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Abstract

Given a cloudP of data points, we present techniques
and algorithms to decide whetherP could be measurements
of a developable surface and to reconstruct the original
shape of the surface. We will use the dual approach to de-
velopable surfaces, which says that a developable surface
can be considered as envelope of a one-parameter family of
planes. A classification will be given which detects cones,
cylinders, and developable surfaces of constant slope. Fi-
nally we discuss the problems occurring in this context.

1. Introduction

Given a cloud of data pointspi, i = 1, . . . , N in R
3,

we want to decide whetherpi are measurements of a de-
velopable surface. If this is the case, we will describe how
to find a developable surface which approximates the data
pointspi. The problem sounds simpler as it is in fact. One
would like to have a fully automatic procedure but the ex-
perience shows that there are certain limitations concerning
the regularity of the approximation, see Section 5.5.

Points and vectors inR3 or R
4 are denoted by boldface

letters,p,v. Planes and lines are displayed as italic capital
letters,T, L. We use Cartesian coordinates inR

3 with axes
x, y andz. In R

4 the axes of the Cartesian coordinate sys-
tem are denoted byu1, . . . , u4.

A ruled surfacecarries a one parameter family of straight
lines L. The surface is in particular adevelopable surface
D if all surface points along a fixed line have the same tan-
gent plane (with exception of a possibly occurring singular
point). The general parametrization of a ruled surface is

x(u, v) = c(u) + ve(u), (1)

wherec(u) is calleddirectrix curveande(u) is a vector
field alongc(u), which describes the generating straight

lines. The normal vectors of the ruled surfacex(u, v) are

n(u, v) = ċ(u) × e(u) + vė(u) × e(u). (2)

For fixedu = u0, the normal vectors are linear combina-
tions of the vectorṡc(u0) × e(u0) and ė(u0) × e(u0). If
x(u, v) is a developable surface, the two componentsċ× e

and ė × e are linearly dependent. This gives the follow-
ing characterization: The parametrizationx(u, v) describes
adevelopable surfaceexactly if the condition

det(ċ, e, ė) = 0 (3)

is identically satisfied. This says that the normals along a
generating line are all parallel which implies that the tan-
gent planeT (u) along a generating lineL is fixed. There
exists a uniquesingular points(u) at each generating line
L(u), and it is determined by the parameter value

vs = − (ċ× e) · (ė × e)

(ė× e)2
. (4)

If e and ė are linearly dependent, the singular points is
at infinity. In Euclidean spaceR3 there exist three differ-
ent classes of developable surfaces:

1. Cylinders: the singular curve degenerates to a single
point at infinity.

2. Cones: the singular curve degenerates to a sin-
gle proper point, which is calledvertex.

3. General Case: these surfaces consist of the tangent
lines of a regular space curves(u), which is the sin-
gular curve of the surface.

In all three cases the surface can be generated asenvelope
of its one parameter family of tangent planes. A cylinder of
revolution is obtained by rotating a plane around an axis
which is parallel to that plane. A cone of revolution is ob-
tained by rotating a plane around a general axis, but which
is not perpendicular to that plane. Further, it is known that
smooth developable surfaces can be characterized by van-
ishing Gaussian curvature.



Figure 1. General cylinder and cone

Figure 2. General developable surface: one
and two sheets of the tangent surface of a
space curve

1.1. Contribution of the article

There is quite a lot of literature on modelling with de-
velopable surfaces, see for instance [1, 2, 3, 7, 12, 15]. B-
spline representations and the dual representation are well
known and have been used for interpolation and approxima-
tion tasks.

The contribution of this paper is the focus on the recon-
struction of developable surfaces from scattered data by the
use of estimated tangent planes for the data points. The ap-
proximation is performed in the space of planes with respect
to a meaningful chosen metric. In addition, we use a data
structure (tesselation) in the space of planes, which guaran-
tees quick data access. The proposed algorithm can also be
applied to approximation of arbitrary (nearly developable)
surfaces by developable surfaces. The test implementations
have been performed in Matlab and the data have been gen-
erated by scanning models of developable surfaces with an
optical laser scanner.

The article is organized as follows: Section 2 contains the
dual approach together with a discussion of the Blaschke
image curves of developable surfaces. Section 3 tells about
a classification of developable surfaces with help of the
Blaschke image. Section 4 discusses the recognition of

these surfaces in point clouds. Section 5 gives two algo-
rithms to reconstruct these surfaces from data points. Fi-
nally, we present some examples and discuss problems and
possible solutions.

2. The dual approach

Let T (u) be a one-parameter family of planes

T (u) : n4(u) + n1(u)x + n2(u)y + n3(u)z = 0

with arbitrary functionsni, i = 1, . . . , 4. The vectorn(u) =
(n1, n2, n3)(u) is a normal vector ofT (u). The developable
envelope surfaceD of T (u) contains generating linesL(u)
which are obtained by intersectingT (u) ∩ Ṫ (u), where
Ṫ (u) denotes the derivative with respect tou. The generat-
ing lines themselves envelope the singular curves(u) which
is obtained by the intersectionT (u) ∩ Ṫ (u) ∩ T̈ (u).

The functionsni of T (u) are not uniquely defined, but
any ρn1, ρn2, ρn3, ρn4 with a smooth functionρ(u) de-
scribes the same family of planesT (u). So, we can assume
thatT (u) is given in Hesse normal form which satisfies the
condition

n2
1 + n2

2 + n2
3 = 1. (5)

This is the normalization of the normal vectorn(u). We
considern1, n2, n3, n4 as coordinate functions in a space
R

4, with coordinate axesu1, u2, u3, u4. The normalization
condition is

B : u2
1 + u2

2 + u2
3 = 1, (6)

which describes a hypersurface inR
4.

2.1. The Blaschke mapping

The coefficientsni of planesE : n4 + n1x + n2y +
n3z = 0 can be interpreted as coordinates of pointsE∗ =
(n1, n2, n3, n4) on B, if we take the condition (5) into ac-
count. The vectors(n1, . . . , n4) and (−n1, . . . ,−n4) de-
fine the same carrier plane, but their unit normalsn and−n

have opposite orientations. Thus, each carrier plane carries
two differentoriented planesand orientation is defined with
respect to the oriented unit normaln.

The hypersurfaceB is a quadratic cylinder and the in-
tersections ofB with hyperplanesu4 = const. are spheres
with radius 1. In particular, the intersection withu4 = 0 is
the unit sphere inR3 (if R

3 is embedded inR4 as hyper-
planeu4 = 0).

Let b be the mapping from theset of oriented planesE
to their image pointsb(E) ∈ B, defined by

b : E : n4+n1x+n2y+n3z = 0 7→ b(E) = (n1, n2, n3, n4).
(7)

We call itBlaschke mappingandB is calledBlaschke cylin-
der. B is the image of the set of oriented planesE ∈ R

3.



Any developable surfaceD can be considered as one-
parameter family of tangent planesT (u), thus it can be in-
terpreted as curveb(T (u)) = b(D) onB ⊂ R

4. Conversely,
any differentiable curveC(u) ⊂ B which is not a generat-
ing line ofB, can be considered as Blaschke imageb(T (u))
of a one parameter family of planesT (u), whose envelope
is a developable surfaceD (including the degenerate case
of a pencil of planes). Thus,C(u) can be interpreted as
Blaschke image ofD. By the way, the points of a gener-
ating line onB correspond to a family of parallel planes in
R

3.

2.2. Tangent planes of a sphere

We have to investigate the Blaschke images of the tan-
gent planesT of a sphereS in R

3 because these results will
be used for the classification of developable surfaces in Sec-
tion 3. LetS be given by the equation

S : (x − m1)
2 + (y − m2)

2 + (z − m3)
2 − r2 = 0.

The sphere can be considered as oriented surface with
help of oriented unit normals. Equivalently, we can orient
spheres by considering signed radii, thus the spheres with
centerm = (m1, m2, m3) and radii±r are different.

An oriented planeT : n4 + n1x + n2y + n3z = 0 is
tangent to the oriented sphereS, exactly if

n4 + n1m1 + n2m2 + n3m3 − r = 0. (8)

This says that the Blaschke imagesb(T ) of tangent planes
T of S satisfy a linear equation of the form

−r + u1m1 + u2m2 + u3m3 + u4 = 0. (9)

Conversely, if pointsq = (q1, q2, q3, q4) ∈ B satisfy a lin-
ear relation

H : a0 + u1a1 + u2a2 + u3a3 + u4a4 = 0,

q = b(T ) are Blaschke images of planesT which are tan-
gent to a sphere in casea4 6= 0. Center and radius are deter-
mined by

m =
1

a4

(a1, a2, a3), r =
−a0

a4

.

If a0 = 0, the planesb(T ) pass through the fixed pointm. If
a4 = 0, the planesT form a constant angle with the direc-
tion vectora = (a1, a2, a3) because ofa · n = −a0, with
n = (u1, u2, u3).

3. The classification of developable surfaces

We will discuss how cylinders and conesD and other
special developable surfaces can be characterized by their
Blaschke imageb(D).

Cylinder: The surfaceD is a cylinder if all its tangent
planesT (u) are parallel to a vectora. Thus, the nor-
mal vectorsn(u) are perpendicular toa. This implies
that the image pointsb(T ) of the tangent planesT of
D satisfyn · a = n1a1 + n2a2 + n3a3 = 0. Thus, the
curveb(T (u)) is contained in the three-space

a1u1 + a2u2 + a3u3 = 0. (10)

Cone: The surfaceD is aconeif all its tangent planesT (u)
pass through a fixed pointp = (p1, p2, p3). This inci-
dence is expressed byp1n1 + p2n2 + p3n3 + n4 = 0.
Thus, the Blaschke image curveb(T (u)) = b(D) is
contained in the three-space

p1u1 + p2u2 + p3u3 + u4 = 0. (11)

There exist other special types of developable surfaces. Two
of them will be mentioned here.

The surfaceD is a developable of constant slope, if its
normal vectorsn form a constant angleφ with a fixed di-
rection vectora. Assuming that‖a‖ = 1, we getcos(φ) =
a · n = γ = const. This implies that the Blaschke images
of the tangent planes ofD are contained in the three-space

−γ + a1u1 + a2u2 + a3u3 = 0. (12)

The developable surfaceD is tangent to a spherewith
centerm and radiusr, if the tangent planesT (u) of D sat-
isfy n4+n1m1+n2m2+n3m3−r = 0. Thus, the Blaschke
image curveb(D) is contained in the three-space

−r + u1m1 + u2m2 + u3m3 + u4 = 0. (13)

It is of particular interest if a developableD is a cone or
cylinder of revolution. These two cases are discussed in the
next section.

3.1. Cones and cylinders of revolution

Let D be acylinder of revolutionwith axisA and radius
r. The tangent planesT of D are tangent to all spheres of
radiusr, whose centers vary onA. We consider two spheres

S1 : (x − p)2 − r2 = 0, S2 : (x − q)2 − r2 = 0

with equal radii. The Blaschke imagesb(T ) satisfy the rela-
tions

H1 : −r + u1p1 + u2p2 + u3p3 + u4 = 0, (14)
H2 : −r + u1q1 + u2q2 + u3q3 + u4 = 0,

which implies that the Blaschke image curveb(D) is a pla-
nar curve (conic)B ∩ P , whereP is the plane determined
by (14).



Cones of revolutionD can be obtained as envelopes of
the common tangent planes of two spheresS1, S2 with dif-
ferent radiir 6= s. Thus,b(D) is a conic contained in the
planeP defined by

H1 : −r + u1p1 + u2p2 + u3p3 + u4 = 0, (15)
H2 : −s + u1q1 + u2q2 + u3q3 + u4 = 0.

Conversely, if the Blaschke imageb(D) of a developable
surface is a planar curve, contained in a planeP , how can
we decide whetherD is a cone or cylinder of revolution?
Let b(D) = b(T (u)) be a planar curve⊂ P and letP be
given as intersection of two three-spacesH1, H2, with

Hi : hi0 + hi1u1 + hi2u2 + hi3u3 + hi4u4 = 0. (16)

We have already found in Section 2.2 that if the Blaschke
image b(T ) is contained in a three-spaceHi, the corre-
sponding tangent planeT is tangent to a sphere, or ispass-
ing through a point, or encloses afixed angle with a fixed
direction. This property has to hold with respect toH1 and
H2. If we exclude the degenerate caseh14 = h24 = 0,
we can assume thatP is determined by two three-spaces
H1, H2 of the form (14) or (15).

1. At first, the planeP is defined by three-spacesH1, H2

given by equations (14). Then, the developable surface
D is acylinder of revolution. By subtracting the equa-
tions (14) we find that the normal vectorsn of T (u)
have to satisfy

n · (p − q) = 0.

Thus, the axisA of D is given bya = p − q andD’s
radius equalsr.

2. At second, the planeP is defined by three-spaces
H1, H2 given by equations (15). The pencil of three-
spacesλH1 + µH2 contains a unique three-spaceH ,
passing through the origin, whose equation is

H :

3∑

i=1

ui(spi − rqi) + u4(s − r) = 0.

Thus, the tangent planes of the developable surfaceD
are passing through a fixed point, corresponding toH ,
andD is acone of revolution. Its v vertex is

v =
1

s − r
(sp− rq).

The axisA of D is given bya = p−q and the inclina-
tion angleφ between the axisA and the tangent planes
T (u) is

sin φ =
|s − r|
‖q − p‖ .

4. Recognition of Developable Surfaces

Given a cloud of data pointspi, this section discusses
the recognition of developable surfaces and the classifica-
tion, which type of surface we are dealing with. The algo-
rithm contains the following steps:

1. Estimation of tangent planesTi for all data pointspi.

2. Computing the Blaschke imagesb(Ti) of Ti.

3. Analysis of the structure of the setT of image points
b(Ti).

4. If T is curve-like, classification of the developable sur-
face, which is close topi.

4.1. Estimation of tangent planes

Given the data pointspi with Cartesian coordinates
xi, yi, zi in R

3, we assume that a triangulation of the data
points is already computed. So, we are given in addition a
list of trianglestj = (j1, j2, j3), consisting of triples of in-
teger values, which are references to the point listpi. This
gives topological information for the point cloud, and we
are able to define neighboring pointsqk for all data points
pi. In addition we assume that the data pointspi represent
a surface with orientation which is reflected by oriented tri-
anglestj .

For each data pointpi, we want to estimate a tangent
plane Ti. So, let p be a fixed point and letqk be p′s
neighbors. The estimated tangent planeT at p shall be
a plane best fitting the data pointsqk. T can be com-
puted as minimizer (in thel1 or l2-sense) of the vector
of distancesd(qk, T ) between the data pointsqk and the
planeT . This leads to a set of estimated tangent planes
Ti : di + aix + biy + ciz = 0, corresponding to the set
of data pointspi and we use the normalization condition
a2

i + b2
i + c2

i = 1. For more information concerning re-
verse engineering, see the survey [17].

4.2. Blaschke image of estimated tangent planes

The Blaschke imagesb(Ti) = (ai, bi, ci, di) of the esti-
mated tangent planesTi form a point cloud on the Blaschke
cylinderB : u2

1 + u2
2 + u2

3 = 1. The original surface with
measurement pointspi is a developable surface, if the im-
age pointsb(Ti) form a curve-likeregion onB. To check
the propertycurve-like, it is necessary to define neighbor-
hoods onB. Another possibility, which is similar to this,
is the definition of a distanced(T1, T2) between two planes
T1, T2. For this, we have to make some assumptions on our
data pointspi.

We apply a uniform scaling of the data points in a way
that all coordinatesxi, yi, zi are ≤ c = 1/

√
3. Thus,

the object is contained in a cube, bounded by the planes



x = ±c, y = ±c, z = ±c. This implies that the max-
imum distance of a data pointpi and the origin is 1. In
addition, the maximum distanced(O, Ti) of an estimated
tangent planeTi to the origin is 1. Sinced(O, Ti) = di,
the fourth coordinatesdi of the Blaschke imagesb(Ti) are
bounded by±1. We define the squared distances between
two planesT1, T2 according to the canonical Euclidean dis-
tance inR

4, by

d(T1, T2)
2 = (a1−a2)

2+(b1−b2)
2+(c1−c2)

2+(d1−d2)
2.

(17)
To study this distance function inR3, we consider a fixed
planeM and all planesX with d(M, X) < r. The boundary
of the region for whichd(X, M) = r holds, is illustrated
in the 2D-Figure 3. It shows three ’planes’Mi, i = 0, 1, 2
with different distances to the origin and the boundaries for
r = 0.25. The tangentsX of the boundaries are ’planes’
satisfyingd(X, Mi) = r. The extremal perpendicular dis-
tance ofX andM is r and the extremal turning angle be-
tweenX andM is indicated by the dotted asymptotic lines
of the boundaries.
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Figure 3. Regions for d(X, Mi) < r.

For practical computations onB we use a cell decompo-
sition ofB to define neighborhoods of image pointsb(T ) of
(estimated) tangent planesT .

4.3. A cell decomposition of the Blaschke cylinder

We recall thatB’s equation isu2
1 + u2

2 + u2
3 = 1. Any

cross section with planesu4 = const. is a copy of the unit
sphereS2 in R

3. So, we start with a decomposition ofS2

and lift it to B.
A tessellation ofS2 can be based on the net of a reg-

ular icosahedron. Letvi, i = 1, . . . , 12, with ‖vi‖ = 1,
be vertices of a regular icosahedron. The verticesvi form
twenty trianglestj and thirty edges. All edges have same
arc length. This icosahedral net is subdivided by comput-
ing the midpoints of all edges (geodesic circles). Any trian-

gle tj is subdivided into four new triangles. The inner trian-
gle has equal edge lengths, the outer three have not, but the
lengths of the edges to not vary too much.

Figure 4 shows an icosahedron and one refinement step.
For simplicity only the polyhedra are drawn and not the
geodesic nets on the unit sphere. The final tesselation of the
unit sphere is displayed in Figures 5 and 7.

Figure 4. Icosahedron and refinement step

The cell decomposition of the Blaschke cylinder is now
computed in the following way: Since we measure distances
according to (17), the height of a prismatic cell have to be
approximately equal to the edge length of a triangle. As we
have mentioned earlier, the values of the fourth coordinate
in R

4 are bounded by±1. When each triangle of the tessel-
lation is subdivided into four children, each interval of the
fourth coordinate is divided into two subintervals. We start
with 20 triangles, 12 vertices and 2 intervals inu4-direction.
The test-implementation uses the resolution after four sub-
division steps with 1280 triangles, 642 vertices and 16 in-
tervals inu4-direction.

In addition to the vertices and cells onB we store a list
with adjacency information. Since each triangle onS2 has
eleven or twelve neighbors, a cell onB has at most 38 ad-
jacent cells.

Remark concerning the visualization: It is easy to visu-
alize the spherical image (first three coordinates) onS2, but
it is hard to visualize the Blaschke image onB. We con-
fine ourself to plot the spherical image onS2, and if neces-
sary, we add the fourth coordinate in a separate figure. This
seems to be an appropriate visualization of the geometry on
the Blaschke cylinder.

4.4. Analysis of the Blaschke image

Having computed estimatesTi of the tangent planes
of the data points and their imagesb(Ti), we can check
whether the Blaschke image of the considered surface is
curve-like, see [17] for more information on reverse engi-
neering and how to decide if a point cloud is curve-like. Ac-
cording to Section 4.3, the interesting part of the Blaschke



cylinderB is covered by1280 × 16 cellsCk. We compute
the memberships of image pointsb(Ti) and cellsCk and ob-
tain a binary image on the cell structureC of B.

1. If the data pointspi are contained in a single planeP ,
the image pointsb(Ti) form apoint-like clusteraround
b(P ).

2. If the data pointspi are contained in a developable sur-
face, the image pointsb(Ti) form a curve-like region in
B, see Figure 5.

3. If the data pointspi are contained in a doubly curved
surfaceS, the image pointsb(Ti) cover a two dimen-
sional region onB.

In the following we assume that the surface under con-
sideration is a smooth developable surface. Since the esti-
mation of tangent planes gives bad results on the boundary
of the surface patch and near measurement errors, there will
be outliers in the Blaschke image. To find those, we search
for cellsCk carrying only a few image points. These cells
and image points are not considered for the further compu-
tations. The result is referred to ascleaned Blaschke image.
Figure 5 shows the original and the cleaned Blaschke im-
age of a developable surface patch.

Figure 5. Original and cleaned Blaschke im-
age of a developable surface

4.5. Classifying the Blaschke image

After having analyzed and cleaned the Blaschke image
from outliers we are able to decide whether the given de-
velopable surfaceD is a general cone or cylinder, a cone or
cylinder of revolution, another special developable or a gen-
eral developable surface.

So, letTl be the reliable planes ofD after the cleaning
and letb(Tl) be their Blaschke images. As we have worked
out in Section 3 we can classify in the following way.

We compute the ellipsoid of inertia with respect to the
data pointsb(Tl) and obtain the axes vectorshi of the ellip-
soid as eigenvectors to corresponding eigenvaluesλi. Let

the eigenvalues be sorted byλ1 ≤ λ2 ≤ λ3 ≤ λ4. The
smallest eigenvalueλ1 determines the best fitting three-
spaceH1 of the point cloudb(Tl) andh1 is its normal vec-
tor.

By investigating the magnitude of the eigenvaluesλi of
the eigenvectorshi and the coefficients ofHi we can clas-
sify the type of surfaceD. LetHi be given by the equations

Hi : hi0 + hi1u1 + hi2u2 + hi3u3 + hi4u4 = 0.

1. Two small eigenvaluesλ1, λ2 and different coefficients
h10, h20, (|h10 −h20| > ε): The surfaceD can be well
approximated by acone of revolution, compare (15).
The vertex and the inclination angle are computed ac-
cording to Section 3.

2. Two small eigenvaluesλ1, λ2 but nearly equal coeffi-
cientsh10, h20, (|h10 − h20| ≤ ε): The surfaceD can
be well approximated by acylinder of revolution, com-
pare (14). The axis and the radius are computed ac-
cording to Section 3.

3. One small eigenvalueλ1 and small coefficienth10

(compare (11)): The surfaceD is a general coneand
its vertex is

v =
1

h14

(h11, h12, h13).

4. One small eigenvalueλ1 and small coefficientsh10

andh14 (compare (10)): The surfaceD is a general
cylinderand its axis is parallel to the vector

a = (h11, h12, h13).

5. One small eigenvalueλ1 and small coefficienth14

(compare (12)): The surfaceD is adevelopable of con-
stant slope. The tangent planes ofD form a constant
angle with respect to an axis. The angle and the axis
are found according to formula (12). An example is
displayed in Figure 6.

6. One small eigenvalueλ1 characterizes a developable
surfaceD whose tangent planesTi are tangent to a
sphere(compare (13)). Its center and radius are

m =
1

h14

(h11, h12, h13), r =
−h10

h14

.

For this classification we need to fix a thresholdε, to de-
cide whatsmall means. This value depends on the accu-
racy of the measurement device, the number of data points
per area unit and the accuracy of the object. Some experi-
ence is necessary to choose this value for particular appli-
cations.

Let L be a generating line of a developable surfaceD
and letT be the tangent plane alongL. The Blaschke im-
age of(L, T ) is a line element (point plus tangent line) on



Figure 6. Approximation of a developable of
constant slope (math. model)

B. If L is regular and not an inflection generator, then there
exists a unique cone or cylinder of rotationC which has
second order contact withD alongL. The Blaschke image
b(C) is the unique osculating conic ofb(D) at b(T ).

This implies that a sufficiently small strip on a devel-
opable surface can always be well approximated by a cone
or cylinder of rotation.

5. Reconstruction of Developable Surfaces
from Measurements

So far, we have done some preparation steps for the re-
construction. In this section we describe how to define a
one-parameter family of planesE(t) best fitting the data
pointspi or the estimated tangent planesTi. In addition we
will point to some problems, in particular the control of the
singular curve of the approximation. First we point to some
general demands on the surfaceD to be approximated.

1. D is a smooth surface not carrying singular points. It
needs not be developable, but one can run the algo-
rithm also for nearly developable surfaces (one small
principal curvature).

2. The density of data pointspi has to be approximately
the same everywhere.

3. The imageb(Ti) of the set of (estimated) tangent
planesTi has to be a simple, curve-like region on the
Blaschke cylinder which can be injectively parameter-
ized over an interval.

According to the made assumptions, the reconstruction
of a set of measurement pointpi of a developable surface
D can be divided into the following tasks:

1. Estimation of parameter valuesti for image points
b(Ti) of estimated tangent planesTi.

2. Approximation of pointsb(Ti) plus parameter values
ti by a curvec(t) ⊂ B.

3. Computation of the one-parameter family of planes
E(t) in R

3 and of the generating linesL(t) of the de-
velopableD∗ which approximates measurementspi.

4. Computation of the boundary curves ofD∗ with re-
spect to the domain of interest inR3.

5.1. Estimation of parameter values

To simplify the approximation of pointsb(Ti) by a curve
c(t) later on, it is appropriate to estimate parameter values.
There exist rather sophisticated methods, also for unorga-
nized sets of data points, see [9]. Since we will use the cell
structure onB, we propose the following algorithm. It uses
the definition of a neighborhoodU0 of a data pointb(T0). To
defineU0, we estimate the widthw of the curve-like point
cloud b(Ti). The neighborhoodU0 is defined with respect
to the cell structure onB and its diameter has to be cho-
sen significantly larger than the widthw.

1. We start at an arbitrary data pointb(T0) whose neigh-
borhood isU0. Let b(Tk) ∈ U0 be the neighbors of
b(T0). We compute the ellipsoid of inertia (principal
axes and eigenvalues) forb(Tk) and we obtain one
significantly larger eigenvalueλ1 and three smaller
ones, due to the property ofU0. The eigenvectorv1

to λ1 is an estimate of the tangent vector atb(T0). By
projecting the pointsb(Tk) orthogonally onto the line
b(T0) + µv1 we canlocally estimateparameter val-
ues

tk = [b(Tk) − b(T1)] · v1 (18)

to data pointsb(Tk) ∈ U0. We associate positive val-
uestk to pointsb(Tk) which lie in direction ofv1 and
negative values for points lying in direction−v1.

2. Now we perform a march in positive as well as in
negative direction (with respect to the eigenvectorv1)
through the curve-like point cloudb(Ti). For that we
choose anew starting pointb(T+) ∈ U0 for the posi-
tive direction with respect tov1. The pointb(T+) has
to be close to the boundary ofU0 and in addition, its
vertical distance from the lineb(T0) + µv1 shall be
small. Its parameter value is denoted byt+. The new
starting point for the negative direction with respect to
v1 is defined analogously. In the following we only de-
scribe the procedure for the positive direction with re-
spect toU0 andv1.

3. At each new starting pointb(T0) := b(T+) we choose
a neighborhoodU0 and determine neighboring points
b(Tk) ∈ U0. We compute an ellipsoid of inertia with
respect to pointsb(Tk) and estimate the tangent vector
v1 atb(T0). This allows the local estimation of param-
eter valuestloc

k for the data pointsb(Tk) ∈ U0. Since



the starting pointb(T0) already corresponds to the pa-
rameter valuet+, we associate values

tk = t+ + tloc
k

to the data pointsb(Tk). We choose a new starting
point close to the boundary ofU0 and close tob(T0) +
µv1 and repeat this step.

4. If the data pointsb(Ti) form a closed curve, we repeat
the last step until we have associated parameter val-
ues to all data points. Otherwise we have to perform
the march also in negative direction, as already men-
tioned.

5. Later on, when having computed an approximating
curvec(t) to the datab(Ti), we can apply a parame-
ter correction to improve the estimation, according to
Hoschek, [6].

5.2. Computing the approximating curve

We are given data pointsb(Ti) and parameter valuesti
and want to compute a curvec(t) ⊂ B best fitting the data.
Because ofc(t) ⊂ B, we have the condition

c1(t)
2 + c2(t)

2 + c3(t)
2 = 1.

Thus, (c1, c2, c3)(t) is a curve onS2. For interpolation
purposes there exist nice algorithms for curve design on
quadrics with rational curves, see [8]. Since there are no
polynomial curves onS2, the similar approximation algo-
rithms with rational B-splines on the sphere become non-
linear. In addition, if the data points can be well approx-
imated by a planar curve or a curve in a three-space, we
have to take this into account here.

We do not want to go into details here but like to list two
possibilities.

1. Apply a standard curve approximation with B-splines
in the l2-sense and project afterwards the solution
curve to the Blaschke cylinder. If it is possible to
choose a stereographic projection, the projected curve
is a rational B-spline, otherwise it is not rational.

2. Apply abiarc constructiononB, which approximates
the data pointsb(Ti) by a sequence of ellipse arcs. The
developableD is thus approximated by a sequence of
cones of rotation, see [10]. The biarc construction is
a G1-Hermite interpolation method, and it uses points
Pj plus tangent linesVj as input. To achieve this, we
have to define the Hermite elementsPj , Vj first. This
can be done by approximatingb(Ti) with an arbitrary
curvec̃(t) first, andPj , Vj are the evaluations of̃c(t)

and ˙̃c(t) at chosen parameter valuestj . Any pair of
Hermite elementsPj , Vj and Pj+1, Vj+1 is interpo-
lates by a pair of ellipse arcs onB. There exists a one-

parameter family of solutions which can be parameter-
ized over the projective line. But there is no guarantee
that practicable solutions exist, with respect to the ori-
entation given by the tangent vectorsVj , see [11].

Once having found a curvec(t) well approximating the
image pointsb(Ti), the one-parameter familyE(t) is al-
ready given by

E(t) : c4(t) + c1(t)x + c2(t)y + c3(t)z = 0.

The envelope ofE(t) is the developable approximationD∗.
Figure 7 shows an approximating curve to a set of image
pointsb(Ti).

Figure 7. Approximating curve on B with de-
tail

We like to define thedistanceof the given surfaceD
and the approximationD∗. The approximation is a contin-
uous model whereasD is given by measurement pointspi

and estimated tangent planesTi with associated parameter
valuesti. If more emphasis is on the tangent planes, the
squared distance ofD andD∗ can be defined by

d2(D, D∗) =
1

N

∑

i

d2(Ti − E(ti)), (19)

where the squared distances are computed according to
(17). If more emphasis is on the measurementspi, the
squared distance can be defined by

d2(D, D∗) =
1

N

∑

i

d2(pi − E(ti)), (20)

with respect to orthogonal distances between pointspi and
planesE(ti).

5.3. Boundary curves of the developable approxi-
mation

Once having computed the one-parameter family of
planesE(t) approximating the data pointspi, we are able



the generate a point representation of the developable ap-
proximationD∗. The generating linesL(t) of D∗ are the
intersection linesE(t) ∩ Ė(t). We assume that there ex-
ist two bounding planesH1 and H2 of the domain of
interest in a way that all generating linesL(t) inter-
sectH1 andH2 in proper points. The intersection curves of
L(t) andHi, i = 1, 2 will be denoted byci(t) and are com-
puted by

ci(t) = E(t) ∩ Ė(t) ∩ Hi. (21)

Thus, a point representation ofD∗ is found by

x(t, u) = (1 − u)c1(t) + uc2(t). (22)

Figures 6 and 8 show developable surfaces approximating
data points which are displayed asdots. The points dis-
played asstarsare some singular points of the surface near
the domain of interest.

Figure 8. Developable approximating the data
points

So far, we did not pay any attention to singular points of
D∗. The control and avoidance of the singular points within
the domain of interest is a complicated topic. We want to
give some facts and ideas.

5.4. Singular points of a developable surface

In the case where the developable surfaceD∗ is given
by a point representation, formula (4) describes the singu-
lar curves(t). If D∗ is given by its tangent planesE(t), the
singular curves(t) is the envelope of the linesL(t) and thus
computed by

s(t) = E(t) ∩ Ė(t) ∩ Ë(t). (23)

So we see that the singular curves(t) depends in a highly
nonlinear way on the coordinate functions ofE(t). On the
Blaschke cylinder the situation is analogous. The singular
points of E is in direct relation to the osculating plane

σ = c + λċ + µc̈ (24)

of the Blaschke image curveb(E(t)) = c(t).
We compute the vectorn = c ∧ ċ ∧ c̈. The Cartesian

coordinates of the singular curve are

s(t) =
1

n4(t)
(n1(t), n2(t), n3(t)). (25)

Zeros of the functionn4 are corresponding to points at in-
finity of s(t). If the data pointspi are contained in the unit
sphere (‖pi‖ ≤ 1), we require thats(t) satisfies

‖s(t)‖ > 1. (26)

1. Assuming thatc(t) ∈ B shall be represented by ratio-
nal B-splines, the inequality (26) is a rather nasty side
condition for the control points ofc(t).

2. Letc(t) ∈ B be composed of biarcs. For two consecu-
tive Hermite elementsPj , Vj andPj+1, Vj+1 there ex-
ists a one-parameter family of interpolating pairs of
arcs. The condition (26) is a quadratic inequality in
the free parameter. It restricts the family of practica-
ble solutions which essentially depends on the choice
of the Hermite elements, as we have mentioned in Sec-
tion 5.2.

Pottmann and Wallner [15] have proposed a modelling
scheme that uses a special representation

E(t) = e4(t) + e1(t)x + ty − z = 0, (27)

of the family of tangent planesE(t) of D∗ but can han-
dle the side condition (26) with relatively little costs. The
parametrization implies that the planesE(t) are graphs over
thexy-plane and the generating linesL(t) can never be par-
allel to theyz-plane. For appropriately chosen parts of the
surface it is always possible to choose the coordinate sys-
tem in a way that these properties hold. The choice ofe2 as
parameter leads to a special parametric representation.

It would be possible to integrate this approach here. One
has to partition the Blaschke imageb(Ti) in a way that for
each part one can find a representation (27). The coordinate
system has to be chosen in a way that the estimated planes
Ti are graphs (Ti are not parallel to thez-axis). This sim-
plification has also be used in [13] for developable surface
approximation. In addition it is necessary to rotate the coor-
dinate system in a way that the considered part of the curve-
like regionb(Ti) can be parameterized over they-axis.



5.5. Correcting singular points

Finally we want to give some hints to the treatment of
singular points occurring in the approximationD∗. The sin-
gular pointss correspond directly to the osculating planes
of c, according to (25). A good choice forc is an optimally
stretched curve whose osculating planes do not vary much.
If we choose B-Splines for approximation, the shape of a B-
spline curve is strongly influenced by the choice of the knot
sequence. Some experience and possibly user interaction
seems to be necessary. If we choose the biarc-construction,
the estimation and choice of the Hermite elements will have
much influence on the final shape ofc andD∗.

If singular points occur on the modelled surface patch we
propose the following correction method. For that we as-
sume that only a few singular points are present. The lines
carrying these singular points shall not cover the whole sur-
face.

By deleting the lines carrying singular points, we ob-
tain a singularity-free surface withholeswhich are actually
strips which have to be filled by regular developable pieces.
We have to distinguish if the hole is bounded by two regu-
lar generating lines or if it occurs at the boundary.

1. The strip to be filled is bounded by two linesL1, L2

and tangent planesT1, T2 along them. These Her-
mite elements can be interpolated by a pair of cones
of revolution (biarc-construction), chosen from a one-
parameter family of solutions. As we have mentioned
in Section 5.4, the set of practicable real solutions
could be empty.

2. If the strip to be filled occurs at the boundary, we have
to proceed in another way: LetL1 be the ’last’ reg-
ular generating line, with tangent planeT1. We have
to compute a regular developable, which approximates
the data within the strip and which interpolates the
Hermite elementL1, T1. We can try to fit a single cone
of revolution or a general cone whose vertex is out-
side the domain of interest. The cone of revolution can
be computed as Blaschke image of a planar intersec-
tion of B with a plane of regression to the Blaschke
images of the data within the strip to be filled.

5.6. Conclusion

We have proposed a method for computing an approx-
imating developable surface to measured data points. The
approach uses estimated tangent planes and works in the
Blaschke modelB of the space of planes. The reconstruc-
tion is performed by applying curve approximation with re-
spect to a chosen metric onB. The control and correction
of singularities of the approximating developable surface
needs more research and detailed studies.
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