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Abstract lines. The normal vectors of the ruled surfade:, v) are
Given a cloudP of data points, we present techniques n(u, v) = &(u) x e(u) + vé(u) x e(u). )
and algorithms to decide wheth&rcould be measurements  For fixedu = ug, the normal vectors are linear combina-
of a developable surface and to reconstruct the original tions of the vector€(ug) x e(ug) andé(ug) x e(ug). If
shape of the surface. We will use the dual approach to de-x(u, v) is a developable surface, the two componeéntse
velopable surfaces, which says that a developable surfaceandé x e are linearly dependent. This gives the follow-
can be considered as envelope of a one-parameter family ofing characterization: The parametrizatiofu, v) describes
planes. A classification will be given which detects cones, adevelopable surfacexactly if the condition
cylinders, and developable surfaces of constant slope. Fi- ..
: L det(¢,e,&) =0 3)
nally we discuss the problems occurring in this context.
is identically satisfied. This says that the normals along a
generating line are all parallel which implies that the tan-
) gent planel’(u) along a generating liné is fixed. There
1. Introduction exists a uniqusingular points(u) at each generating line
L(u), and it is determined by the parameter value

Given a cloud of data pointg,, i = 1,..., N in R?, _ _
we want to decide whethgy; are measurements of a de- v — — (e xe)-(éx e)' (4)
velopable surface. If this is the case, we will describe how s (& x e)?

to find a developable surface which approximates the dataj;  snde are linearly dependent, the singular poinis

pointsp;. The problem sounds simpler as itis in fact. Oneé 4 infinity. In Euclidean spac&® there exist three differ-
would like to have a fully automatic procedure but the ex- ont classes of developable surfaces:

perience shows that there are certain limitations conngrni

the regularity of the approximation, see Section 5.5. 1. Cylinders: the singular curve degenerates to a single
Points and vectors i3 or R* are denoted by boldface point at infinity.
letters,p, v. Planes and lines are displayed as italic capital 2. Cones: the singular curve degenerates to a sin-
letters, T, L. We use Cartesian coordinatesRA with axes gle proper point, which is callegertex
x,y andz. InR* the axes of the Cartesian coordinate sys- 3. General Case: these surfaces consist of the tangent
tem are denoted by, . . ., u4. lines of a regular space cureéu), which is the sin-
A ruled surfacecarries a one parameter family of straight gular curve of the surface.

lines L. The surface is in particular developable surface
D if all surface points along a fixed line have the same tan-
gent plane (with exception of a possibly occurring singular
point). The general parametrization of a ruled surface is

Inall three cases the surface can be generatetadope
of its one parameter family of tangent plandscylinder of
revolution is obtained by rotating a plane around an axis
which is parallel to that plane. A cone of revolution is ob-
x(u,v) = c(u) + ve(u), (1) tained by rotating a plane around a general axis, but which
is not perpendicular to that plane. Further, it is known that
wherec(u) is calleddirectrix curveande(u) is a vector  smooth developable surfaces can be characterized by van-
field alongc(u), which describes the generating straight ishing Gaussian curvature.



these surfaces in point clouds. Section 5 gives two algo-
rithms to reconstruct these surfaces from data points. Fi-
nally, we present some examples and discuss problems and
possible solutions.

2. The dual approach

LetT'(u) be a one-parameter family of planes

T(u) : ng(u) + ny(u)x + na2(uw)y + ng(u)z =0

with arbitrary functions;,: = 1, ..., 4. The vectom(u) =
(n1,n2,n3)(u) is anormal vector of'(u). The developable
envelope surfac® of T'(u) contains generating lines(w)
which are obtained by intersectirifj(u) N 7'(u), where
T'(u) denotes the derivative with respectitoThe generat-
ing lines themselves envelope the singular cuive which
is obtained by the intersectid(u) N T'(u) N T (u).

The functionsn; of T'(u) are not uniquely defined, but
any pnq, pne, pns, pngy With a smooth functiorp(u) de-
scribes the same family of plan&$u). So, we can assume
thatT'(u) is given in Hesse normal form which satisfies the
condition

n3+n3+n3=1. (5)

Figure 2. General developable surface: one
and two sheets of the tangent surface of a
space curve

This is the normalization of the normal vectatu). We
considerny, ny, n3,ny as coordinate functions in a space
R4, with coordinate axes;, us, us, us. The normalization
condition is

L2 2 2
1.1. Contribution of the article B:uy+u;+uz=1, (6)

which describes a hypersurfaceRn.
There is quite a lot of literature on modelling with de-

velopable surfaces, see for instance [1, 2, 3, 7, 12, 15]. B-5 1 The Blaschke mapping

spline representations and the dual representation ate wel

known and have been used for interpolation and approxima-  The coefficients; of planesE : ny + miz + nay +

tion tasks. nsz = 0 can be interpreted as coordinates of poifits=
The contribution of this paper is the focus on the recon- (n1,n2,n3,n4) ON B, if we take the condition (5) into ac-

struction of developable surfaces from scattered datady th cqunt. The vectorgny, ..., ns) and (—ny, ..., —ny) de-

use of estimated tangent planes for the data points. The apfine the same carrier plane, but their unit normand—n

proximation is performed in the space of planes with respecthave opposite orientations. Thus, each carrier planessarri

to a meaningful chosen metric. In addition, we use a datatwp differentoriented planesind orientation is defined with

structure (tesselation) in the space of planes, which geara yegpect to the oriented unit normal

tees quick data access. The proposed algorithm can also be The hypersurfacé is a quadratic cylinder and the in-

applied to approximation of arbitrary (nearly developable tersections of3 with hyperplanes., = const. are spheres
surfaces by developable surfaces. The test implemensationyyith radius 1. In particular, the intersection witly = 0 is

have been performed in Matlab and the data have been genme unit sphere iR3 (if R3 is embedded iR* as hyper-
erated by scanning models of developable surfaces with arpjaney, = 0).

optical laser scanner. Let b be the mapping from thset of oriented planes

o _ _ . to their image pointé(£) € B, defined by
The article is organized as follows: Section 2 contains the

dual approach together with a discussion of the Blaschkeb : E : ny+nix+nay+nsz = 0 — b(E) = (n1, na, n3, ng).
image curves of developable surfaces. Section 3 tells about @)

a classification of developable surfaces with help of the We call itBlaschke mappingndB is calledBlaschke cylin-
Blaschke image. Section 4 discusses the recognition ofder. B is the image of the set of oriented plangés: R3.



Any developable surfac® can be considered as one- Cylinder: The surfaceD is a cylinder if all its tangent

parameter family of tangent plan&$w), thus it can be in- planesT'(u) are parallel to a vectas. Thus, the nor-
terpreted as cunvgT'(u)) = b(D) on B C R*. Conversely, mal vectorsn(u) are perpendicular ta. This implies
any differentiable curv€’(u) C B which is not a generat- that the image points(T") of the tangent planeg of

ing line of B, can be considered as Blaschke imag&(u)) D satisfyn - a = njay + ngag + nzas = 0. Thus, the
of a one parameter family of plan&%w), whose envelope curveb(T'(u)) is contained in the three-space

is a developable surface (including the degenerate case

of a pencil of planes). Thug;(u) can be interpreted as aru1 + azug + azuz = 0. (10)

Blaschke image oD. By the way, the points of a gener- ) o
ating line onB correspond to a family of parallel planes in Cone: The surfaceD is aconeif all its tangent planeg(u)
R3. pass through a fixed poipt = (p1, p2, p3). This inci-

dence is expressed byn; + pang + psng + ng = 0.
Thus, the Blaschke image curéél’(u)) = b(D) is

2.2. Tangent planes of a sphere e
contained in the three-space

We have to investigate the Blaschke images of the tan-
gent planeq of a spheres in R? because these results will
be used for the classification of developable surfaces in Sec
tion 3. Let.S be given by the equation

P1U1 + paus + p3us + ug = 0. (11)

There exist other special types of developable surfaces. Tw
of them will be mentioned here.
S:(z—mi)?+ (y—m2)+ (2 —m3)> =12 =0. The surfaceD is adevelopable of constant slopié its
normal vectora form a constant angle with a fixed di-
The sphere can be considered as oriented surface withection vectorm. Assuming that|a|| = 1, we getcos(¢) =
help of oriented unit normals. Equivalently, we can orient 5., — ~ = const. This implies that the Blaschke images

spheres by considering signed radii, thus the spheres withpf the tangent planes d are contained in the three-space
centerm = (ms, mo, mg) and radiitr are different.

An oriented planél” : ng + n1x + noy + ngz = 0is —v 4+ ajuy + asus + asuz = 0. (12)
tangent to the oriented spheseexactly if
The developable surfack is tangent to a spheraith
n4 +nimy + nams + ngmg —r = 0. (8)  centerm and radius:, if the tangent plane®(u) of D sat-
isfy ng+nimi+namo+nzms—r = 0. Thus, the Blaschke

Thi hat the Blaschke i f I : : : .
's says that the Blaschke imageg’) of tangent planes image curveh(D) is contained in the three-space

T of S satisfy a linear equation of the form

—r +urmy + usmeg + ugmsz + ug = 0. 9 =7+ urmy + uamg + uzmsz + ug = 0. (13)
Conversely, if pointsy = (q1,q2,q3,q4) € B satisfy a lin- It is of particular interest if a developahle is a cone or
ear relation cylinder of revolution. These two cases are discussed in the
next section.

H : ag + ura1 + U209 + uzas + ugay = 0,

q = b(T) are Blaschke images of plan&swhich are tan- ~ 3.1. Cones and cylinders of revolution
gentto a sphere in cagg # 0. Center and radius are deter-

mined by Let D be acylinder of revolutiorwith axis A and radius
r. The tangent planeg of D are tangent to all spheres of
m= i(al’ as,as), r= “% radiusr, whose centers vary ofl. We consider two spheres
a4 a4

)2 2 )2 2
If ag = 0, the plane$(T") pass through the fixed poini. If Sii(x=p)—r"=0 S:(x-q-r"=0

as = 0, the planed” form a constant angle with the direc- ;i equal radii. The Blaschke image") satisfy the rela-
tion vectora = (a1, az, as) because o0& - n = —ag, with tions
n= (’U,l, Uz, ’U,d)

Hy ' —r+uipr +uzpz +usps +us =0, (14)
3. The classification of developable surfaces Hs @ —r+uiqq + uaqe + usqs + ug = 0,

We will discuss how cylinders and conés and other  which implies that the Blaschke image cui&) is a pla-
special developable surfaces can be characterized by theinar curve (conic)3 N P, whereP is the plane determined
Blaschke imagé(D). by (14).



Cones of revolutiorD can be obtained as envelopes of 4. Recognition of Developable Surfaces
the common tangent planes of two sphefesS, with dif-

ferent radiir # s. Thus,b(D) is a conic contained in the Given a cloud of data pointg;, this section discusses
planeP defined by the recognition of developable surfaces and the classifica-
tion, which type of surface we are dealing with. The algo-
Hy @ —7r+uip1 +ugpz +usps +ug =0, (15) rithm contains the following steps:
Hy : —s+4+uiq1 +u2qe + uszqs +uqg = 0.

1. Estimation of tangent plané&s for all data pointg;.

Conversely, if the Blaschke imad¢D) of a developable 2. Computing the Blaschke imaged’;) of T;.

surface is a planar curve, contained in a pl&hehow can 3. Analysis of the structure of the s&tof image points
we decide whetheD is a cone or cylinder of revolution? b(T}).

Letb(D) = b(T(u)) be a planar curvec P and letP be

given as intersection of two three-spadés Ho, with 4. If T is curve-like classification of the developable sur-

face, which is close tp;.
H; = hio + hjruy + hijpug + hizuz + higug = 0. (16) ] ]
4.1. Estimation of tangent planes
We have already found in Section 2.2 that if the Blaschke

image b(T") is contained in a three-spadé;, the corre- Given the data pointp; with Cartesian coordinates
sponding tangent plarii is tangent to a spherer is pass- xi,Yi, 2 in R3, we assume that a triangulation of the data
ing through a pointor encloses éixed angle with a fixed  points is already computed. So, we are given in addition a

direction This property has to hold with respectth and list of trianglest; = (j1, j2, j3), consisting of triples of in-
H,. If we exclude the degenerate casg = hoy = 0, teger values, which are references to the pointdistThis
we can assume thdt is determined by two three-spaces gives topological information for the point cloud, and we
H,, H, of the form (14) or (15). are able to define neighboring poiris for all data points

p:. In addition we assume that the data poinisepresent
a surface with orientation which is reflected by oriented tri
angleg;.

For each data poinp;, we want to estimate a tangent
plane T;. So, letp be a fixed point and ley;, be p’s
neighbors. The estimated tangent pldfieat p shall be
a plane best fitting the data pointg,. 7' can be com-
puted as minimizer (in thé, or ls-sense) of the vector
Thus, the axisd of D is given bya = p — q andD’s of distancesi(q,T") between the data pointg. and the
radius equals. planeT'. This leads to a set of estimated tangent planes
T; : d; + a;x + by + ¢;z = 0, corresponding to the set
of data pointsp; and we use the normalization condition
a? + b? + ¢? = 1. For more information concerning re-
verse engineering, see the survey [17].

1. Atfirst, the planeP is defined by three-spacék , Ho
given by equations (14). Then, the developable surface
D is acylinder of revolutionBy subtracting the equa-
tions (14) we find that the normal vectausof 7T'(u)
have to satisfy

n-(p—q)=0.

2. At second, the plané’ is defined by three-spaces
H,, H, given by equations (15). The pencil of three-
spaces\H; + puHs contains a unique three-spatle
passing through the origin, whose equation is

3 4.2. Blaschke image of estimated tangent planes
H: Zui(spi —rq) +ug(s—r)=0.
i=1 The Blaschke imagdsT;) = (a4, b;, ¢;,d;) of the esti-
mated tangent pland&s form a point cloud on the Blaschke
cylinder B : u? + u3 + u3 = 1. The original surface with
measurement poings; is a developable surface, if the im-
age points(T;) form acurve-likeregion onB. To check
1 the propertycurve-like it is necessary to define neighbor-
P T.(Sp —rq). hoods onB. Another possibility, which is similar to this,
) o o is the definition of a distancé&(T}, T»>) between two planes
The axisA of Dis givenbya = p—qandtheinclina- 7, 7, For this, we have to make some assumptions on our
tion a.nglegb between the axigl and the tangent planes 444 pointsy;.
T(u)is We apply a uniform scaling of the data points in a way
sin ¢ = M that all coordinates;,y;,z; are < ¢ = 1/v/3. Thus,
la —pl the object is contained in a cube, bounded by the planes

Thus, the tangent planes of the developable surface
are passing through a fixed point, corresponding to
andD is acone of revolutionlts v vertex is

VvV =



x = Fc,y = £c¢,z = =c. This implies that the max-  glet; is subdivided into four new triangles. The inner trian-
imum distance of a data poimpi; and the origin is 1. In  gle has equal edge lengths, the outer three have not, but the
addition, the maximum distanegO, T;) of an estimated  lengths of the edges to not vary too much.

tangent pland; to the origin is 1. Sincel(O,T;) = d;, Figure 4 shows an icosahedron and one refinement step.
the fourth coordinateg; of the Blaschke imagegT;) are For simplicity only the polyhedra are drawn and not the
bounded by+1. We define the squared distances between geodesic nets on the unit sphere. The final tesselation of the
two planeslt, T according to the canonical Euclidean dis- unit sphere is displayed in Figures 5 and 7.

tance inR*, by

d(Tl,T2)2 = ((1170,2)24*(1)17b2)2+(61702>2+(d17d2>2.

17)
To study this distance function iR?, we consider a fixed
planeM and all planesX with d(M, X') < r. The boundary
of the region for whichd(X, M) = r holds, is illustrated
in the 2D-Figure 3. It shows three ’planell;,i = 0,1, 2
with different distances to the origin and the boundaries fo
r = 0.25. The tangents{ of the boundaries are 'planes’
satisfyingd(X, M;) = r. The extremal perpendicular dis-
tance ofX and M is r and the extremal turning angle be-
tweenX andM is indicated by the dotted asymptotic lines
of the boundaries.

Figure 4. Icosahedron and refinement step

My M,y M, The cell decomposition of the Blaschke cylinder is now

computed in the following way: Since we measure distances
1 according to (17), the height of a prismatic cell have to be
approximately equal to the edge length of a triangle. As we
have mentioned earlier, the values of the fourth coordinate
| in R* are bounded by-1. When each triangle of the tessel-

lation is subdivided into four children, each interval oéth

o
T

fourth coordinate is divided into two subintervals. We star
with 20 triangles, 12 vertices and 2 intervalsipdirection.
The test-implementation uses the resolution after four sub
division steps with 1280 triangles, 642 vertices and 16 in-
tervals inuy-direction.

In addition to the vertices and cells dhwe store a list
with adjacency information. Since each triangle $hhas
eleven or twelve neighbors, a cell dhhas at most 38 ad-
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Figure 3. Regions for d(X, M;) <.

jacent cells.
For practical computations a8 we use a cell decompo- Remark concerning the visualization: It is easy to visu-
sition of B to define neighborhoods of image pointg’) of alize the spherical image (first three coordinatesyénbut
(estimated) tangent plan&s it is hard to visualize the Blaschke image &h We con-

fine ourself to plot the spherical image 6A, and if neces-
4.3. A cell decomposition of the Blaschke cylinder  sary, we add the fourth coordinate in a separate figure. This
seems to be an appropriate visualization of the geometry on
We recall thatB's equation isu? + u3 + u2 = 1. Any the Blaschke cylinder.
cross section with planas, = const. is a copy of the unit
sphereS? in R3. So, we start with a decomposition §¢ 4.4. Analysis of the Blaschke image
and liftit to B.
A tessellation ofS? can be based on the net of a reg- Having computed estimates; of the tangent planes
ular icosahedron. Let;,i = 1,...,12, with |jv;]| = 1, of the data points and their imagé€T;), we can check
be vertices of a regular icosahedron. The verticeform whether the Blaschke image of the considered surface is
twenty trianglest; and thirty edges. All edges have same curve-like see [17] for more information on reverse engi-
arc length. This icosahedral net is subdivided by comput- neering and how to decide if a point cloud is curve-like. Ac-
ing the midpoints of all edges (geodesic circles). Any trian cording to Section 4.3, the interesting part of the Blaschke



cylinder B is covered byl 280 x 16 cellsCy. We compute the eigenvalues be sorted By < Xy < A3 < A\4. The

the memberships of image poi{(g;) and cell”), and ob- smallest eigenvalue; determines the best fitting three-

tain a binary image on the cell structuteof B. spaceH; of the point cloud(7;) andh; is its normal vec-
1. Ifthe data pointp, are contained in a single plaig "

the image points(7;) form apoint-like clusterround By investigating the magnitude of the eigenvalug®f
b(P). the eigenvectorh; and the coefficients off; we can clas-

sify the type of surfac®. Let H; be given by the equations
2. Ifthe data pointp; are contained in a developable sur- y yp g y a

face, the image point§T;) form a curve-like region in H; : hio + hiug + hisus + hizus + higug = 0.
B, see Figure 5.

3. If the data pointp; are contained in a doubly curved
surfaceS, the image point$(7;) cover a two dimen-
sional region orB.

1. Two small eigenvalues,; , \; and different coefficients
hl(), hag, (|h,1() — hg()| > E): The surfaceD can be well
approximated by @one of revolutioncompare (15).

] The vertex and the inclination angle are computed ac-
In the following we assume that the surface under con- cording to Section 3.

sideration is a smooth developable surface. Since the esti-
mation of tangent planes gives bad results on the boundary
of the surface patch and near measurement errors, there will
be outliers in the Blaschke image. To find those, we search
for cells Cy, carrying only a few image points. These cells
and image points are not considered for the further compu-
tations. The result is referred to eeaned Blaschke image 3. One small eigenvalug; and small coefficienti;q
Figure 5 shows the original and the cleaned Blaschke im- (compare (11)): The surfade is ageneral coneand
age of a developable surface patch. its vertex is

2. Two small eigenvalues, , Ao but nearly equal coeffi-
CientShl(), hag, (|h,1() — hg()| < E): The surfaceD can
be well approximated by eylinder of revolutioncom-
pare (14). The axis and the radius are computed ac-
cording to Section 3.

1
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stant slope The tangent planes dp form a constant
Figure 5. Original and cleaned Blaschke im- angle with respect to an axis. The angle and the axis
age of a developable surface are found according to formula (12). An example is
displayed in Figure 6.

6. One small eigenvalug; characterizes a developable
surfaceD whose tangent planes; aretangent to a
sphere(compare (13)). Its center and radius are

—h1o

After having analyzed and cleaned the Blaschke image m = hi(hu, hiz, hiz), ==
from outliers we are able to decide whether the given de- 1 1
velopable surfac® is a general cone or cylinder, a cone or For this classification we need to fix a threshe|do de-
cylinder of revolution, another special developable orgzge cide whatsmall means. This value depends on the accu-
eral developable surface. racy of the measurement device, the number of data points

So, letT; be the reliable planes db after the cleaning  per area unit and the accuracy of the object. Some experi-
and letb(7;) be their Blaschke images. As we have worked ence is necessary to choose this value for particular appli-
out in Section 3 we can classify in the following way. cations.

We compute the ellipsoid of inertia with respect to the Let L be a generating line of a developable surfaze
data point$(7;) and obtain the axes vectdss of the ellip- and letT be the tangent plane alordg The Blaschke im-
soid as eigenvectors to corresponding eigenvaljeset age of(L,T) is a line element (point plus tangent line) on

4.5. Classifying the Blaschke image




Figure 6. Approximation of a developable of
constant slope (math. model)

3. Computation of the one-parameter family of planes
E(t) in R3 and of the generating lines(t) of the de-
velopableD* which approximates measuremepts

4. Computation of the boundary curves bf* with re-
spect to the domain of interestR®.

5.1. Estimation of parameter values

To simplify the approximation of pointg7;) by a curve
c(t) later on, it is appropriate to estimate parameter values.
There exist rather sophisticated methods, also for unorga-
nized sets of data points, see [9]. Since we will use the cell
structure onB, we propose the following algorithm. It uses
the definition of a neighborhodd, of a data poinb(7}). To
defineU,, we estimate the widtly of the curve-like point

B. If L is regular and not an inflection generator, then there ¢loud b(T;). The neighborhood’, is defined with respect

to the cell structure o and its diameter has to be cho-

exists a unique cone or cylinder of rotatiGhwhich has
second order contact with along L. The Blaschke image
b(C) is the unique osculating conic bfD) atb(T).

This implies that a sufficiently small strip on a devel-
opable surface can always be well approximated by a cone
or cylinder of rotation.

5. Reconstruction of Developable Surfaces
from Measurements

So far, we have done some preparation steps for the re-
construction. In this section we describe how to define a
one-parameter family of planeB(t) best fitting the data
pointsp; or the estimated tangent plariEs In addition we
will point to some problems, in particular the control of the
singular curve of the approximation. First we point to some
general demands on the surfdgdo be approximated.

1. D is a smooth surface not carrying singular points. It
needs not be developable, but one can run the algo-
rithm also for nearly developable surfaces (one small
principal curvature).

2. The density of data poings; has to be approximately
the same everywhere.

3. The imageb(T;) of the set of (estimated) tangent
planesT; has to be a simple, curve-like region on the
Blaschke cylinder which can be injectively parameter-
ized over an interval.

According to the made assumptions, the reconstruction
of a set of measurement poipt of a developable surface
D can be divided into the following tasks:

1. Estimation of parameter values for image points
b(T;) of estimated tangent plan@&s.

2. Approximation of point$(7;) plus parameter values
t; by a curvec(t) C B.

1.

2.

sen significantly larger than the widtih

We start at an arbitrary data poidfly) whose neigh-
borhood isUy. Let b(T}) € Up be the neighbors of
b(Tp). We compute the ellipsoid of inertia (principal
axes and eigenvalues) fé(7};) and we obtain one
significantly larger eigenvalu@, and three smaller
ones, due to the property @f,. The eigenvectox

to \; is an estimate of the tangent vectobél)). By
projecting the point$(7};) orthogonally onto the line
b(To) + nvy we canlocally estimateparameter val-
ues

t = [b(Tk) — b(T1)] - v1 (18)

to data point$ (7)) € Uy. We associate positive val-
uesty, to pointsb(T%) which lie in direction ofv; and
negative values for points lying in directieav, .

Now we perform a march in positive as well as in
negative direction (with respect to the eigenveastor
through the curve-like point cloubt{T;). For that we
choose anew starting poinb(T;.) € U, for the posi-
tive direction with respect te;. The pointb(7T.) has

to be close to the boundary 6f, and in addition, its
vertical distance from the liné(Ty) + pvy shall be
small. Its parameter value is denotedty The new
starting point for the negative direction with respect to
v, is defined analogously. In the following we only de-
scribe the procedure for the positive direction with re-
spect toly andv;.

3. At each new starting poib{7}) := b(T’;) we choose

a neighborhood/;, and determine neighboring points
b(Ty) € Uy. We compute an ellipsoid of inertia with

respect to points(7}) and estimate the tangent vector
vy atb(Tp). This allows the local estimation of param-
eter valueg!® for the data point$(7}) € Up. Since



the starting poinb(7;) already corresponds to the pa- parameter family of solutions which can be parameter-

rameter valué . , we associate values ized over the projective line. But there is no guarantee
loe that practicable solutions exist, with respect to the ori-
ty =1+ + 1 entation given by the tangent vectdrs see [11].
to the data point$(7}). We choose a new starting Once having found a curugt) well approximating the
point close to the boundary 6f, and close té(Ty) + image pointsh(T;), the one-parameter familfg(¢) is al-
wvy and repeat this step. ready given by
4. If the data point$(7;) form a closed curve, we repeat E(t) : calt) + c1()x + ea(t)y + es(t)z = 0.

the last step until we have associated parameter val-

ues to all data points. Otherwise we have to perform The envelope of(¢) is the developable approximatid@.

the march also in negative direction, as already men-Figure 7 shows an approximating curve to a set of image
tioned. pointsb(T;).

5. Later on, when having computed an approximating
curvec(t) to the datab(T;), we can apply a parame-
ter correction to improve the estimation, according to
Hoschek, [6].

5.2. Computing the approximating curve

o
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We are given data point§T;) and parameter values
and want to compute a cureét) C B best fitting the data.
Because o€(t) C B, we have the condition
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c1(t)? +ca(t)? +e3(t)* = 1.

Figure 7. Approximating curve on B with de-
Thus, (c1,c2,¢3)(t) is a curve onS?. For interpolation tail
purposes there exist nice algorithms for curve design on
guadrics with rational curves, see [8]. Since there are no
polynomial curves ors?, the similar approximation algo- ) i _ )
rithms with rational B-splines on the sphere become non- e like to define thedistanceof the given surface)
linear. In addition, if the data points can be well approx- @nd the approximatio®*. The approximation is a contin-
imated by a planar curve or a curve in a three-space, wetOUS model whereab is given by measurement points
have to take this into account here. and estimated tangent plan€swith associated parameter

We do not want to go into details here but like to list two Valuesti. If more emphasis is on the tangent planes, the
possibilities. squared distance dd and D* can be defined by

1. Apply a standard curve a_lpproximation with B-splin_es &(D,D*) = 1 ZdQ(Ti —EW)), (19)
in the [2-sense and project afterwards the solution N ;
curve to the Blaschke cylinder. If it is possible to
choose a stereographic projection, the projected curvewhere the squared distances are computed according to
is a rational B-spline, otherwise it is not rational. (17). If more emphasis is on the measuremeanisthe
squared distance can be defined by

2. Apply abiarc constructioron B, which approximates
the data points(7;) by a sequence of ellipse arcs. The . 1
developableD ié trzus approximated by a sequence of &*(D, D*) = N Z d*(pi = E(t:),
cones of rotation, see [10]. The biarc construction is !
aG'-Hermite interpolation method, and it uses points with respect to orthogonal distances between pgptsnd
P; plus tangent line$/; as input. To achieve this, we planesE(t;).
have to define the Hermite elemedtg, V; first. This
can be done by approximatimg7’;) with an arbitrary 5.3, Boundary curves of the developable approxi-

(20)

curvec(t) first, andP;, V; are the evaluations @f(t) mation
andc(t) at chosen parameter valugs Any pair of
Hermite elements?;, V; and Pj41, V41 is interpo- Once having computed the one-parameter family of

lates by a pair of ellipse arcs dd. There exists a one-  planesE(t) approximating the data points, we are able



the generate a point representation of the developable apSo we see that the singular cursg) depends in a highly
proximationD*. The generating line&.(¢) of D* are the  nonlinear way on the coordinate functionsioft). On the
intersection linesE(t) N E(t). We assume that there ex- Blaschke cylinder the situation is analogous. The singular
ist two bounding planedi; and H, of the domain of  points of E is in direct relation to the osculating plane
interest in a way that all generating lings(¢) inter-

sectH; andH, in proper points. The intersection curves of o=c+ A+ puc (24)
L(t)andH;,: = 1,2 will be denoted by;(¢) and are com-
puted by of the Blaschke image curdéE(t)) = c(t).

ci(t) = E(t) N E(t) N H,. (21) We compute the vectat = ¢ A ¢ A €. The Cartesian

. . . coordinates of the singular curve are
Thus, a point representation Bf is found by g

x(t,u) = (1 —u)er (t) + uca(t). (22) s(t) = (n1(t), na2(t), ns(t)). (25)

Figures 6 and 8 show developable surfaces approximatin
data points which are displayed dsts The points dis-
played asstarsare some singular points of the surface near
the domain of interest.

%eros of the functiom, are corresponding to points at in-
finity of s(¢). If the data pointg; are contained in the unit
sphere (p;|| < 1), we require thas(¢) satisfies

Is(®)] > 1. (26)

1. Assuming that(t) € B shall be represented by ratio-
. nal B-splines, the inequality (26) is a rather nasty side
T, condition for the control points af(t).

2. Letc(t) € B be composed of biarcs. For two consecu-
tive Hermite element®;, V; and P41, V41 there ex-
ists a one-parameter family of interpolating pairs of
arcs. The condition (26) is a quadratic inequality in
the free parameter. It restricts the family of practica-
ble solutions which essentially depends on the choice
of the Hermite elements, as we have mentioned in Sec-
tion 5.2.

Pottmann and Wallner [15] have proposed a modelling
scheme that uses a special representation

Figure 8. Developable approximating the data E(t) = ea(t) +ex(t)z +ty —2 =0, (27)

oints
P of the family of tangent plane&'(¢) of D* but can han-

dle the side condition (26) with relatively little costs.&h
parametrization implies that the plangét) are graphs over
¢ thezy-plane and the generating linegt) can never be par-
allel to theyz-plane. For appropriately chosen parts of the
surface it is always possible to choose the coordinate sys-
tem in a way that these properties hold. The choice,afs
parameter leads to a special parametric representation.
It would be possible to integrate this approach here. One
has to partition the Blaschke imag@gr;) in a way that for
In the case where the developable surfaeis given each part one can find a representation (27). The coordinate
by a point representation, formula (4) describes the singu-Systém has to be chosen in a way that the estimated planes
lar curves(t). If D* is given by its tangent plangs(t), the i are graphs’; are not parallel to the-axis). This sim-

singular curves(t) is the envelope of the linds(t) and thus  Plification has also be used in [13] for developable surface
computed by approximation. In addition it is necessary to rotate thecoo

_ ) dinate system in a way that the considered part of the curve-
s(t) = E({t)NE()NE({). (23) like regiond(T;) can be parameterized over thaxis.

So far, we did not pay any attention to singular points o
D*. The control and avoidance of the singular points within
the domain of interest is a complicated topic. We want to
give some facts and ideas.

5.4. Singular points of a developable surface



5.5. Correcting singular points

Finally we want to give some hints to the treatment of

singular points occurring in the approximatidxi. The sin-

gular pointss correspond directly to the osculating planes

of ¢, according to (25). A good choice feris an optimally
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