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This paper studies algebraic and geometric properties of curve–curve, curve–
surface, and surface–surface bisectors. The computation is in general difficult since
the bisector is determined by solving a system of nonlinear equations. Geomet-
ric considerations will help us to determine several distinguished curve and sur-
face pairs which possess elementary computable bisectors. Emphasis is on low-
degree rational curves and surfaces, since they are of particular interest in surface
modeling. c© 2000 Academic Press

1. INTRODUCTION

Given two geometric objectsO1 and O2 in Euclidean 3-spaceE3, their bisector B
is defined as the locus of equidistant points fromO1 and O2. The distance is measured
orthogonal to both objects. Thus, bisectorB is the set of centers of spheres touching both
O1 andO2. We do not require that the distance fromB to O1 andO2 be minimal and we
only discuss theuntrimmed bisector; see [12]. The objects shall be points, smooth curves,
and surfaces. If the objectsO1,O2 are just continuous and possess edges, the bisectorB
can be computed applying the offset operation discussed in Section 3.3. We will not discuss
this in detail.

If O=O1=O2 is a solid object,B shall be called an untrimmedself-bisector. Themedial
axisor skeleton—see [1, 36]—is a subset ofB. It consists of centers of maximal inscribable
spheres.

The computation of the bisector and medial axis is in general difficult. We want to
determine several families of curves and surfaces which admit an elementary bisector com-
putation. These constructions shall be calledbasic algorithms. Bisectors of “complicated”
objects can be approximated by approximating the given objects by those objects which
admit elementary bisector constructions. In particular we will discuss rational curve and
surface pairs which possess rational bisector surfaces. Several results derived here may also
be found in [8–12, 16].

202

1524-0703/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



GEOMETRIC PROPERTIES OF BISECTOR SURFACES 203

The article is organized as follows. Section 2 collects some facts about planar bisectors.
Section 3 introduces point–surface and point–curve bisectors in space. Section 4 discusses
algebraic properties of point–object bisectors. We will study a quadratic transformation
which maps an object onto the point–object bisector. Circles, spheres, planes, and en-
velopes of them are distinguished with respect to this mapping. Section 5 studies curve–
curve bisectors in space. Sections 6 and 7 present special examples of point–surface and
sphere–surface bisectors. We deal with curve–surface bisectors in Section 8, and Section
9 briefly discusses surface–surface bisectors. Section 10 presents results about bisectors of
developable surfaces. Furthermore, we will point out relations to geometric optics.

A possible method for studying bisectors from a geometric point of view is the geometry
of oriented spheres and planes inE3, called Laguerre geometry. A detailed description
of the planar case is given in [26]. Some facts and details can also be found in [32].
A general monograph of sphere geometry is [4]. Here, we mainly use constructive and
analytic geometry.

Points inE3 are denoted by their coordinate vectorsx= (x1, x2, x3); points in Euclidean
planeE2 are denoted analogously. The scalar product and vector product of two vectorsx, y
are denoted byx · y andx× y, respectively. Section 4 uses a different notation for points
and planes in projective extensionP3 of E3, which is explained there. When computing
point–curve or point–surface bisectors we will always assume that a coordinate system has
been chosen such that this point is the originO= (0, 0, 0) (or O= (0, 0) in the planar case).

2. BISECTOR CONSTRUCTIONS IN THE PLANE

The bisector of two planar curves has been discussed in detail in the literature; see
for instance [12, 13, 26, 34] and references therein. We want to collect some geometric
properties which possess analogs in the spatial case.

2.1. Point–Curve Bisector in the Plane

DEFINITION 2.1. The bisectorB of two planar curvesC1,C2 is the locus of points being
equidistant to both curves. Distances are measured orthogonal to the input curvesC1, C2.

First of all, the bisector of two points is the line of symmetry. The bisector of pointO and
not incident lineL is a parabola with focal pointO, axis orthogonal toL, and directrixL.

Let C be a planar curve parametrized byc(t)= (c1(t), c2(t)) and letB be the bisector
with respect to the originO= (0, 0). By definition,B contains all centers of circles which
are tangent toC and which pass throughO. Moreover, the lines of symmetry

σ (t) : c(t) ·
(

x− 1

2
c(t)

)
= 0 (1)

of O andc(t) are tangent lines ofB. Thus, we refer to (1) as dual representation ofB. The
conversion to a representation ofB as a point set is obtained by intersecting linesσ (t) and
σ̇ (t). Therefore, pointsb(t) of the bisectorB are solutions of the linear system

σ (t) : 2c(t) · x = c(t) · c(t), σ̇ (t) : ċ(t) · x = c(t) · ċ(t). (2)

On the other hand,b(t) is the intersection point of the symmetry lineσ (t) and the curve
normalc(t)+ λn(t), wheren= (−ċ2, ċ1) is a normal vector ofC. This construction leads



204 MARTIN PETERNELL

FIG. 1. Point–curve bisector and optical interpretation.

to the parametrization

b(t) = c(t)− 1

2

c(t) · c(t)

c(t) · n(t)
n(t), (3)

which solves (2). Figure 1 shows elementary examples. The bisector between pointO and
circleC is an ellipse or hyperbola depending on whetherO is inside or outside ofC.

The point–curve bisector is a basic algorithm and serves to compute curve–curve bi-
sectors; see [12]. The reason is that the bisectorB of curvesC1 andC2 is the envelope
of a family of curvesB1(t). This family consists of bisectors ofC1 and a variable point
c2(t) ∈ C2.

2.2. Curve–Curve Bisectors and Geometric Optics

The relation between bisector and geometric optics follows immediately from its def-
inition. Light raysl radiating from a point sourceO=C1 are reflected at the bisectorB
in such a way that the reflected light raysl̄ are orthogonal to the given curveC=C2; see
Fig. 1. This principle holds in general ifC1 is an arbitrary planar curve.

Summary 2.1. Light raysl perpendicular toC1 will be reflected at the bisectorB such
that the reflected rays̄l are perpendicular toC2.

The curveC2 is said to be ananticausticof illumination orthogonal toC1 and reflection
at B. The definition is symmetric with respect toC1 andC2. Thus, bisectors are mirror
curves with respect to the given illumination.

A further property of bisectors is their invariance under offsetting the input curves. Let
C1 be an oriented circle with radiusd, centered atO and with outward-oriented normals,
and letC2 be an arbitrary planar curve. The bisector ofC1,C2 equals the bisector ofO and
D, with D as an offset curve toC2 at distance−d. The orientation is important since we
have to substituteC1 andC2 by their offsetsO andD at distance−d. This principle holds
in general for the bisectorB of two oriented curvesC1, C2.

Summary 2.2. SubstitutingC1 andC2 by offset curves at oriented distanced leaves the
bisectorB unchanged.
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FIG. 2. Line–curve bisector.

Considering rational planar curvesC1, C2, their bisectorB will not be rational in general.
A special case implying rational bisectors is the following. LetC2= A be a straight line
given by equationa · x= 0 with ‖a‖=1 (A passes throughO). Let C1=C be a rational
curve with parametrizationc(t) possessing rational unit normal vectors

n(t) = 1

‖ċ‖ (−ċ2, ċ1)(t).

CurveC is called arational offset curveor rational PH-curve; see [30]. Depending on the
orientation ofA andC (see Fig. 2), the bisectorB is for instance parametrized by

b(t) = c(t)− a · c(t)

(a− n(t)) · n(t)
n(t).

The tangent lines ofB are lines of symmetry ofA and the tangents ofC; see Fig. 2. We
consider an illuminationl orthogonal toA. Light raysl are reflected at the mirrorB in a
way such that the reflected raysl̄ are orthogonal toC. The curveC is called anticaustic for
parallel illumination and reflection atB. In terms of geometric optics this says thatmirror
curves B to rational PH-curves C for parallel light rays are rational. Similar statements
will hold in the spatial case.

Summary 2.3. The bisector of two circles and the bisector of a line and a rational
PH-curve is always rational.

Of course, there are many more pairs of rational curves possessing rational bisectors.
But in general it is not easy to decide whether the bisector of two rational input curves is
rational.

Remark. E2 shall be embedded intoE3 with coordinatesx, y, r as planer = 0. Consider
oriented planar curvesC1,C2 in E2. We will give a spatial interpretation of the bisector
construction. Let01, 02 be developable surfaces throughC1,C2 which possess constant
slopeπ/4 with respect toE2. This implies that the inclination angle of generating lines of
01, 02 with E2 equalsπ/4. Each developable surface0i is the graph of the signed distance
function to curveCi , i = 1, 2. Further, letD be the intersection curve01 ∩ 02. Thus, the
orthogonal projection ofD onto E2 is the bisectorB of C1,C2. If D is parametrized by
d(t)= (d1, d2, d3)(t), the bisectorB possesses the parametrizationb(t)= (d1, d2)(t). The
radii of circles centered atb(t) which are tangent toC1,C2 equald3(t).
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This method is studied and applied in [8, 26, 32]. We will see later that this method works
analogously in the spatial case.

If C1=C2=C, we call B a self-bisector ofC. B is again the orthogonal projection of
the self-intersectionD of the developable of constant slope0 throughC. The “true” (or
trimmed) bisector is a subset ofB. The trimming procedure can be realized by applying
a visibility algorithm to the intersectionD with respect to0; see [32]. A similar idea for
trimmed bisector construction is presented in [3].

3. BISECTOR CONSTRUCTIONS IN SPACE

DEFINITION 3.1. The bisectorB of two surfacesF1, F2 is the locus of points being equi-
distant to both surfaces. Distances are measured orthogonal to the input surfacesF1, F2.

Let us collect some elementary properties. The bisector of two pointsp andq is their
plane of symmetry

σ : (p− q) ·
(

x− 1

2
(p+ q)

)
= 0.

The bisector surface of a pointp and a lineG is aparabolic cylinder. Its generator lines are
perpendicular to the plane, spanned byp andG; see Fig. 3. The bisector surface of a point
p and a planeE is a paraboloid of revolutionwith focal pointp and axis perpendicular
to E.

Next, the bisector surfaceB of a smooth surfaceF and originO shall be computed.
By definition, the bisectorB contains the centers of all spheres tangent toF and passing
throughO. Let F be parametrized byf(u, v). The symmetry planes ofO andf(u, v) are

σ (u, v) : f(u, v) ·
(

x− 1

2
f(u, v)

)
= 0. (4)

Bisector B is the envelope of planesσ (u, v). Thus, we call (4) a dual representation
(parametrization) ofB. The conversion to a point representation ofB is done by intersecting
planesσ (u, v) with partial derivative planesσu(u, v) andσv(u, v). Thus, a parametrization
b(u, v) of B solves the linear system

σ (u, v) : f · x = 1

2
f · f, σu(u, v) : fu · x = f · fu, σv(u, v) : fv · x = f · fv. (5)

Parametrizationb(u, v) is also obtained by intersecting symmetry planesσ (u, v) with the

FIG. 3. Point–line and point–plane bisector.
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FIG. 4. Point–circle bisector in space.

surface normalsf + λfu× fv. Thus, a solution of (5) is given by

b(u, v) = f − 1

2

f · f
det(f, fu, fv)

(fu × fv). (6)

3.1. Point–Curve Bisector in Space

The bisector surface of a curveC and a pointO shall be computed (Fig. 4). We will again
assumeO to be the origin (0, 0, 0). CurveC shall be parametrized byc(t). The bisectorB
is enveloped by the planes of symmetry ofO andc(t). This family is

σ (t) : c(t) ·
(

x− 1

2
c(t)

)
= 0. (7)

Thus,B is always adevelopable surface. This answers the question of Elber and Kim [9],
of which (space) curves possess a developable point–curve bisector surface.

A developable surface is a special kind of ruled surface, so it carries generating lines
g(t). All regular points of a fixed generatorg(t0) possess the constant tangent planeσ (t0).
The generating linesg(t) can be computed as intersection lines ofσ (t) and

σ̇ (t) : ċ(t) · (x− c(t)) = 0.

The singular point ong(t0) is obtained by intersectingg(t0) with σ̈ (t0). The notation of a
parametrization ofB as a point set is compact if we use Pl¨ucker coordinates (as “black
box”) for the generating linesg(t). We form the vectors

l := c× ċ, l̄ := (c · ċ)c− 1

2
(c · c)ċ,

wherel is a direction vector ofg andl · l̄ = 0 holds. The foot point ofg with respect to the
origin O is given by

f := 1

(l · l) l × l̄. (8)

This yields a parametrization ofB in the formb(s, t)= f(t)+ sl(t).
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EXAMPLE. Consider a circleC with centerm lying in a planeγ (Fig. 4).C is parametrized
by c(t)=m+ c1(t) with

c1 = acost + b sint, with ‖a‖ = ‖b‖ anda · b = 0.

The radiusrC of C equals‖c1‖, andc1 · ċ1= 0 holds. Further,c1× ċ1= n is a constant
normal vector ofγ . The symmetry planeσ and its first and second derivatives are

σ (t) : (c1+m) · x = 1

2

(
m2+r 2

C

)+m ·c1, σ̇ (t) : ċ1 ·x = m · ċ1, σ̈ (t) : c1 ·x = c1 ·m.

The bisectorB of C andO is a quadratic cone or cylinder. In the case of a cone, its vertex
z is obtained by intersectingσ ∩ σ̇ ∩ σ̈ ,

z= m+ r 2
C −m2

2m · n n. (9)

If m · n 6= 0, B is a cone and its vertexz lies always on the axisA of the circleC. The
bisectorB is parametrized by

b(t, s) = z+ s(n+m× ċ1(t)).

The axisA of C and the line connectingz andO are realfocal linesof the coneB.
B is a cylinder, ifm ·n = 0, which expresses incidence ofO andγ . Thus, this is a planar

problem andB possesses the planar bisector ofO andC as its cross section. The generating
lines of B are parallel toA. Its focal lines pass through the focal points of the cross section
B ∩ γ and areA and the normal toγ throughO.

3.2. Point–Curve Bisector of Curves on Surfaces

It is important to discuss how point–curve bisectors are related to point–surface bisectors
in the case of curves on surfaces. Let a surfaceF be given by a parametrizationf(u, v). Any
curveC on F can be represented byc(t)= f(u(t), v(t)). We know already that the bisector
BF of F and the originO is enveloped by planesσ (u, v) : f(u, v) · (x− 1

2f(u, v))= 0,
whereas the bisectorBC of C and O is enveloped by the one-parameter familyσ (t) :
c(t) · (x− 1

2c(t))= 0. Obviously, each planeσ (t) occurs also as planeσ (u, v), which means
that BC is a developable surface tangent to BF . Two examples shall illustrate this.

3.2.1. Planar Curves

We can assume that the planeF is defined by the equationz= 1. LetC⊂ F be a planar
curve parametrized byc(t)= (c1(t), c2(t), 1). The bisectorBF of F andO is a paraboloid
of revolution, and the bisectorBC is a developable surface, tangent toBF in a curveD. It
is an elementary property ofBF thatD is the orthogonal projection ofC ontoBF . Thus,D
is parametrized by

d(t) =
(

c1, c2,
1

2

(
1− c2

1 − c2
2

))
.

Since the generating lines ofBC possess direction vectorsc× ċ, a parametrization ofBC is

b(t, s) =
(

c1, c2,
1

2

(
1− c2

1 − c2
2

))+ s(−ċ2, ċ1, c1ċ2− c2ċ1).
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FIG. 5. Bisector of planar curve and point in space.

Figure 5 illustrates the bisector surfaceBC of O and an ellipseC⊂ F . The paraboloidBF

possessesO as focal point (not visible).

3.2.2. Spherical Curves

Let F be a sphere with centerm and radiusr and letC be a curve onF . The bisectorBF

with respect toO is a quadric of revolution with focal points inO andm. The bisectorBC

is a developable surface, tangent toBF along a curveD. The curve of contactD is obtained
by intersecting the linesm+ λ(c(t)−m) with the symmetry planesσ (t) of c(t) andO. This
leads to

d(t) = m+ c · ( 1
2c−m

)
c · (c−m)

(c−m).

Figure 6 shows the bisector of a spherical algebraic curveC of order 4. Further, one could

FIG. 6. Bisector of spherical curve and point in space.
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study bisectors of curves on cones and cylinders of revolution, or Dupin cyclides. These
families of surfaces possess similar properties than planes and spheres; see Sections 6.1 and
6.2. This shall not be investigated here.

3.3. Surface–Surface Bisectors and Geometric Optics

Analogously to Section 2.2, the construction of bisectors is related to geometric optics.
These are obvious generalizations of the planar case.

Summary 3.1. Light raysl perpendicular toF1 are reflected at the bisectorB in a way
such that the reflected rays̄l are perpendicular toF2.

F2 is calledanticausticfor illumination orthogonal toF1 and reflection atB. Thus,
construction of bisectors is equivalent to the construction of mirror surfaces.

Let F1 be an oriented sphere with radiusd, centerO, and outward-oriented normals. The
bisector ofF1, F2 equals the bisector ofO andD, with D as offset surface toF2 at distance
−d. Orientation is important since we have to substituteF1 andF2 both by their offsetsO
andD at distance−d. More generally formulated we obtain

Summary 3.2. SubstitutingF1 and F2 by offset surfaces at oriented distanced leaves
the bisectorB unchanged.

Considering rational surfacesF1, F2, their bisectorB will in general not be rational. But
if one surface, sayF2 is a plane andF1 is a rational surface, which possesses rational unit
normals, their bisector surface is rational. A parametrizationb(t) of the bisector is given in
Section 9.1.

Remark. Analogously to the planar case we embed the spatial problem into 4–space with
coordinatesx, y, z, r . Consider two oriented surfacesF1, F2 in the hyperplaneE3 : r = 0.
Let 01, 02 be two hypersurfaces of constant slopeπ/4 with respect toE3, which pass
throughF1, F2. Further, letB be the orthogonal projection ofD=01 ∩ 02 onto E3. Since
01, 02 form the same angle withE3, the surfaceB is the bisector ofF1 and F2. Assume
that d(u, v)= (d1, d2, d3, d4)(u, v) is a parametrization ofD; the projectionB onto E3

is parametrized byb(u, v)= (d1, d2, d3)(u, v). The radius function of spheres centered at
b(u, v) and tangent to surfacesF1, F2 is d4(u, v). This method is applied in [8, 32].

If F = F1= F2, the untrimmed self-bisector can be computed as an orthogonal projection
of the self-intersection of the hypersurface0 ontoE3. The trimmed bisector is obtained by
applying a visibility algorithm; see [32].

4. GEOMETRIC BACKGROUND AND ALGEBRAIC PROPERTIES

For studying algebraic properties of point–curve and point–surface bisectors we will
use projective extensionsP2 and P3 of Euclidean spacesE2 and E3, respectively.E3 is
extended toP3 by adding points at infinity. We will describe just the spatial case since the
planar situation is completely analogous. Each point at infinity is defined by a bundle of
parallel lines. All these points at infinity form the plane at infinity.

A mathematical description ofP3 is obtained by using homogeneous coordinatesx=
(x0, x1, x2, x3). They are only determined up to a scalar multiple, which says that

x and xρ, ρ ∈R\{0}
define the same point. It is convenient to denote points byxR. A plane inP3 is given by a
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linear homogeneous equation

u0x0+ u1x1+ u2x2+ u3x3 = 0.

The vectoru= (u0, u1, u2, u3) is called a homogeneous coordinate vector of that plane.
Since coordinatesui are also just determined up to a scalar multiple, planes shall be denoted
byRu. The left and right scalar multiples in plane and point coordinates are just a convention
to distinguish them.

Points at infinity are characterized byx0= 0. Points not at infinity (x0 6= 0) possess
Cartesian coordinates (x, y, z). The conversion from homogeneous to Cartesian coordinates
is done by

(x0, x1, x2, x3) 7→
(

x1

x0
,

x2

x0
,

x3

x0

)
= (x, y, z).

An analogous description works in projective planeP2. Points and lines are represented by
xR= (x0, x1, x2)R andRu=R(u0, u1, u2), respectively.

4.1. Algebraic Properties of Planar Point–Curve Bisectors

It shall be shown that the point–curve bisector is obtained by applying a quadratic mapping
to the curve. This will lead to further geometric properties in particular for algebraic curves.
We will define the following quadraticpoint-to-line mapping,

β: xR 7→ Ru,
(10)

(x0, x1, x2) 7→
(
−1

2

(
x2

1 + x2
2

)
, x0x1, x0x2

)
= (u0, u1, u2).

This maps pointsxR= (x0, x1, x2)R to symmetry linesRu with respect to the origin
O= (1, 0, 0)R. If xR= cR is a point on the curveC, the symmetry lineRu envelops the
bisectorB of C andO. Thus,β will be called thebisector map. To apply this to bisectors
of algebraic curves, we also need the inverse mapping

β−1:Ru 7→ xR,
(11)

(u0, u1, u2) 7→
(
−1

2

(
u2

1+ u2
2

)
, u0u1, u0u2

)
= (x0, x1, x2).

Let C be an irreducible planar algebraic curve inP2 given by the polynomial equation

C(x0, x1, x2) : an(x1, x2)+ · · · + an− j (x1, x2)x j
0 + · · · + a0xn

0 = 0, (12)

wherexi are unknowns andaj (x1, x2) are homogeneous polynomials of degreej . Insert-
ing the right-hand side of (11) into Eq. (12) gives an equation of the bisectorB in line
coordinates,

B(u0, u1, u2) : un
0an(u1, u2)+ · · · +

(−1

2

) j (
u2

1+ u2
2

) j
an− j (u1, u2)un− j

0

+ · · · + a0

(−1

2

)n(
u2

1+ u2
2

)n = 0. (12a)
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Notationequation in line coordinatesshall express thatB(t0, t1, t2)= 0 holds for homo-
geneous coordinates of tangent linesT =R(t0, t1, t2) of the bisectorB.

To study the algebraic properties of the bisectorB we recall that theorderof an algebraic
curve is the algebraically counted number of intersection points with a line inP2. Theclass
of an algebraic curve is the algebraically counted number of tangent lines of the curve that
pass through a fixed point.

Sinceβ is a quadratic point to line mapping, curvesC of degreed are in general mapped
to curvesβ(C)= B of class 2d. This rule possesses several exceptions. At first, Eq. (12a)
says that ifO= (1, 0, 0)R is k-fold point ofC, that meansa0= · · ·=ak−1= 0; Eq. (12a) is
divisible byuk

0. Thus, the class ofB reduces byk.
If an(x1, x2) is divisible byx2

1 + x2
2, Eq. (12a) is divisible by (u2

1+ u2
2). Thus, the class

of the bisector reduces by 2. This actually occurs ifC is a circle. The fact thatx2
1 + x2

2

is a factor ofan has a geometric interpretation. This says that the curveC contains the
conjugate complex pointsi, ī at infinity. These are calledideal points, and their homogeneous
coordinates are

i = (0, 1, i ) and ī = (0, 1,−i ).

Summary 4.1. If an algebraic curveC of orderd possessesk-fold points at the ideal
points the class of bisectorB reduces by 2k.

4.2. Algebraic Properties of Point–Surface Bisectors

Analogously to the planar case we will discuss algebraic properties of the point–surface
bisector with help of bisector mapping. To obtain a more compact notation we will use the
following abbreviation for homogeneous point and plane coordinates:

xR = (x0, x1, x2, x3)R = (x0, x)R, with x = (x1, x2, x3), (13)

Ru = R(u0, u1, u2, u3) = R(u0, u), with u = (u1, u2, u3). (14)

Similar to the planar case we define the bisector mapping

β: xR 7→ Ru,
(15)

(x0, x)R 7→ R
(
−1

2
x · x, x0x

)
= R(u0, u),

which maps pointsxR to symmetry planesRu with respect to the originO= (1, 0, 0, 0)R.
The inverse mapping of (15) is

β−1:Ru 7→ xR,
(16)

R(u0, u) 7→
(
−1

2
u · u, u0u

)
R = (x0, x)R.

Let F be an irreducible algebraic surface inP3 given by the polynomial equation

F(x0, x) : an(x)+ · · · + an− j (x)x j
0 + · · · + a0xn

0 = 0,

wherexi are unknowns andaj (x) are homogeneous polynomials of degreej in x1, x2, x3.
The equation of the bisectorB follows by inserting expressions ofβ−1 into F . Thus,
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we obtain

B(u0, u) : un
0an(u)+· · ·+

(−1

2

) j

(u ·u) j an− j (u)un− j
0 +· · ·+a0

(−1

2

)n

(u ·u)n = 0. (17)

Theorderof an algebraic surface is the algebraically counted number of intersection points
with a line in P3. Theclassof an algebraic surface is the algebraically counted number of
tangent planes of the surface passing through a line.

Sinceβ is a quadratic point to plane mapping, surfaces of degreed are in general mapped
to surfaces of class 2d. A point bR is abase pointof the transformationβ if β(b)= (0, 0, 0, 0)
which does not represent points inP3. From (15) it follows that the originO= (1, 0, 0, 0)
is a base point. IfF has ak-fold point in O, Eq. (17) is divisible byuk

0 and the class of the
bisectorB reduces byk. Further, theabsolute conic

J : x0 = 0, x2
1 + x2

2 + x2
3 = 0 (18)

consists of base points. Ifan(x) is divisible byx · x, surfaceF contains the absolute conic
J. Formula (17) tells us thatB is divisible byu · u.

Summary 4.2. Let F be an algebraic surface of ordern which containsJ with multi-
plicity k. Then, the bisectorB is of class 2(n− k).

Examples for such surfaces are spheres, tori, Dupin cyclides and Darboux cyclides. The
point–sphere bisectors are quadrics. Since cyclides of order 4 possessJ as a double curve,
their bisectors possess the same order; see Section 6.2.

Remark. Studying the above representations (10) and (15), we see thatβ can be decom-
posed in the following way,

xR 7→ κ(xR) 7→ π (κ(xR)) 7→ σ (π (κ(xR))) = β(xR),

(x0, x)R 7→ ((x · x), x0x))R 7→ R(−(x · x), x0x) 7→ R(− 1
2(x · x), x0x),

whereκ andπ areinversionandpolarity with respect to the unit sphereS2 andσ is a scal-
ing with factor 1

2. S2 can be replaced by an arbitrary sphere centered atO. A point xR=
(x0, x) is mapped at first onto the pointκ(xR). Then, polarityπ mapsκ(xR) to its polar
planeπ (κ(xR)) with respect toS2. The final scaling is a similarity with centerO and factor
1
2; see Fig. 7. In short form we write

β = σ ◦ π ◦ κ. (19)

FIG. 7. Decomposition of the bisector mapping.
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Scalingσ and polarityπ are bijective mappings. Thus, the base points ofβ are exactly base
points of the inversionκ.

Similarityσ scales the distance of a plane from the origin. This is done by scaling just the
first coordinateu0. In the case ofu2

1+ u2
2+ u2

3= 1, which are normalized plane coordinates,
the first coordinateu0 equals the oriented distance of the planeRu=R(u0, u) from O.

Remark. Up to the scaling by12, the bisector mappingβ equals the inversepedal trans-
formation. The pedal transformation with respect to the originO maps planesRu not passing
throughO to its foot pointsfR with respect toO. In homogeneous coordinates, the pedal
transformation reads as

Ru = R(u0, u) 7→ (−u · u, u0u)R = fR. (20)

The above decomposition also works for parametric surfaces. We will now return to Carte-
sian coordinates. Let the surfaceF be parametrized byf(u, v). The inversionκ maps the
surface pointf onto

g(u, v) = κ(f(u, v)) = 1

f(u, v) · f(u, v)
f(u, v).

Polarityπ mapsg to the polar planeτ (with respect to the unit sphere), whose equation is

π (g(u, v)) = τ (u, v) : −f(u, v) · f(u, v)+ f(u, v) · x = 0.

We apply the scalingσ and calculate the envelope of planesσ (τ (u, v)). This exactly leads
to the linear system (5) and the parametrization (6) of the bisector surface.

4.3. Algebraic Properties of a Point–Curve Bisector in Space

The above decomposition (19) also serves to compute the bisector of the pointO and a
curveC. In particular, letC be an algebraic curve of orderd. The image curveD= κ(C) is
of order 2d, if C contains no base points. IfC containsO or intersects the absolute conic
J, the order ofD reduces by the multiplicity ofO and intersection multiplicity ofJ ∩ C.
Since the polarityπ is a point-to-plane mapping,π (D) is the envelope of a one-parameter
family of planes and thus a developable surface. The class ofπ (D) is 2d in general.

Algebraic curvesC are given by polynomial equations andC is considered an intersection
of algebraic surfaces

C = F1 ∩ F2.

At most, two equations are sufficient but note that for instance the twisted cubic is a complete
intersectionnotof two surfaces but of three quadrics.

The bisector surfaceB of O andC can be constructed via bisector surfacesBi of Fi and
O. SinceC is the intersection of surfacesFi , the bisectorB is the intersection ofBi . We
have to note that surfacesBi are considered to be two-parameter families of tangent planes
in this context. Thus, intersectionB1∩B2 is a one-parameter family of tangent planes which
envelope an algebraic developable surface.

For instance, remember the point–circle bisector discussed in Section 3.1. Letγ be the
plane containingC. Applyingβ = σ ◦π ◦κ we will obtain at first a circleκ(C) in a planeα.
The polarityπ maps points ofκ(C) to a family of planes passing through the polez=π−1(α)
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of α. Sinceπ (and alsoπ−1) is a linear mapping, these planes envelope a quadratic cone;
see Fig. 4.

If O ∈ γ , inversionκ mapsγ onto itself. It follows thatz is at infinity. Polarityπ maps
κ(C) onto a quadratic cylinder with generator lines perpendicular toγ .

5. CURVE–CURVE BISECTOR IN 3-SPACE

A detailed study of bisector surfaces of two space curves was done by Elber and Kim
[9]. They proved that two rational space curvesC andD possess a rational bisector surface
B. The construction is as follows. Letc(u) andd(v) be rational parametrizations of space
curvesC andD. A sphereS is tangent toC at a pointc if its center is located in the normal
plane toC at c. Thus, the center of a sphere tangent toC and D is located in the normal
planes ofC, D. Additionally, this center has to be contained in the symmetry planeσ of
pointsc andd. A parametrizationb(u, v) of B is obtained as solution of the linear system

NC : ċ · (x− c) = 0, normal plane toC

ND : ḋ · (x− d) = 0, normal plane toD (21)

σ : (d− c) ·
(

x− 1

2
(c+ d)

)
= 0, symmetry plane ofC andD.

We note thaṫc(u) is the derivative with respect tou, but ḋ(v) is the derivative with respect
to v. We want to derive a formula for the parametrizationb(u, v). The line of intersection
G= NC ∩ ND can be represented by the vectors (compare Section 3.1)

g= ċ× ḋ, ḡ= (d · ḋ)ċ− (c · ċ)d.

IntersectingG(u, v) with the plane of symmetryσ (u, v) leads to the following parametriza-
tion of B,

b(u, v) = 1

(d− c) · (ċ× ḋ)

(
−1

2
(c2− d2)(ċ× ḋ)+ (d− c)× ((d · ḋ)ċ− (c · ċ)ḋ)

)
. (22)

Pointspi = (ui , vi ) for whichG(ui , vi ) ⊂ σ (ui , vi ) are called base points of the parametri-
zation. The numerator and denominator of (22) vanish at (ui , vi ).

EXAMPLE: It is known that the bisector surface of two skew linesG1,G2 in space is
a hyperbolic paraboloidB. Its axis is the common normal ofG1,G2. Formula (22) does
not represent the straight lines onB but the parabolas; see Fig. 8. This follows from the

FIG. 8. Bisector of two lines and two cylinders of same radii.
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geometric generation. We fix one pointy2 on G2. The bisector ofG1 andy2 is a parabolic
cylinderB2. The intersection ofB2 with a normal plane toG2 throughy2 gives a parameter
curve ofB.

Assume that a Cartesian coordinate system has been chosen such that thez-axis is the
common normal ofG1 andG2. Let these lines be parametrized by

G1 = (u cosφ, u sinφ, d), and G2 = (v cosφ,−v sinφ,−d),

whereφ denotes the angle betweenG1 and thex-axis. An elementary calculation shows
that B is parametrized by

b(u, v) = (2d sinφ(u+ v), 2d cosφ(u− v),−2 cosφ sinφ(u+ v)(u− v)).

It is biquadratic and possesses base points at infinity defined by the linesu+ v= 0 and
u− v= 0. A bilinear parametrization ins, t can be obtained by the substitutions= u+ v,
t = u− v.

Figure 8 shows that the bisectorB of two cylindersF1, F2 of revolution with equal radii
r = r1= r2 is also a hyperbolic paraboloid. Using the invariance under offsetting,B can be
computed as bisector of their offsets at distance−r . These offset surfaces degenerate to
their axes of revolution. We will see later in Section 10 that the bisector surface for two
cylinders (or cones) of revolution is of fourth order, in general.

The point–curve bisectors are completely described in Section 3.1. From a computational
viewpoint, the point–circle bisector is of importance, since it is simple enough to serve as a
basic algorithm. This means that the computation of point–curve bisectors of complicated
curves can be approximated by point–circle bisector computations. There are algorithms
for approximating a given curve by a sequence of circular arcs; see [14, 17, 20, 24, 27, 35].
Thus, the developable bisector surface is approximated by a sequence of quadratic cones
which are the bisectors of the fixed point and the sequence of circular arcs.

In the following we discuss some low-degree examples for curve–curve bisectors. They
can serve as basic algorithms forC1-approximation of bisector surfaces of arbitrary space
curves.

5.1. Circle–Line Bisector

One can immediately insert parametric representationsc(u) andg(v) of a circleC and a
line G into formula (21) and obtain a parametrization of the bisectorB. We want to discuss
this geometrically.

We will fix a point c(u0) on the circleC and calculate the bisectorBG(u0) of c(u0) and
G. We know already thatBG(u0) is a parabolic cylinder. Exactly those points ofBG(u0)
which lie in the normal planeNC(u0) to C throughc(u0) are contained in the bisectorB.
Thus,B is parametrized by a one-parameter family of parabolas

b(u0, v) = BG(u0) ∩ NC(u0) for u0 ∈ R.

All planes NC(u0) lie in a pencil of planes with the rotational axis ofC as a common
line. Further, along each parabolab(u0, v) the bisectorB possessesBG(u0) as a contact
developable surface. The parabolas possess two common points on the axis of the pencil.
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On the other hand, we fix a pointg(v0) on G and compute the bisectorBC(v0) of C and
g(v0). From earlier statements it is clear thatBC(v0) is a quadratic cone with vertex on the
axis ofC. The intersection ofBC(v0) with the normal planeNG(v0) to G throughg(v0) is
also a conic. So we obtain a second family of conics onB,

b(u, v0) = BC(v0) ∩ NG(v0) for v0 ∈ R.

Along each conicb(u, v0) the bisector surfaceB is in contact withBC(v0). The second
family of conics also lies in a pencil of planes, orthogonal toG.

Such surfaces have been studied in detail by Degen [5, 6]. At that time and earlier these
surfaces were calleddouble Blutel conic surfaces. Nowadays the notationsupercyclidesis
more convenient. These are algebraic surfaces of order≤4. Some subfamilies of them can
be obtained as projective images of Dupin cyclides. For more information see [7, 23, 33]
and the references therein.

5.2. Circle–Circle Bisector

Let the circlesC and D be parametrized byc(u) andd(v) (Fig. 9). These curves lie in
planesγ andδ, respectively. We proceed as in Section 5.1. We fix a pointc(u0) on C and
compute the bisector surfaceBD(u0) of c(u0) andD. We know thatBD(u0) is a quadratic
cone with vertex on the axisd of the circleD; see Section 3.1. So, the parameter curve
b(u0, v) of the bisectorB of C andD is the planar intersection ofBD(u0) with the normal
planeNC(u0) throughc(u0). Since these normal planesNC all pass through the axisA of the
circleC, this first family of parameter conics lies in planes throughA. Further, the tangent
planes along a fixed parameter conicb(u0, v) envelop the quadratic coneBD(u0).

We exchangeC with D and compute parameter curvesb(u, v0). So it is clear that the
bisector surfaceB carries two families of conics, lying in planes through the axes of the
given circlesC, D. Further, along each conic there exists a quadratic tangent cone with

FIG. 9. Circle–circle bisector in space.
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vertex on an axis of the circles. Thus, bisectorB is again a supercyclide. We omit the
discussion of all types of supercyclides occurring here.

The practical calculation works as follows. We set

c(u) = m+ p cosu+ q sinu = m+ c1(u),
(23)

d(v) = n+ r cosv + ssinv = n+ d1(v),

wherem andn are the centers ofC andD, and we require that

‖p‖ = ‖q‖ = rC, p · q = 0, ‖r‖ = ‖s‖ = r D, and r · s= 0.

The length ofp andq equals the radiusrC of C, and additionallyp andq are orthogonal.
Analogously forr ands. Further it is clear thatc1 · ċ1= 0 andd1 · ḋ1= 0 hold. The vectors
c1, d1 and their derivative vectors ofċ1, ḋ1 satisfy

‖c1‖ = ‖ċ1‖ = rC and ‖d1‖ = ‖ḋ1‖ = r D.

The cross products

c1× ċ1 = A, d1× ḋ1 = B

are vectors of constant length.A andB are perpendicular to planesγ andδ, respectively,
containing circlesC andD. Using these notations we insert (23) into formula (22). We will
study denominator and vector part (numerator) separately. At first the denominator reads as

b0 = (d− c) · (ċ× ḋ)

= (n+ d1−m− c1) · (c1× d1)

= (n−m) · (ċ1× ḋ1)+ d1 · (ċ1× ḋ1)− c1 · (ċ1× ḋ1)

= (n−m) · (ċ1× ḋ1)− B · ċ1− A · ḋ1. (24)

Now we have to look at the vector part of (22). Using some vector algebra we get

b1 = −1

2
((m+ c1)2− (n+ d1)2)(ċ1× ḋ1)+ (d− c)× ((d · ḋ)ċ− (c · ċ)ḋ)

= −1

2

(
m2− n2+ c2

1− d2
1

)
(ċ1× ḋ1)+ (n · ḋ1)((n−m)× ċ1− A)

− (m · ċ1)((n−m)× ḋ1+ B)+ (n× B)× ċ1+ (m× A)× ḋ1. (25)

Finally, the bisectorB is parametrized by

b(u, v) = 1

b0(u, v)
b1(u, v).

Substituting trigonometric by rational quadratic functions we see thatB is a rational tensor
product surface of degrees (2,2). One can prove thatB is of order≤4.

Summary 5.1. The bisector surface of line–circle and circle–circle in general position
is a supercyclide.
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5.2.1. Approximation of Curve–Curve Bisectors

What we have seen so far is that the computation of curve–curve bisectors is easy. If
one wants to use standard CAD representations of relatively low degrees, approximations
are necessary. One way would be to approximate the input curves by smoothly joined arc
splines, possibly containing linear segments; see [14, 17, 21, 24, 28, 35]. As outlined above,
the corresponding bisector surfaces are piecewise of maximal degrees (2,2). This was one
reason that line–line, line–circle, and circle–circle bisectors are studied here in detail.

5.2.2. Bisectors of Pipe Surfaces with Same Radii

Let F andG be two oriented pipe surfaces with same radiid and spine curvesC and
D, respectively. Their surface normals shall point both outward or inward. From Sec-
tion 3.3 we know that their bisectorB is computable as the bisector of their spine curves
C, D, interpreted as (degenerate) offset surfaces at oriented distance−d.

To obtain low-degree approximations, one will, as above, approximate the center curves
by arc splines. This means approximating the pipes by spline surfaces, composed of tori
segments. Their bisector is then again a rational spline surface, composed of patches on
supercyclides.

The self-bisectorBF of a pipe surfaceF is also computable as the self-bisector of the
spine curveC of F . This can be done by insertingd(v) = c(v) into (22).

6. EXAMPLES OF POINT–SURFACE BISECTORS

With the help of results obtained in Section 4 we want to discuss some examples of
low-degree point–surface bisectors. These can serve as basic algorithms for the bisector
computation.

Since the bisector mapping generating the point–surface bisector is decomposable into
(scaling◦ polarity ◦ inversion), all those families of surfaces which are closed under in-
version play a special role. This means that inversion maps a surface to an image surface
belonging to the same family.

Spheres and planesform a family which is closed under inversion. The bisector of a
point and a plane is a paraboloid of revolution; the bisector of a point and a sphere is also a
quadric of revolution, namely an ellipsoid or two sheet hyperboloid, depending on whether
the point lies inside or outside of the sphere. In any case we get nonruled quadrics, which are
projectively equivalent. This reflects the fact that for computing the bisector we first apply
an inversion and then a polarity, which is a general projective mapping into the dual space.

Dupin cyclides also form a family of surfaces, which is closed under inversion. These
surfaces possess two families of circlesc1, c2 as curvature lines. These circles lie in two
pencils of planesπ1,π2; let the axes of these pencils be denoted byA1, A2. One of these axes
can be possibly at infinity. The circlesc1 intersect the axisA1 in two (not necessary distinct
and real) singular surface points. The same holds for the familyc2. The developable surface
which is tangent toF along a circle is always a cone or cylinder of revolution or a plane.
The vertices of cones tangent to the circles of familyc1 lie on the axisA2 and vice versa.

The algebraic order ofF is≤4 and the quartic surfacesF possess the absolute conicJ
as double curve. There is quite a large amount of literature on Dupin cyclides, including
classical contributions and more modern ones; see [23, 25, 33] and the references therein.

If one interprets a straight line as a circle with center at infinity and radius=∞, the above
definition of Dupin cyclides also applies to cones and cylinders of revolution. In fact, certain
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Dupin cyclides are the inverse images of cones and cylinders of revolution; see [23]. Thus,
before studying point–Dupin cyclide bisectors we want to discuss point–cone bisectors.

6.1. Point–Circular Cone and Point–Circular Cylinder Bisectors

A circular cone (cone of revolution) or a cylinder of revolutionF is generated by rotating
a line L around an axisA, where eitherL intersectsA or L and A are parallel. The cur-
vature lines ofF are the generator lines and the circles in planes orthogonal toA. From
decomposition (19) we know that the bisector surface ofO andF is

B = σ ◦ π ◦ κ(F).

Sinceκ preserves curvature lines,κ(F) is a Dupin cyclide. These surfaces are self-dual in
the sense that along each circle there is a cone of revolution (cylinder, plane) tangent to
κ(F). The polarityπ preserves this self-dual property, such thatB possesses two families
of conicsb1, b2 lying in pencils of planesε1, ε2 with axesA1, A2.

Along each conicb1 there is a quadratic coneC1 tangent toB. Its vertex is on the axis
A2. Analogously, along each conicb2 of the second family there is a quadratic coneC2 with
vertex onA1, which is tangent toB. Thus,B is a supercyclide; compare Sections 5.1 and
5.2. Sinceπ is a general projective mapping,b1 andb2 are no longer curvature lines, but
they form a conjugate net of curves onB; see [7]. Their algebraic order and class is≤4.

We can find these properties also via parametrization (6). In particular, letF be a cylinder
of revolution, parametrized by

f(u, v) = m+ r acosu+ r b sinu+ va× b = m+ c(u)+ vn,

whereaandb are orthogonal unit vectors andn= a× b. Letg(u0) be a fixed generator ofF .
The bisector surface ofO andg(u0) is a parabolic cylinderB1(u0). The intersection ofB1(u0)
with the normal plane toF throughg(u0) is a conicb(u0, v)⊂ B. Since parametrization
(26) is a quadratic polynomial inv, the conicb(u0, v) is a parabola.

The second family of conicsb(u, v0)⊂ B corresponds to bisectorsB2 with respect to
O and the circles onF . B2 are quadratic cones with vertices on the axisA. The conics
b(u, v0) are contained in parallel planes which are perpendicular toA; see Fig. 10. Via (6),
a parametrization ofB is found by

b(u, v) = m+ vn+ c(u)

(
1
2(r 2−m ·m− v2)− v(m · n)

m · c(u)+ r 2

)
. (26)

FIG. 10. Point–circular cylinder bisector.
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Substituting trigonometric by rational functions leads to a (2,2) tensor product representation
of B. Cones of revolution are calculated analogously.

6.2. Point–Dupin Cyclide Bisector

We use the arguments from Section 6.1. Those Dupin cyclides which areκ-images of
cones or cylinders of revolution possess supercyclides as point–surface bisectors. It remains
to discuss those Dupin cyclides which areκ-images of tori without real singular points.

A torusT is generated by rotating a sphereSaround an axisA. The center ofSgenerates
a circlem. T possesses two families of circlesc1, c2 in planes throughA and perpendicular
to A. The developable surfaces tangent toT along circlesc1, c2 are cones or cylinders of
revolution. We compute the bisector surfaces with respect toc1, c2 and obtain families of
quadratic conesB1, B2. The characteristic curves on surfacesB1 are intersections with planes
throughAand thus are conics. The characteristic curves on surfacesB2 are intersections with
cones of revolutionN2 with axisA. The conesN2 are orthogonal toT along circlesc2. Since
B2 possessesA as focal line (see Section 3.1), the two conesB2 andN2 possess common
conjugate imaginary tangent planes throughA. This implies thatB2 ∩ N2 is reducible, for
instance, splits up into two (not necessarily distinct) conics.

A parametrization can be computed by using formula (6). Figure 11 shows an example.
The real singular points ofB lie on the circlem. This figure also illustrates the mirror and
anticaustic properties ofB andT with respect to an illumination emanating fromO.

Summary 6.1. The bisector surfaceB of a pointO and a cone or cylinder of revolution
or a Dupin cyclideF is in general a supercyclide. Light raysl radiating from a point source
O are reflected atB in such a way that the reflected raysl̄ are orthogonal toF .

6.3. Point–Quadric Bisector

The bisector surfaceB of a regular quadricF and a pointO shall be constructed. The
decomposition of the bisector mapping (19) says that we first have to apply an inversion
κ to F with respect to an arbitrary sphereS, centered atO. If O is in general position to
F thenκ(F) is a general cyclide, a surface of order 4, possessing the absolute conicJ as
double curve. Since a nonrevolutionary quadric possesses two 1-parameter families of real

FIG. 11. Point–torus bisector.
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circles,κ(F) has this property, too. But note that these circles are never conjugate curves
on F .

We apply the polarityπ with respect toS and obtain a surfaceπ (κ(F)) of class 4,
possessing two 1-parameter families of quadratic cones, tangent toπ (κ(F)). Further, scaling
by 1

2 does not change these properties.
A low-degree representation in dual (plane) coordinates can be obtained by parametrizing

a triaxial quadricF corresponding to its circular sections. These families of circles are
mapped to circular sections ofκ(F). Finally, the bisector is representable as a rational
(2,2) tensor product surface in plane coordinates. The point representation of the bisector
is rational of degrees (4,4). Nonruled quadrics of revolution possess bisectors with a (2,4)
tensor product representation in plane coordinates, since they possess only one family of
circular sections.

Let the quadricF be a quadratic cone, but not a cone of revolution. As above,F contains
two families of circles, which are never conjugate curves. The inversionκ mapsF to a
general cyclideκ(F). SinceF is the envelope of a one-parameter family of planes,κ(F) is
a canal surface, which is enveloped by a one-parameter family of spheres. The generator
lines as well as the circles ofF are mapped to families of circles on the cyclideκ(F).
Finally, the bisector surface possesses a rational (2,2) tensor product parametrization in
plane coordinates. Its point representation is of degrees (4,2), where the quadratic parameter
curves correspond to generator lines ofF ; see Section 6.5.

EXAMPLE. A general quadratic coneF can be parametrized by

f(u, v) = (a+ vr cosu, b+ vssinu, c(1− v)), (27)

wherea, b, c are the coordinates of the vertex andr, s are the major and minor axes of an
elliptic intersection with the planez= 0. It would be possible to setr = s and to locate the
vertex not at the rotational axis of the planar intersection with the planez= 0.

Let C be the intersection ofF with the plane at infinityx0= 0. To determine the circular
sections ofF we have to compute the intersection points ofC and the absolute conicJ,
which are given by equations

C :
1

r 2
x2

1 +
1

s2
x2

2 −
1

c2
x2

3 = 0, J : x2
1 + x2

2 + x2
3 = 0.

C ∩ J consists of two pairs of conjugate complex pointsp, p̄ and q, q̄. The real lines
connectingp, p̄ andq, q̄ are carriers of pencils of parallel planes, which intersectF in two
families of circles. One of these two families shall be parameter curves. A reparametrization
can be realized by substituting

v = w − c(b
√

r 2− s2− s
√

c2+ r 2)

cs(sinu
√

r 2− s2+√c2+ r 2)

in formula (27). Real circles ofF are represented byf(u, w0) for real valuesw0. We will
substitute trigonometric by rational functions, cosu= (1 − t2)/(1 + t2) and sinu= 2t/
(1+ t2). The rational parametrization ofF can be written as

f(t, w) = 1

f0
( f1, f2, f3)(t, w),
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FIG. 12. Bisector of quadratic cone and point.

and the symmetry plane ofO andf is given by the equation

−1

2

(
f 2
1 + f 2

2 + f 2
3

)+ f0( f1x + f2y+ f3z) = 0.

It turns out thatf0 and f 2
1 + f 2

2 + f 2
3 possess common zeros, determined by 2t

√
r 2− s2+

(1+ t2)
√

c2+ r 2= 0. Further, we see that the denominator and numerator ofb(t, w) possess
the factorcs

√
c2+ r 2+w. Applying these algebraic manipulations leads to a representation

of degrees (4,2) ofB as a point set. The result is illustrated in Fig. 12.
A parametrization of skew-ruled quadrics can be based on two families of generator lines

or it can be based on two families of circular sections. The first possibility leads to a rational
(2,2) parametrization as a set of planes and to a rational (3,3) parametrization as a point set.
Compare Section 6.4, where we discuss bisectors of points and skew-ruled surfaces. See
also Fig. 13, which illustrates the bisector surface of a point and a hyperbolic paraboloid.
The second way leads to a (2,2) representation in plane coordinates and further a rational
(4,4) representation as a point set.

FIG. 13. Bisector of point and skew-ruled surface.
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6.4. Point–Ruled Surface Bisector

Ruled surfaces are among the simplest surfaces, since one family of parameter curves
consists of straight lines. A ruled surfaceF possesses a parametrization

s(u, v) = r (u)+ vl(u),

wherer (u) is a directrix curve and its rulings are given by vectorsl(u). The surface normal
vector is (̇r + v l̇)× l and it shall really depend onv and shall not be constant along a ruling.
This excludes developable surfaces, which are studied in Section 6.5. The bisector surface
of the originO andF can then be parametrized by

b(u, v) = r + vl − 1

2

(r + vl)2

det(r , ṙ + v l̇, l)
(ṙ × l + v l̇ × l). (28)

Geometrically we can proceed as follows. The bisectorBG(u0) of the lineG(u0)= r (u0)+
vl(u0) and pointO is a parabolic cylinder. The surface normals ofF along the skew generator
G(u0) form a hyperbolic paraboloidH (u0). The intersectionsBG(u0) ∩ H (u0) are cubic
parameter curves ofB; see parametrization (28). This also follows from the fact thatBG(u0)
andH (u0) possess a line at infinity in common. The cubics possess exactly one real point
at infinity, since there is exactly one surface normal alongG(u0), which is parallel to the
generator lines ofBG(u0).

6.5. Point–Developable Surface Bisector

Let C be a regular space curve with parametrizationc(u). The tangent linesc(u)+ λċ(u)
of C form a developable surfaceF with parametrization

f(u, v) = c(u)+ vċ(u). (29)

The curveC is called the line of regression of the developableF . If C is just a single point
z, F is called a cone. One can use (29) but has to exchangec by z andċ(u) parametrizes
the generator lines of the cone. General cylinders do not fit this parametrization since their
vertex is at infinity. But one can usef(u, v)= c(u)+ vd with a regular curveC and a constant
vectord, parallel to the generators, but not parallel toċ.

To determine the bisectorB of O and developable surfaceF with line of regressionC,
we first calculate the symmetry planes ofO andf(u, v),

σ (u, v) : x · (c(u)+ vċ(u)) = 1

2
(c(u)2+ 2c(u) · ċ(u)+ v2ċ(u)2).

For fixedu0 planesσ (u0, v) form a quadratic family. These planes envelop the bisector
B1(u0) of a generating lineG(u0) : c(u0)+ vċ(u0) of F andO. B1(u0) is a parabolic cylinder.
The intersection ofB1(u0) with the normal planeN : (ċ× c̈) · (x − c)= 0 passing through
the generatorG(u0) is a parabola. A parametrization ofB is obtained by inserting (29) into
(6),

b(u, v) = c+ vċ− 1

2

(c+ vċ)2

det(c, ċ, c̈)
ċ× c̈.
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Parameter curvesb(u0, v) are the above-mentioned parabolas⊂B. In general, surfaces
generated by one-parameter families of conics possess the property that tangent planes
along a fixed conic envelop a rational developable surface of order 4; see [5]. In this special
case, these developable surfaces along parameter parabolasb(u0, v) are actually quadratic
cones (parabolic cylinders).

7. SPHERE–SURFACE BISECTOR

We have already seen in Section 3.3 that sphere–surface bisectors are of a special kind.
Let Sbe an oriented sphere with radiusd, centered at the originO, and letF be an arbitrary
smooth oriented surface. The orientation ofScan also be determined by a signed radiusd.
If the oriented normals ofSpoint to the exterior ofS, let d be positive. The sphere–surface
bisectorB of S and F is exactly the point–surface bisector ofO and F−d, the one-sided
offset surface ofF at oriented distance−d.

Let f(u, v) be a parametrization ofF , and letfu andfv be the partial derivative vectors.
The offset surfaceFd is parametrized by

fd(u, v) = f(u, v)+ dn0(u, v), with n0 = 1

‖fu × fv‖ (fu × fv),

wheren0 is the oriented unit normal ofF . It is known that an arbitrary rational surfaceF
will not possess rational offset surfaces.

We callF arational PN surfaceif there exists a parametrizationf(u, v) such that the unit
normaln0 is rational inu, v. A detailed study of these surfaces is given in [30]. We know
several examples for such surfaces, for instance, spheres, cylinders, cones of revolution,
and Dupin cyclides. Surprisingly all regular quadrics in 3-space are rational PN surfaces;
see [22]. Further, it is known that all rational skew-ruled surfaces and canal surfaces with
a rational spine curve and a rational radius function are rational PN surfaces. Additional
examples can be found in [29].

Summary 7.1. The bisector surfaceB of a rational PN surfaceF and a sphereS with
radiusd centered atO is a rational surface. A parametrization ofB is obtained by computing
the bisector ofO andF−d, the offset surface ofF at oriented distance−d.

7.1. Sphere–Dupin Cyclide Bisector

The families of Dupin cyclides, cones, and cylinders of revolution are closed under
offsetting. This implies that the bisector surface of an oriented sphere and a Dupin cyclide,
cone, or cylinder of revolution is a supercyclide, as studied in Sections 6.1 and 6.2. By the
way, the axis of rotation of a cone or cylinder of revolution and the spine curve of a torus
shall also be denoted as the “offset surface.”

7.2. Approximation of Sphere–Canal Surface Bisector

Let F be an arbitrary canal surface and letS be a sphere with radiusd, centered atO.
The offset surfaceF−d of F is again a canal surface. Only its radius has decreased byd.
We will approximate the canal surfaceF or F−d by a sequence of Dupin cyclides; see [32].
Let Ci be a sequence of circles onF−d and let1i be tangent cones along them. For each
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pair (Ci ,1i ) and (Ci+1,1i+1) of circle plus tangent cone one computes a pair of Dupin
cyclidesDi , Di+1 with the property thatDi is tangent to1i alongCi andDi+1 is tangent
to1i+1 alongCi+1. Additionally, the Dupin cyclidesDi andDi+1 are tangent to each other
along a circle.

The bisectorB of F andS is now approximated by the bisector surfaceB̄ of the sphere
S and the sequenceDi of Dupin cyclides. From Section 6.2 we know thatB̄ is composed
of supercyclides and thus is a rational biquadratic spline surface.

8. CURVE–SURFACE BISECTOR

Let C be a smooth curve and letF be a smooth surface in 3-space. The curve–surface
bisectorB contains all centers of spheres which are tangent toC andF . Let C andF be
parametrized byc(t) andf(u, v). Fixing a pointc(t0) on C, we will compute the bisector
surfaceBF (t0) of c(t0) andF with formula (6). Varying the parameter valuet0 we obtain a
one-parameter family of bisector surfacesBF (t),

bF (u, v, t) = f(u, v)− 1

2

(f − c)2

det(f − c, fu, fv)
fu × fv, (30)

which envelops the bisector surfaceB of F andC. Let N(t0) be the normal plane toC at
the curve pointc(t0). The parameter curves of the bisectorB are intersection curves

D(t) = BF (t) ∩ N(t).

The computation is nonlinear, and rational input data will not lead to rational bisector
surfaces in general.

EXAMPLE. Given a Dupin cyclide or a cone of revolutionF and an arbitrary space
curveC, the bisectorBF (t) is a supercyclide for all points onC. IntersectingBF (t) with
the normal planeN(t) : (x − c(t)) · ċ(t)= 0 leads to a polynomial equation, quadratic inu
andv. To obtain the intersectionD(t) one has to solve

(bF (u, v, t)− c(t)) · ċ(t) = 0 (31)

for v (or u), from which one obtains a parametrizationb(u, t) (or b(v, t)) of the bisectorB.
This involves square roots of the parameterst, u (or t, v).

It has to be noted here that the bisector construction for an oriented pipe surfaceG of
radiusd and oriented surfaceF can be translated into curve–surface bisector construction
for the spine curveC of G and offset surfaceF−d to F .

One would expect a simplification of the bisector construction if the curve were a straight
line. Unfortunately, elimination (31) is not significantly easier in this case. IfF is a devel-
opable surface, the computation is linear (up to some normalization). This shall be proved
in Section 10.

In the following we will concentrate on pairs of curvesC and surfacesF where the
construction of the bisectorB is linear. Mainly this is the case whenF is a plane or a
sphere, andC is an arbitrary curve.
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FIG. 14. Line–plane and cylinder–plane bisector.

8.1. Line–Plane Bisector

We will see in Section 10 that this is a special case of bisectors between developable
surfaces. Nevertheless, since line–plane is a basic algorithm it shall be discussed here.
Given a lineG and a planeE, if G is parallel toE, their bisectorB is a parabolic cylinder
with focal line G and generators parallel toG. If G is not parallel toE, let V be the
intersection pointG∩ E. The bisector is a quadratic coneC with vertexV ; see Fig. 14 and
[8, 10].

A parametrization is obtained as follows. Letn= (0, 0, 1) be the unit normal ofE. We
will assume thatV =G ∩ E is the originO of a chosen coordinate system. Thus,G is
parametrized byg= λ(cosβ, 0, sinβ) with a real parameterλ. Let k andm be two unit
normals ofg with the propertyk · m= 0. Without loss of generality we can assume that
m= (0, 1, 0) andk= (−sinβ, 0, cosβ). The pencil of planes passing throughG can be
parametrized by

τ (t) : x · (k cost +m sint) = 0.

Since the planeE is x · n = 0, the symmetry planes ofE andτ (t) are

σ (t) : x · (n− k cost −m sint) = 0.

These planes envelop the quadratic coneB, the bisector ofG and E. Inserting the above
parametrization, the generator lines ofB are

b(t) = λ(−cosβ + cost,−sinβ sint,−sinβ).

Using a rational reparametrization for cos and sin we get a quadratic parametrization ofB.
If G is orthogonal toE, B is a cone of revolution otherwise a general quadratic cone. Its
focal linesareG and the normal toE throughV .

Consider light raysl orthogonal to a planeE. We look for a mirror surfaceB, such that
the reflected rays̄l intersect a given lineG orthogonally. IfG is not perpendicular to the
light raysl , B is one of the cones with vertex onG. All these cones are translational versions
of one another, translated alongG. If G is perpendicular to the light raysl , B is a parabolic
cylinder.

The inverse problem is also of interest. Given an illuminationl orthogonal to a cylinder
of revolutionF with axisG, we search for a mirror surfaceB, such that the reflected light
raysl̄ are parallel, or say normal to a planeE. The solution is again a parabolic cylinder in
the case ofG parallel toE. Otherwise the mirror can be chosen to be the mentioned cone
B; see Fig. 14.
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8.2. Curve–Plane Bisector

Given a planeF and a curveC, parametrized byc(u), the construction of the bisectorB
can be done by calculating the envelope of the familyBF (u), whereBF (u) is the bisector of
F and a variable pointc(u) on C. We know thatBF (u) are paraboloids of revolution, with
c(u) as the focal points. The characteristic curvesd(u), which are the curves of contact of
B andBF (u), are conics, namely the planar intersections

d(u) = BF (u) ∩ N(u).

N(u) is considered to be the normal plane ofC atc(u). Practically, letF be the planez= 0.
The bisector of a pointc(u) andF is given by the equation

BF (u): 2c3(u)z= c3(u)2+ (x − c1(u))2+ (y− c2(u))2.

In this case the derivativėBF (u) and the normal planeN(u) are identical,

N(u): ċ3(u)z= c3(u)ċ3(u)− ċ1(u)(x − c1(u))− ċ2(u)(y− c2(u)). (32)

The orthogonal projectionsd1(u) of the conicsd(u) onto F are circles with the equation

d1(u) :

(
x − c1ċ3− c3ċ1

ċ3

)2

+
(

y− c2ċ3− c3ċ2

ċ3

)2

= c2
3

ċ2
3

(
ċ2

1 + ċ2
2 + ċ2

3

)
. (33)

Let m(u)= (m1,m2, 0)(u) be the center ofd1(u). Then it is easy to prove thatm(u) is the
intersection point of the tangent lineT(u) : c(u)+ λċ(u) with F .

This leads to another generation ofB. We consider the bisector surfaceBT (u) of F and
a tangent lineT(u) of c(u), which is a quadratic cone with vertexm(u). BT (u) is tangent
to BF (u) exactly in the characteristic conicsd(u) and we haved(u)= BT (u) ∩ N(u); see
Fig. 15.

FIG. 15. Front and top view of plane–curve bisector construction.
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In particular, letC be a polynomial or rational curve. ThenBF (u) andN(u) are rational
families of paraboloids and planes. In particular,d(u) andd1(u) are rational families. The
center curvem(u) of d1(u) is rational and the radius function of these circles is a square
root of a rational function; see Eq. (33).

It is known thatd(u) generates a rational surface, and an algorithm to compute a rational
parametrization is described in [29]. We just want to note that the algorithm mainly requires
the calculation of all zeros of (ċ2

1+ ċ2
2+ ċ2

3)(u) in the case of a polynomial curve or the zeros
of its numerator otherwise. Rational parametrizations ofB are then obtained by solving a
linear system.

Summary 8.1. The curve–plane bisectorB for rational curves is a rational surface,
enveloped by a one-parameter family of paraboloids of revolutionBF (u) or quadratic cones
BT (u). One family of parameter curves comprises conics which are curves of contact of
BF (u) andBT (u).

8.3. Circle–Plane Bisector

We want to discuss this example here, since the construction of the circle–plane bisector
is linear (Fig. 16). From an algorithmic viewpoint, any smooth spatial curveK can be
approximated by circular arc segments; see [17, 21, 35]. Thus, the circle–plane bisector can
serve as a basic algorithm for the approximation of general curve–plane bisectors. Given
the planeF : z= 0 and a circleC, which can be parametrized by

c(u) = n+ r acosu+ r b sinu,

We can assume that

n = (0, n cosφ, n sinφ), a= ((0, cosφ, sinφ)), b = (1, 0, 0).

The intersection line ofF and the plane carryingC is thex-axis. The family of circlesd1(u)
is given by

d1(u) :

(
x − r + n cosu

sinu

)2

+ y2 =
(

n+ r cosu

sinu

)2

.

FIG. 16. Plane–circle bisector.
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These circles possess two common points (0,±√n2− r 2, 0), which are conjugate complex
or real, depending on whetherC intersectsF in real points or not. By the way, these points
are the top views of singular surface points, which lie on the rotational axisA of C. Further,
the real or conjugate complex intersection points ofC andF are also singular points onB.
A parametrization of the bisector surfaceB is

b1(u, v) = r + n cosu

sinu
+ n+ r cosu

sinu
cosv,

b2(u, v) = n+ r cosu

sinu
sinv, (34)

b3(u, v) = − 1

sinφ(sinu)2
(n+ r cosu)(−1+ cosu cosv − sinu cosφ sinv),

where (b1(u, v), b2(u, v)) is a parametrization of circlesd1(u) andb3(u, v) is calculated via
formula (32). It turns out thatB is in general a surface of order 4 with equation

B : (x2+ y2)2+ p3(x, y)+ zp2(x, y)+ cz2 = 0,

wherepi are polynomials of degreei andc is a constant. These surfaces are called isotropic
cyclides and their singular curve of order 2 degenerates to two conjugate complex lines in
the plane at infinity. They are non-Euclidean counterparts of envelopes of quadratic families
of spheres; see [18]. Using rational instead of trigonometric functions in (34) results in a
rational tensor product representation of degrees (4,2) inu, v.

8.4. Curve–Sphere Bisectors

Given a sphereSof radiusd, centered atO, and a regular (spatial) curveC, parametrized
by c(t), we can use the offset surface property of the bisectorB, which says thatB is also
the bisector ofO and the pipe surfaceF with center curveC and radiusd. This leads to the
same construction as the direct way, which shall be outlined here.

The bisectorBS(t0) of a fixed pointc(t0) 6∈ S of C is a quadric of revolution with focal
pointsO andc(t0). The bisectorB of SandC contains parameter conics

d(t0) = BS(t0) ∩ N(t0),

whereN(t0) is the normal plane toC at c(t0); see Fig. 17. The tangent planes ofB along
d(t0) form a quadratic coneD(t0) with vertexV(t0) on the tangent line ofC in c(t0). The
bisectorB is the envelope of a one-parameter family of quadricsBS(t0). Let1(t0) be the
cone with vertexO throughd(t0). Intersecting1(t0) with Sgives a circledS(t0). The pole
to dS(t0) with respect toS is the vertexV(t0) of D(t0).

Assume thatC is a rational curve. ThenBS(t) is a rational family of quadrics of revo-
lution andN(t) is a rational family of planes. This implies thatd(t) is a rational family of
conics which generate a rational surfaceB. The computational effort to get exact rational
parametrizations ofB is the same as that to obtain rational parametrizations of the pipe
surfaceF with spine curvec and then calculate the bisector ofF andO.

Summary 8.2. The curve–sphere bisectorB of a rational curveC and sphereS is a
rational surface, enveloped by a one-parameter family of quadrics of revolutionBS(t) or
quadratic conesD(t). One family of parameter curves consists of conics, the curves of
contact ofBS(t) andD(t).
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FIG. 17. Principle of curve–sphere bisector.

9. SURFACE–SURFACE BISECTOR

The construction of the bisector of two surfacesF andG is in general complicated. The
simplest example in this context is the bisector of two oriented planesF : f0+ f · x= 0 and
G: g0+ g · x= 0. We assume that the normal vectorsf andg are normalized. The bisector
of F andG is the unique plane of symmetry

σ : ( f0− g0)+ (f − g) · x = 0.

If one surface is a sphere, see the results of Section 7. If one surface is a pipe surface, see
Section 8. If both surfacesF andG are developable, see Section 10. Otherwise, the only
basic example in view of computational treatment is the plane–surface bisector, which shall
be discussed here.

9.1. Plane–Surface Bisector

Given an oriented nondevelopable surfaceF and an oriented planeA, let f(u, v) be a
parametrization ofF and letn0(u, v) be its unit normals. The tangent planes ofF are

τ (u, v) : n0(u, v) · (x− f(u, v)) = 0.

We assume thatA contains the originO and is given by an equationa ·x= 0, witha ·a= 1.
The symmetry planesσ (u, v) of τ andA are

σ (u, v) : n0 · f + (a− n0) · x = 0

and envelop the bisector surfaceB of F and A, which means thatσ (u, v) is a dual
parametrization ofB. A point representation ofB is found by intersectingσ (u, v) with
the surface normalf(u, v)+ λn(u, v). This leads to

b(u, v) = f(u, v)− (a0 · f )
n0 · (a− n0)

n0.

In the case of a rational surfaceF the bisector is not necessarily rational. IfF is a rational
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PN surface, which meansF possesses a parametrization such that the unit normalsn0 are
rational, then the plane–surface bisectorB possesses a rational parametrizationb(u, v).

The optical interpretation of the bisector construction tells us that parallel light raysl ,
which are orthogonal toA, are reflected atB in such a way that the reflected light rays
l̄ are orthogonal toF . So, F can be calledanticausticwith respect to the given parallel
illumination and reflection at the mirror surfaceB.

Summary 9.1. The bisector of a plane and a rationalPNsurface is a rational surface.

10. BISECTORS OF DEVELOPABLE SURFACES

Nonplanar developable surfaces are envelopes of one-parameter families of tangent
planes. One obtains three different types, namely cylinders, cones, and surfaces formed
by the tangent lines of space curves. These developable surfaces carry a one-parameter
family of generating lines. The calculation of the bisector works as follows. Let8 and9 be
two developable surfaces, both described by their one-parameter families of tangent planes

8 : F(u) : f0(u)+ f(u) · x = 0,

9 : G(v) : g0(v)+ g(v) · x = 0.

The generating lines of8 are obtained by intersecting the planesF(u) and Ḟ(u), the
derivative plane ofF(u). Analogously for the generators of9, whereĠ(v) denotes the
derivative ofG(v) with respect tov. Let p(u)= F(u) ∩ Ḟ(u) be a generator of8. All
spheres tangent to8 in points ofp(u) have to have centers lying in the normal planeNf (u)
to F(u) through p(u). We can assume that the normal vectorsf and g of F and G are
normalized,‖f‖=1 and‖g‖=1. We obtain

Nf (u) : ḟ0(u)+ ḟ(u) · x = 0,

Ng(v) : ġ0(v)+ ġ(v) · x = 0,

and note that the dots denote derivatives with respect tou andv. There will be no confusion
since the functionsfi depend only onu, whereas functionsgi depend only onv.

A sphere, tangent to8 in some point ofp(u) and tangent to9 in some point ofq(v)=
G∩ Ġ, has to have its center in the symmetry planeS(u, v) of F(u) andG(v). If 8 and9
are oriented surfaces, their tangent planes can be oriented by the oriented unit normalsf(u)
andg(u). So, the computation ofS is unique and we get

S(u, v) : ( f0− g0)+ (f − g) · x = 0. (35)

We see that the computation of the bisector surfaceB of two oriented developables8 and
9 is a linear problem, up to the normalization off andg. A parametrizationb(u, v) of B is
found by solving the linear system

Nf (u) ∩ Ng(v) ∩ S(u, v). (36)

In a closed form we can write the parametrizationb(u, v) of B as

b(u, v) = 1

A · ġ+ B · ḟ (−ġ0A − ḟ 0B+ (ġ0g− g0ġ)× ḟ + ( ḟ 0f − f0ḟ )× ġ), (37)
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whereA = f× ḟ andB= g× ġ. If the emphasis is on rational parametrizations we can state
the following.

Summary 10.1. Let8 and9 be two oriented developable surfaces which possess ratio-
nal unit normalsf(u) andg(v). Then the above construction proves that the bisector surface
B is rational.

The most important examples of developable surfaces with rational unit normals are
cones and cylinders of revolution. More generally, the normal vector has to be of the form

f(u) = 1

a(u)2+ b(u)2+ c(u)2
(2a(u)c(u), 2b(u)c(u),a(u)2+ b(u)2− c(u)2), (38)

with relatively prime polynomialsa(u), b(u), c(u). Using an arbitrary rational function
f0(u) one obtains a one-parameter family of planes

F(u) : f0(u)+ x · f(u) = 0.

Its envelope is a developable surface with rational unit normalsf(u).

10.1. Bisector of Cylinders of Revolution

Given two cylinders of revolution8 and9 with tangent planesF(u) and G(v), re-
spectively, letC, D be circular cross sections of8,9. These circles can be parametrized
by

C : m+ r f(u), with f = acosu+ b sinu,

D : n+ sg(v), with g= ccosv + d sinv,

where the vectorsa, b andc, d are normalized, anda · b= 0 andc · d= 0. Thus,f andg are
normalized. Tangent planes and derivative planes of8 and9 are

F(u) : (x−m− r f(u)) · f(u) = 0, Ḟ(u) : (x−m) · ḟ(u) = 0,

G(v) : (x− n− sg(v)) · g(v) = 0, Ġ(v) : (x− n) · ġ(v) = 0.

The symmetry plane of the oriented planesF(u) andG(v) is

S(u, v) : (−m · f + n · g− r + s)+ (f − g) · x = 0.

Then, an elementary calculation leads to a parametrization ofB,

b(u, v)= 1

A · ġ+B · ḟ (n · ġA+m · ḟB+ (A×m)× ġ+ (B×n)× ḟ + (r − s)ḟ× ġ), (39)

with A= f× ḟ andB= g× ġ as constant vectors representing the axes of the cylinders.
Substituting trigonometric by rational functions one obtains a tensor product representation
of degrees (2,2) forB. This says that the parameter curves are conics. These two families of
conics are contained in pencils of planes passing through the axes of the cylindersm+ λA
andn+µB, respectively. The intersection points ofB with these two axes are singular
points ofB. The bisector surface is a supercyclide, and its double curve is a pair of lines in
the plane at infinity.
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FIG. 18. Bisector surfaces of two cones and cylinders of revolution.

10.2. Bisector of Two Cones of Revolution

Given two cones of revolution8 and9 with verticesm andn and tangent planesF(u)
andG(v), respectively, the normal vectors of these tangent planes can be represented by

f(u) = 1√
1+ r 2

(a× b+ r acosu+ r b sinu),

g(v) = 1√
1+ s2

(c× d+ sccosv + sd sinv),

wherea, b andc, d are normalized anda · b= 0 andc · d= 0 (Fig. 18). Then,F andG and
their derivatives are

F(u) : (x−m) · f(u) = 0, Ḟ(u) : (x−m) · ḟ(u) = 0,

G(v) : (x− n) · g(v) = 0, Ġ(v) : (x− n) · ġ(v) = 0.

Let S= F−G be the symmetry plane ofF andG. The bisector of8 and9 is parametrized
by

b(u, v) = 1

A · ġ+ B · ḟ (n · ġA+m · ḟB + (A ×m)× ġ+ (B× n)× ḟ), (40)

with A= f × ḟ andB= g× ġ. Here,A andB are not constant. But if we insert the above
representations forf andg and substitute the trigonometric by rational functions, one can
verify that (40) is a (2,2) tensor product representation ofB. The bisectorB is a supercyclide
which has singular points on the axes of the cones and a pair of lines as singular curve.

Summary 10.2. The bisectors of cones and cylinders of revolution are supercyclides.

Remark. The cyclographic model applies quite well to the bisector construction for
cones of revolution; see [19]. The cyclographic image of the conesF,G are straight linesf, g
in 4-space. The cyclographic images of all spheres tangent toF,G form quadratic hyper-
cones0 f and0g with f andg, respectively, as singular sets. The intersectionD=0 f ∩0g
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is a two-dimensional surface of order 4 in 4-space, and its orthogonal projection onto
E3 : r = 0 is the bisectorB of F andG.

The hypercones0 f , 0g contain generating planesφ andψ passing throughf andg,
respectively. The orthogonal projections of0 f ∩ ψ and0g ∩ φ are the two families of
conics onB. Moreover, the intersection pointsf ∩ 0g andg ∩ 0 f are projected onto the
singular points on the axes ofF andG.

11. CONCLUSION

This article shall enlighten the role of classical geometry in the computation of bisector
surfaces. It is also a collection of basic algorithms and linear constructions. The general
surface–surface bisector construction is not linear, but for several surface families, such as
spheres, pipe surfaces, and developable surfaces, we have found elementary methods.

This article is mainly a geometrical contribution and in view of algorithms, a lot of work
has to be done, since the spatial problems seem to be much more complicated than the
planar ones.

We obtained similar results for point–surface, sphere–surface, and plane–surface bisec-
tors, as well as for bisectors of two curves or developable surfaces. We have seen that certain
families of curves and surfaces play a special role. They share the property of invariance
under Möbius transformations. Since Laguerre geometric properties have also occurred, a
Lie sphere geometric investigation would be a unifying method for bisector constructions.
This will be studied in a further contribution.
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