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Abstract. Combining classical line geometry with techniques from numer-
ical approximation, we develop algorithms for approximation in line space.
In particular, linear complexes, linear congruences and reguli are fitted to
given sets of lines or line segments. The results are applied to computation-
ally robust detection of special robot configurations and to reconstruction
of fundamental surface shapes from scattered points.

1. Introduction and fundamentals

The close relation between spatial kinematics and line geometry is one of the
classical fundamentals of kinematic geometry (Bottema, 1990; Hunt, 1978;
Husty et al., 1997). It forms the basis of screw theory (Hunt, 1978) and
has found a variety of applications including the characterization of spe-
cial robot configurations (Hunt, 1986; Husty et al., 1997) and the study
of singular positions of parallel manipulators (Merlet, 1992). However, the
computational treatment of this beautiful theory seems to have found lit-
tle attention so far (Ge et al., 1994; Ravani and Wang, 1991). In practical
applications several sources for errors (manufacturing, material properties,
computing, ...) are hardly avoidable. How do we then check whether a set
of lines lies in a special configuration like a linear complex? In fact, the
question is whether the lines near their realization on the object, i.e. line
segments, are close — within some tolerance — to lines of a linear complex.
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This is an approximation or regression problem in line space. Moreover,
proximity to special positions may be undesirable anyway. For example,
a parallel manipulator may snap into a neighboring configuration near a
singular position. Therefore, we will present here initial results on approx-
imation in line space. This study actually arose from a reverse engineering
problem, namely the reconstruction of cylinders and surfaces of revolution
from scattered points (Pottmann and Randrup, 1997). We will briefly de-
scribe this application, along with directions for future research.

Let us introduce our notation and point to a few essential fundamentals.
In 3-dimensional real Euclidean space E? we use a Cartesian coordinate
system and represent a straight line L by a normalized direction vector 1,
|1/ = 1, and its moment vector 1:= x x 1 with respect to the origin. Here, x
denotes the coordinate vector of an arbitrary point on L. The 6 coordinates
of 1,1 are the normalized Plicker coordinates of L. They satisfy the Pliicker
relation 1-1= 0. Any 6-tupel (1,1) € R® with |1 = 1,1-1= 0 represents a
line in E3, where (1,1) and (-1, —1) describe the same line.

Dropping the normalization, we can work in the projective extension P3
of E3, and represent lines L at infinity by 1 = 0,1 # 0. Here, 1 is a normal
vector of planes through L. These homogeneous Plicker coordinates define
a mapping from the set £ of lines in P3 to ordered, homogeneous 6-tupels
L=(1 ¢ R® \ {0}, which may be interpreted as points in real projective
5-space P°. We write LR to indicate homogeneity and also denote points
in P5 in this way. By the Pliicker relation, exactly those points in P® are
"Klein images’ of lines in P3, which lie on the Klein quadric

Mé : l-i:l1l4—|—l2l5+l3l6 = 0. (1)

For a spatial one-parameter motion, the velocities v of points x at an
instant ¢ form a linear vector field,

v(x) =C+c X x. (2)

Provided that (c,¢) # (0,0) at ¢, i.e. that the position at ¢ is not stationary,
it agrees with that of a screw motion. Its axis A = (a,a) and pitch p may
be computed via

c Cc — pcC c-C

a:—aé: y D= —%5 - (3)
lell lell c?

For p = 0 we get an instantaneous rotation, and ¢ = 0 (p = oo) characterizes
an instantaneous translation. A fundamental relation to line geometry is the
following. At a fixed instant ¢, the path normals (1,1) (lines through points
x normal to v(x)) satisfy

0=v-l1=c-1+(cxx)-1=c-14c-(xxl)=c-1+c-1L
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Provided that (c,¢) # (0,0) at ¢, we see that the path normals form a linear
line complez C in E3. Tt is called singular for p = 0 and p = co. We also
speak of pitch p and axis A of a linear complex, which are found via (3).
Conversely, in view of (2), any linear complex C, defined as solution set of
a linear homogeneous equation in Pliicker coordinates,

c-l+c-1=0. (4)

can be obtained as path normal complex. We also see that the Klein image
of the lines of a linear complex is a hyperplanar cut of the Klein quadric M.
Pole of the hyperplane with respect to Mj is the point CR = (c,¢)R € P,
which is called eztended Klein image of the linear complex.

Sets of linear complexes, whose extended Klein images form a k—dimen-
sional subspace of P° are called k-dimensional spaces of linear complexes.
The intersection of all complexes in such a set is called its carrier. For
k = 1, we obtain a pencil of linear complexes. The carrier is in general a
linear congruence of lines. The case k = 2 leads to bundles of linear con-
gruences, whose carrier is in general a (not necessarily real) regulus. The
relation to kinematics is the following: At an instant of a k—parameter mo-
tion in E3, the path normal complexes to one-parameter motions through
that instant lie in a (k—1)—dimensional space of linear complexes. A detailed
investigation, expressed in terms of screw theory, may be found in (Hunt,
1978). For more information on line geometry, see e.g. (Hlavaty, 1953;
Hoschek, 1971).

2. Approximating linear complexes

In practice, errors in data are often unavoidable, and thus the question
arises how to construct a linear complex C, which — in a sense to be specified
— best approximates a given set of lines L;, ¢ = 1,...,k. In other words,
we are interested in the construction of a linear complezx of regression to a
given set of data lines.

An important input to the solution of the problem is an appropriate
measure of the deviation of a given line L from a linear complex C. Let us
represent I with normalized Pliicker coordinates L = (1,1), ||| = 1. The
linear complex C shall have equation ¢ - x + ¢ - x = 0. For the moment, C
shall satisfy ¢ # 0 and thus be different from the path normal complex of
a translation. According to F. Klein (Klein, 1921) we use the moment of L
with respect to C,

(5)

Usually one defines the moment between an oriented line and an oriented
linear complex (linear complex with oriented axis) and thus omits the ab-
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solute value in the definition. Then, the moment is also interpretable as
virtual work between two normalized oriented screws, namely LR™ (with
pitch 0) and CR™". We do not need orientations and thus define the moment
as a nonnegative real number.

The moment m has the following geometric interpretation. Pick an ar-
bitrary point x on L and let r be its distance from the axis A of C. Let
a € [0,7/2] be the smallest angle between L and a line of C through x,
which is the angle between L and the path normal plane of x. Then one

obtains
m(L,C) = /7% + p?sina. (6)

Lines with vanishing moment, m(L,C) = 0, are exactly the lines of C. All
lines forming the same moment m # 0 with C lie in a so—called cyclic
quadratic complex. This line complex K possesses cones of revolution as
complex cones and circles as planar complex curves (Wunderlich, 1964).

We now want to compute a linear complex C which is as close as possible

to the given lines L;, i = 1,...,k with normalized Plicker coordinates
Li = (1;,1;) = (1, ..., ljg). For that we compute C as minimizer of
k
> m(L;, X)? (7)
i=1

among all linear complexes X, represented by X = (x,x). With (5) this is
equivalent to minimizing the positive semidefinite quadratic form

F(X)::zk:(i-li+x-fi)2::XT-M-X (8)
i=1

subject to the normalization condition
1=|x|?=XI"-D-X (9)

D is the 6 x 6 diagonal matrix (1,1,1,0,0,0). This is a familiar general
eigenvalue problem. Using a Lagrangian multiplier A, we have to solve the
system

(M —AD)-X=0, X" -D-X=1. (10)

Hence, A must be a root of the equation
det(M — AD) = 0. (11)

Because three diagonal elements in D are zero, this is just a cubic equation
in A. For any root A and corresponding general eigenvector X = (x,X) (i.e.
a solution of (M — AD) - X = 0) with |[x]| = 1, we have

FX)=XT-M-X=XXT.-D-X=\
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Therefore, all roots A are nonnegative and the solution C is a general eigen-
vector to the smallest general eigenvalue A > 0.

The standard deviation of the approximating linear complex C at the
given normals is 0 = \/A/(k — 5).

In case of a sufficiently small deviation o, we use (3) to compute axis A
and pitch p of the complex C. Note that the moment m, the deviation o as
well as the pitch p are distances in Euclidean geometry. Their magnitude
has to be seen in comparison to the error tolerance. Let us now focus on
some important special cases.

Complezes with pitch p = 0: If p turns out to be very small, one might
be interested in a fit of the data lines by a singular linear complex Cy with
pitch p = 0. Recall that Cy consists of all lines which intersect or are parallel
to an axis A9 C E3. The simplest way is to take Ag as axis A of the linear
complex C computed as outlined above.

In a refined algorithm, we can mimimize the sum of squared moments
(7) in the set of all linear complexes with p = 0. This amounts to the
minimization of (8) subject to the condition (9) and

0=0X)=x-x=XT-K-X. (12)

K is the coefficient matrix in the equation of the Klein quadric. With two
Lagrangian multipliers A, 1, we have to solve the system

(M —=AD —pK)-X=0,XT.D.X=1, XT.K.X=0. (13)

Hence, A, u are restricted to the algebraic curve s of order 6 in the (A, )
plane given by det(M —AD —uK) = 0. Corresponding to the points of s, we
get solutions C of the linear homogeneous system (M — AD — uK)-X =0,
which define points CR in P5. They lie on an algebraic curve P, whose order
turns out to be < 30. Note that the solutions C of our minimization problem
also need to satisfy (12), which expresses the Klein quadric Mjy in P5. In
the algebraic sense, there are < 60 intersections of P and Mj. Representing
an intersection point by a coordinate vector C € R® normalized by (9), we
obtain F(C) = \. Hence, the minimizer of F' belongs to the smallest value of
X\ among those pairs (\, i) that characterize a point of PN Mj. Because of
the high degree of the problem, a further algebraic investigation and a study
of degree reductions is not performed. We compute the solution numerically
by an iterative algorithm. A good starting point is Cy as outlined above.

Complezes with pitch p = oo: Linear complexes C with p = oo have so
far been excluded. There, ¢ = 0, and the complex consists of lines in E>
which are orthogonal to the vector ¢. The deviation of a line L from such a
complex can simply be taken as cosine of the angle between L and ¢. Thus,
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we now minimize
k

> (x-1)? (14)

i=1

over all unit vectors & € R*. This is an eigenvalue problem in R*. Note that
one might not know in advance whether an approximation of the given data
lines L; with this special type of a singular linear complex (axis at infinity)
would be possible. If it is possible, the general algorithm as outlined above
will cause numerical problems since all coefficients in (11) will be close to
zero. There are two simple ways to overcome this problem. One can either
check for a complex with p = oo first or run at first the general algorithm
with another normalization condition, namely X2 = 1. The latter case is
equivalent to setting D as unit matrix. Note, however, that this leads to a
characteristic equation (11) of degree 6.

Families of solution complezes: For two small eigenvalues A1, Aa, we obtain
two nearly equally good solution complexes Cq,Cs. Since the given lines are
close to both complexes, they are in fact close to all complexes of a pencil,
spanned by Ci,Cs. This means that the given lines may be well approxi-
mated by the carrier of a pencil, which is in general a linear congruence.
Analogously, three small eigenvalues A1, As, A3 define three linear complexes
which span a bundle. The given data lines are close to the carrier of the
bundle, which is a regulus, in general.

So far, we did not deal with an important aspect: In applications, the
deviation of a line L from some set is often just essential in a certain domain
of interest. In other words, one is actually interested in the deviation of a
line segment L C L. We will now show how to modify the general algorithm
above to take care of this requirement.

At first, we need an appropriate definition for the distance of a line
segment L to a linear complex C. Let a and b be the boundary points of
L. All lines of C : €-1+c-1= 0 passing trough a lie in a plane with normal
vector n, = € + ¢ x a. Using (non normalized) Pliicker coordinates (1,1) of
L with 1 = b — a and inserting n,, the distance d of b to this plane is

d Ing - (b —a)] c-l+c-l
p = = — .
4l I +cxal

An analogous expression we obtain for the distance d, of a to the plane of
complex lines through b. A useful deviation measure between L and C is
now defined via

. T2, 1
d(L,C) = di +dj = (@ 1+ -1’ ( + ), (15)
a b
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with
v = [[€+cxal, v, =|lc+cxb]. (16)

Note that v, is the norm of the velocity vector n, of point a, i.e. the velocity
of a under the helical motion whose path normals form C. With p as pitch
and r, as distance of a from the axis it is also expressed by v, = /72 + pZ.

Assume, we are given k lines Li,...,L;. On each of these lines we
prescribe points a;, b; bounding the line segment L; C L; of interest. An
approximating complex C to the line segments can now be defined as min-
imizer of

k k k
- 1 1.,_ _ ~ _
ZdQ(LZ‘, X) = Z(_Q + —2)()( L+ x- 11‘)2 = Zwi(x -+ x- 11‘)2. (17)
i=1 i=1 Vi Vb i=1
Here, v, vp; are the velocities of a;,b; and I; = b; — a;. The solution
can be computed with a weight iteration. In each step, the weighted sum
(17) is minimized under the normalization condition ||x|| = 1 (or ||x|| =

1, if a solution complex with a very large pitch is expected). This is a
general eigenvalue problem as discussed above. The weights are taken as
w; =1 /vfm +1 /'ugi, where vy, vy; are the velocities of points a; and b; for
the previous solution. For the initial solution, all weights are set to 1. The
iteration is stopped after the change of weights falls below a given threshold.
Problems are caused by points a; or b; with small velocities. We neglect
them, since the computation of their path normal planes is not robust.

3. Approximation of surfaces or scattered points by rotational
or helical surfaces

Applying the concepts discussed so far, we look at a problem that arises
in reverse engineering. Whereas engineering uses CAD/CAM systems to
create real parts, reverse engineering transforms a real part into a computer
model. The surface of a part may consist of different surface types like
planes, spheres, cones and cylinders of revolution and tori, or also more
general surfaces of revolution, general cylinders, helical surfaces or general
freeform surfaces. Both a CAD representation and a manufacturing of the
part requires the recognition of simple surface types.

The approach is based on the following well-known result. The nor-
mals of a surface of differentiability class C' lie in a linear complex if and
only if the surface is (part of) a cylinder, a surface of revolution or a heli-
cal surface. A C? surface all whose normals belong to two different linear
complezes, is (part of) a plane, a sphere or a cylinder of revolution. To
approximate a set of scattered data points (or a given surface ®°) with
a helical surface ® or one of its limit forms (surface of revolution, cylin-
der), we first compute the generating motion of the approximant as follows.
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Let N;, ¢ = 1,...,k be estimated or exact surface normals at data points
d;, i=1,...,k (or points of ®°, respectively).

We have to find an approximating linear complex C to the normals N; as
outlined in section 2. In case of a small deviation o, we use (3) to compute
axis and pitch p of the generating motion and get important information
for type recognition.

For a very small value of p, we may approximate with a surface of
revolution and compute a fit with a linear complex with pitch p = 0. We
also have to take care of the special case of a complex with p = oo that
belongs to a cylinder surface and use the ideas presented for this case.

The surface reconstruction itself can be computed by projecting data
points d;, ¢ = 1,...,k with help of their trajectories into an appropriate
plane 7, depending on the type of the generating motion. This generates a
point set in m which will be approximated by a curve c¢. Finally, moving ¢
with help of the determined motion generates the approximating surface.
A detailed discussion can be found in (Pottmann and Randrup, 1997).

Future research includes the segmentation of range data into regions
that can be fitted well with fundamental shapes as well as region growing
techniques (Leonardis et al., 1995; Sapidis and Besl, 1995).

4. On the stability of a parallel manipulator’s position

Let us consider a parallel manipulator, where the moving system X° and
the fixed base system . are connected by k > 6 legs, represented by lines
L;, i =1,...,k. Note that we include redundant legs for £ > 6. We will
now introduce a stability concept based on approzimation in line space.

Keeping the leg lengths fixed at a position X(¢) of the moving system,
we should obtain a rigid system. However, it may be infinitesimally movable
and even admit a finite motion. Such positions are referred to as singular.
Since the legs L; of fixed length r; are fixed at points m; € 3, they can
only move on spheres with centers m; and radii r;. Hence, the legs appear
as path normals and we immediately arrive at the following well-known
result (Husty et al., 1997; Merlet, 1992). A position of a parallel robot with
k > 6 legs is singular if and only if the positions of the legs lie in a linear
complez. In practice, such positions are avoided. Moreover, if a robot has
two different, but in space nearby configurations for the same leg lengths,
the robot may snap into the neighboring position, which is clearly unde-
sirable. Such positions are close to a singular position (Husty et al., 1997).
Therefore snapping into a neighboring position can be avoided by avoiding
positions where the legs can be fitted well by a linear complex. Note that
we have given the computational tools for checking this. Moreover, various
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Figure 1. Platform and stability function

sources for errors occur in practice such that the test for a singular position
itself should be formulated as a regression problem.

In case that the leg positions L;(¢) lie in the carrier of a pencil of linear
complexes, we even have an instantaneous movability of a two—parameter
motion. Finally, if the legs lie in the carrier of a bundle of linear complexes,
the indeterminacy of the points of the moving system is in three indepen-
dent directions in general (in two directions for the spherical links) (Merlet,
1992). Again, our results are suitable to detect such positions.

An example is a Stewart—Gough platform, where the spherical links
are arranged in two planes 7 C X,7" C X°. We consider a special two—
parameter motion of the moving plane 7’ by moving it translatory inside
some plane o C E2. The position of a reference point a’ in 7° then com-
pletely defines the current position of the moving system. On a grid of
positions we have computed the standard deviation of the leg positions
from the best approximating linear complex (computed with the line seg-
ment method (17)) and derived a spline fit of these data. The resulting
bivariate stability function is visualized in figure 1.

An analogous application are serial robots. If the robot has six revolute
joints, a necessary (but not sufficient) condition for a singular position
(defined by vanishing Jacobian of the mapping from the 6-dimensional
configuration space to the motion group SE(3)) is that the positions of
joint axes lie in a linear complex (Hunt, 1986; Husty et al., 1997).

5. Conclusion and future research

We have shown how to construct approximating linear complexes, linear
congruences and reguli to given data lines or line segments and briefly
outlined applications in robot kinematics and surface reconstruction. There
is a variety of open problems in this area of computational line geometry.
Other concepts for approximation in line space need to be studied. One
possibility, based on local mappings of the Klein quadric into Euclidean
4-space via stereographic projection, has been introduced in (Chen and
Pottmann, 1997) in connection with approximation by ruled surfaces. This
has applications in NC milling (with cylindrical cutters under peripheral
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milling) and wire-EDM (Ravani and Wang, 1991) of sculptured surfaces.
Future research should also take care of algorithmic efficiency for basic line
geometric tasks (Chazelle et al., 1996).
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