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ABSTRACT

Given a cloud of measurement points from the surface of a 3D object, we address the problem of recognizing and recon-
structing special surface types. We survey our work on this problem, which is based on approximation in the space of
lines and in the space of planes. Moreover, we discuss new generalizations which also use a recently developed technique
for parametric surface fitting with an active contour model.

1 INTRODUCTION

Modern 3D measurement devices (laser range scanners,
structured light based measurement� � � �) produce a large
amount of 3D data of geometric objects. These data are
more or less structured point clouds. We have a variety of
methods for processing these clouds of points: triangula-
tion, mesh decimation (Garland Heckbert, 1997), reverse
engineering through surface fitting (Varady et al., 1998).
Together with rapid prototyping and 3D printing, we pos-
sess a complete chain for the emerging area of 3D technol-
ogy. For the essential steps such as data acquisition, CAD
model building, model modification and printing there are
already good solutions on the market.

Whereas the basic concepts and algorithms for 3D Vision
and Reverse Engineering of geometric objects are avail-
able, the degree of automation and intelligence in the sys-
tems still has to be increased. A reverse engineering sys-
tem should not just fit any surface to the data as long as it
is within tolerance. For several reasons including function-
ality and the choice of the right manufacturing tools, it is
important to recognize special shapes and build an accord-
ing CAD model (Varady et al., 1998).

In the present paper, we survey our recent progress on
the recognition and reconstruction of special surfaces from
point clouds. These surfaces are the basic shapes of any
CAD system (plane, sphere, cylinder and cone of revolu-
tion, torus) and more general surfaces with a simple kine-
matic generation. The latter surfaces are sweep surfaces
and include surfaces of revolution, helical surfaces, pipe
surfaces, developables surfaces, ruled surfaces and transla-
tional surfaces. The methodology combines results of clas-
sical geometry with techniques of geometric computing.
The main idea is to estimate surface normals (or equiv-
alently tangent planes) at the data points and then solve
certain approximation problems in the space of lines or the
space of planes, respectively.

We will first briefly introduce the basic geometric concepts
and then discuss their application to the recognition and re-
construction of special surfaces. Finally, we point to ongo-
ing research which also employs a type of 3D active con-
tours for surface approximation.

2 APPROXIMATION IN LINE SPACE: FITTING A
LINEAR COMPLEX TO A SET OF LINES

2.1 The linear line complex

Consider the motion of a rigid body in space. If x is a point
in Euclidean three-space, the symbol v�x� denotes the ve-
locity vector of that point of the moving body which is at
this moment at position x. Thus v�x� is a time-dependent
vector attached to the point x. It is well known that at some
instant �, a smooth motion has a velocity vector field of the
form

v�x� � c � c� x� (1)

with vectors c� c, see e.g. (Bottema Roth, 1990). Thus the
velocity vector field (or the infinitesimal motion) at some
instant � is uniquely determined by the pair �c� c�.

Of special interest are the uniform motions, whose veloc-
ity vector field is constant over time. It is well known
that apart from the trivial uniform motion, where nothing
moves at all and all velocities are zero, there are the fol-
lowing three cases:

1. Uniform translations have c � o, but c �� o, i.e., all
velocity vectors equal c.

2. Uniform rotations with nonzero angular velocity
about a fixed axis. We have c � c � �, but c �� o.

3. Uniform helical motions are the superposition of a
uniform rotation and a uniform translation parallel to
the rotation’s axis. They are characterized by c�c �� �.

If � is the angular velocity of the rotation, and � the
velocity of the translation, then � � ��� is called the
pitch of the helical motion. We use the convention
that � is nonnegative, that � � � for right-handed
helical motions, and that � 	 � for left-handed ones.

Formally, � � � means a uniform rotation and � ��
is a translation.

All possible pairs �c� c� actually occur, so we can use these
three cases to classify the type of velocity vector field at
one instant of an arbitrary smooth motion: Infinitesimal
translations are characterized by c � o, and infinitesimal



rotations by c � c � �. The remaining velocity vector fields
are said to belong to infinitesimal helical motions. At all
instants, the velocity vector field of a smooth motion be-
longs to one of the three cases, if it is nonzero.

It turns out that it is useful to study path normals of mo-
tions, i.e. lines that are orthogonal to the velocity vector
of one of their points. Here it is convenient to describe
lines by their Plücker coordinates. If a line 
 contains
a point p and is parallel to the vector v, then the pair
�g� g� � �v� p� v� is called its Plücker coordinate vector.
It is easy to see that g does not depend on the particular
choice of p. The Plücker coordinate vector is unique only
up to scalar multiples. Its two components g, g are not in-
dependent, but fulfill the relation g � g � �. A point x is
contained in 
 if and only if x� g equals g.

Connections between Plücker coordinates of lines and ve-
locity vector fields are shown by the following two lem-
mas. For a more detailed treatment, see (Pottmann Wall-
ner, 2001).

Lemma 1 A line with Plücker coordinates �g� g� is a path
normal of a smooth motion �c� c�, if and only if c�g�c�g �
�.

Lemma 2 If �c� c� represents the velocity vector field of a
uniform rotation or helical motion, then the Plücker coor-
dinates �g� g� of the axis, the angular velocity � and the
pitch � are reconstructed by

� � c � c�c�� � � �c�� �g� g� � �c� c� �c�� (2)

2.2 Approximation of a set of lines by a linear line
complex

We consider a set of lines ��� ��� � � � � represented by their
Plücker coordinates �n�� n��. Here, the direction vectors
shall be normalized, n�

� � �.

We would like to approximate these lines with a linear
complex � which consists of all lines �x� x� which sat-
isfy the linear equation c � x � c � x � �. � shall be
represented by the coefficients �c� c� of this equation. Us-
ing as a deviation measure of a line � to a linear com-
plex � the so-called moment ����� (Pottmann Wall-
ner, 2001), the minimization of the squared sum of mo-
ments

�
���� �� amounts to the minimization problem

� �c� c� �
�

�c � n�� c � n��� � ��	� ��c� � ��� (3)

� is a quadratic function of six real arguments, and the
side condition �c� � � is also quadratic. We can therefore
rewrite Equ. (3) in the form

�c� c�� �� � �c� c�� ��	� �c� c�� �� � �c� c� � �� (4)

with two �
 � 
�-matrices � and �. The matrix � has
nonzero entries only in its upper left � � � corner. The

solution of this problem is straightforward. The minimum
is assumed for �c� c� which fulfills

�� � ��� � �c� c� � �o� o�� �c� � ��
���� � ��� � �� � minimal� (5)

This means that we have to choose the smallest solution
� of the cubic equation ���� � ��� � � and solve the
equation �� � ����c� c� � �o� o�. Details can be found
in (Pottmann Randrup, 1998, Pottmann Wallner, 2001).

3 APPROXIMATION IN THE SET OF PLANES

Problems in geometric computing which involve sets of
planes can sometimes be transformed to problems for
points by application of a projective duality. This is true
as long as only projective and algebraic properties are in-
volved. As soon as we perform approximation, we need
distance measures, also in the space of planes.

We have shown in earlier papers how to solve this problem
by introducing a Euclidean metric in the space of planes
(see e.g. (Pottmann Wallner, 2001)): For that, it is neces-
sary to remove a bundle of planes, which in our approach
are the planes parallel to the �-axis in an appropriate Carte-
sian coordinate system ��� �� ��. Planes not parallel to the
�-axis can be written in the form

� � �� � ���� ���� (6)

We see that ���� ��� ��� are affine coordinates in the result-
ing affine space �� of planes not parallel to the �-axis.

We will now introduce a Euclidean metric in ��. Thereby
we make sure that the deviation between two planes shall
be measured within some region of interest. This region
shall be captured by its projection � onto the ��-plane.

For a positive measure � in �� we define the distance ��
between planes � � ���� ��� ��� and � � ���� ��� ��� as

������� � ���� � ��� � ��� � ����� ��� � �����������
(7)

i.e., the �����-distance of the linear functions whose
graphs are � and �. This, of course, makes sense only if
the linear function which represents the difference between
the two planes is in �����. We will always assume that the
measure � is such that all linear and quadratic functions
possess finite integral.
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Figure 1: To the definition of the deviation of two planes.



A useful choice for � is the Lebesgue measure ���� times
the characteristic function �� of the region of interest �
(Fig. 1). If � � ������, we have
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���������������������������
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(8)
We write ������� instead of �������. With �� �� �� �
��, equation (8) can be written as
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(9)
This is a quadratic form, whose matrix depends on the do-
main of integration � for the integrals (where we omitted
the symbols ���� for brevity).

Another possibility is that � equals the sum of several point
masses at points ��� � ���. In this case we have

�������� �
�
�

�����������������������������
��

(10)

It can easily be shown (Pottmann Wallner, 2001), that the
distance �� defines a Euclidean metric in the set of planes
of type (6), if and only if � is not concentrated in a straight
line.

In this way, approximation problems in the set of planes
are transformed into approximation problems in the set of
points in Euclidean 3-space, whose metric is based on ��.

The introduced metric depends on the choice of the refer-
ence direction, which we identified with the �-axis of the
underlying coordinate system. With decreasing angle be-
tween the considered planes and the reference direction,
the distance �� is becoming geometrically meaningless.
Therefore, it might be necessary to use different reference
directions in order to fully cover the space of planes ap-
propriately. This results in different local mappings of the
space of planes to affine 3-space and in different Euclidean
metrics. For the application we are dealing with in the next
section, this strategy is sufficient.

In a recent paper (Peternell Pottmann, 2001), the metric in
the space of planes is investigated further and new appli-
cations of this concept are presented. There, it is also dis-
cussed how to measure distances for all planes; however,
we do no longer obtain a Euclidean metric in the space of
planes then.

3.1 Application to the detection and reconstruction of
planar faces in point clouds

In the following we are interested in the detection and re-
construction of planar faces in point clouds. A known so-
lution to this problem uses the Gaussian sphere (Varady et
al., 1998). For each data point, one locally fits a plane to
the point and its nearest neighbors. The unit normal vec-
tors of those planes describe points on the Gaussian unit
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Figure 2: Top: Image points of planes of regression.
Bottom: Data points of roof points and the reconstructed
building.

sphere. Points from a planar face will give rise to nearly
identical local regression planes and thus to a point clus-
ter on the Gaussian sphere. The detection of planar faces
is reduced to the detection of point clusters on the Gaus-
sian sphere. An obvious disadvantage of this approach is
that we lose information when going from the regression
plane to the Gaussian sphere. Parallel planar faces cannot
be separated directly on the Gaussian sphere. Moreover,
the loss of information is critical in case of noisy data and
complicated objects.

These drawbacks can be overcome if we use approxima-
tion in the space of planes: The local regression planes
determine points in dual space. We use the Euclidean
distance introduced there to detect point clusters. For
each cluster, we then determine those original data points,
which are close to the regression planes that determine the
cluster. These data points belong to a planar region. Its
plane can easily be computed as a regression plane.

We provide an example from the reconstruction of 3D ur-
ban models from airborne laser scanner data. This is cur-
rently an important research topic in geodesy and pho-
togrammetry. We do not review the literature on this prob-
lem here, but just point to the very recent paper (Vossel-
mann Dijkman, 2001). There, an extension of the Hough
transform to 3 dimensions is used to recognize planar faces
of the buildings’ roofs. This approach has some similarity
to ours, since the Hough transform is also a special duality.
However, in our method the metric in the space of planes
plays a crucial role and thus it can be expected that the
present approach is more reliable.

The example displayed in Fig. 2 shows both the point
cluster in dual space and the reconstructed building. Our



method just gives the roof. The vertical walls have been
taken from a given top view.

4 RECOGNITION AND RECONSTRUCTION OF
SPECIAL SURFACES

4.1 Surfaces of revolution and helical surfaces

The detection and reconstruction of rotational and helical
surfaces has been studied in (Pottmann Randrup, 1998).
One first estimates surface normals of the data points and
then fits a linear line complex to those normals (Pottmann
Wallner, 2001). As we have seen in the previous section,
this approximation problem in line space requires the so-
lution of a general eigenvalue problem. In the case that a
good fit is possible, the characteristics of the linear com-
plex allow us to compute the kinematic generation of the
underlying shape, i.e., the rotational axis or the helical axis
plus pitch or the translational direction in case of a cylin-
der surface. It is then rather simple to compute a generating
profile curve and finally the approximating surface.

Special surfaces such as sphere and cylinder of revolu-
tion can be detected via special distributions of the general
eigenvalues in the eigenvalue problem (Pottmann Randrup,
1998). For solutions of the problem of fitting special sur-
faces (sphere, cylinder and cone of revolution, torus) based
on their representation as algebraic varieties, we refer to
(Lukacs et al., 1998).

Figure 3: Reconstruction of a surface of revolution: Left:
data points, estimates of normal vectors, and axis com-
puted from this estimation. Center: points projected onto a
plane and a curve approximating this point set, Right: final
surface of revolution.

As an example we consider scattered data (e.g. obtained
by a laser scanner) from an object whose boundary is a sur-
face of revolution. The surface normals at the data points
are estimated (see Fig. 3, left) using local quadric fits as
in (Varady et al., 1998). The pitch � of an approximat-
ing linear line complex in this case is nearly zero, which
shows that the original data come from a surface of rev-
olution. We let � � � and project the input data into a
half-plane which contains the axis (Fig. 3, center). The
curve which fits these points was found by a moving least
squares method according to (Lee, 2000).

4.2 Moulding surfaces, in particular pipe surfaces
and delopable surfaces

There are surfaces which are locally well approximated
by surfaces of revolution. One class of such surfaces are

smooth surfaces which have a kind of ‘osculating’ sim-
pler surface analogous to an osculating circle. Pipe sur-
faces, which are generated as the envelope of a moving
sphere, are locally well approximated by tori. Moulding
surfaces, which are generated by a planar curve, whose
plane is rolling on a developable surface, are locally well
approximated by surfaces of revolution (do Carmo, 1976).

A second class are surfaces composed of several different
pieces of simple surfaces. This includes most surfaces of
parts used e.g. in mechanical engineering. Surfaces which
do not consist of pieces of planes, cylindrical surfaces,
spheres, surfaces of revolution, and helical surfaces are
rare in many areas of application.

To reconstruct either type of surface in a satisfactory man-
ner, we have to consider the problem of deciding which
subsets of a given point cloud are well approximated by
the simple surfaces mentioned above. A solution is pro-
vided by a suitable region growing algorithm, which grows
an initially small subset until no simple surface fits well
enough.

An application of this is the recovery of pipe surfaces (see
Fig. 4). Parts of such surfaces appear as constant radius
rolling ball blends in reverse engineering (Kós et al., 2000).
The reconstruction of pipe surfaces is based on locally ap-
proximating tori.

For data from a pipe surface, locally approximating tori
have nearly the same pipe radius. We use the mean of the
computed radii as radius � of the pipe surface. Offsetting
the data points by a distance � in inward normal direction,
we should ideally end up at points of the spine curve. Due
to various errors (data, normal estimates, estimation of �),
we get a thin cloud of points along the spine curve. Fitting
a curve to these points (see Fig. 4, middle), we obtain the
spine curve and together with � the pipe surface is finally
determined (see Fig. 4, right).

Using locally approximating general surfaces of revolu-
tion, we can also reconstruct moulding surfaces (Lee et al.,
1999).

Figure 4: Pipe surface: Left: data points and estimates
of normal vectors, Center: approximate spine curve, Right:
reconstruction of pipe surface.

4.3 Developable surfaces

Developable surfaces are special moulding surfaces,
namely those with a straight line as profile curve. Spe-
cializing the strategy for general moulding surfaces, the
reconstruction of developable surfaces may be performed
with local fits by right circular cones or cylinders (Chen et
al., 1999).



Note that a developable surface is the envelope of a one-
parameter family of planes. Given scattered data points,
we may estimate tangent planes at data points and view
them as points in dual space. Using a metric in the space
of planes as discussed in section 3, we can fit a curve to the
resulting point cloud and interpret it as dual model of an
approximating developable surface (Peternell Pottmann,
2001).

4.4 Active contours for the reconstruction of ruled or
translational surfaces

An efficient approach to various approximation problems
for curves and surfaces are active contour models, which
are mainly used in Computer Vision and Image Processing.
The origin of this technique is the seminal paper (Kass et
al., 1988), where a variational formulation of parametric
curves, called snakes, is presented for detecting contours in
images. There are various other applications and a variety
of extensions of the snake model (see e.g. (Blake Isard,
1998, Malladi et al., 1995)).

Recently we have developed an active contour type strat-
egy for approximating a point cloud or a surface in any
representation (’model shape’) by a B-spline surface or an-
other surface type which can be written as linear combina-
tion of bivariate basis functions (Pottmann Leopoldseder,
2002). This technique is based on local quadratic approx-
imants of the squared distance function to curves and sur-
faces (Pottmann Hofer, 2002). There it is described how to
compute for any point p � �

	 such a local quadratic ap-
proximant ���p. The surface approximation method pro-
ceeds in the following steps:

1. Initialize the ’active’ B-spline surface and determine
the boundary conditions. This requires the computa-
tion of an initial set of control points, the proper treat-
ment of boundaries (e.g. by fixing vertices of a patch)
and the avoidance of model shrinking during the fol-
lowing steps.

2. Repeatedly apply the following steps a.–c. until the
approximation error or change in the approximation
error falls below a user defined threshold:

a. With the current control points, compute a set of
points s� of the active surface, such that the shape
of the active surface is well captured. For each of
the points s� determine a local quadratic approximant
���s� �� � �

� of the squared distance function to the
model shape at the point s�. In an appropriate coordi-
nate system, this has to be the graph of a nonnegative
quadratic function, � �

� �x� 	 ��
x � �	 .

b. Compute displacement vectors for the control points
by minimizing the functional

� �

	�
�
�

� �
� �s

�

�� � ��
� (11)

where s�� denote the displaced surface points (which
depend linearly on the unknown displacement vectors

of the control points) and �
 denotes a smoothing
functional which shall be quadratic in the unknown
displacement vectors. Thus, our goal is to bring the
new surface points s�� closer to the model shape than
the old surface points s�. Since the points s�� depend
linearly on the unknown displacement vectors of the
control points, both � �

� and � are quadratic in the un-
knowns.

We see that this step requires the minimization of a
function � which is quadratic in the displacement
vectors of the control points. This amounts to the so-
lution of a linear system of equations.

c. With the displacement vectors from the previous step,
update the control points of the active surface.

An important advantage of the new technique is that it
is not necessary to deal with the correspondence between
points in the parameter domain and the data points. Thus
problems where this correspondence is crucial can now be
easier handled.

One of these problems concerns the approximation of a
given surface or point cloud by a ruled surface. Ruled sur-
faces are interesting from various points of view (Pottmann
Wallner, 2001). Because they carry a one-parameter fam-
ily of straight lines, their use in architecture is much sim-
pler than that of more general freeform shapes. They
can be manufactured with wire EDM (Yang Lee, 1996),
and the approximation with ruled surfaces also appears
in the context of NC machining with a peripheral milling
strategy and a cylindrical milling tool (Lee Koc, 1998).
There is prior work on ruled surface approximation (Chen
Pottmann, 1999, Hoschek Schwanecke, 1998, Pottmann
Wallner, 2001). In the new surface approximation strategy
we just have to use tensor product B-splines of bidegree
���  � as active contours because these are ruled surfaces.

Another application of the new approximation technique
concerns the approximation of a given surface or point
cloud by a translational surface. A translational surface
x��� �� is generated by a translatory motion of a curve c���
along another curve d���. Assuming that the two curves
share a common point a � c��� � d���, the surface pa-
rameterization is given by

x��� �� � c��� � d��� � a� (12)

Translational surfaces are very well studied in classical ge-
ometry. Because of the simple generation, they are used
for various applications, e.g. in architecture.

For the reconstruction of a translational surface from a
point cloud, or the approximation of a given (not exactly
translational) surface by a translational surface, the con-
cepts of (Pottmann Leopoldseder, 2002) are again appli-
cable. We note that a translational B-spline surface has
control points which satisfy the constraints

d��� � d��� � d��� � d����



Figure 5: Surface approximation with translational sur-
face

As an example, Fig. 5 shows the initial (top) and the fi-
nal position (bottom) of a translational B-spline surface
(dark surface) that approximates a given translational sur-
face (light surface). The control points are iteratively re-
computed as described above, such that the B-spline sur-
face ’flows’ towards the target shape. As a boundary con-
dition, only two diagonally opposite vertices of the moving
surface are kept fixed. Note that no information on the di-
rection and shape of the translated curves c��� and d���
of the target surfaces have been used. These characteristic
curves have been ’detected’ by our algorithm.

Future research on this topic will include the recogni-
tion of ruled surfaces and translational surfaces, applying
methods of both projective and affine differential geometry
(Blaschke, 1923, Bol, 1950).
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Lukács, G., Marshall, A. D., Martin, R. R., 1998. Faithful least-
squares fitting of spheres, cylinders, cones and tori for reliable
segmentation. In: Computer Vision — ECCV ’98, Lecture Notes
in Computer Science, Springer.

Malladi, R., Sethian, J. A., Vemuri, B. C., 1995. Shape modeling
with front propagation: A level set approach, IEEE Trans. Pattern
Anal. and Machine Intell., 17, pp. 158–175.

Peternell, M., Pottmann, H., 2001. Approximation in the space of
planes — Applications to geometric modeling and reverse engi-
neering. Technical Report 87, Institute of Geometry, Vienna Univ.
of Technology.

Pottmann, H., Hofer, M., 2002. Geometry of the squared distance
function to curves and surfaces. Technical Report 90, Institute of
Geometry, Vienna Univ. of Technology.

Pottmann, H., Leopoldseder, S., 2002. A concept for paramet-
ric surface fitting which avoids the parametrization problem.
Preprint, Insitute of Geometry, Vienna Univ. of Technology.

Pottmann, H., Randrup, T., 1998. Rotational and helical surface
reconstruction for reverse engineering. Computing, 60, pp. 307–
322.

Pottmann, H., Wallner, J., 2001. Computational Line Geometry.
Springer-Verlag.
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