Projectively the Blaschke cylinder B is a cone over a sphere, since its equation is y2
0 =

y2
1 + y2

2 + y3
3 (y4 is arbitrary) in MP . In complex setting this equation can be transformed to the

binomial one (y0 − y3)(y0 + y3) = (y1 − iy2)(y1 + iy2). Therefore B is a real part of a toric variety
(see e.g. [49]). According to a general theory [4], B has the universal rational parametrization in
the slightly more complicated form:

PB(z, w, f, g) =
(
g(|z|2 + |w|2), 2gRe(zw̄), 2gIm(zw̄), g(|z|2 − |w|2), f)

. (5.4)

The map PB : C2 × R2 → R5 is homogeneous, PB((λ, ρ) ∗ (z, w, f, g)) = |λ|2ρPB(z, w, f, g), with
respect to the following multiplication:

(λ, ρ) ∗ (z, w, f, g) = (λz, λw, |λ|2ρf, ρg), λ ∈ C, ρ ∈ R. (5.5)

Theorem 5.2. Any irreducible solution h = (h0, . . . , h4) ∈ R[t1, . . . , tk]4 of the Blaschke
cylinder equation h2

0 = h2
1 + h2

2 + h2
3 has the form h = PB(H), where H = (z, w, f, g) ∈

C[t1, . . . , tk]2 × R[t1, . . . , tk]2 and the pairs (z, w) and (f, g) are irreducible. H is determined
uniquely up to multiplication by (λ, ρ) defined in (5.5), with |λ|2ρ = 1.

Example 3. Consider the particular parametrization of the Blaschke cylinder ι : I3 → B:

ι : I3 = R3 ∪ R→ B, (u, v, f) 7→ PB(u + vi, 1, f, 1), f 7→ PB(1, 0, f, 1),

which is called the isotropic model of Laguerre geometry. The composition with the Blaschke map
Λ = ι−1 ◦β describes the change from the Euclidean model to the isotropic model. It will be useful
for modeling applications in Section 7.1.

6. Special cases of PN surfaces. Important examples of PN surfaces are generated as en-
velopes of rational one parameter families of simplest primitive shapes: planes, spheres or circular
cones (cylinders).

Envelopes of planes are exactly developable surfaces. Developable PN surfaces were already
characterized by Theorem 2.2 as rational curves in the Blaschke cylinder (see Section 2.3). The
other classes of PN surfaces are now discussed in the subsequent sections.

6.1. Canal surfaces. A canal surface is the envelope of one-parameter family of spheres in
R3 defined by a spine curve m(t) and a radius function r(t). In 1995 Lü [27] proved the surprising
result: A canal surface defined by a rational spine curve and a rational radius function is rational.
See also [28] for the details of the proof.

Later this result was proved by different methods: geometric approach [34], Clifford algebra
formalism [2, 3] and a universal rational parametrization of a sphere [20]. Here we describe the
approach in [34, 20] which gives bounds of rational parametrization degree.

As it was explained in Section 4.4, a canal surface is the cyclographic image γ(s) of a curve
s(t) = (m, r)(t) in M. It is real exactly if 〈ṡ(t), ṡ(t)〉 ≥ 0 (see (4.8)), and its isotropic hypersurface
Γ(s) consists of all isotropic lines that intersect the curve orthogonally. Therefore, we can look for
a parametrization of Γ(s) in the form F(s, t, λ) = s(t) + λn+(s, t), where 〈ṡ(t),n+(s, t)〉 = 0. The
latter condition means that isoparametric curves at(s) = n(s, t) of a Gauss map n(s, t) define a
family of circles as planar sections of the unit sphere S2,

〈ṡ(t),x+〉 = 0, x+ = (x, 1), x ∈ R3. (6.1)

If such a rational Gauss map n(s, t) exists then a rational parametrization f(s, t) of the canal
surface γ(s) = Γ(s) ∩ R3 can be calculated by substitution f(s, t) = F(s, t,−s4(t)). Equivalently,
f(s, t) can be expressed in terms of the spine curve m(t) and the radius function r(t)

f(s, t) = m(t)− r(t)n(s, t). (6.2)

Consider the slightly more general case. Let Πt : 〈v(t),x+〉 = 0 be a family of planes with
polynomial coefficients v(t), where D(t) = 〈v(t),v(t)〉 ≥ 0, D(t) 6≡ 0. Then the polynomial D(t)
can be factorized

D(t) =
∏

i

(t− zi)pi(t− z̄i)piρ(t)2, zi ∈ C \ R, ρ(t) ∈ R[t]. (6.3)
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Theorem 6.1 ([20]). There exists a rational parametrization n(s, t) of the unit sphere S2 of
bidegree (2, n), such that all isoparametric curves at(u) = n(s, t) are plane sections S2∩Πt. There
is a constructive method for finding such parametrization n(s, t) with

n = 2max(dm/2e, m−
∑

i

dpi/2e), m = deg v(t), (6.4)

where pi are multiplicities of complex roots of the polynomial D(t) defined in (6.3).
The proof is based on the universal rational parametrization of the sphere (5.2), where PS is

treated as a map RP 3 → S2. For any representation of D(t) as a sum of squares there is a minimal
solution n(s, t) = PS(r(s, t)), which is an image of a certain ruled surface r(s, t) of implicit degree
m in RP 3. Minimal directrices of r(s, t) with complimentary degrees m0 + m1 = m can be found
using µ-basis methods [1]. The goal is to find the minimal n = 2 max(m0,m1) in the list of all
minimal solutions, which is achieved by a constructive procedure up till the value (6.4).

Remark 6.1. The related problem of finding a decomposition of a real polynomial as a sum
of two squares over Q was considered in [25]. It was proved that the problem is equivalent to
partial factorization of of the polynomial, and a decomposition algorithm was presented in case the
solution is defined over Q.

Theorem 6.1 can be applied to a family of planes (6.1) with v(t) = d(t)ċ(t), when d(t) is a
common denominator of all rational ċi(t), i = 1, . . . , 4. If c(t) is a rational curve of degree k then
in general deg v(t) = 2k − 2. Using the inequality degt f(s, t) ≤ deg c(t) + degt n(s, t) (see (6.2))
one can derive the following degree bounds.

Corollary 6.1 ([20]). A canal surface γ(c) defined by a rational curve c(t) in R4 of degree
k admits a rational parametrization f(s, t) of bidegree (2, n), where

(i) n = 3k − 2 if D(t) > 0 (all roots are complex),
(ii) n = 5k − 6 if D(t) has at least one complex root.
(iii) n = 5k − 4 if D(t) has all real roots.
The case (i) of this corollary gives in general the minimal possible degree, and the case (ii)

was proved in [34]. The following example shows that and the case (iii) cannot be improved.
Example 4. Consider a canal surface γ(c) (see Fig. 2 middle) defined by the curve

c(t) =
(
0,

1− t2

2(1 + t2)
,

t

1 + t2
,− t

1 + t2

)
.

Then v(t) = (1 + t2)2ċ(t) = (0,−2, 1 − t2,−1 + t2) and D(t) = 4t2 has no complex roots.
Therefore there is only one factorization of D(t) that defines a unique minimal parametrization
n(t, u) = PS((1 − s)X + sY ), with X = (i(t2 − 1), 2t), Y = (1, 0), of degree (2, 4). The canal
surface γ(c) is parametrized by f(s, t) (see (6.2)) of bidegree (2, 6), which is minimal possible.

Fig. 2. Examples of canal surfaces of bidegree (2, 4), (2, 6), (2, 10).

6.2. Rational ruled surfaces in M. Rational ruled surfaces in R3 are PN surfaces if they
are non-developable. This result was proved in [35, 31] and generalized to any rational ruled
surface Ψ in M in the sense that its cyclographic image γ(Ψ) in R3 is rational.

The Blaschke model will be most convenient for understanding this result. Let a rational
ruled surface Ψ in M be defined by two directrices c(t) and d(t). The key idea is to construct
a Gaussian map n(s, t) which for any fixed t defines normals along a common touching curve
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between the envelope surface γ(Ψ) and a cone of revolution defined by a line going through points
c(t) and d(t). This is equivalent to the condition

〈n+(s, t),d(t)− c(t)〉 = 0, (6.5)

which forces isoparametric curves of n(s, t) to be the prescribed family of circles. Therefore, such
n(s, t) can be generated using Theorem 6.1. Then a support function h(s, t) is computed from the
equation

h(s, t) + 〈n+(s, t), c(t)〉 = 0. (6.6)

Finally it remains to go back from the Blaschke image to γ(Ψ), i.e. to compute the envelope of
tangent planes h(s, t) + 〈n(s, t),x〉 = 0 in R3.

Example 5. Let Ψ be a hyperbolic paraboloid x3 = x1x2 in R3 with two directrices c(t) =
(0, t, 0, 0) and d(t) = (1, t, t, 0). The Gaussian map can be calculated as

n(s, t) = PS(−st + i(1− s), 1− 3s− ist) (6.7)
= (−4st + 8s2t,−2s2t2 + 2− 8s + 6s2, 4s− 8s2)/(1− 4s + 5s2 + s2t2).

One can check directly that the condition (6.5) is fulfilled. Then the Blaschke image is derived
using (6.6), and finally a point representation of any offset of Ψ is generated of bidegree (4, 5).
Compare with a parametrization of bidegree (6, 6) that is generated by treating Ψ as LN surface
(see Section 3).

6.3. Characterization of PN surfaces of low parametrization degree. For a PN sur-
face F parametrized by f(s, t) consider the parametrization of its isotropic hypersurface Γ(F ) in
the form F(s, t, u) = f(s, t)+un+(s, t) (see Section 6.1), and a family Φt of its isoparametric ruled
subsurfaces Φt(s, u) = F(s, t, u). Define the PN degree of the PN parametrization of F with re-
spect to s as implicit degree of Φt. Then any general Laguerre transform of f(s, t) (see Section 4.3)
will have the same PN degree in s.

It was shown in previous Sections 6.1 and 6.2 that the simplest PN surfaces admit parametriza-
tions f(s, t) with degs(f) ≤ 4. Now we are going to show that they can be almost characterized by
this degree.

Theorem 6.2. If a PN surface F parametrized by f(s, t) has PN degree m ≤ 4 in s then F
is:

(i) a developable PN surface if m = 1;
(ii) a rational canal surface if m = 2;
(iii) an envelope of a rational family of circular cones if m = 3;
(iv) an envelope of a rational family of circular cones or Dupin cyclides if m = 4.
Proof. If m = 1 then the surface Φt is a plane and its projection to R3 is also a plane

containing normals n(s, t) along the line Φt(s, 0). Hence n(s, t) is constant for any fixed t, and F
is developable.

In the case m = 2 the surface Φt is a quadric that spans a time-like hyperplane in M, that
can be moved to a standard position x3 = 0 using an appropriate Laguerre transformation. Then
all normals along the conic Φt(s, 0) will be in the same plane. Thus these conics are circles and
Φt are cones with vertices c(t) that trace a curve in M. Then F is a canal surface γ(c).

In the case m = 3 the surface Φt is a ruled cubic, which cannot be a cone (since otherwise its
vertex belongs to Ω and F is developable). Then there is exactly one linear directrix lt in Φt for
every parameter t, i.e. they define a rational family of circular cones γ(lt) with the envelope F .

In the last case m = 4 the surface Φt is a ruled quartic. By the same arguments as above this
cannot be a cone. Then Φt has a family of conics cv as directrices. Since all canal surfaces γ(cv)
are touching along a common quartic curve Φt(s, 0), conics cv have only space-like tangents. Such
canal surfaces have been studied in [24], where it has been proved that there exists a circular cone
in the family γ(cv), except in the Dupin cyclide case (see [24], Corollary 2). Therefore F is an
envelope of these circular cones.

Examples with m = 3, 4 are provided by branching blend surfaces of bidegree (3, 6) and (4, 8)
in Section 7.4 (see also [21]). The latter case corresponds to a family of Dupin cyclides.
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6.4. Offsets of regular quadric surfaces in R3. Regular quadrics are one of the simplest
surfaces in R3. Nevertheless it is not obvious that their offsets admit rational parametrizations.
Investigating conics in the plane it is quite clear that the offset curves of ellipses and hyperbolas
are non-rational whereas the offsets of circles and parabolas are rational curves. Lü [30] has been
the first who proved that the offsets of all regular quadrics admit rational parametrizations. For
the paraboloids this is not difficult, for ellipsoids and hyperboloids this is quite involved.

The existence of rational parametrizations of the offsets of regular quadrics can be shown as
follows. Let Φ be a two-dimensional quadric in M, then Φ is contained in a hyperplane of M.
We are studying the isotropic hypersurface Γ(Φ) corresponding to Φ. The intersection of Γ(Φ)
with x4 = 0 is the cyclographic image γ(Φ), the envelope of the two-parameter family of oriented
spheres corresponding to Φ. If Φ is contained in a hyperplane x4 = d, the envelope γ(Φ) is the
offset surface of Φ.

The isotropic hypersurface Γ(Φ) is the envelope of common tangent hyperplanes of the pencil
of quadrics λΦ+µΩ in MP . The quadrics Φ and Ω are considered as sets of tangent hyperplanes,
which implies that they are singular hypersurfaces in this pencil.

The intersection surface of two hyperquadrics in MP is a rational quartic del Pezzo surface.
This del Pezzo surface is dual to the isotropic hypersurface Γ(Φ). This implies that the two
parameter family of tangent hyperplanes of Γ(Φ) can be rationally parametrized. Intersecting
Γ(Φ) with x4 = 0 gives a parametrization of γ(Φ) as set of tangent planes. This construction
proves the following result.

Proposition 6.1. The cyclographic images γ(Φ) of two dimensional quadrics Φ ⊂ M are
surfaces admitting rational parametrizations.

We demonstrate also an alternative way to construct rational PN parametrizations of the
offset surfaces of quadrics in R3. Let Φ be a quadric surface in M, contained in a space-like
hyperplane, for instance x4 = 0. We show that the pencil of quadrics λΦ + µΩ in MP contains
a ruled quadric surface Ψ and Γ(Φ) = Γ(Ψ) holds. Then the cyclographic images γ(Φ) and γ(Ψ)
agree and rational parametrizations can be constructed as described in Section 6.2.

Theorem 6.3. All regular quadrics are PN surfaces.
Let Φ be a regular quadric possessing real points. Quadrics of revolution are canal surfaces

and thus the rationality of their offsets follows from Section 6.1. If Φ itself is a ruled quadric
surface in M, we may directly apply the method outlined in Section 6.2.

Otherwise let Φ be contained in the hyperplane x4 = 0. The pencil of dual hyperquadrics
λΦ+µΩ in M defines the isotropic hypersurface Γ(Φ). All singular quadrics in this pencil possess
the same isotropic hypersurface Γ(Φ). The offset surfaces of Φ at distance d are obtained as
hyperplane sections Γ(Φ) ∩ {x4 = d}. We will find a real ruled quadric Ψ in all of the three cases
which have to be discussed.

• Let Φ be an ellipsoid in x4 = 0. Then Φ (with a > b > c) and Ψ are given by the equations

Φ :
x2

1

a2
+

x2
2

b2
+

x2
3

c2
= 1, x4 = 0, Ψ :

x2
1

a2 − b2
− x2

3

b2 − c2
+

x2
4

b2
= 1, x2 = 0.

• Let Φ be a two sheet hyperboloid in x4 = 0. Then Φ (with b > c) and Ψ are given by the
equations

Φ :
x2

1

a2
− x2

2

b2
− x2

3

c2
= 1, x4 = 0, Ψ :

x2
1

a2 + b2
+

x2
3

b2 − c2
− x2

4

b2
= 1, x2 = 0.

• Let Φ be an elliptic paraboloid in x4 = 0. Then Φ (with b > c) and the hyperbolic
paraboloid Ψ are given by the equations

Φ :
x2

1

a2
+

x2
2

b2
− 2x3 = 0, x4 = 0, Ψ : − 1

a2 − b2
x2

2 +
1
a2

x2
4 = 2x3 − a, x1 = 0.
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Fig. 3. Left: Ellipsoid of revolution and outside offset. Right: General ellipsoid and inside offset.

6.5. Quadratic triangular Bézier surfaces in M. In Section 6.2 it has been proved that
the cyclographic images γ(F ) of rational ruled surfaces F in M are PN surfaces. Besides this
result not much has been known about rationality of cyclographic images. Recently it has been
proved in [36] that any quadratic triangular Bézier surface in M possesses a rational envelope
surface of the corresponding family of spheres. This result can directly be proved starting with an
appropriate parametrization w(s, t) of the absolute quadric Ω and solving the equations (4.7).

Let

f(u, v) =
1
2
a1u

2 + a2uv +
1
2
a3v

2 + a4u + a5v + a6, with ai ∈ R4. (6.8)

be a parametrization of a quadratic triangular Bézier surface F spanning R4. For convenience we
use the monomial basis instead of the Bernstein basis for the representation of F .

In order to solve (4.7), we may start with a rational parametrization w(s, t) of Ω, which
obviously satisfies 〈w,w〉 = 0. A possible choice is w(s, t) = (2s, 2t, 1− s2 − t2, 1 + s2 + t2). The
conditions 〈w, fu〉 = 0 and 〈w, fv〉 = 0 are linear in u and v. Thus, a solution of the system of
linear equations

( 〈w,a1〉 〈w,a2〉
〈w,a2〉 〈w,a3〉

)(
u
v

)
=

( −〈w,a4〉
−〈w,a5〉

)
(6.9)

is a rational reparametrization u = a(s, t), v = b(s, t) for the quadratic triangular Bézier surface F .
It can be proved that the determinant of the coefficient matrix of (6.9) does not vanish identically
expect for quadratically parameterized planes F . The isotropic lines i(s, t) : f(s, t) + λw(s, t) are
solutions of (4.7) and form a rational parametrization of the isotropic hypersurface Γ(F ) through
F . The intersection Γ(F ) ∩ R3 is the envelope γ(F ) of the two-parameter family of spheres
corresponding to F .

7. Modeling applications. Our first non-trivial modeling applications of surfaces with ra-
tional offsets are related to Dupin cyclides (see Fig. 4, left). These are special canal surfaces which
are cyclographic images of Minkowski circles, i.e. conics in M that intersect Ω (see details in
[5, 23]). Dupin cyclides were proposed to be used as blending surfaces between natural quadrics
by Pratt [46, 47] (see Fig. 4). For example, any two circular cones with a common inscribed sphere
can be blended by a part of a Dupin cyclide bounded by two circles (Fig. 4, middle). In terms of
the cyclograpic model this is a simple rounding of two intersecting space-like lines by an arc of a
Minkowski circle. Similar blending is available between a circular cylinder (or cone) and a plane
(Fig. 4, right).

More sophisticated modeling schemes with patches of Dupin cyclides bounded by circles were
considered in [50]. A very special of blending between two circular cylinders using parabolic Dupin
cyclides was proposed in [51].

7.1. Modeling with parabolic cyclides. The technique described in Example 1 can be
used to develop a surface modeling scheme based on parabolic Dupin cyclides in [33] . Let scattered
data elements (ai, Ai) be given in R3, where ai are vertices incident with the oriented planes Ai.
The goal is to construct a C1 PN surface, which interpolates the given data and which is composed



RATIONAL SURFACES WITH RATIONAL OFFSETS 15

Fig. 4. Using patches of cyclides for blending.

of triangular patches of parabolic Dupin cyclides. The concept is the following. The data (ai, Ai, )
are mapped by Λ to the isotropic model I3 (see also Example 3). The images are scattered data
elements, say (bi, Bi), with Λ(Ai) = Bi. The data (bi, Bi) will be interpolated by a C1 function
Ψ, which is piecewise quadratic, using the method of Powell–Sabin [45]. Returning to the standard
model we obtain a C1 interpolating surface Λ−1(Ψ) composed of parabolic Dupin cyclides. We note
that in general the triangular cyclide pieces are tangent to each other along cubics and not along
circles. This already indicates that this method is rather different from other surface modeling
schemes, using (parabolic) Dupin cyclides, as [46, 50] and others. However, smooth surfaces with
vanishing Gaussian curvature along curves other than straight lines can never be modeled with
parabolic Dupin cyclides.

7.2. Approximations with developable PN surfaces. Very few applications of devel-
opable PN surfaces are known. In [26] developable surfaces are modeled with pieces of circular
cones. A more general method for the recognition and reconstruction of developable surfaces was
proposed in [32]. The approximation problem with given data points as measurements from a
developable surface and estimated tangent planes is translated to a curve fitting problem which
is solved on the Blaschke cylinder. Then the constructed curve is interpreted as one-parameter
family of tangent planes and their envelope is calculated.

7.3. Blending natural quadrics with canal surfaces. Canal surfaces defined by general
conics in M can be used for blending cones/cylinders in more general positions (Fig. 5) along
quartic boundary curves as was shown in [24].

Fig. 5. Blendings of cylinders/cones of bidegree (2, 4) along quartic curves.

Results on rational parametrizations [34, 20] have been used in [15] to develop a theory on
rational variable radius rolling ball blends between natural quadrics in arbitrary positions. Here
we will consider just one illustrative example.

Example 6. Let Qa and Qb be two cylinders in R3 defined by equations x2
1 + x2

2 = r2
a and

x2
2 + x2

3 = r2
b , where 0 < ra < rb (Fig. 6, right). Consider lines La and Lb in M such that

their cyclographic images are given cylinders Qa and Qb. Then an intersection of their isotropic
hypersurfaces is a quartic surface Φ = Γ(La) ∩ Γ(Lb) in M which projects exactly to the bisector
of the cylinders in R3 (Fig. 6, left).

Any curve on Φ defines a canal surface touching both cylinders, i.e. a rolling ball blend.
Unfortunately a fixed radius case corresponds to a non-rational curve on Φ. Nevertheless, a certain
rational quartic curve s ⊂ Φ can be found [22]. This construction generates a canal surface of
bidegree (2, 10) which is minimal possible according to Corollary 6.1. It is impossible to construct
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Fig. 6. Bisector of two cylinders and their blending of bidegree (2, 10).

such a blending with a boundary circle on the cylinder Qa, since the corresponding curve on Φ
and the associated canal surface are non-rational.

7.4. Branching blend of natural quadrics using non-canal PN surfaces. The blend-
ing in Example 6 can be improved by using PN surfaces that are more general than canal surfaces.
Here we sketch the construction proposed in [21].

The goal is to generate a branching blend of cylinders Qa and Qb defined in Example 6, which
is a PN surface bounded by a circle Ca, x3 = h, on the vertical cylinder Qa and by a rational
curve Cb on the upper side of the horizontal cylinder Qb (see Fig. 7, left).

Fig. 7. Boundary curves Ca, Cb and their images na, nb on the Gaussian sphere.

The general scheme of the proposed method consists of three steps.
Step 1: Gaussian map. Normals along Ca and Cb define two curves on the unit sphere: a

circle na on the equator and a circular arc nb on the plane section x1 = 0, see Fig. 7 (right).
In order to build a symmetric Gaussian map it remains to find a Bézier representation of the
spherical quarter. Methods of [19] can be directly applied: a linear combination of the liftings ña

and ñb to C2 (see Section 5)

(z, w) = (1− s)(1− it)ña + sñb, ña = (1− it, t− i), ñb = (1 + t2, 2kt). (7.1)

with the resulting unique parametrization in a homogeneous form n(s, t) = PS(z, w) of degree
(2, 4), where homogeneous coordinates are used n = (n0, . . . , n3). Note, that the parameter k
controls the endpoints of the arc nb.

Step 2: Support function. Points sa = (0, 0, h, ra) and sb = (0, 0, 0, rb) in Minkowski space M
represent two spheres: touching the cylinder Qa along Ca, and the cylinder Qb along a circle with
the normal nb. Their Blaschke images are constructed with the same fixed Gaussian map n(s, t)
and represented in the universal rational parametrization form (5.4) with ga = gb = 1 and certain
polynomials fa and fb of bidegree (2, 4). The formula f(s, t) = fa(s, t) + s2(fb(1, t) − fa(1, t))
defines a polynomial that is in C1-contact with fa along s = 0 and coincides with fb on s = 1.
Then the parametrization (n(s, t), f(s, t)) = PB(z, w, f, 1) is the dual of the blending solution.

Step 3: Back to the point representation. From the dual representation e0(s, t)+ 〈e(s, t),x〉 =
0, e0 = f , e = (n1, n2, n3), in Euclidean space we obtain the point representation by calculating
the envelope (cf. (2.8)). If the dual data is of bidegree (dt, du) then the bidegree of the solution
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(x1, x2, x3) is (3ds − 2, 3dt − 2) in general. Since (ds, dt) = (2, 4) we can expect a solution of
bidegree (4, 10). Fortunately there exists a unique value of k in the expression of nb (7.1) that
enables us to drop bidegree down to (3, 6).

It was proved in [21] that this is the minimal possible Laguerre invariant bidegree. The
construction can be generalized to a few other positions of the given cylinders and then extended
to any possible position by applying appropriate Laguerre transformations. Moreover by applying
inversions similar PN branching blends can be generated between Dupin cyclides and cylinders or
cones of bidegree (4, 8). These possibilities are illustrated in Fig. 8.

Fig. 8. Various branching blends between cylinders and Dupin cyclides.

8. Conclusions and open problems. We have given an overview of Pythagorean normal
surfaces including their short history, an introduction to the language of Laguerre geometry, review
of the most important classes of PN surfaces and their applications in geometric modeling. It has
been shown that the dual approach in combination with universal rational parametrization ideas
seems to be most promising not only for theoretical investigations but also for solving very practical
modeling problems. There are still many questions that need to be discussed. Here are a few open
problems for future research:

• Results on minimal parametrization degree of canal surfaces in Section 6.1 raises similar
questions for other classes of PN surfaces. It is most important to understand possible
reductions of degree when going from the dual representation to the point representation.
Similar problems for PH curves were considered in [11].

• A free-form modeling scheme with PN surfaces without restrictions on the Gaussian cur-
vature is a challenge. Perhaps the modeling scheme with parabolic cyclide patches (see
Section 7.1) can be generalized using the universal rational parametrization of the Blaschke
cylinder.

• Pieces of isotropic hypersurfaces of PN surfaces (e.g. between a surface and its offset) in
Minkowski space projected down to Euclidean space R3 give nice examples of 3D rational
parametrizations of solids. Sufficient non-degeneracy conditions of such parametrizations
will be useful in modeling.

We hope that this survey will help interested researches and people from industry to get an
adequate impression about achieved results and the state of art in investigations of PN surfaces
and their modeling applications.
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