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Computing Rational Parametrizations of Canal
Surfaces
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A canal surface is the envelope of a one-parameter set of spheres with radii r(t) and
centers m(t). It is shown that any canal surface to a rational spine curve m(t) and a
rational radius function r(t) possesses rational parametrizations. We derive algorithms
for the computation of these parametrizations and put particular emphasis on low degree
representations.
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1. Introduction

Current CAD systems can represent curves and surfaces only in rational B-spline
(NURBS) form ( .Farin, 1994; .Hoschek and Lasser, 1993). On the other hand, certain
curves and surfaces that arise in practical applications such as offsets of rational curves
or surfaces are in general not rational and therefore need to be approximated. This moti-
vated .Farouki and Sakkalis (1990) to introduce the so-called Pythagorean-hodograph (PH)
curves, which are planar polynomial curves that possess rational offsets. Recent research
on PH curves and their generalizations to the full class of rational curves with rational
offsets has shown that they are well–suited for practical use (see e.g. .Ait Haddou and
Biard, 1995; .Albrecht and Farouki, 1995; .Farouki, 1992; .Lü, 1995a; .Pottmann, 1995a, .b
and the references therein).

The offset at distance r to a curve m(t) in 3-space can be defined as the envelope of
the set of spheres with radius r which are centered at m(t). Such a surface is called a
pipe surface or tubular surface with spine curve m(t). Surprisingly, it turned out that
pipe surfaces with rational spine curve m(t) always admit a rational parameterization
( .Lü and Pottmann, 1996). In the present paper, we will generalize this result as follows.
Canal surfaces, defined as envelope of a one-parameter set of spheres with a rational
radius function r(t) and centers at a rational curve m(t) can be rationally parametrized.
A constructive proof for this result is given, along with other techniques to compute
rational parametrizations of pipe and canal surfaces with low degree spine curves and
radius functions. In practical applications, canal surfaces mainly appear as blend surfaces
and transition surfaces between pipes. Note that the present class of surfaces contains as
special case the Dupin cyclides, which have been proposed by several authors for various
applications in Computer Aided Geometric Design (see e.g. .Pratt, 1995; .Srinivas and
Dutta, 1994).
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2. Geometric Properties of Canal Surfaces

Let R3 be Euclidean 3-space with Cartesian coordinates x1, x2, x3. A point p is rep-
resented with respect to a coordinate system by a vector (p1, p2, p3), and in general we
do not distinguish between the point and its coordinate vector. Let P3 be projective
3-space. A point p is represented by its homogeneous coordinates p = (p̄0 : p̄1 : p̄2 : p̄3).
If p̄0 6= 0 the relation between Cartesian and homogeneous coordinates is pi = p̄i/p̄0 for
i = 1, 2, 3. In general x denotes a Cartesian coordinate vector or point in 3-space. By the
map x→ (1, x) we embed R3 into P3. Then the complement of R3 in P3 is the plane at
infinity or ideal plane and the homogeneous coordinates of its points satisfy x0 = 0. The
Euclidean scalar product of two vectors a, b shall be denoted by a · b, the vector product
by a× b.

A canal surface Φ is defined as envelope of a one-parameter set of spheres Σ(t), centered
at a spine curve m(t). The radius of the spheres is given by the function r(t), t ∈ R. The
defining equations for Φ are

Σ(t) : (x−m(t))2 − r(t)2 = 0, (2.1)
Σ̇(t) : (x−m(t)) · ṁ(t) + r(t)ṙ(t) = 0. (2.2)

A canal surface Φ contains a one parameter set of so called characteristic circles k(t) =
Σ(t)∩Σ̇(t). Obviously the plane Σ̇ is perpendicular to the derivative vector ṁ. Elimination
of the parameter t from above equations leads to an equation of Φ. Figure 1 illustrates
that a canal surface Φ can also be interpreted as envelope of a one parameter set of cones
of revolution ∆(t). These cones are tangent to Φ at points of the characteristic circles
k(t).

Let q be the unit normals of Φ. For each fixed t0 the vector field q(t0, u) shall represent
the unit normals at points of k(t0), such that a parametric representation of Φ is given
by

Φ : x(t, u) = m(t) + r(t)q(t, u). (2.3)

If r ≡ const., Φ is the envelope of a moving sphere and is called a pipe surface. A
pipe surface can also be interpreted as the envelope of a one parameter set of congruent
cylinders of revolution. The plane Σ̇ intersects Σ in a great circle, centered at m. This
implies that a pipe surface is always real.

The reality of a canal surface Φ depends in general on ṙ and the length of ṁ. Substi-
tuting y = x−m in (2.1) and (2.2), it follows that (y · ṁ)2 = y2ṙ2. One obtains

1 ≥ cos2 α =
(y · ṁ)2

y2ṁ2
=

ṙ2

ṁ2
. (2.4)

We conclude that the envelope is real, exactly if ṁ2 − ṙ2 ≥ 0.

Remark: If equality holds for a parameter value t0, the plane Σ̇(t0) is tangent to the
sphere Σ(t0), such that k(t0) degenerates to a single point. If equality holds in a non-
empty interval, the envelope degenerates to a curve plus the one parameter set of tangent
planes Σ̇(t).

In the following equality shall hold only for isolated parameter values. For the con-
struction of parametrizations it is necessary that (2.4) is true for all real numbers. In
cases where the reality condition is satisfied only for t ∈ [a, b] 6= R and a 6= b, one may
use a reparametrization. For instance, let t = (a + bs2)/(1 + s2), such that the reality
condition holds for all s ∈ R.
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Figure 1. Geometric properties.

Since rationality is quite important for practical use, we only deal with rational spine
curves m(t) and rational radius functions r(t). We introduce two methods deriving ra-
tional parametrizations of the form (2.3). In both cases the main problem is to find a
rational curve contained in Φ. We did a first attempt in Section 3. But the necessary
conditions lead to calculations, which are rather difficult. The second one (Section 5)
is more geometric and essentially uses the Gauss map. Further we give a constructive
proof of the existence of rational parametrizations of real canal surfaces determined by
a rational spine curve m(t) and a rational radius r(t).

3. System of Quadratic Equations

Let m(t) be a rational spine curve and r(t) a rational radius function. A rational
parametrization of the form (2.3) is given, if it is possible to construct a rational vector
function q(t, u) such that x = m + rq satisfies (2.1) and (2.2). The resulting conditions
are q2 ≡ 1 and

q · ṁ+ ṙ ≡ 0, (3.1)

corresponding to equations (2.1) and (2.2). Each characteristic circle k can be paramet-
rized in a rational way by a parameter u, described in Section 3.2. The main problem
is to determine a unit vector field q̃(t) which satisfies (3.1), such that f = m + rq̃ is a
rational curve in Φ.

Since q̃(t) is a rational curve contained in the unit sphere S2, it follows from .Dietz et
al. (1993) that a homogeneous coordinate representation of q̃ is

q̃0 = p2
0 + p2

1 + p2
2 + p2

3, q̃1 = 2(p0p1 − p2p3),
q̃2 = 2(p0p2 + p1p3), q̃3 = p2

0 − p2
1 − p2

2 + p2
3,

with polynomials p0(t), . . . , p3(t). Assume that the Cartesian coordinate functions mi

and the radius function r are of degree ≤ k and have a common denominator d. Let
pi(t) = pi0 + pi1t + · · · + pint

n be polynomials of degree n. Then equation (3.1) is a
polynomial of degree 2n + 2k − 2. The identity condition in (3.1) leads to a system of
2n+2k−1 equations, quadratic in the 4(n+1) homogeneous unknowns pij for i = 0, 1, 2, 3
and j = 0, . . . , n.

If n ≥ k − 2, it would be possible that (3.1) has real solutions. Further the rational
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Figure 2. A geometric method for pipe surfaces to a polynomial cubic spine curve.

vector field q̃ would be of degree 2k − 4. For example, let k = 3, and thus n ≥ 1.
Identity (3.1) results in a system of 5 polynomial equations in 8 homogeneous unknowns.
For this case under the condition of special radius functions we are able to prove that
real solutions exist for n = k − 2. But in genereral it is not obvious how to choose an
appropriate n, for which real solutions exist.

However, a real solution of (3.1) defines a rational curve f = m + rq̃ contained in Φ.
The remaining calculations to obtain the complete parametrization (2.3) are given in
Section 3.2. In special cases, solving system (3.1) can be avoided. Several examples are
discussed in Section 3.1 and Section 4.

3.1. a geometric method for pipe surfaces

Let Φ be a pipe surface determined by a cubic polynomial space curve m(t). We de-
scribe a geometric method to find a unit normal vector field q̃(t), which satisfies q̃ ·ṁ ≡ 0.
Since m(t) is a cubic polynomial space curve, ṁ(t) is quadratic and x(λ, t) = λṁ(t) is a
parametrization of a quadratic cone with vertex at the origin O. This implies that the
planes n(t) : x ·ṁ = 0 are tangent planes of a quadratic cone, say ∆. A parametric repre-
sentation of ∆ is given by x(λ, t) = λ(ṁ×m̈)(t). The quadratic form corresponding to ∆
can be found by eliminating λ and t from the parametric representation. Each quadratic
cone possesses at least three planes of symmetry, corresponding to the eigenvalues of the
quadratic form. One plane of symmetry, say σ, intersects ∆ in two conjugate complex
lines. It follows that each plane σ1 6= σ, parallel to σ, intersects ∆ in an ellipse k. The
tangent lines g(t) of k are obtained by g = n ∩ σ1 (see Figure 2).

Our aim is to construct a quadratic unit vector field q̃(t), which is contained in n(t).
Let c be the circle in σ1, tangent to the ellipse k at its main vertices. Let h(t) be a pencil
of lines in σ1, passing through one focal point F of k, such that h(t) is perpendicular
to g(t) for each t ∈ R. It can be verified that the point g(t) ∩ h(t) is contained in c for
each t. This construction determines a rational quadratic parametrization of c.

So it follows that the vector q̃(t), which describes the point g(t) ∩ h(t) ⊂ σ1 satisfies
q̃ · ṁ ≡ 0. Further q̃(t) is of constant length and can be scaled to q̃2 ≡ 1. The vector field
q̃(t) forms the basis of a rational parametrization of the pipe surface Φ. The remaining
steps, that are the computation of the characteristic circles, can be done as described in
Section 3.2.



Rational Canal Surfaces 259

m
γ

q~

x

.

m
.

r
f

c

Figure 3. Computing the characteristic circles.

3.2. computing the characteristic circles

Let m(t) and r(t) be rational and assume that q̃(t) is already computed and defines
a rational curve f = m + rq̃, contained in Φ. For a fixed t0 let γ(t0, u) be the pencil
of planes passing through the tangent line m(t0) + λṁ(t0), as illustrated in Figure 3.
Further let c(t0, u) be the normal vectors of γ(t0, u) given by

c(t0, u) = v1(t0) + uv2(t0),

where v1, v2 denote two distinct normal vectors of planes contained in this pencil. We
may choose v1, v2 in the following way

v1 = (ṁ2,−ṁ1, 0), v2 = (ṁ3, 0,−ṁ1).

Note that singularities may occur, namely for parameter values where v1, v2 are linearly
dependent. This can be avoided by c(t, u) = ṁ(t) × n(t) + un(t), where n(t) denotes a
normal vector field of the spine curve m(t).

One generates the characteristic circle corresponding to t0 by reflecting f(t0) at all
planes γ(t0, u). This construction leads to the following parametrization of Φ, namely

x(t, u) = f(t)− 2
r(t)c(t, u) · q̃(t)

c(t, u)2
c(t, u). (3.2)

We mention that the parameter u varies in R ∪∞.

4. Canal Surfaces Tangent to Special Surfaces

In this section several examples shall be presented, where it is not necessary to
solve (3.1), since a rational curve f ⊂ Φ, different from a characteristic circle is already
given. It follows from (3.2) that Φ is rational. To obtain parametric representations of Φ
one only has to apply the construction described in Section 3.2 or similar ones.

First we study the class of canal surfaces tangent to a constant plane. This class
includes well-known surfaces like Dupin cyclides. A rational curve f contained in Φ is
the orthogonal projection of the spine curve m onto the constant tangent plane.

Let m(t) be an arbitrary rational curve. Let x3 = 0 be the constant tangent plane.
This implies r(t) = m3(t) and with (3.2) the canal surface can be parametrized by

x(t, u) = (m1,m2, 0) + 2
c3m3

c21 + c22 + c23
(c1, c2, c3). (4.1)
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Figure 4. Canal surface tangent to a sphere.

A special case of the first example are pipe surfaces with planar spine curves. A parametric
representation can be derived from (4.1) inserting constant radius functions.

A second example is canal surfaces tangent to a sphere along a rational curve. Let
S2 be the unit sphere, centered at the origin of 3-space. Let f(t) be a rational curve
⊂ S2, that means f2 ≡ 1. Further let r(t) be a rational radius function. Then the spine
curve m = rf and the radius r determine a rational canal surface Φ and a possible
parametrization is

x(t, u) = f +
2r2(r − 1)u

1 + u2(r2ḟ2 + ṙ2)
(f × ḟ + u(rḟ2f − ṙḟ)). (4.2)

A special case of the second example are pipe surfaces with spherical spine curve. A
parametrization is given with (4.2) for constant radius functions.

More general examples can be obtained in the following way. Let Ψ be a rational
surface which possesses rational offsets and let f(t) be a rational curve in Ψ. Then there
is a rational unit vector field n(t), perpendicular to Ψ in points of f . Let r(t) be a rational
function and m = f + rn be a rational curve. Then it follows that the canal surface Φ
determined by the spine curve m and the radius function r is rational and is tangent
to Ψ along f .

5. Construction of Rational Parametrizations

In this section a general construction of rational parameterizations for real canal sur-
faces will be given. Further we prove that such parametrizations always exist.

Let Φ be a real canal surface, defined by a rational spine curve m(t) and a rational
radius function r(t). Let Φ be interpreted as an envelope of a one parameter set of real
cones of revolution ∆(t) (Figure 1). Let s(t) be the vertices of ∆(t) and e(t) be a curve,
such that for each t0 the sphere with center e(t0) and radius 1 is tangent to ∆(t0). It
follows that

s = m− r

ṙ
ṁ, e = m+

1− r
ṙ

ṁ.

Let S2 be the unit sphere centered at the origin of 3-space and let γ : Φ → S2 be the
Gauss map. The cones ∆(t) are mapped onto circles c(t). The circles c(t) themselves
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define cones of revolution ∆̃(t), which are tangent to S2 along c(t). The vertices of the
cones ∆̃ are given by z = s− e which leads to

z(t) =
−1
ṙ(t)

ṁ(t).

Note that z is at infinity, if ṙ = 0.
Our aim is to construct a rational unit normal q ⊂ S2 of Φ, such that (2.3) is a rational

parametrization of Φ. For each fixed t0 the vector field q(t0, u) describes a circle ⊂ S2.
To derive parametrizations it is comfortable to use a stereographic projection.

Let π be the Euclidean plane in 3-space defined by x3 = 0 and W = (0, 0, 1). A
stereographic projection δ : S2 → π with center W is a rational conformal map. In
particular δ maps circles c to circles or lines δ(c). In general δ(c) is a circle with center
n = δ(z) and radius ρ given by

n =
−1

ṙ + ṁ3
(ṁ1, ṁ2, 0), (5.1)

ρ2 =
1

(ṙ + ṁ3)2
(ṁ2 − ṙ2). (5.2)

It is clear that δ(c) is a line, exactly if ṙ + ṁ3 = 0. For further calculations one uses a
Lemma, which can be proved by factorizing the given polynomial over the complex field.

Lemma 5.1. Let f be a real definite polynomial, which means that f(t) ≥ 0 for all t ∈ R.
Then there exist polynomials f1, f2, such that f = f2

1 + f2
2 .

Let us summarize what we have done till now. The stereographic projection of the
Gauss image of Φ contains a one parameter set of circles δ(c), centered at a rational
planar curve n(t). But in general the radius function ρ is not rational. A rational curve ϕ̃
corresponding to the set δ(c̃) shall be constructed, such that for each fixed t0 the point
ϕ̃(t0) is contained in the circle δ(c(t0)). Therefore ϕ̃ has to be of the form

ϕ̃(t) = n(t) + g(t), (5.3)

where g(t) a rational planar vector, whose coordinates satisfy g2
1 + g2

2 = ρ2.
Since the denominator in (5.2) is a square, it is sufficient to apply Lemma 5.1 to

the numerator of ρ2 ≥ 0. A solution g1, g2 of the decomposition of ρ2 leads to the
representation (5.3). To derive the complete parametrization of δ(γ(Φ)) one may proceed
as follows. Let d(u) = (u, 1) be normals of a pencil of lines. Similar to Section 3.2, a
rational parametrization of a fixed circle δ(c) can be constructed by reflecting ϕ̃ at all
diameters of δ(c), which leads to

ϕ(t, u) = ϕ̃(t)− 2
g(t) · d(u)
d(u)2

d(u). (5.4)

The inverse projection δ−1 : π → S2 maps ϕ to the unit normals

q(t, u) =
1

(1 + ϕ2
1 + ϕ2

2)
(2ϕ1, 2ϕ2, ϕ

2
1 + ϕ2

2 − 1)(t, u), (5.5)

such that x(t, u) = m(t) + r(t)q(t, u) is a rational parametrization of Φ. Let us collect
the derived results.
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Figure 5. Canal surface defined by a cubic polynomial spine curve and a cubic polynomial radius.

Theorem 5.1. A real canal surface determined by a rational spine curve and a rational
radius function possesses real rational parametrizations.

Remark: Theorem 5.1 is not a characterization of rational canal surfaces, but a sufficient
condition. Additionally it admits a generalization on envelopes of rational one parameter
sets of cones of revolution. Several examples and a proof are described by .Peternell and
Pottmann (1996).

In a further section practical calculations are studied in detail.

6. Degree Reductions and Implementation

The method derived in Section 5 depends on the choice of the center W of the stere-
ographic projection δ : S2 → π. The plane π is determined by the center W , because
it has to be parallel to the tangent plane to S2 at W . Otherwise, δ is not a conformal
map. Equivalent to the choice of W is the choice of an adapted coordinate system. On
the other hand low degree representations are important for practical use.

Let O be the origin and ξ, η and ζ unit vectors describing an orthonormal basis in R3.
We will show that an adapted coordinate system (O; ξ, η, ζ) exists such that the degree
of the parametrization of Φ reduces.

The map δ−1 : π → S2 is quadratic, such that a rational planar curve ϕ ⊂ π of order n
is mapped to a rational curve q ⊂ S2 of order 2n in general. The degree of q reduces, if
the numerators and the denominator of the coordinate functions in (5.5) have a common
divisor.

The description of the construction is easier if we assume that the coordinate functions
mi(t) and the radius function r(t) are polynomials. Otherwise we assume that the rational
functions mi and r have a common denominator d. Then formulae (6.4) and (6.5) can
be used by replacing ṁi by dṁi − ḋmi and so on.

6.1. appropriate choice of the coordinate system

Let ω be the ideal plane in P3, the projective extension of R3. We use R3 as Euclidean
3-space but also as vector space. A coordinate system or frame in R3 defines a coordinate



Rational Canal Surfaces 263

j

z1 z2

A2

A1

A1 A2

a1

a2

Z2

a2

a1

Z1

V

V

Figure 6. Appropriate choice of the coordinate system.

system in ω. A one-dimensional subspace λv, with λ 6= 0 and v 6= (0, 0, 0) determines a
point V in ω. We may interprete λ(v1, v2, v3) as homogeneous Cartesian coordinates of V
in ω. Let j be the conic in ω defined by x2

1 +x2
2 +x2

3 = 0. The bilinear form corresponding
to j is the Euclidean scalar product x · y = x1y1 + x2y2 + x3y3. The construction of the
frame, illustrated in Figure 6, depends essentially on a configuration in ω. Complex lines
are represented by dashed lines, real lines by solid lines. Complex points are represented
by circles, real points by filled circles.

Let τ, τ̄ be conjugate complex zeros or a real double zero of the definite polynomial
f = ṁ2 − ṙ2 ≥ 0, which is the numerator of (5.2). Let v = ṁ(τ) and v̄ = ṁ(τ̄). The
vectors v and v̄ describe conjugate complex points V, V̄ in ω. Let ai, āi for i = 1, 2 be
conjugate complex tangent lines of j, passing through V and V̄ . These lines are tangent
to j in points Ai, Āi. A coordinate representation is

Ai = (αi, βi, γi) = (−v1v3 ∓ i v2
√
λ,−v2v3 ± i v1

√
λ, v2

1 + v2
2), (6.1)

Āi = (ᾱi, β̄i, γ̄i) = (−v̄1v̄3 ± i v̄2
√
λ̄,−v̄2v̄3 ∓ i v̄1

√
λ̄, v̄2

1 + v̄2
2), (6.2)

where λ = v · v and λ̄ = v̄ · v̄ . Using the scalar product it follows that the lines ai and āi
are represented by the same coordinates as Ai and Āi. That means that ai for instance
is given by the linear equation αix1 + βix2 + γix3 = 0. Further let Zi = ai ∩ āi and let zi
be the lines connecting Ai, Āi. It is clear that Zi and zi are real. We choose for instance
the pair Z1, z1 and denote it for simplicity by Z, z. Analogously A, Ā denote the points
A1, Ā1. The point Z and the line z can be represented by the unit vector

ζ = (ζ1, ζ2, ζ3) =
A× Ā
‖A× Ā‖ . (6.3)

The new coordinate system is chosen such that ζ describes the new x3-axis. Let ξ and η
be unit vectors of the new axes x1, x2. They can be chosen arbitrarily, but have to satisfy
the conditions of an orthonormal frame. This implies η = ζ × ξ, where ξ is for instance

ξ1 =
ζ2√
ζ2
1 + ζ2

2

, ξ2 = − ζ1√
ζ2
1 + ζ2

2

, ξ3 = 0.

Since this construction depends only on a configuration in ω, the transformation is only
determined up to sign changes of the basis vectors. The signs will be determined later.
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6.2. degree reductions

First we rewrite the formulae of Section 5 in terms of mi and r, assumed to be polyno-
mials. Let f1, f2 be polynomials satisfying f2

1 + f2
2 = ṁ2 − ṙ2. Then the planar rational

curve ϕ̃ is given by

ϕ̃(t) =
1

ṙ + ṁ3
(f1 − ṁ1, f2 − ṁ2). (6.4)

Using the following substitutions

e = ṁ2
1 + ṁ2

2, k = ṙ + ṁ3, g = f1ṁ1 − f2ṁ2, h = f1ṁ2 + f2ṁ1,

and applying (5.4) and (5.5) the homogeneous coordinates of the unit normal q are

q̄0(t, u) =u2(e+ ṁ3k + g) + 2uh+ e+ ṁ3k − g,
q̄1(t, u) = (−u2(ṁ1 + f1)− 2uf2 + f1 − ṁ1)k,
q̄2(t, u) = (−u2(ṁ2 − f2)− 2uf1 − f2 − ṁ2)k,
q̄3(t, u) =u2(e− ṙk + g) + 2uh+ e− ṙk − g.

(6.5)

We use the same notation as in Section 6.1 and assume that a frame is chosen as described
there, up to the signs of the basis vectors. Let d = (t−τ)(t− τ̄) and let π : x3 = 0. We will
show that d is a common divisor of the coordinate functions q̄0, . . . , q̄3. The orthogonal
projection p : P3 → π with center Z induces a planar projection pω : ω → z in the ideal
plane. The projection p maps v = ṁ(τ) to p(v) and v̄ = ṁ(τ̄) to p(v̄); pω maps V, V̄ to
A, Ā ⊂ j. Since p(v) and p(v̄) describe the points A and Ā, which are contained in j, it
follows that p(v)2 = p(v̄)2 = 0. We see that the polynomial e = p(ṁ)2 has zeros at τ
and τ̄ , such that d divides e. Since τ and τ̄ are also zeros of ṁ2 − ṙ2 it follows that d
divides ṁ2

3 − ṙ2. We choose the orientation of ζ in (6.3) such that ṁ3(τ) = −ṙ(τ). This
guarantees that d divides k. Maybe after a substitution of f2 by −f2 we achieve that the
real polynomial d divides the complex polynomial (ṁ1 +i ṁ2)(f1 +i f2). Therefore d also
divides its real and imaginary parts, g and h, respectively.

We summarize that all coordinate functions q̄i have a common divisor, such that the
degree of the Cartesian coordinates qi = q̄i/q̄0 reduces.

Corollary 6.1. Let Φ be a real canal surface determined by a polynomial spine curve
m(t) of degree k and a polynomial radius function r(t) of degree k. Then there exists a
unit normal vector function q(t, u) of Φ, which is of degree 2k − 4 in t. The resulting
parametrization (m+ rq)(t, u) of Φ is in general of degree 3k − 4 in t and 2 in u.

Let Φ be defined by rational but not polynomial functions mi(t) and r(t) both of
degree k, which possess a common denominator. The numerators of ṁ and ṙ are of
degree 2k − 2 and it follows that the normal field q(t, u) is of degree 4k − 6 in t. The
resulting parametrization (m+rq)(t, u) of Φ is in general of degree 5k−6 in t and 2 in u.

Several problems occur when implementing the algorithm given above. One of them is
the decomposition described in Lemma 5.1. In general one has to use numerical methods
to calculate the zeros of f such that the solution f1, f2 is not exact. Further it is clear
that (t− τ)(t− τ̄) is not an exact divisor of the occuring polynomials. So it is necessary
to combine algebraic and numerical methods (.Stetter, 1996).

A further problem is the distribution of the rational parameter lines f(t, u0) = (m +
rq)(t, u0) for a fixed u0 on a canal surface Φ (see Figures 5 and 7). Let Φ be a pipe
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Figure 7. Pipe surface defined by a cubic polynomial spine curve.

surface. In general the distance between two fixed rational parameter lines f(t, u1) and
f(t, u2), measured along the characteristic circles, is not constant. This fact can produce
rational parametrizations, which are nearly singular. To avoid this one can restrict m(t)
to be contained in the class of curves, whose tangent vector ṁ(t) has rational length (see
.Farouki and Sakkalis, 1994).

Finally, we would like to mention that .Lü (1995b) has presented a different proof of
the theorem along with another algorithm to construct rational parametrizations of canal
surfaces. His method leads in general to higher degrees. Another contribution on this topic
is a paper by .Malosse (1996). He mainly studies pipe surfaces and the generalization to
canal surfaces is not really straightforward. Furthermore we believe that our algorithm
is easier to understand and to implement.
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