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This paper studies algebraic and geometric properties of curve—curve, curve—
surface, and surface—surface bisectors. The computation is in general difficult since
the bisector is determined by solving a system of nonlinear equations. Geomet-
ric considerations will help us to determine several distinguished curve and sur-
face pairs which possess elementary computable bisectors. Emphasis is on low-
degree rational curves and surfaces, since they are of particular interest in surface
modeling. (© 2000 Academic Press

1. INTRODUCTION

Given two geometric object®; and O, in Euclidean 3-spac&?, their bisector B
is defined as the locus of equidistant points fr@mand O,. The distance is measured
orthogonal to both objects. Thus, bisecBis the set of centers of spheres touching bott
0; andO,. We do not require that the distance fra@rto O; and O, be minimal and we
only discuss theintrimmed bisectgrsee [12]. The objects shall be points, smooth curves
and surfaces. If the objectd,, O, are just continuous and possess edges, the bisBctor
can be computed applying the offset operation discussed in Section 3.3. We will not disc
this in detail.

If O =0; = 0,isasolid objectB shall be called an untrimmesIf-bisectorThemedial
axisor skeletor—see [1, 36]—is a subset &. It consists of centers of maximal inscribable
spheres.

The computation of the bisector and medial axis is in general difficult. We want
determine several families of curves and surfaces which admit an elementary bisector c
putation. These constructions shall be catbedic algorithmsBisectors of “complicated”
objects can be approximated by approximating the given objects by those objects wt
admit elementary bisector constructions. In particular we will discuss rational curve a
surface pairs which possess rational bisector surfaces. Several results derived here ma
be found in [8-12, 16].
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The article is organized as follows. Section 2 collects some facts about planar bisect
Section 3 introduces point—surface and point—curve bisectors in space. Section 4 discl
algebraic properties of point—object bisectors. We will study a quadratic transformat
which maps an object onto the point—object bisector. Circles, spheres, planes, and
velopes of them are distinguished with respect to this mapping. Section 5 studies cul
curve bisectors in space. Sections 6 and 7 present special examples of point—surface
sphere—surface bisectors. We deal with curve—surface bisectors in Section 8, and Se
9 briefly discusses surface—surface bisectors. Section 10 presents results about bisect
developable surfaces. Furthermore, we will point out relations to geometric optics.

A possible method for studying bisectors from a geometric point of view is the geome
of oriented spheres and planesBs, called Laguerre geometry. A detailed description
of the planar case is given in [26]. Some facts and details can also be found in |[:
A general monograph of sphere geometry is [4]. Here, we mainly use constructive :
analytic geometry.

Points inE2 are denoted by their coordinate vectREs (X1, X2, X3); points in Euclidean
planeE? are denoted analogously. The scalar product and vector product of two vegtors
are denoted by - y andx x y, respectively. Section 4 uses a different notation for point
and planes in projective extensid? of E3, which is explained there. When computing
point—curve or point—surface bisectors we will always assume that a coordinate system
been chosen such that this point is the ori@ie- (0, O, 0) (or O = (0, 0) in the planar case).

2. BISECTOR CONSTRUCTIONS IN THE PLANE

The bisector of two planar curves has been discussed in detail in the literature;
for instance [12, 13, 26, 34] and references therein. We want to collect some geome
properties which possess analogs in the spatial case.

2.1. Point—Curve Bisector in the Plane

DerINITION 2.1. The bisectoB of two planar curve€;, C, is the locus of points being
equidistant to both curves. Distances are measured orthogonal to the inputCur@gs

First of all, the bisector of two points is the line of symmetry. The bisector of g@iand
not incident lineL is a parabola with focal poir®, axis orthogonal ta., and directrixL.

Let C be a planar curve parametrized &) = (ci(t), cz(t)) and letB be the bisector
with respect to the origi®© = (0, 0). By definition,B contains all centers of circles which
are tangent t&€ and which pass througB. Moreover, the lines of symmetry

o) c(t) - (x - %c(t)) —-0 1)

of O andc(t) are tangent lines dB. Thus, we refer to (1) as dual representatiofBofrhe
conversion to a representationB®fas a point set is obtained by intersecting liag€ts) and
o (t). Therefore, pointb(t) of the bisectoB are solutions of the linear system

o(t):2c(t) - x = c(t) - c(t), o(t):c(t) - x = c(t) - c(t). (2)

On the other handy(t) is the intersection point of the symmetry liagt) and the curve
normalc(t) + An(t), wheren = (—¢&,, ¢;) is a normal vector o€. This construction leads
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FIG. 1. Point—curve bisector and optical interpretation.

to the parametrization

1 c(t) - c(t)

b(t) = c(t) — Em”(& )
which solves (2). Figure 1 shows elementary examples. The bisector betwee®@@idt
circleC is an ellipse or hyperbola depending on whetBeis inside or outside of.

The point—curve bisector is a basic algorithm and serves to compute curve—curve
sectors; see [12]. The reason is that the biseBtaf curvesC,; andC; is the envelope
of a family of curvesB,(t). This family consists of bisectors &; and a variable point
Co(t) € Co.

2.2. Curve—Curve Bisectors and Geometric Optics

The relation between bisector and geometric optics follows immediately from its d¢
inition. Light raysl radiating from a point sourc® = C; are reflected at the bisect&
in such a way that the reflected light ra&are orthogonal to the given cur@= C,; see
Fig. 1. This principle holds in general@; is an arbitrary planar curve.

Summary 2.1. Light rays| perpendicular t&C; will be reflected at the bisectd such
that the reflected raytsare perpendicular tG,.

The curveC,; is said to be amanticausticof illumination orthogonal ta&C; and reflection
at B. The definition is symmetric with respect @ and C,. Thus, bisectors are mirror
curves with respect to the given illumination.

A further property of bisectors is their invariance under offsetting the input curves. L
C, be an oriented circle with radiuf centered aD and with outward-oriented normals,
and letC, be an arbitrary planar curve. The bisectofaf C, equals the bisector @ and
D, with D as an offset curve t€, at distance-d. The orientation is important since we
have to substitut€; andC; by their offsetsO andD at distance-d. This principle holds
in general for the bisectdd of two oriented curve€,, C,.

Summary 2.2. SubstitutingC,; andC; by offset curves at oriented distantéeaves the
bisectorB unchanged.
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FIG. 2. Line—curve bisector.

Considering rational planar curv€s, C,, their bisectoB will not be rational in general.
A special case implying rational bisectors is the following. Cgt= A be a straight line
given by equatiora- x =0 with |lal| =1 (A passes througl). Let C; = C be a rational
curve with parametrizatioo(t) possessing rational unit normal vectors

1

"0="1g

(=C2, C1)(1).
CurveC is called arational offset curveor rational PH-curve see [30]. Depending on the
orientation ofA andC (see Fig. 2), the bisectd is for instance parametrized by

a-c(t)
(a—n(t)) - n(t)

The tangent lines oB are lines of symmetry oA and the tangents &; see Fig. 2. We
consider an illuminatiot orthogonal toA. Light raysl are reflected at the mirrd8 in a
way such that the reflected rd§are orthogonal t&€. The curveC is called anticaustic for
parallel illumination and reflection &. In terms of geometric optics this says thaitror
curves B to rational PH-curves C for parallel light rays are ration&imilar statements
will hold in the spatial case.

b(t) = o(t) — n(t).

Summary 2.3. The bisector of two circles and the bisector of a line and a ration:
PH-curve is always rational.

Of course, there are many more pairs of rational curves possessing rational bisec
But in general it is not easy to decide whether the bisector of two rational input curve:s
rational.

Remark. E shallbe embedded in®® with coordinates, y, r as plane = 0. Consider
oriented planar curve§y, C, in E2. We will give a spatial interpretation of the bisector
construction. Lef";, I', be developable surfaces throu@h, C, which possess constant
sloper /4 with respect td=2. This implies that the inclination angle of generating lines of
I'y, I', with E2 equalst /4. Each developable surfabgis the graph of the signed distance
function to curveC;, i =1, 2. Further, letD be the intersection curvié; N I's. Thus, the
orthogonal projection oD onto E? is the bisectoB of Cy, C,. If D is parametrized by
d(t) = (d1, d2, d3)(t), the bisectoB possesses the parametrizathi) = (d;, d2)(t). The
radii of circles centered dt(t) which are tangent t€,, C, equalds(t).
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This method is studied and applied in [8, 26, 32]. We will see later that this method wor
analogously in the spatial case.

If C; =C,=C, we call B a self-bisector oC. B is again the orthogonal projection of
the self-intersectio of the developable of constant slopethroughC. The “true” (or
trimmed) bisector is a subset &. The trimming procedure can be realized by applying
a visibility algorithm to the intersectio® with respect td"; see [32]. A similar idea for
trimmed bisector construction is presented in [3].

3. BISECTOR CONSTRUCTIONS IN SPACE

DerINITION 3.1. The bisectoB of two surfaced-;, F; is the locus of points being equi-
distant to both surfaces. Distances are measured orthogonal to the input skifdees

Let us collect some elementary properties. The bisector of two ppiatelq is their
plane of symmetry

o:(p—q)-<><—%(p+q)) =0.

The bisector surface of a poiptand a lineG is aparabolic cylinder Its generator lines are
perpendicular to the plane, spannedobgndG; see Fig. 3. The bisector surface of a point
p and a planeE is aparaboloid of revolutionwith focal pointp and axis perpendicular
to E.

Next, the bisector surfacB of a smooth surfac& and originO shall be computed.
By definition, the bisectoB contains the centers of all spheres tangerft tand passing
throughO. Let F be parametrized bf(u, v). The symmetry planes @& andf(u, v) are

o(u,v):f(u,v)- (x — %f(u, v)) =0. 4)

Bisector B is the envelope of planes(u, v). Thus, we call (4) a dual representation
(parametrization) oB. The conversion to a point representatiom3a$ done by intersecting
planess (u, v) with partial derivative planes,(u, v) ando,(u, v). Thus, a parametrization
b(u, v) of B solves the linear system

1
a(u,v):f~x:§f-f, ou(u,v):fy - x="F-1,, oy(u,v):f, - x=~1.f,. (5

Parametrizatiof(u, v) is also obtained by intersecting symmetry plaaés, v) with the

FIG. 3. Point-line and point—plane bisector.
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FIG. 4. Point—circle bisector in space.

surface normalé+ Af, x f,. Thus, a solution of (5) is given by

1 f.f

b(u,v)=f— - "
(U, v) 2 detf, f,. )

(fu x f,). (6)

3.1. Point—Curve Bisector in Space

The bisector surface of a cur@and a poin©O shall be computed (Fig. 4). We will again
assumeD to be the origin (00, 0). CurveC shall be parametrized lnft). The bisectoB
is enveloped by the planes of symmetry®@fandc(t). This family is

o(t):c(t) - <x — %c(t)) =0. )

Thus, B is always adevelopable surfacd his answers the question of Elber and Kim [9],
of which (space) curves possess a developable point—curve bisector surface.

A developable surface is a special kind of ruled surface, so it carries generating li
g(t). All regular points of a fixed generatg(ty) possess the constant tangent plaig).
The generating lineg(t) can be computed as intersection lines¢tf) and

&(t): E(t) - (X — c(t)) = 0.

The singular point omy(ty) is obtained by intersecting(tp) with & (tp). The notation of a
parametrization oB as a point set is compact if we useuBlkér coordinates (as “black
box”) for the generating lineg(t). We form the vectors

- 1
l:=cx¢, I:=(c-<':)c—§(c-c)(':,
wherel is a direction vector ofj andl -1 = 0 holds. The foot point of with respect to the
origin O is given by
1 _
fi=—Ixl. 8

This yields a parametrization & in the formb(s, t) = f(t) + sl(t).
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ExampLE. Consideracircl€ with centem lyinginaplane/ (Fig.4).C is parametrized
by c(t) = m + ¢y (t) with

c; = acost + bsint, with ||a]| = ||b]l anda- b = 0.

The radiusrc of C equals|c;||, andc; - ¢; =0 holds. Furtherg; x ¢; =n is a constant
normal vector ofy. The symmetry plane and its first and second derivatives are

1 . ) .
a(t):(c1+m)-x:E(m2+ré)+m-c1, o(t):e-x=m-6, &():ci-Xx=0Cy-m.

The bisectoB of C andO is a quadratic cone or cylinder. In the case of a cone, its verte
zis obtained by intersectingNo N &,

2 2
fre -—m~

Z=m
+ 2m-n

9)

If m-n+#£0, Bis a cone and its vertex lies always on the axi# of the circleC. The
bisectorB is parametrized by

b(t,s) = z+ s(n + m x ¢4(t)).

The axisA of C and the line connectingand O are realfocal linesof the coneB.

B is a cylinder, ifm-n = 0, which expresses incidence@fandy . Thus, this is a planar
problem and possesses the planar bisecto@o&ndC as its cross section. The generating
lines of B are parallel toA. Its focal lines pass through the focal points of the cross sectio
B Ny and areA and the normal ter throughO.

3.2. Point—Curve Bisector of Curves on Surfaces

Itis important to discuss how point—curve bisectors are related to point—surface bisec
in the case of curves on surfaces. Let a surfade given by a parametrizatid(u, v). Any
curveC on F can be represented logt) =f(u(t), v(t)). We know already that the bisector
Br of F and the originO is enveloped by planes(u, v):f(u,v) - (x— %f(u, v)) =0,
whereas the bisectdBc of C and O is enveloped by the one-parameter familit) :
c(t)-(x— %c(t)) = 0. Obviously, each plang(t) occurs also as plarg(u, v), which means
that B¢ is a developable surface tangent tg .B'wo examples shall illustrate this.

3.2.1. Planar Curves

We can assume that the plaRds defined by the equatian=1. LetC c F be a planar
curve parametrized bg(t) = (c1(t), ca(t), 1). The bisectoBr of F andO is a paraboloid
of revolution, and the bisectdc is a developable surface, tangent8p in a curveD. It
is an elementary property &g thatD is the orthogonal projection & onto Bg. Thus,D
is parametrized by

1
d(t) = (cl, Co 5 (1-cf- c%))
Since the generating lines Bt possess direction vectars< ¢, a parametrization dB¢ is

1 L. .
b(t,s) = (cl, 2 5 (1-cf- c%)) + 5(—C2, €1, C1€2 — C2€1).
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FIG. 5. Bisector of planar curve and point in space.

Figure 5 illustrates the bisector surfaBg of O and an ellips€ c F. The paraboloidB¢
possesse® as focal point (not visible).

3.2.2. Spherical Curves

Let F be a sphere with center and radiug and letC be a curve or-. The bisectoBg
with respect tdO is a quadric of revolution with focal points i@ andm. The bisectoBc
is a developable surface, tangenBgalong a curveD. The curve of contadD is obtained
by intersecting the lines + A(c(t) — m) with the symmetry planes(t) of c(t) andO. This
leads to

c-(3c—m)

(io—
dt) =m+ m(c—m).

Figure 6 shows the bisector of a spherical algebraic cGreé order 4. Further, one could

Br

FIG. 6. Bisector of spherical curve and point in space.
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study bisectors of curves on cones and cylinders of revolution, or Dupin cyclides. The
families of surfaces possess similar properties than planes and spheres; see Sections 6
6.2. This shall not be investigated here.

3.3. Surface—Surface Bisectors and Geometric Optics

Analogously to Section 2.2, the construction of bisectors is related to geometric opti
These are obvious generalizations of the planar case.

Summary 3.1. Light rays| perpendicular td~; are reflected at the bisect8rin a way
such that the reflected ralyare perpendicular t6,.

F, is calledanticausticfor illumination orthogonal toF; and reflection aB. Thus,
construction of bisectors is equivalent to the construction of mirror surfaces.

Let F; be an oriented sphere with radidiscenterO, and outward-oriented normals. The
bisector off1, F, equals the bisector @ andD, with D as offset surface tb, at distance
—d. Orientation is important since we have to substitet@ndF, both by their offsetD
andD at distance-d. More generally formulated we obtain

Summary 3.2. SubstitutingF; and F, by offset surfaces at oriented distarccéeaves
the bisectoB unchanged.

Considering rational surfacés, F,, their bisectoB will in general not be rational. But
if one surface, say is a plane andr; is a rational surface, which possesses rational un
normals, their bisector surface is rational. A parametrizatiphof the bisector is given in
Section 9.1.

Remark. Analogously tothe planar case we embed the spatial problem into 4—space v
coordinatex, y, z, r. Consider two oriented surfacés, F, in the hyperplan&? : r =0.
Let I'y, I'» be two hypersurfaces of constant slapgd with respect toE3, which pass
throughF;, F». Further, letB be the orthogonal projection & =I'y N ', onto E2. Since
I'y, T', form the same angle witk?, the surfaceB is the bisector oF; and F,. Assume
that d(u, v) = (dy, d, ds, ds)(u, v) is a parametrization oD; the projectionB onto E3
is parametrized b¥(u, v) = (d;, dz, d3)(u, v). The radius function of spheres centered at
b(u, v) and tangent to surfacés, F; is ds(u, v). This method is applied in [8, 32].

If F = F,=F,, the untrimmed self-bisector can be computed as an orthogonal projecti
of the self-intersection of the hypersurfacento E3. The trimmed bisector is obtained by
applying a visibility algorithm; see [32].

4. GEOMETRIC BACKGROUND AND ALGEBRAIC PROPERTIES

For studying algebraic properties of point—curve and point—surface bisectors we v
use projective extensiorR? and P2 of Euclidean spaceE? and E3, respectivelyE® is
extended tdP® by adding points at infinity. We will describe just the spatial case since tt
planar situation is completely analogous. Each point at infinity is defined by a bundle
parallel lines. All these points at infinity form the plane at infinity.

A mathematical description dP® is obtained by using homogeneous coordinates
(X0, X1, X2, X3). They are only determined up to a scalar multiple, which says that

x and xp, peR\{0}

define the same point. It is convenient to denote pointgfyA plane inP? is given by a
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linear homogeneous equation
UoXp + U1Xy + UoXo + UsXz = 0.

The vectoru = (ug, Uy, Uz, U3) is called a homogeneous coordinate vector of that plan
Since coordinateg are also just determined up to a scalar multiple, planes shall be deno
by Ru. The left and right scalar multiples in plane and point coordinates are just a convent
to distinguish them.

Points at infinity are characterized bxyg =0. Points not at infinity X, # 0) possess
Cartesian coordinatez (y, z). The conversion from homogeneous to Cartesian coordinat
is done by

X1 X2 X3

X0, X1, X2, X3) > | —, —, — | = (X, Y, 2).
(o200 > (232,22 ey,

An analogous description works in projective plaPfe Points and lines are represented by
XR = (Xp, X1, X2)R andRu = R(ug, Uz, Uy), respectively.

4.1. Algebraic Properties of Planar Point—Curve Bisectors

It shall be shown that the point—curve bisector is obtained by applying a quadratic mapg
to the curve. This will lead to further geometric properties in particular for algebraic curve
We will define the following quadratipoint-to-line mapping

xR Ru,
B:xR — Ru (10)

1
(Xo, X1, X2) > (—E(XE + X3), XoX1, X0X2> = (Uo, Uz, Up).

This maps pointxR = (Xg, X1, X2)R to symmetry linesRu with respect to the origin
O =(1,0,0)R. If xR=cR is a point on the curv€, the symmetry lindRu envelops the
bisectorB of C andO. Thus, will be called thebisector mapTo apply this to bisectors
of algebraic curves, we also need the inverse mapping

,3_1: Ru — xR,
L (12)
(uo, ug, U2) > <—§ (uZ 4 u3), uous, Uouz) = (Xo, X1, X2).
Let C be an irreducible planar algebraic curveRA given by the polynomial equation
C(Xo. X1, X2) : 8n (X1, X2) + - - + @n_j (Xy, X2)X§ + - - - + @0X§ = O, (12)

wherex; are unknowns and; (X1, X2) are homogeneous polynomials of degjeénsert-
ing the right-hand side of (11) into Eq. (12) gives an equation of the bis&iarline
coordinates,

—1\/ ) »
B(Uo, U1, Up) : Udan(uy, Up) + - - - + <7> (u? + u3)’an_j(uy, ux)uy ™’
0.

bora( ) ) (122)



212 MARTIN PETERNELL

Notationequation in line coordinateshall express thaB(to, t;, t2) = 0 holds for homo-
geneous coordinates of tangent liffes- R(t, t;, t;) of the bisectoB.

To study the algebraic properties of the bise&ave recall that therder of an algebraic
curve is the algebraically counted number of intersection points with a liRd.ifiheclass
of an algebraic curve is the algebraically counted number of tangent lines of the curve f
pass through a fixed point.

Sincep is a quadratic point to line mapping, curve®of degreed are in general mapped
to curvesB(C) = B of class 2. This rule possesses several exceptions. At first, Eq. (12
says that ifO = (1, 0, O)R is k-fold point of C, that meansy=---=ax_; =0; Eq. (12a) is
divisible byu§. Thus, the class dB reduces byk.

If an(X1, X2) is divisible byx? 4 x2, Eq. (12a) is divisible byu? + u3). Thus, the class
of the bisector reduces by 2. This actually occur€ifs a circle. The fact thax? 4 x2
is a factor ofa, has a geometric interpretation. This says that the cna@ntains the
conjugate complex pointsi atinfinity. These are callddeal points and their homogeneous
coordinates are

i=(0,1i) and i=(01,—i).
Summary 4.1. If an algebraic curveC of orderd possessek-fold points at the ideal
points the class of bisect@ reduces by R.
4.2. Algebraic Properties of Point—Surface Bisectors

Analogously to the planar case we will discuss algebraic properties of the point—surf;
bisector with help of bisector mapping. To obtain a more compact notation we will use t
following abbreviation for homogeneous point and plane coordinates:

XR == (XO, Xl, X2, XS)R = (X07 X)R7 Wlth X= (Xl7 X27 X3)7 (13)
Ru = R(ug, Uy, Uz, U3) = R(ug, u), with u = (ug, Uy, U3). (14)
Similar to the planar case we define the bisector mapping

xR Ru,
B:xR +— Ru (15)

1
(%o, X)R R<—§x - X, xox) = R(up, u),

which maps pointgR to symmetry planeRu with respect to the origi® = (1, 0, 0, O)R.
The inverse mapping of (15) is

ﬂ_l:Ru — xR,
L (16)
R(ug, U) (—Eu -u, uou)R = (Xg, X)R.
Let F be an irreducible algebraic surfaceRd given by the polynomial equation
F(xo,x):an(x)+---+an_j(x)x(j) +---+agx{ =0,

wherex; are unknowns and; (x) are homogeneous polynomials of degjea X1, X2, Xa.
The equation of the bisectdd follows by inserting expressions gf~* into F. Thus,
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we obtain

1\ _ , n
B(uo, u):ugan(u)+-~-+<71> (u-u)'an_j(u)u3'+---+ao< 2) (u-u"=0. (17)

Theorderof an algebraic surface is the algebraically counted number of intersection poi
with a line in P2, Theclassof an algebraic surface is the algebraically counted number
tangent planes of the surface passing through a line.

Sincep is a quadratic point to plane mapping, surfaces of degjae in general mapped
tosurfaces of classR A point bR is abase poinbfthe transformatiog if 8(b) = (0, 0, 0, 0)
which does not represent pointsi¥. From (15) it follows that the origit© = (1, 0, 0, 0)
is a base point. IF has a&k-fold pointin O, Eq. (17) is divisible by and the class of the
bisectorB reduces by. Further, theabsolute conic

JiXo=0,x+x2+x5=0 (18)
consists of base points. #;(x) is divisible byx - x, surfaceF contains the absolute conic
J. Formula (17) tells us tha is divisible byu - u.

Summary 4.2. Let F be an algebraic surface of ordemwhich containsl with multi-
plicity k. Then, the bisectoB is of class 2 — k).

Examples for such surfaces are spheres, tori, Dupin cyclides and Darboux cyclides.
point—sphere bisectors are quadrics. Since cyclides of order 4 paksasssdouble curve,
their bisectors possess the same order; see Section 6.2.

Remark. Studying the above representations (10) and (15), we seg tizat be decom-
posed in the following way,
XR = k(XR) — 7 (k(XR)) — o (r (x (xR))) = B(xR),
(X0, )R = ((x - X), XgX))R > R(—=(X - X), XoX) = R(—3(x - X), Xo),
wherex andr areinversionandpolarity with respect to the unit sphe® ando is a scal-
ing with factor%. S? can be replaced by an arbitrary sphere centerdd. & point xR =
(X0, X) is mapped at first onto the poir{xR). Then, polarityr mapsk(xR) to its polar

planer (k (XR)) with respect tas?. The final scaling is a similarity with cent€ and factor
%; see Fig. 7. In short form we write

B=ocomok. (29)

FIG. 7. Decomposition of the bisector mapping.
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Scalingo and polarityr are bijective mappings. Thus, the base poinig afe exactly base
points of the inversior.

Similarity o scales the distance of a plane from the origin. This is done by scaling just t
first coordinate. In the case ofi2 + u + u3 = 1, which are normalized plane coordinates,
the first coordinately equals the oriented distance of the pl&we=R(up, u) from O.

Remark. Up to the scaling bg, the bisector mapping equals the inversgedal trans-
formation The pedal transformation with respect to the ori@imaps planeRu not passing
throughO to its foot pointsfR with respect toO. In homogeneous coordinates, the peda
transformation reads as

Ru = R(up, U) = (—u - u, Ugu)R = fR. (20)

The above decomposition also works for parametric surfaces. We will now return to Cal
sian coordinates. Let the surfaBebe parametrized bf(u, v). The inversionc maps the
surface point onto

f(u, v).

0u. 1) = (U ) = s .1f(u 5

Polarityr mapsg to the polar plane (with respect to the unit sphere), whose equation is
m(g(u, v)) = t(u, v) : —f(u, v) - f(u, v) + f(u, v) - x = 0.

We apply the scaling and calculate the envelope of plargs (u, v)). This exactly leads
to the linear system (5) and the parametrization (6) of the bisector surface.

4.3. Algebraic Properties of a Point—Curve Bisector in Space

The above decomposition (19) also serves to compute the bisector of thedpaid a
curveC. In particular, lelC be an algebraic curve of ordér The image curv® =« (C) is
of order a1, if C contains no base points. @ containsO or intersects the absolute conic
J, the order ofD reduces by the multiplicity 0© and intersection multiplicity ofl N C.
Since the polarityr is a point-to-plane mapping;(D) is the envelope of a one-parameter
family of planes and thus a developable surface. The clag$®j is 2d in general.

Algebraic curve€ are given by polynomial equations a@ds considered an intersection
of algebraic surfaces

C=FnNFk.

At most, two equations are sufficient but note that for instance the twisted cubic is a comp
intersectiomot of two surfaces but of three quadrics.

The bisector surfacB of O andC can be constructed via bisector surfaBesf F and
O. SinceC is the intersection of surfacds, the bisectoB is the intersection oB;. We
have to note that surfac&; are considered to be two-parameter families of tangent plane
in this context. Thus, intersectid® N B, is a one-parameter family of tangent planes which
envelope an algebraic developable surface.

For instance, remember the point—circle bisector discussed in Section 34 beegthe
plane containin@. Applying 8 = o o ok we will obtain at first a circle (C) in a planex.
The polarityr maps points of (C) to a family of planes passing through the pote 7 =% («)
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of a. Sincerr (and alsar 1) is a linear mapping, these planes envelope a quadratic cor
see Fig. 4.

If O €y, inversionk mapsy onto itself. It follows thatz is at infinity. Polarityr maps
k(C) onto a quadratic cylinder with generator lines perpendicula.to

5. CURVE-CURVE BISECTOR IN 3-SPACE

A detailed study of bisector surfaces of two space curves was done by Elber and |
[9]. They proved that two rational space curé@andD possess a rational bisector surface
B. The construction is as follows. Lefu) andd(v) be rational parametrizations of space
curvesC andD. A sphereSis tangent taC at a pointc if its center is located in the normal
plane toC atc. Thus, the center of a sphere tangen€tand D is located in the normal
planes ofC, D. Additionally, this center has to be contained in the symmetry ptané
pointsc andd. A parametrizatiorb(u, v) of B is obtained as solution of the linear system

Nc:¢-(x—c) =0, normal plane taC
Np:d- (x—d)=0, normal plane td (21)

1
o:(d-c)- <x — Q(C + d)) =0, symmetry plane o€ andD.

We note that(u) is the derivative with respect ia butd(v) is the derivative with respect
to v. We want to derive a formula for the parametrizatin, v). The line of intersection
G = Nc N Np can be represented by the vectors (compare Section 3.1)

g=cxd, g=(d-d}é-(c-c)d.

Intersectings(u, v) with the plane of symmetry (u, v) leads to the following parametriza-
tion of B,

1 1 . . .
bu,v) = ————— (—Z( —d?)(Ee xd)+(d—c) x ((d-d)c— c-td). 22
(u, v) (d—c).(cxd)(z( )€ xd)+(d—c)x(d-d)c—(c-d) ). (22)
Pointsp; = (uj, vi) for whichG(u;, vi) C o(u;, vj) are called base points of the parametri-
zation. The numerator and denominator of (22) vanisluatx).

ExampPLE: It is known that the bisector surface of two skew lir@g G, in space is
a hyperbolic paraboloi®. Its axis is the common normal &;, G,. Formula (22) does
not represent the straight lines @but the parabolas; see Fig. 8. This follows from the

FIG. 8. Bisector of two lines and two cylinders of same radii.
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geometric generation. We fix one poipton G,. The bisector of5; andy; is a parabolic
cylinder B,. The intersection 0B, with a normal plane t&, throughy, gives a parameter
curve of B.

Assume that a Cartesian coordinate system has been chosen such thaxkithe the
common normal of5; andGs,. Let these lines be parametrized by

G1 = (ucose, using, d), and G2 = (vcosgp, —vsing, —d),

where¢ denotes the angle betwe@n and thex-axis. An elementary calculation shows
that B is parametrized by

b(u, v) = (2d sing(u + v), 2d cosp(u — v), —2 cosp Sing(u + v)(u — v)).

It is biquadratic and possesses base points at infinity defined by theulines=0 and
u—v=0. A bilinear parametrization ig, t can be obtained by the substitutisa- u + v,
t=u—v.

Figure 8 shows that the bisectBrof two cylindersF;, F, of revolution with equal radii
r =ry=r,is also a hyperbolic paraboloid. Using the invariance under offsetiraan be
computed as bisector of their offsets at distarce These offset surfaces degenerate tc
their axes of revolution. We will see later in Section 10 that the bisector surface for t
cylinders (or cones) of revolution is of fourth order, in general.

The point—curve bisectors are completely described in Section 3.1. From a computatic
viewpoint, the point—circle bisector is of importance, since it is simple enough to serve g
basic algorithm. This means that the computation of point—curve bisectors of complica
curves can be approximated by point—circle bisector computations. There are algoritt
for approximating a given curve by a sequence of circular arcs; see [14, 17, 20, 24, 27,
Thus, the developable bisector surface is approximated by a sequence of quadratic ¢
which are the bisectors of the fixed point and the sequence of circular arcs.

In the following we discuss some low-degree examples for curve—curve bisectors. Tl
can serve as basic algorithms fot-approximation of bisector surfaces of arbitrary space
curves.

5.1. Circle—Line Bisector

One can immediately insert parametric representatifusandg(v) of a circleC and a
line G into formula (21) and obtain a parametrization of the biseBtdiVe want to discuss
this geometrically.

We will fix a point c(ug) on the circleC and calculate the bisect@g (ug) of c(up) and
G. We know already thaBg(ug) is a parabolic cylinder. Exactly those points B (ug)
which lie in the normal plan®&lc(ug) to C throughc(ug) are contained in the bisect&.
Thus, B is parametrized by a one-parameter family of parabolas

b(Uo, v) = BG(Uo) N Nc(Uo) for Uo € R.
All planes N¢(up) lie in a pencil of planes with the rotational axis 6f as a common

line. Further, along each parabd@g, v) the bisectorB possesseBg(Up) as a contact
developable surface. The parabolas possess two common points on the axis of the pel
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On the other hand, we fix a poigfvo) on G and compute the bisect®: (vo) of C and
d(vo). From earlier statements it is clear thag(vo) is a quadratic cone with vertex on the
axis of C. The intersection oB¢(vo) with the normal planéNg(vo) to G throughg(vo) is
also a conic. So we obtain a second family of conicdon

b(u, vo) = Be(vo) N Ng(vo) for v € R.

Along each conid(u, vg) the bisector surfac® is in contact withBc(vg). The second
family of conics also lies in a pencil of planes, orthogonatto

Such surfaces have been studied in detail by Degen [5, 6]. At that time and earlier tr
surfaces were calledouble Blutel conic surfacedlowadays the notatiosupercyclidess
more convenient. These are algebraic surfaces of grdeSome subfamilies of them can
be obtained as projective images of Dupin cyclides. For more information see [7, 23,
and the references therein.

5.2. Circle—Circle Bisector

Let the circlesC and D be parametrized bg(u) andd(v) (Fig. 9). These curves lie in
planesy ands, respectively. We proceed as in Section 5.1. We fix a prfug) on C and
compute the bisector surfa@ (ug) of c(ug) and D. We know thatBp (up) is a quadratic
cone with vertex on the axid of the circleD; see Section 3.1. So, the parameter curv
b(uo, v) of the bisectoB of C andD is the planar intersection d&p (up) with the normal
planeNc (ug) throughc(up). Since these normal planblg all pass through the axi& of the
circle C, this first family of parameter conics lies in planes throdghrurther, the tangent
planes along a fixed parameter cob{cyg, v) envelop the quadratic corig, (up).

We exchange&e with D and compute parameter curva@l, vg). So it is clear that the
bisector surfacd carries two families of conics, lying in planes through the axes of th
given circlesC, D. Further, along each conic there exists a quadratic tangent cone w

FIG. 9. Circle—circle bisector in space.
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vertex on an axis of the circles. Thus, bisecBiis again a supercyclide. We omit the
discussion of all types of supercyclides occurring here.
The practical calculation works as follows. We set

c(u) = m+ pcosu + gsinu = m + ¢ (u), 23)
d(v) = n+rcosv + ssinv = n + dy(v),

wherem andn are the centers & andD, and we require that
Ipl=llal=rc, p-q=0 [ri=lsl=rp, and r-.-s=0.

The length ofp andq equals the radiusc of C, and additionallyp andq are orthogonal.
Analogously for ands. Further itis cle_ar that; - ¢; =0 andd; - d; =0 hold. The vectors
c1, d; and their derivative vectors @f, d; satisfy

lesll = lleall =rc  and  idyfl = [yl =rp.
The cross products
01XC1=A, d1Xd1=B

are vectors of constant length.andB are perpendicular to plangsands, respectively,
containing circle€ andD. Using these notations we insert (23) into formula (22). We will
study denominator and vector part (hnumerator) separately. At first the denominator reac
bo=(d—¢)-(cxd)
=(M+d;—m-—cp)-(c1 xdy)
= (n—m)- (€1 x di) +dg- (€ x dg) — ¢ - (&1 x dy)
=(-m)-(c1 xd)—B-¢—A-ds. (24)

Now we have to look at the vector part of (22). Using some vector algebra we get

by = —%((m +¢1)> = (N + d1)?)(@ x d1) + (d — ©) x ((d - d)c — (c- ¢)d)

= _%(m2 —n? 4 ¢ — d?) (&1 x d1) + (- do)((n — m) x & — A)

—(m-&)((n—m) x di +B) 4 (n x B) x & + (M x A) x dy. (25)

Finally, the bisectoB is parametrized by
(u,v) = (u, v)
b(u,v) = ) b1(u, v).

Substituting trigonometric by rational quadratic functions we seeBhaia rational tensor
product surface of degrees (2,2). One can proveBhiatof order<4.

Summary 5.1. The bisector surface of line—circle and circle—circle in general positio
is a supercyclide.
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5.2.1. Approximation of Curve—Curve Bisectors

What we have seen so far is that the computation of curve—curve bisectors is eas
one wants to use standard CAD representations of relatively low degrees, approximat
are necessary. One way would be to approximate the input curves by smoothly joined
splines, possibly containing linear segments; see [14, 17, 21, 24, 28, 35]. As outlined ab
the corresponding bisector surfaces are piecewise of maximal degrees (2,2). This wa:s
reason that line—line, line—circle, and circle—circle bisectors are studied here in detail.

5.2.2. Bisectors of Pipe Surfaces with Same Radii

Let F andG be two oriented pipe surfaces with same rabland spine curve€ and
D, respectively. Their surface normals shall point both outward or inward. From Se
tion 3.3 we know that their bisectd is computable as the bisector of their spine curve:
C, D, interpreted as (degenerate) offset surfaces at oriented distahce

To obtain low-degree approximations, one will, as above, approximate the center cul
by arc splines. This means approximating the pipes by spline surfaces, composed of
segments. Their bisector is then again a rational spline surface, composed of patche
supercyclides.

The self-bisectoBg of a pipe surfacd- is also computable as the self-bisector of the
spine curveC of F. This can be done by insertirtfv) = c(v) into (22).

6. EXAMPLES OF POINT-SURFACE BISECTORS

With the help of results obtained in Section 4 we want to discuss some examples
low-degree point—surface bisectors. These can serve as basic algorithms for the bis
computation.

Since the bisector mapping generating the point—surface bisector is decomposable
(scalingo polarity o inversion), all those families of surfaces which are closed under ir
version play a special role. This means that inversion maps a surface to an image sul
belonging to the same family.

Spheres and plandsrm a family which is closed under inversion. The bisector of &
point and a plane is a paraboloid of revolution; the bisector of a point and a sphere is al
quadric of revolution, namely an ellipsoid or two sheet hyperboloid, depending on whet
the pointlies inside or outside of the sphere. In any case we get nonruled quadrics, whicl
projectively equivalent. This reflects the fact that for computing the bisector we first apj
an inversion and then a polarity, which is a general projective mapping into the dual sps

Dupin cyclides also form a family of surfaces, which is closed under inversion. The
surfaces possess two families of circtgsc, as curvature lines. These circles lie in two
pencils of planes, o; let the axes of these pencils be denoted\byA,. One of these axes
can be possibly at infinity. The circleg intersect the axig\; in two (not necessary distinct
and real) singular surface points. The same holds for the familhe developable surface
which is tangent td= along a circle is always a cone or cylinder of revolution or a plane
The vertices of cones tangent to the circles of farojljie on the axisA; and vice versa.

The algebraic order df is <4 and the quartic surfacds possess the absolute cowic
as double curve. There is quite a large amount of literature on Dupin cyclides, includ
classical contributions and more modern ones; see [23, 25, 33] and the references the

If one interprets a straight line as a circle with center at infinity and radins the above
definition of Dupin cyclides also applies to cones and cylinders of revolution. In fact, cert
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Dupin cyclides are the inverse images of cones and cylinders of revolution; see [23]. Tt
before studying point—Dupin cyclide bisectors we want to discuss point—cone bisectors

6.1. Point—Circular Cone and Point—Circular Cylinder Bisectors

A circular cone (cone of revolution) or a cylinder of revolutiBris generated by rotating
a lineL around an axisA, where eithelL intersectsA or L and A are parallel. The cur-
vature lines ofF are the generator lines and the circles in planes orthogon&l Erom
decomposition (19) we know that the bisector surfac®a@ndF is

B=oomok(F).

Sincek preserves curvature lines(F) is a Dupin cyclide. These surfaces are self-dual ir
the sense that along each circle there is a cone of revolution (cylinder, plane) tanger
«(F). The polarityz preserves this self-dual property, such tBgtossesses two families
of conicsby, b, lying in pencils of planesg;, ¢, with axesA;, A;.

Along each conid; there is a quadratic con@, tangent toB. Its vertex is on the axis
A,. Analogously, along each cortig of the second family there is a quadratic c@zewith
vertex onAz, which is tangent t@B. Thus,B is a supercyclide; compare Sections 5.1 anc
5.2. Sincer is a general projective mappinky, andb, are no longer curvature lines, but
they form a conjugate net of curves 8nsee [7]. Their algebraic order and classi.

We can find these properties also via parametrization (6). In particul&rHeta cylinder
of revolution, parametrized by

f(u, v) = m+racosu +rbsinu+vax b = m+ c(u) + vn,

whereaandb are orthogonal unit vectors and= a x b. Letg(up) be a fixed generator &f.
The bisector surface @ andg(up) is a parabolic cylindeB; (ug). The intersection oB; (ug)
with the normal plane td- throughg(up) is a conicb(ug, v) C B. Since parametrization
(26) is a quadratic polynomial in, the conicb(ug, v) is a parabola.

The second family of conick(u, vg) C B corresponds to bisectoB, with respect to
O and the circles or-. B, are quadratic cones with vertices on the a&isThe conics
b(u, vo) are contained in parallel planes which are perpendicula:; see Fig. 10. Via (6),
a parametrization oB is found by

(26)

m - c(u) +r?2

FIG. 10. Point—circular cylinder bisector.
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Substituting trigonometric by rational functions leads to a (2,2) tensor product representa
of B. Cones of revolution are calculated analogously.

6.2. Point-Dupin Cyclide Bisector

We use the arguments from Section 6.1. Those Dupin cyclides which-images of
cones or cylinders of revolution possess supercyclides as point—surface bisectors. It ren
to discuss those Dupin cyclides which arémages of tori without real singular points.

AtorusT is generated by rotating a sph&around an axié\. The center oS generates
a circlem. T possesses two families of circles ¢, in planes through and perpendicular
to A. The developable surfaces tangenfitalong circlescy, ¢, are cones or cylinders of
revolution. We compute the bisector surfaces with respect,to, and obtain families of
quadratic coneB;, B,. The characteristic curves on surfaBgsire intersections with planes
throughAand thus are conics. The characteristic curves on surBaae intersections with
cones of revolutiomN, with axis A. The cone$\, are orthogonal td along circles,. Since
B, possessed as focal line (see Section 3.1), the two cofsand N, possess common
conjugate imaginary tangent planes throughrhis implies thatB, N N, is reducible, for
instance, splits up into two (not necessarily distinct) conics.

A parametrization can be computed by using formula (6). Figure 11 shows an exam
The real singular points d8 lie on the circlem. This figure also illustrates the mirror and
anticaustic properties @& andT with respect to an illumination emanating froth

Summary 6.1. The bisector surfacB of a pointO and a cone or cylinder of revolution
or a Dupin cyclideF is in general a supercyclide. Light ralysdiating from a point source
O are reflected aB in such a way that the reflected reyare orthogonal té-.

6.3. Point—Quadric Bisector

The bisector surfac8 of a regular quadri¢- and a pointO shall be constructed. The
decomposition of the bisector mapping (19) says that we first have to apply an invers
Kk to F with respect to an arbitrary sphe® centered aD. If O is in general position to
F thenk(F) is a general cyclide, a surface of order 4, possessing the absoluteJcasic
double curve. Since a nonrevolutionary quadric possesses two 1-parameter families of

y A A—

FIG. 11. Point-torus bisector.
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circles,«(F) has this property, too. But note that these circles are never conjugate cur
onF.

We apply the polarityr with respect toS and obtain a surface («(F)) of class 4,
possessing two 1-parameter families of quadratic cones, tangefi(®)). Further, scaling
by % does not change these properties.

Alow-degree representation in dual (plane) coordinates can be obtained by parametri
a triaxial quadricF corresponding to its circular sections. These families of circles ar
mapped to circular sections &f{F). Finally, the bisector is representable as a rationa
(2,2) tensor product surface in plane coordinates. The point representation of the bise
is rational of degrees (4,4). Nonruled quadrics of revolution possess bisectors with a (:
tensor product representation in plane coordinates, since they possess only one fami
circular sections.

Let the quadrid= be a quadratic cone, but not a cone of revolution. As abBwntains
two families of circles, which are never conjugate curves. The inversiorapsF to a
general cyclide (F). SinceF is the envelope of a one-parameter family of plaréb,) is
a canal surface, which is enveloped by a one-parameter family of spheres. The gene
lines as well as the circles df are mapped to families of circles on the cyclid@-).
Finally, the bisector surface possesses a rational (2,2) tensor product parametrizatic
plane coordinates. Its point representation is of degrees (4,2), where the quadratic parar
curves correspond to generator linedqfsee Section 6.5.

ExXAMPLE. A general quadratic confé can be parametrized by
f(u, v) = (@ + vr cosu, b + vssinu, ¢(1 — v)), (27)

wherea, b, ¢ are the coordinates of the vertex ang are the major and minor axes of an
elliptic intersection with the plane= 0. It would be possible to set=s and to locate the
vertex not at the rotational axis of the planar intersection with the mane.

Let C be the intersection df with the plane at infinityto = 0. To determine the circular
sections ofF we have to compute the intersection point€Cofind the absolute conig,
which are given by equations

1
C:r—zxf+

1 1
?xg—?xgzo, I X2+ x2+x5=0.

C N J consists of two pairs of conjugate complex poimtsp andq, g. The real lines
connectingp, p andqg, q are carriers of pencils of parallel planes, which intergeit two
families of circles. One of these two families shall be parameter curves. A reparametriza

can be realized by substituting

_w—c(bvrZ— 2 —syc? +r?)
cS(SiNUA/TZ — s2 4+ 4/c2 +12)

in formula (27). Real circles of are represented Hyu, wg) for real valueswy. We will
substitute trigonometric by rational functions, cos (1 — t2)/(1 + t?) and sinu =2t/
(1 4+ t?). The rational parametrization & can be written as

1
f(t, w) = f—o(fl, fa, f3)(t, w),
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AN
77NN

FIG. 12. Bisector of quadratic cone and point.

and the symmetry plane @ andf is given by the equation

1

S (2 + 124 1) + fo(fix + foy + f52) = 0.

It turns out thatf and f2 + f2 4 f2 possess common zeros, determinedtyr2 — s2 +
(1+t2)+/c2 +r2=0. Further, we see that the denominator and numerabigt ofy) possess
the factorcsy/c? +r2 4+ w. Applying these algebraic manipulations leads to a representati
of degrees (4,2) oB as a point set. The result is illustrated in Fig. 12.

A parametrization of skew-ruled quadrics can be based on two families of generator li
or it can be based on two families of circular sections. The first possibility leads to a ratio
(2,2) parametrization as a set of planes and to a rational (3,3) parametrization as a poin
Compare Section 6.4, where we discuss bisectors of points and skew-ruled surfaces
also Fig. 13, which illustrates the bisector surface of a point and a hyperbolic parabol
The second way leads to a (2,2) representation in plane coordinates and further a rat
(4,4) representation as a point set.

FIG. 13. Bisector of point and skew-ruled surface.
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6.4. Point—Ruled Surface Bisector

Ruled surfaces are among the simplest surfaces, since one family of parameter cL
consists of straight lines. A ruled surfaEepossesses a parametrization

s(u, v) = r(u) + vl(u),

wherer (u) is a directrix curve and its rulings are given by vectdeg. The surface normal
vectoris ¢ + vi) x | and it shall really depend anand shall not be constant along a ruling.
This excludes developable surfaces, which are studied in Section 6.5. The bisector sut
of the originO andF can then be parametrized by

1 (r+ol)? :

b(u,v)=r+vl—§m(r><I+u|x|). (28)
Geometrically we can proceed as follows. The biseBigfug) of the lineG(ug) =r (ug) +
vl(ug) and pointO is a parabolic cylinder. The surface normal$§ailong the skew generator
G(ug) form a hyperbolic paraboloitt (ug). The intersection®Bg(ug) N H(ug) are cubic
parameter curves @; see parametrization (28). This also follows from the fact Big(uo)
and H (ug) possess a line at infinity in common. The cubics possess exactly one real pc
at infinity, since there is exactly one surface normal al@{go), which is parallel to the
generator lines 0Bg (Uo).

6.5. Point—-Developable Surface Bisector

Let C be a regular space curve with parametrizatifr). The tangent lines(u) + Ac(u)
of C form a developable surfade with parametrization

f(u, v) = c(u) + ve(u). (29)

The curveC is called the line of regression of the developabldf C is just a single point
z, F is called a cone. One can use (29) but has to exchamyez and¢c(u) parametrizes
the generator lines of the cone. General cylinders do not fit this parametrization since t
vertex s at infinity. But one can u$@, v) = c(u) + vd with aregular curv€ and a constant
vectord, parallel to the generators, but not paralletto

To determine the bisectd® of O and developable surfade with line of regressiortC,
we first calculate the symmetry planes@fandf(u, v),

o(u, v) X - (c(u) + ve(u)) = %(c(u)z + 2¢(u) - e(u) + v2e(u)?).

For fixedup planeso (ug, v) form a quadratic family. These planes envelop the bisectc
B1(up) of agenerating lin&(up) : c(ug) + v&(uo) of F andO. By (up) is a parabolic cylinder.
The intersection oB;(ug) with the normal planéN : (€ x €) - (x — ¢) =0 passing through
the generatoB(up) is a parabola. A parametrization Bfis obtained by inserting (29) into

(6),

.1 (c+ve)? .
b(u,v)=c C—-——F<CxC
(. v) v 2det(, ¢, ©) x
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Parameter curveb(ug, v) are the above-mentioned parabateB. In general, surfaces
generated by one-parameter families of conics possess the property that tangent p
along a fixed conic envelop a rational developable surface of order 4; see [5]. In this spe
case, these developable surfaces along parameter parbfgjas) are actually quadratic
cones (parabolic cylinders).

7. SPHERE-SURFACE BISECTOR

We have already seen in Section 3.3 that sphere—surface bisectors are of a special
Let Sbe an oriented sphere with radidiscentered at the origi®, and letF be an arbitrary
smooth oriented surface. The orientatiorSafan also be determined by a signed radius
If the oriented normals of point to the exterior of, letd be positive. The sphere—surface
bisectorB of SandF is exactly the point—surface bisector ©fand F_q4, the one-sided
offset surface of at oriented distanced.

Let f(u, v) be a parametrization ¢, and letf, andf, be the partial derivative vectors.
The offset surfacéy is parametrized by

1
fa(u, v) = f(u, v) + dno(u, v),  withng = ————(f, x f,),
IIfu x fl

whereng is the oriented unit normal df. It is known that an arbitrary rational surfae
will not possess rational offset surfaces.

We callF arational PN surfacef there exists a parametrizatiéfu, v) such that the unit
normalng is rational inu, v. A detailed study of these surfaces is given in [30]. We know
several examples for such surfaces, for instance, spheres, cylinders, cones of revolt
and Dupin cyclides. Surprisingly all regular quadrics in 3-space are rational PN surfac
see [22]. Further, it is known that all rational skew-ruled surfaces and canal surfaces \
a rational spine curve and a rational radius function are rational PN surfaces. Additio
examples can be found in [29].

Summary 7.1. The bisector surfac8 of a rational PN surfac& and a spher& with
radiusd centered aD is arational surface. A parametrization®fs obtained by computing
the bisector 0O andF_g, the offset surface df at oriented distanced.

7.1. Sphere—Dupin Cyclide Bisector

The families of Dupin cyclides, cones, and cylinders of revolution are closed unc
offsetting. This implies that the bisector surface of an oriented sphere and a Dupin cycl
cone, or cylinder of revolution is a supercyclide, as studied in Sections 6.1 and 6.2. By
way, the axis of rotation of a cone or cylinder of revolution and the spine curve of a tor
shall also be denoted as the “offset surface.”

7.2. Approximation of Sphere—Canal Surface Bisector

Let F be an arbitrary canal surface and &be a sphere with radius, centered aD.
The offset surfacé_4 of F is again a canal surface. Only its radius has decreaseld by
We will approximate the canal surfaéeor F_g by a sequence of Dupin cyclides; see [32].
Let C; be a sequence of circles ¢h 4 and letA; be tangent cones along them. For eact
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pair (Ci, Aj) and Ci.1, Ai1) of circle plus tangent cone one computes a pair of Dupir
cyclidesD;, Dj 1 with the property thaD; is tangent toA; alongC; and D; ., is tangent
to Aj,1 alongC; ;. Additionally, the Dupin cyclide®; andD; ,; are tangent to each other
along a circle.

The bisectoB of F andSis now approximated by the bisector surfaef the sphere
S and the sequendg; of Dupin cyclides. From Section 6.2 we know tHais composed
of supercyclides and thus is a rational biquadratic spline surface.

8. CURVE-SURFACE BISECTOR

Let C be a smooth curve and |t be a smooth surface in 3-space. The curve—surfac
bisectorB contains all centers of spheres which are tanget emdF. Let C andF be
parametrized by(t) andf(u, v). Fixing a pointc(ty) on C, we will compute the bisector
surfaceBe (tp) of c(tp) andF with formula (6). Varying the parameter valtigwe obtain a
one-parameter family of bisector surfad&s(t),

1 (f-0)?

bF(U, U,t) = f(U, U) — Em
— Y lus v

fu x fo, (30)

which envelops the bisector surfaBeof F andC. Let N(tg) be the normal plane t€@ at
the curve point(ty). The parameter curves of the bisecBare intersection curves

D(t) = B (t) N N(t).

The computation is nonlinear, and rational input data will not lead to rational bisect
surfaces in general.

ExampPLE. Given a Dupin cyclide or a cone of revolutidh and an arbitrary space
curveC, the bisectoiBg(t) is a supercyclide for all points oB. IntersectingBg(t) with
the normal planeN(t) : (x — c(t)) - ¢(t) =0 leads to a polynomial equation, quadratiain
andv. To obtain the intersectiob(t) one has to solve

(be(u, v, t) —c(t)) - c(t) =0 (1)

for v (or u), from which one obtains a parametrizatiofu, t) (or b(v, t)) of the bisectoB.
This involves square roots of the parameters(ort, v).

It has to be noted here that the bisector construction for an oriented pipe sGrfaice
radiusd and oriented surfacE can be translated into curve—surface bisector constructic
for the spine curv€ of G and offset surfac&_q to F.

One would expect a simplification of the bisector construction if the curve were a strai
line. Unfortunately, elimination (31) is not significantly easier in this cask. i§ a devel-
opable surface, the computation is linear (up to some normalization). This shall be pro
in Section 10.

In the following we will concentrate on pairs of curv€sand surfaces= where the
construction of the bisectdB is linear. Mainly this is the case whehn is a plane or a
sphere, an@ is an arbitrary curve.
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FIG. 14. Line—plane and cylinder—plane bisector.

8.1. Line—Plane Bisector

We will see in Section 10 that this is a special case of bisectors between develop:
surfaces. Nevertheless, since line—plane is a basic algorithm it shall be discussed |
Given a lineG and a planee, if G is parallel toE, their bisectoB is a parabolic cylinder
with focal line G and generators parallel 8. If G is not parallel toE, let V be the
intersection poinG N E. The bisector is a quadratic co@ewith vertexV ; see Fig. 14 and
[8, 10].

A parametrization is obtained as follows. Lret= (0, 0, 1) be the unit normal oE. We
will assume thatV =G N E is the originO of a chosen coordinate system. Th@sjs
parametrized by = A(cosp, 0, sing) with a real parametex. Let k andm be two unit
normals ofg with the propertyk - m =0. Without loss of generality we can assume tha
m=(0, 1, 0) andk = (—sing, 0, cosp). The pencil of planes passing throughcan be
parametrized by

7(t) :x - (kcost + msint) = 0.
Since the plané& is x - n = 0, the symmetry planes & andz(t) are
o(t):x-(n—kcost —msint) = 0.

These planes envelop the quadratic c&jehe bisector ofc and E. Inserting the above
parametrization, the generator linesifre

b(t) = A(—cosp + cost, —sing sint, —sing).

Using a rational reparametrization for cos and sin we get a quadratic parametrizaiion o
If G is orthogonal toE, B is a cone of revolution otherwise a general quadratic cone. |
focal linesareG and the normal td& throughV.

Consider light ray$ orthogonal to a plan&. We look for a mirror surfac®, such that
the reflected rayEintersect a given lin& orthogonally. IfG is not perpendicular to the
lightraysl, B is one of the cones with vertex @ All these cones are translational versions
of one another, translated alo@g If G is perpendicular to the light raysB is a parabolic
cylinder.

The inverse problem is also of interest. Given an illuminationthogonal to a cylinder
of revolutionF with axis G, we search for a mirror surfad®, such that the reflected light
raysl_are parallel, or say normal to a pla&e The solution is again a parabolic cylinder in
the case of5 parallel toE. Otherwise the mirror can be chosen to be the mentioned col
B; see Fig. 14.
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8.2. Curve—Plane Bisector

Given a pland= and a curveC, parametrized bg(u), the construction of the bisect&r
can be done by calculating the envelope of the faBityu), whereBg (u) is the bisector of
F and a variable poirnt(u) on C. We know thatBg (u) are paraboloids of revolution, with
c(u) as the focal points. The characteristic curdés), which are the curves of contact of
B andBg (u), are conics, namely the planar intersections

d(u) = Bg(u) N N(u).

N(u) is considered to be the normal planeg®btc(u). Practically, let- be the plang=0.
The bisector of a point(u) andF is given by the equation

B (U): 2c3(U)z = ca(U)? + (X — ca(U))? + (y — Ca(U))*.
In this case the derivativép(u) and the normal planil(u) are identical,
N (u): €3(u)z = ca(u)Cs(u) — C(u)(x — €1 (u)) — Ca(u)(y — C2(u)). (32)
The orthogonal projectiord; (u) of the conicgd(u) onto F are circles with the equation
C1C3 — C3C1 2 CzC3 — Cgtz 2 C% ) .2 .2
diu): (x——) +|ly———m) = .—(cl+cz+03). (33)
C3 C3 C3

Let m(u) = (mq, my, 0)(u) be the center ofi;(u). Then it is easy to prove that(u) is the
intersection point of the tangent liffig(u) : c(u) + Ac(u) with F.

This leads to another generation®f We consider the bisector surfaBg (u) of F and
a tangent lin€eT (u) of c(u), which is a quadratic cone with vertex(u). Br(u) is tangent
to Be(u) exactly in the characteristic conidgu) and we havel(u) = By (u) N N(u); see
Fig. 15.

FIG. 15. Front and top view of plane—curve bisector construction.
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In particular, letC be a polynomial or rational curve. Thd (u) andN(u) are rational
families of paraboloids and planes. In particutiiy) andd,(u) are rational families. The
center curvam(u) of d;(u) is rational and the radius function of these circles is a squal
root of a rational function; see Eq. (33).

It is known thatd(u) generates a rational surface, and an algorithm to compute a ratiol
parametrization is described in [29]. We just want to note that the algorithm mainly requi
the calculation of all zeros otf + ¢3 + ¢3)(u) in the case of a polynomial curve or the zeros
of its numerator otherwise. Rational parametrization8 @fre then obtained by solving a
linear system.

Summary 8.1. The curve—plane bisectd for rational curves is a rational surface,
enveloped by a one-parameter family of paraboloids of revolBiefu) or quadratic cones
Bt (u). One family of parameter curves comprises conics which are curves of contac
Br (u) and By (u).

8.3. Circle—Plane Bisector

We want to discuss this example here, since the construction of the circle—plane bise
is linear (Fig. 16). From an algorithmic viewpoint, any smooth spatial cltvean be
approximated by circular arc segments; see [17, 21, 35]. Thus, the circle—plane bisectol
serve as a basic algorithm for the approximation of general curve—plane bisectors. G
the planeF : z=0 and a circleC, which can be parametrized by

c(u) = n+racosu +rbsinu,
We can assume that
n = (0, ncosg, nsing), a = ((0, cose, sing)), b=(10,0).

The intersection line oF and the plane carryin@ is thex-axis. The family of circlesl;(u)
is given by

r+ncosu\* n+r cosu\?
- . +y = - . .
sinu sinu

di(u): <x —

FIG. 16. Plane—circle bisector.
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These circles possess two common poings{('n2 — r 2, 0), which are conjugate complex
or real, depending on wheth€rintersects- in real points or not. By the way, these points
are the top views of singular surface points, which lie on the rotationalfaaf<C. Further,
the real or conjugate complex intersection point€a@ndF are also singular points da.

A parametrization of the bisector surfaBds

I +ncosu i n+rcosu

bi(u,v) = . . ,
sinu sinu
n-+rcosu .
byo(u, v) = ———— sinv, 34
2(U, v) sinu v (34)
bs(u, v) = (n +r cosu)(—1+ cosu cosv — sinu cose sinv),

~ sing(sinu)?

where b1(u, v), ba(u, v)) is a parametrization of circleg (u) andbs(u, v) is calculated via
formula (32). It turns out thaB is in general a surface of order 4 with equation

B: (X + Y2)?+ pa(X, y) + zp(X, ) + ¢Z = 0,

wherep; are polynomials of degréeandc is a constant. These surfaces are called isotropi
cyclides and their singular curve of order 2 degenerates to two conjugate complex line
the plane at infinity. They are non-Euclidean counterparts of envelopes of quadratic fami
of spheres; see [18]. Using rational instead of trigonometric functions in (34) results it
rational tensor product representation of degrees (4,2)1in

8.4. Curve—Sphere Bisectors

Given a spher&of radiusd, centered a©, and a regular (spatial) cur@ parametrized
by c(t), we can use the offset surface property of the biseBiawhich says thaB is also
the bisector ofO and the pipe surfaceé with center curveC and radiugl. This leads to the
same construction as the direct way, which shall be outlined here.

The bisectoBg(tp) of a fixed pointc(ty) ¢ S of C is a quadric of revolution with focal
points O andc(tp). The bisectoB of SandC contains parameter conics

d(to) = Bs(to) N N(to),

whereN(tp) is the normal plane t€ at c(tp); see Fig. 17. The tangent planes®flong
d(to) form a quadratic con®(tp) with vertexV (tp) on the tangent line of in c(ty). The
bisectorB is the envelope of a one-parameter family of quadBef). Let A(ty) be the
cone with vertexO throughd(tp). IntersectingA(ty) with S gives a circleds(ty). The pole
to ds(tp) with respect tdSis the vertexV/ (tp) of D(tp).

Assume thatC is a rational curve. TheBs(t) is a rational family of quadrics of revo-
lution andN(t) is a rational family of planes. This implies thaft) is a rational family of
conics which generate a rational surfd@eThe computational effort to get exact rational
parametrizations oB is the same as that to obtain rational parametrizations of the piy
surfaceF with spine curvec and then calculate the bisector®fandO.

Summary 8.2. The curve—sphere bisect@& of a rational curveC and sphereS is a
rational surface, enveloped by a one-parameter family of quadrics of revoBg@h or
qguadratic cone®(t). One family of parameter curves consists of conics, the curves
contact ofBg(t) and D(t).
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FIG. 17. Principle of curve—sphere bisector.

9. SURFACE-SURFACE BISECTOR

The construction of the bisector of two surfadesandG is in general complicated. The
simplest example in this context is the bisector of two oriented pl&ndg+f - x=0 and
G:go+g-x=0. We assume that the normal vectbendg are normalized. The bisector
of F andG is the unique plane of symmetry

o (fo—go)+(f—0)-x=0.

If one surface is a sphere, see the results of Section 7. If one surface is a pipe surface
Section 8. If both surfaces andG are developable, see Section 10. Otherwise, the onl
basic example in view of computational treatment is the plane—surface bisector, which s
be discussed here.

9.1. Plane-Surface Bisector

Given an oriented nondevelopable surf&€@nd an oriented plang, let f(u, v) be a
parametrization of and letng(u, v) be its unit normals. The tangent planeg-oére

(U, v) :no(u, v) - (x — f(u, v)) = 0.

We assume thah contains the origifD and is given by an equatia x =0, witha-a=1.
The symmetry planes(u, v) of r and A are

o(u,v):ng-f+(@a—ng)-x=0

and envelop the bisector surfa@ of F and A, which means thab (u, v) is a dual
parametrization oB. A point representation oB is found by intersecting (u, v) with
the surface normdlu, v) + An(u, v). This leads to

(@ - f)

b(u, U) = f(u, U) — m 0-

In the case of a rational surfagethe bisector is not necessarily rationalHfis a rational
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PN surface, which mean8 possesses a parametrization such that the unit nompalse
rational, then the plane—surface bisedBopossesses a rational parametrizati¢un, v).

The optical interpretation of the bisector construction tells us that parallel light rays
which are orthogonal t&\, are reflected aB in such a way that the reflected light rays
| are orthogonal td-. So, F can be callecanticausticwith respect to the given parallel
illumination and reflection at the mirror surfage

Summary 9.1. The bisector of a plane and a ratiol surface is a rational surface.

10. BISECTORS OF DEVELOPABLE SURFACES

Nonplanar developable surfaces are envelopes of one-parameter families of tan
planes. One obtains three different types, namely cylinders, cones, and surfaces for
by the tangent lines of space curves. These developable surfaces carry a one-paral
family of generating lines. The calculation of the bisector works as followsdlaatd¥ be
two developable surfaces, both described by their one-parameter families of tangent pl

@ F(u): fo(u) +f(u)-x=0,
W G(v):go(v) +9(v) - x=0.

The generating lines ob are obtained by intersecting the planééu) and Ii(u), the
derivative plane ofF (u). Analogously for the generators df, whereG(v) denotes the
derivative of G(v) with respect tov. Let p(u)= F(u) N F(u) be a generator ob. All
spheres tangent b in points of p(u) have to have centers lying in the normal plahgu)
to F(u) through p(u). We can assume that the normal vectbendg of F andG are
normalized)|f|| = 1 and||g|| = 1. We obtain

N (u): fo(u) + f(u) - x = 0,
Ng(v) : Go(v) + g(v) - x = 0,

and note that the dots denote derivatives with respacattdv. There will be no confusion
since the functiond; depend only o, whereas functiong; depend only on.

A sphere, tangent t® in some point ofp(u) and tangent tal in some point ofj(v) =
G N G, has to have its center in the symmetry pl&e, v) of F(u) andG(v). If ® andw
are oriented surfaces, their tangent planes can be oriented by the oriented unit fi@rmals
andg(u). So, the computation & is unique and we get

S(u.v):(fo—go) + (f—9) - x=0. (35)

We see that the computation of the bisector surfaad two oriented developables and
W is a linear problem, up to the normalizationfandg. A parametrizatioro(u, v) of B is
found by solving the linear system

N (u) N Ng(v) N (U, v). (36)

In a closed form we can write the parametrizatifn, v) of B as

b(u, v) = A-ng(_QOA — foB + (909 — 900) x f + (fof — fof) x @), (37)
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whereA = f x f andB = g x @. If the emphasis is on rational parametrizations we can sta
the following.

Summary 10.1. Let ® andW¥ be two oriented developable surfaces which possess rati
nal unit normalg(u) andg(v). Then the above construction proves that the bisector surfa
B is rational.

The most important examples of developable surfaces with rational unit normals
cones and cylinders of revolution. More generally, the normal vector has to be of the fc

f(u) (2a(u)c(u), 2b(u)c(u), a(u)? + b(u)® — c(u)?), (38)

- a(u)? + b(u)2 + c(u)?

with relatively prime polynomials(u), b(u), c(u). Using an arbitrary rational function
fo(u) one obtains a one-parameter family of planes

F(u): fo(u) +x - f(u) = 0.

Its envelope is a developable surface with rational unit noriifa)s

10.1. Bisector of Cylinders of Revolution

Given two cylinders of revolutionb and ¥ with tangent planes(u) and G(v), re-
spectively, letC, D be circular cross sections d@f, W. These circles can be parametrized

by
C:m+rf(u), with f = acosu + bsinu,
D :n+sg(v), with g = ccosv + dsinv,

where the vectora, b andc, d are normalized, ana- b =0 andc-d =0. Thusf andg are
normalized. Tangent planes and derivative planed ahdW are

F):(x—m-—rfu) -fuy=0,  Fu):(x—m)-fu)=0,
G(v):(x—n—sg@)-g() =0,  G(v): (x—n)-g(v) =0.
The symmetry plane of the oriented plarfe@) andG(v) is
Su,v):(—m-f+n-g-—r+s)+({f—-g)-x=0.

Then, an elementary calculation leads to a parametrizati@, of
1 . - . : s
b(uv)=———MN-gA+m-fB+Axm)xg+Bxn)xf+({ —s)f x@g), (39)
A-g+B-f

with A=f x f andB =g x g as constant vectors representing the axes of the cylindel
Substituting trigonometric by rational functions one obtains a tensor product representa
of degrees (2,2) foB. This says that the parameter curves are conics. These two families
conics are contained in pencils of planes passing through the axes of the cyfiméglera
andn + uB, respectively. The intersection points Bfwith these two axes are singular
points of B. The bisector surface is a supercyclide, and its double curve is a pair of lines
the plane at infinity.
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FIG. 18. Bisector surfaces of two cones and cylinders of revolution.

10.2. Bisector of Two Cones of Revolution

Given two cones of revolutio® andW¥ with verticesm andn and tangent plands(u)
andG(v), respectively, the normal vectors of these tangent planes can be represented

1
f(u) = 2(ax b + racosu +rbsinu),
r

N

2(c x d + sccosv + sd sinv),

W= Are

wherea, b andc, d are normalized and- b =0 andc - d =0 (Fig. 18). ThenF andG and
their derivatives are

Fu):(x—m)-f(u) =0, F(u):(x—m)-i‘(u):O,
G):(x—=n)-gv) =0, G):(x—n)-g(v) =0.

Let S= F — G be the symmetry plane & andG. The bisector ofb andV¥ is parametrized
by

1 . .
buyv)=—nN-gA+m-fB4+ (A xm) x g+ (B xn) xf), 40
R wrrwm (Ul (Axm)xg+(Bxn)xf).  (40)
with A=f x f andB =g x ¢. Here,A andB are not constant. But if we insert the above
representations fdrandg and substitute the trigonometric by rational functions, one ca
verify that (40) is a (2,2) tensor product representatioB.ofhe bisectoB is a supercyclide

which has singular points on the axes of the cones and a pair of lines as singular curve

Summary 10.2. The bisectors of cones and cylinders of revolution are supercyclides

Remark. The cyclographic model applies quite well to the bisector construction fc
cones of revolution; see [19]. The cyclographicimage of the cBn&sare straightlined, g
in 4-space. The cyclographic images of all spheres tangeht @form quadratic hyper-
conedl's andTI'g with f andg, respectively, as singular sets. The intersechioa I't NIy
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is a two-dimensional surface of order 4 in 4-space, and its orthogonal projection o
E3:r =0 s the bisectoB of F andG.

The hypercone$'s, I'y contain generating plangsandy passing throughf andg,
respectively. The orthogonal projectionsof N ¢ andI'g N ¢ are the two families of
conics onB. Moreover, the intersection pointsN I'y andg N I's are projected onto the
singular points on the axes &fandG.

11. CONCLUSION

This article shall enlighten the role of classical geometry in the computation of bisec
surfaces. It is also a collection of basic algorithms and linear constructions. The gen
surface—surface bisector construction is not linear, but for several surface families, suc
spheres, pipe surfaces, and developable surfaces, we have found elementary method

This article is mainly a geometrical contribution and in view of algorithms, a lot of wor
has to be done, since the spatial problems seem to be much more complicated tha
planar ones.

We obtained similar results for point—surface, sphere—surface, and plane—surface b
tors, as well as for bisectors of two curves or developable surfaces. We have seen that ce
families of curves and surfaces play a special role. They share the property of invaria
under Mobius transformations. Since Laguerre geometric properties have also occurre
Lie sphere geometric investigation would be a unifying method for bisector constructio
This will be studied in a further contribution.
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