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Abstract

We briefly introduce to the basics of Laguerre geometry and then show that this classical sphere
geometry can be applied to solve various problems in geometric design. In the present part, we
focus on applications of the cyclographic model of Laguerre geometry and the cyclographic map.
It relates the medial axis and Voronoi curves/surfaces to special surface/surface intersections and
the corresponding trimming procedures to hidden line removal. Rational canal surfaces are treated
as cyclographic images of rational curves in R*. This leads to a simple control structure for rational
canal surfaces. Its practical use is demonstrated at hand of modeling techniques with Dupin cyclides.
© 1998 Elsevier Science B.V.
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Introduction

Laguerre geometry is a classical sphere geometry that has its origin in the work of the
French mathematician E. Laguerre (1834-1886). It is based on oriented spheres, oriented
hyperplanes and oriented contact between them. There is an extensive classical literature
on this kind of geometry (see, for example (Blaschke, 1929; Miiller and Krames, 1929)).
Laguerre geometry is also an active area within modern geometry (see (Benz, 1992;
Cecil, 1992)). In this paper, we will point to a new facet of Laguerre geometry, namely
its role in geometric design. It turns out that several geometric design problems can be
solved in a surprisingly simple way if one uses Laguerre geometry. We continue these
studies in (Peternell and Pottmann, 1997a).
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In a brief tutorial on Laguerre geometry we describe those fundamentals necessary
for our geometric design applications. The cyclographic model of Laguerre geome-
try and the cyclographic map lead us quite naturally to known applications such as
the medial axis and closely related concepts (bisectors, Voronoi surfaces) and geo-
metrical optics. Furthermore, it suggests the introduction of a simple control structure
for rational canal surfaces. Its use is demonstrated at hand of algorithms for model-
ing with Dupin cyclides. The efficiency of this new approach to Dupin cyclides in
CAGD is based on the fact that cyclides are cyclographic images of circles in a pseu-
doeuclidean (pe) metric. The relatively simple transfer of results on euclidean circular
splines to pe geometry then yields techniques to model more complicated canal surfaces
from cyclide pieces. As an example, we study double-cyclide blends with help of pe
biarcs.

1. Fundamentals of Laguerre geometry
1.1. Euclidean Laguerre space

The fundamental elements of Laguerre geometry in euclidean R™ are oriented hyper-
planes and cycles. A cycle is an oriented sphere or a point (sphere with radius 0). The
orientation is determined by a unit normal vector field or equivalently by a signed radius
in the case of the sphere. The applications given later belong to the cases n = 2, 3.

The basic relation in Laguerre geometry is that of oriented contact of cycle and or.
hyperplane. An oriented sphere and an or. hyperplane are in oriented contact, if they
are tangent and the unit normals coincide at the point of contact. For a point and an
or. hyperplane, oriented contact equals incidence. When no ambiguity can arise, or.
hyperplanes will simply be called hyperplanes.

Laguerre geometry studies properties which are invariant under Laguerre transfor-
mations. A Laguerre transformation consists of two bijective maps, one in the set of
cycles and the other one in the set of hyperplanes. Additionally, a Laguerre transfor-
mation preserves oriented contact and noncontact between cycles and hyperplanes. A
simple example of a Laguerre transformation is a dilatation which adds a constant d # 0
to the signed radius of each cycle and leaves its midpoint unchanged. Note that this
map does not preserve points. Considering a hypersurface as envelope of its oriented
tangent hyperplanes, a dilatation maps the surface onto its offset at distance d. This
already indicates the advantage of using Laguerre geometry in connection with off-
sets.

Using cartesian coordinates x, in R™, each hyperplane e is defined by a linear equation

eo+e1x + - +epx, =0.

The coefficients e; are called hyperplane coordinates of e. The normal vector (e, ..., e,)
defines the orientation of the hyperplane and is always assumed to be normalized, e? +
ke =1

The model of Laguerre geometry we have just described is also referred to as standard
model.
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1.2. The cyclographic model

Embedding R™ in R™*! as hyperplane x,,,; = 0, we map each or. hyperplane e to
the hyperplane E = {*(e), defined by the homogeneous coordinates

E = (eg,...,en,1). e}

Note that the euclidean angle of E and R"™ equals v = 7 /4; hence, we refer to E as
a y-hyperplane. A cycle C' with midpoint m and signed radius r is represented by the
point ¢(C) := (my,...,my,,r) in R""!. Note that {(C) is determined by ¢* if C is
interpreted as set of or. tangent hyperplanes. Those hyperplanes e have images (*(e)
that pass through ((C); all these hyperplanes (*(e) form the tangent hyperplanes of a
quadratic cone I"(x) with vertex x = ((C). Its generators form the angle v with R™; such
lines will be called y-lines henceforth. In other words, I'(z) intersects the ideal plane in
the quadric {2 with equations py = 0, p% R p31+1 = 0. Here, (po,...,pPn+1) are
homogeneous coordinates related to the affine coordinates x; by x; = p;/po. The obtained
(n + 1)-dimensional model of n-dimensional Laguerre geometry is called cyclographic
model. The low dimensional case n = 2 is illustrated in Fig. 1.

In the cyclographic model, Laguerre transformations are special affine maps. In the
projective extension, they map the quadric at infinity {2 onto itself. Interpreting {2 as
absolute quadric in a pseudoeuclidean (pe) metric, Laguerre transformations are pe sim-
ilarities of the form

=a+ I -z (2)
with a constant A # 0 and a pe orthogonal matrix A. It satisfies

A" E,. - A= E,, 3
where F,, is a diagonal matrix with e; ) = -+ = €, n = 1, €nq1 n41 = —1. We will also

use the pe scalar product of two vectors, {a,b)p. := a' - Ep. - b. The space R"*! with

I3 =1Y2

A(C)
Afe)
|
i[: ~8(E)
RN A(S)
5(F)
7N
\\

Fig. 1. Models of euclidean Laguerre geometry.
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this scalar product is often denoted by Lorentz space. A vector a is said to be timelike,
lightlike or spacelike, respectively, depending on whether (a, a}p. is negative, zero or
positive. A line with direction vector a is called elliptic, if a is timelike. The angle
between the line and R™ exceeds v = w/4. A ~-line or parabolic line is defined by a
lightlike direction vector and a line with spacelike direction vector is called a hyperbolic
line.

Consider two points a = ((A) and b = {(B) in R**! on a hyperbolic line. Then, any
common tangent hyperplane of the two cycles A, B touches the cycles at points with
euclidean distance d = \/(a — b, a — b)p.. The tangential distance d of the two cycles
is the pe distance of the image points a, b in R"*!. For two points on a parabolic line,
we get d = 0 and the corresponding cycles A, B are tangent. On elliptic lines, one may
use the invariant d> < 0 of two points. Pe congruences in R"*! (described by (2) with
|A| = 1) preserve the squared pe distance of any two points and correspond to tangential
distance preserving Laguerre transformations in R™.

Further models of euclidean Laguerre geometry shall be discussed. These are useful
for the treatment of rational curves and surfaces with rational offsets (Peternell and
Pottmann, 1997a).

1.3. The Blaschke model

If more emphasis is on or. hyperplanes rather than cycles, one might be interested in
a model where or. hyperplanes appear as points. This can easily be done by applying a
duality § : R*T!'* — R"*! (Blaschke map),

6(E) = (l,e1,....en.€0). (4)

The set of hyperplanes E is mapped to points contained in a hypercylinder A ¢ R”*!
with equation A: 2% +---+22 = 1. In this Blaschke model, cycles (as sets of or. tangent
hyperplanes) appear as hyperplanar cuts of A (see Fig. 1). Laguerre transformations are
seen as projective maps which preserve A. Parallel oriented hyperplanes of the standard
model are represented as points in the same generator (parallel to the x,,,-axis) of A.

1.4. The isotropic model

Finally, we obtain an affine space (appropriately extended) as model of Laguerre space.
For that, let w be the generator line of A containing the point W(0,...,0,1,0). Fur-
thermore, let R be the hyperplane z,, = 0 in Rr+L, parallel to w; we use coordinate
functions y; = T1,...,Yn—1 = Tn—1, Yn = Zn+41 in it. Applying the ‘stereographic’
projection o : A — w — R™ with center W to the cylindrical model, we get a map from
or. hyperplanes e with unit normal # (0,....0, 1) to points in R™ via

1

I —e,

cgodo((e) = (e1,....en_1,€0). ()
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Interpreting cycles as sets of tangent hyperplanes, we may state an important well-known
result that can be proved by straightforward calculation (see Fig. 1).

Lemma 1.1. The set of tangent hyperplanes of a cycle X is mapped with o0 0 § o (* to
the set of points of a paraboloid of revolution or a hyperplane ¥ satisfying

T 2y + (i + -y )+ mp) + 2ymy + -

+ 2yrl,—lmn—l +r—my, = 0. (6)
So far, or. hyperplanes in R™ with unit normal (0,...,0,1) do not have an image point
in R™. One therefore forms the so-called isotropic conformal closure /™ := R™ UR of
R™ and an extended map
A:=Go0b0(",

which maps the or. hyperplane (eo,0,...,0,1) C R” onto the real number ey. To fix
the problem of missing images of exceptional or. hyperplanes in Lemma 1.1, we have
to extend the paraboloids ¥ by r + m,,, which equals 0 for a hyperplane ¥. The re-
sulting model of Laguerre space, where or. hyperplanes are represented as points and
cycles appear as paraboloids or hyperplanes (called isotropic spheres), is called isotropic
model. Very important for our applications in (Peternell and Pottmann, 1997a) is the
transformation A which describes the change from the standard model to the isotropic
model.

In I, y,-parallel lines (called isotropic lines) represent parallel or. hyperplanes of the
standard model. For simplicity, let us now restrict to n = 3. In I3, nonisotropic lines as
well as ellipses, whose normal projection onto y; = 0 are circles, and parabolas with
isotropic axis are called isorropic Mébius circles. They may be obtained as intersection
of 2 surfaces (6). Therefore, they are the A-image of the common tangent planes of 2
cycles, i.e., the planes of a pencil or the tangent planes of a cone or cylinder of revolution.
This also shows that isotropic (y3-parallel) planes as well as isotropic cylinders with a
circular cross section in y3 = 0 represent planes parallel to the planes of a pencil or to
the tangent planes of a cone of revolution.

In the isotropic model, Laguerre transformations are realized as special quadratic trans-
formations, so-called isotropic Mdbius transformations. Let us consider two special cases.
A translation in the standard model, represented in hyperplane coordinates by

(€0,-.-ren)— (e0+arer + -+ aneq,eq,....e,)

yields in I™ the transformation

Y1y Yn) — (yl,..-,yn_n,yn +ay + -+ G iYn—1

a
+§(y%+~--+yil—l)>. 7
A dilatation (eq, ...,e,) — (eo+d, €y, ..., e,) appears as isotropic Mdbius transforma-
tion
d
(Y1, Yn) — <y1,---,yn—uyn+ E(ylz+--~+yﬁ7| + 1))- (8)
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1.5. A dual isotropic model

We pick a fixed oriented hyperplane a in R", say z,, = 0 with normal (0,...,0,1).
An arbitrary or. hyperplane e determines a y-hyperplane E = (*(e) = (eg,...,en, 1).

Its intersection with (*(a) = (0,...,0, 1, 1) is now projected orthogonally onto R™ and
yields a (non oriented) hyperplane
A*(e) = (egy... en—1,6n — 1). (9)

It is the euclidean bisector of ¢ and the fixed or. hyperplane a, i.e., the locus of points
possessing the same signed distance to e and a. Currently, @ has no image and the
remaining or. hyperplanes parallel to a are mapped to the hyperplane at infinity, which
shows that the projective closure is not the right one for the image space. In fact, A*
generates a dual isotropic model. To convert to the previous isotropic model, we apply
the polarity 7 with respect to the isotropic sphere

y% +"‘+?/3L—1 —2Yn = 0.
A*(e) is mapped to the point with inhomogeneous coordinates

1
mo A (e) = % (e, €En_1,—€0).

Up to a reflection at y,, = 0, we get exactly A(e) as in (5). Hence, we can deduce the
properties of the present dual isotropic model from the isotropic model.
Concerning applications discussed in (Peternell and Pottmann, 1997a), the inverse

transformation (A*)~' is of particular interest. Taking the normalization e? + --- +
efl = 1 in (9) into account, we find with nonnormalized homogeneous coordinates
(Y0, Y1, - - - »Yn) of the hyperplane y to be transformed,

2 2 a2
Yn 4] Yn—1 ) ) (10)

*y—1 _
(A ) (y) - (y()'& ceeyYn—1, 2yn

For more details on Laguerre geometry and its relation to Einstein’s theory of special
relativity, we refer the reader to Benz (1992), Blaschke (1929) and Cecil (1992).

2. Cyclographic mapping of curves and surfaces

The mapping ¢ := ¢~' maps any point z = (z},...,Z,41) in R™"! o a cycle in R"
with center (zy,...,z,) and radius x,4;.

Connected to c is the map ¢* := (¢*)~' from the set of y-hyperplanes in R"*! to
oriented hyperplanes in R™. A point z € E C R""! is mapped onto a cycle ¢(z)
touching ¢*(E). The pair (c,c*) is called cyclographic map. A detailed study of this
beautiful part of classical geometry (mostly for n = 2) may be found in the monograph
on the cyclographic map by Miiller and Krames (1929).

Here, we will present a short tutorial on the cyclographic map and show that its
application to curves in R? and surfaces in R* provides a useful framework for dealing
with the medial axis and related concepts (see also (Hoffmann, 1992)). As a byproduct,
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we obtain a well-known relation to certain problems in geometrical optics. Applying
the cyclographic map to curves in R* yields a simple approach to the design of canal
surfaces, particularly to those composed of Dupin cyclides.

2.1. Cyclographic mapping of curves in R?

Let p(t) be a real C' curve C R®. With help of the cyclographic map ¢ we get a one
parameter set of cycles ¢(p(t)) whose envelope ¢(p) is called the cyclographic image of
the curve p.

First we discuss the image of a line p. For a hyperbolic line p, ¢(p) contains two real
(oriented) lines ¢(p); = t;, ¢(p)2 = t2. For each x € p the lines ¢, ¢, are tangent to the
cycle ¢(z) at points x|, z,. We call the oriented line elements (z,¢;) and (z2,t2) the
cyclographic image of the line element (x,p). The lines xz,zx, are generators of the
~-cone I'(x) with vertex x (see Fig. 2). In other words: ¢; and ¢, are the intersections
of the y-planes through p with the reference plane R2.

If p is a y-line, all image cycles of points in p possess a common oriented line element
(z,t,), where z ist the intersection of p and R?. Thus, points a, b on the same ~-line are
mapped onto tangent cycles ¢(a), c(b). An elliptic line p has no real image curve c(p).

For a general curve p, we proceed as above and map its line elements (p, t), where t
is the tangent p + Ap (Fig. 1).

Let us first consider the case of a curve p all whose tangents are ~y-lines. Such a curve
(called y-curve) has constant slope v = /4 against R2. Its tangent surface T'(p) is a
developable surface whose tangent planes (=osculating planes of the line of regression
p) also form the constant angle ~v with R%. We call T'(p) a ~y-developable. Any line
element of p has one oriented line element as cyclographic image. These line elements
touch the image curve ¢(p) which is the intersection of T'(p) with R?. The image cycles
c(x) of points x € p are oriented osculating circles of ¢(p). Hence, the evolute of c(p)
is the orthogonal projection p’ (top view) of p onto R2. The tangent surface T'(p) itself

p

c(ph

Fig. 2. Cyclographic image of a curve and optical interpretation.
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is the cyciographic preimage of all cycles tangent to the oriented curve ¢(p), or in other
words, it is the graph of the signed distance function to the curve c(p).

The cyclographic mapping of general curves may be described as follows. The cyclo-
graphic image ¢(p) of a C' curve p(t) C R is the intersection of the ~-developables
passing through p(t) with the reference plane R®. For a curve p with only hyperbolic
tangents, c¢(p) contains 2 components, a y-curve is mapped to a single curve ¢(p) and a
curve with only elliptic tangents possesses no real image.

We summarize some important facts on the cyclographic image c¢(p) (compare (Miiller
and Krames, 1929)).

(1) Let tg € R be an isolated zero of {p(ty), p(to))pe. i.€., p(to) has a y-tangent and

separates a hyperbolic curve segment from an elliptic one (see b in Fig. 3). Then
p(te)1 = p(to)2 is a vertex of ¢(p) and the cycle c(p(to)) has contact of order 3
with ¢(p) at p(to)1 = p(to)2. The image curve ¢(p) can have more vertices than
these.

(2) If p(t) possesses an inflection point at ¢t = o, then c¢(p) has inflection points at
p(to)1 = p(to)2.

(3) If top € R is an isolated zero of pi(t), then p(tp); = p(to)2 is a double point of
c(p). Especially if p(to) L R?, c(p(to)) is a focal point of ¢(p) (see Fig. 3) in the
sense of J. Pliicker (intersection of tangents through the circular points).

(4) Let p be an algebraic curve with rank r (which is defined as the order of its
tangent surface T'(p)). If ¢ is the number of common tangents of p(¢) and the pe
absolute conic {2 in the ideal plane of R3, then 2r — g is the algebraic class of
the y-developable through p and therefore the class of ¢(p). For more details and
other algebraic characteristics, see (Miiller and Krames, 1929).

Example 2.1. Consider an ellipse or hyperbola p,

z =0, ax%+b:v%: I,

Fig. 3. Cyclographic image of a conic.
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symmetric with respect to the reference plane RZ. Without any computation, it is easy
to derive the image curve. As rank of a planar curve we have to take its class, which is
2 in our case. There are no common tangents with {2 and thus the y-developable I'(p)
through p is of class 4. Like p, it is also symmetric with respect to R?. The angle of
I'(p) and R? equals v and the intersection c¢(p) = I'(p) N R? is a double curve, hence
of class 2. Thus, ¢(p) must be a (not necessarily real) conic. The intersection points of
p with R? are focal points and the y-tangents of p intersect R? at vertices of c(p) (see
Fig. 3).

An important special case occurs, if p is a pe circle, that is a conic whose points at
infinity lie in (2. Such curves are planar intersections of -y-cones. For any pe circle p,
the surface I'(p) splits into two ~y-cones (one of which degenerates to a +y-plane if p is
a parabola). Hence, the cyclographic image is formed of two cycles, or it consists of a
cycle and an oriented line for a parabolic pe circle p. In our symmetric case (to a = —b),
c(p) consists of two points; the cycles ¢(z) to z € p form an elliptic or hyperbolic pencil
for a pe circle with hyperbolic or elliptic tangents, respectively.

Intersecting I'(p) with a plane parallel to R? and projecting it into R?, we obtain an
offset of ¢(p). The offset is algebraic of class 4, but not rational, if p is not a pe circle.
This follows from the fact that I"'(p) is not rational. It is well known that a developable
of class 4 connecting 2 conics is rational if and only if it possesses a double tangent
plane (dual to the rationality of quartics of the first kind with a double point). Since any
ellipse (different from a circle) and any hyperbola may appear as cyclographic image
c(p) of a conic p, the offsets of these conics are never rational.

Example 2.2. Let us now consider a parabola p,
=0, :rg—rgzo.

With arguments as above, we realize that its image c(p) is a parabola. I'(p) is again
of class 4, but now it is rational with the ideal plane as double plane. Thus, the offsets
of a parabola are rational of class 4 (see (Li, 1994; Farouki and Sederberg, 1995)).
This result has been considered as new within the CAGD community, but it follows
immediately from the discussion of the cyclographic image curves of arbitrary conics
p C R? (called hypercycles) in a paper by W. Blaschke (1910). With the arguments
above, we see that the image curves ¢(p) of arbitrary parabolas p are rational curves
with rational offsets and in general of class 4. Later we will return to this example.

2.2. Bisectors, medial axis and geometrical optics

A pair of oriented curves c;,c; can be interpreted as cyclographic image of a curve
p C R p is the intersection of the ~y-developables passing through ¢; and c;. The top
view p’ of p is usually called (untrimmed) bisector or Voronoi curve of ¢, and ¢, (Farouki
and Johnstone, 1996; Hoffmann, 1992; Pillow, 1995; Choi et al., 1996, 1997). Its points
are centers of cycles tangent to ¢; and ¢; and therefore possess equal orthogonal distance
to these curves (Fig. 2).

Let D C R? be a connected domain, bounded by C?curves ¢;, i = 1,.. .,N. The
curves shall be oriented such that the domain lies on the left side. We can then pass the
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t+

Fig. 4. Computing the medial axis transform.

~-developables I; through the curves ¢; and construct their intersections as well as self-
intersections. This results in the untrimmed medial axis transform p, which may have
several components; its projection p’ is the untrimmed medial axis. The cyclographic
interpretation shows that the medial axis (transform) or bisectors may be computed with
surface/surface intersection algorithms (Fig. 4; see also Hoffmann, 1992). To be consistent
with the usual definitions (Patrikalakis and Gursoy, 1990; Wolter, 1992), parts of p and
p’ have to be trimmed off. Only those points of p have to be kept that correspond to
maximal cycles in D. This requires to take only points 2’ € p’ that lie in D and where the
radius of ¢(x) shows the minimal distance from x to the boundary of D. This can easily
be done with a visibility algorithm as follows. Due to our orientation of the boundary,
the interesting parts of p lie in the positive half space HT: 3 > 0 of R3. Projecting the
surface I't = (|J I;) N HT with projection rays parallel to (0,0, 1) onto R?, exactly the
visible parts of the untrimmed curve p, which project into D, form the trimmed medial
axis transform p and medial axis p’, respectively (Fig. 4).

Discrete curvature discontinuities in the boundary do not cause a problem, but in
practice, the boundary may have tangent discontinuities. At such a discontinuity with
oriented tangents ¢, ¢*, one has to introduce a one parameter set of oriented tangents
generated by the shortest rotation p from ¢~ into t*. The y-developable then contains a
part of a y-cone and the medial axis is computed correctly. If one is just interested in
the trimmed medial axis, only ‘concave’ vertices (those to a negative rotation angle of
p) have to be filled with a conical part.

As a further simple example for the use of the cyclographic concept we study cusps of
the untrimmed medial axis (or bisector). An intersection point z of the v-developables I
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through the curves ¢; is regular if the tangent planes at x are different and if x is regular
for both surfaces. An identical tangent plane at = implies a common generator g (-y-line
through z) of the developables. Then, there exists a self-tangency in the boundary of D.
Two segments of it possess a common oriented line element (x,%;) and the projection
g’ of g is as common normal at x; a component of p’. A higher order analysis would be
necessary to decide whether another branch of p has a singularity at g. The remaining
singularities stem from intersection points z which lie on the edge of regression e; of
a developable [; &’ is an extraordinary point, if x is a singular point of the curve e;
(corresponding to a curvature extreme of ¢;). Hence, cusps or extraordinary points of the
untrimmed medial axis p' lie on the evolutes e; of the boundary curves ¢; (see (Farouki
and Johnstone, 1996) for the bisector of a point and a curve). The trimming algorithm,
however, eliminates cusps. This follows from the fact that the osculating circle at a point
x; of the boundary of D, which is not a curvature extreme, does not lie entirely in D.

Given the medial axis transform p of a domain D, the boundary of D can be recon-
structed as ¢(p). Therefore, the medial axis is sometimes used for shape representation.
It is also very useful for the construction of trimmed interior offsets, which are needed
for NC pocket machining or layered manufacturing. To construct the interior offset at
distance d of the boundary of D we can perform the translation pg = p ~ (0,0, d), and
map the part in the positive halfspace, i.e., py N H*, with ¢ onto R,

To obtain an appropriate representation for CAD/CAM purposes, one may compute
the medial axis transform from any initial representation of the boundary of D. Then, the
medial axis transform can be approximated with a pe circular spline (see Section 2.4),
which implies that the boundary and all offsets are circular splines and the trimming can
be performed fast and exactly. One has better approximation properties if a polynomial
quadratic spline is used to represent the medial axis transform. Trimming the offsets is
again efficient and exact; according to Example 2.2, the domain boundary and its offsets
are C! rational splines of class 4 (and order 6 in general).

The cyclographic mapping of curves possesses a simple, well-known relation to certain
problems in geometrical optics. Consider a point x € p with hyperbolic tangent ¢. Then,
the construction of the cyclographic image (Fig. 2) shows that the tangent ¢’ at 2’ forms
equal angles with the lines 2’2 and x'z;. The latter two lines are normals of ¢(p), and
c(p)2, respectively. Let us now view the normals of ¢(p); as light rays and p’ as mirror.
The angle property shows that the reflected lines are the normals of ¢(p),. Any curve,
orthogonal to the reflected lines, in particular ¢(p); is called anticaustic. The envelope of
the reflected rays is the caustic. In our spatial interpretation, the caustic is the top view
of the edge of regression of the y-developable through c¢(p),.

We obtain parallel light rays, if c¢(p), is a line. The y-developable through c(p); is a
v-plane; it contains p. For a point as light source, p must lie in a y-cone. This yields
a simple construction of the mirrors to a given system of reflected light rays (Miiller
and Krames, 1929). One constructs a curve k& of constant slope v whose top view is
the given caustic k'. For k' = (x,(t),z,(t)), we get k = (z1(t), z2(t), s(t)) with s(t)
as arc length function. Then we form the tangent surface T'(k) of k. The top view
p’ of the intersection p of T'(k) with any ~y-cone I'(a), whose vertex a projects onto
the given light source a’, is a mirror that generates the given caustic. Analogously, all
mirrors for parallel projection are top views of intersections of the same developable T'(k)
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with y-planes. Replacing reflection by refraction according to Snellius’ law, mirrors for
central or parallel illumination are top views of intersections with cones or planes whose
inclination angle against R? is different from v = 7/4 (see (Miiller and Krames, 1929,
pp. 272-275)).

2.3. Canal surfaces as cvclographic images of curves in R*

A curve p C R* is mapped by ¢ onto a one-parameter set of spheres {c(z), z € o},
whose envelope is a canal surface and will simply be denoted by ¢(p). The locus of the
cycle centers, i.e., the orthogonal projection p’ of p onto R is called its spine curve.

For a hyperbolic line p, the surface c(p) is a cone of revolution with vertex s = pNR?
and axis p, in particular a cylinder of revolution if p is parallel to R®. The image of
a line element (z,p) may be defined as the circle along which the cycle c(x) touches
c(p). The points on a parabolic line map to cycles through a common oriented surface
element (s, 7) with s = pNR? and p’ as normal of the tangent plane 7. An elliptic line
does not possess a real image surface c(p).

A curve with only hyperbolic tangents possesses a real image surface. Hyperbolic seg-
ments with parabolic boundary tangents correspond to closed images. Thus, an arbitrary
curve p may yield a canal surface with several closed real components corresponding to
the hyperbolic segments on p.

A curve p all whose tangents are parabolic (also called y-curve) is mapped to a one
parameter family of cycles each of which touches a surface element determined as image
of a tangent of p. The surface elements form a curve s (intersection of the tangent
surface T'(p) with R?) with a tangent plane at each curve point. This is called a surface
strip. Since the normals of the strip are the projections of the tangents of p, they form
a developable surface. Therefore the strip is a so-called principal curvature strip. Each
surface through the strip possesses the strip curve s as a principal curvature line. The
cycles ¢(x) to points = € p are centered at the corresponding principal curvature centers.

For CAD applications, rational canal surfaces are particularly useful since they may
be represented in the standard NURBS form. The cyclographic images of rational curves
in R? are in general not rational. We will prove in (Peternell and Pottmann, 1997a) the
following surprising result (see also (Lii, 1995; Peternell and Pottmann, 1997b)) as a
special case of a more general theorem on envelopes of natural quadrics.

Theorem 2.1. Any canal surface, which is a real component of the cyclographic image
of a rational curve in R*, possesses a real rational parametrization.

Let us now consider a rational curve segment p(¢) in R*, with hyperbolic tangents
only, and represented in rational Bézier form. It may have Bézier points bg, . . ., b,, and
weights wy, . .., wy,,. The weights may be replaced by frame points fo,..., f,n_i, see
(Farin, 1994).

Constructions for the curve p C R* can now be transferred into R* with help of the
cyclographic map.

First of all, we obtain a natural control structure for rational canal surfaces, consisting
of control cycles By = c(by), ..., By = c(by,) and weights (or frame cycles F}). Note
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that in typical CAGD applications, we will not be interested in a canal surface with
singular points (corresponding to a sign change of the radius of inscribed cycles) and
therefore it will be sufficient to use just control spheres.

Since b;, fi, b1 are collinear, consecutive cycles B;, F;, B;4; are inscribed to a com-
mon cone of revolution I;. The characteristic end circles of ¢(p) to ¢ = 0,1 are the
circles of contact of By, I and B,,, I',—1, respectively. The convex hull property of p
reads as follows.

Proposition 2.2. A rational canal surface with control cycles By, ..., By, and positive
weights lies in the convex hull of the control spheres.

To translate the variation diminishing property, we consider a y-hyperplane E in R*. Its
points map to cycles which are tangent to the oriented plane ¢*(E). We also consider
a hyperplane parallel to R?; the image cycles of its points share the same radius. To
formulate the result, it is convenient to define a complete control structure of a rational
canal surface ¢(p) as the union of those cycles which are images of points of the control
polygon of p.

Proposition 2.3. Consider the family F of inscribed cycles of an oriented rational canal
surface c(p), its complete control structure C and an oriented plane e. Further, assume
that ¢(p) possesses positive weights only. Then, the number of cycles in C that touch e
is an upper bound for the number of cycles in F touching e. The number of cycles in C
with radius r is greater or equal than the number of cycles in F' with radius r.

The result can be generalized by considering other hyperplanes H in R?. Their points map
to cycles that form the same (not necessarily real) angle with the hyperplane s := HNR?.

2.4. Modeling canal surfaces with Dupin cyclides

The ideas in the previous subsection can nicely be applied to study a class of canal sur-
faces, which has received much attention within CAGD, namely Dupin cyclides (see, e.g.,
(Albrecht and Degen, 1997; Boehm, 1990; Martin, 1982; Pratt, 1990, 1995; Srinivas and
Dutta, 1994, 1995)). A detailed description and new algorithm to construct parametriza-
tions of curves and surface patches on Dupin cyclides is given by Miurer (1996,
1997). As we will see, the new control structure is very useful for modeling canal
surfaces with pieces of Dupin cyclides.

A Dupin cyclide may be defined as envelope of cycles that touch three given cycles
Ay, Az, As. Hence, it is the cyclographic image of the intersection curve of the three
~-cones [; with vertices ((A;). The intersection of two y-cones I, I ; consists of the
quadric {2 at infinity and a quadric in a hyperplane H;; C R*. Therefore, p may also be
obtained as intersection of one y-cone, say I}, with the plane Hi» N Hys N Hy3. Such a
conic is referred to as a pe circle, since its ideal points (not necessarily real) lie in {2.

The pe circle p may be an ellipse, a parabola or a hyperbola. A parabola is mapped to a
parabolic cyclide, which 1s a cubic algebraic surface. An ellipse p and a hyperbola p with
hyperbolic tangents corresponds to a cyclide of order 4. The usual finer classification is
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not invariant under Laguerre transformations; it depends on the singularities of the surface
and therefore on the number of intersection points of p and R? (see, e.g., (Miiller and
Krames, 1929, pp. 426—432)).

From now on we exclude those pe circles that are hyperbolas with elliptic tangents.
The remaining types of pe circles yield real cyclides. All tangents of p are hyperbolic.
Let us now consider a segment p with Bézier points by, b}, by. Since p is pe circle the pe
distances bpb; and b,b, are equal, i.e.,

(b1 = bo, by — bo)pe = (b — b1, b2 — by)pe-

Therefore, the Bézier cycles BoB| and BB, of the cyclide piece c¢(p) possess equal
tangential distance. The tangent of p parallel to byb, contains frame points fy, fi and
touches p at the midpoint m of fo, fi. Using equality of the pe distances b fy and fym,
we find that fy divides bpb; in the ratio w; : 1, where w; is the weight of the inner
control point b; (wy = wp = 1) and computed as

(b1 — bo, b2 — bo)pe
Vb1 — bo, by — bo)pe (b2 — bo, b2 — bo)pe

an

w) =

Proposition 2.4. The cyclographic image of a pe circle with hyperbolic tangents is a
Dupin cyclide. It can be defined with three BézZier cycles By, B\, Ba, for which all centers
and the radii of two cycles can be prescribed. The third radius follows from the property
that the tangential distances of ByB| and B) B, are equal. The weights are wy = wy = |
and wy is computed from b; = ((By;) with Eq. (11).

This result is useful for the construction of pe circular splines. Their cyclographic images
are canal surfaces composed of Dupin cyclide pieces. With the formulae above, one can
transfer results on euclidean circular splines (Hoschek, 1992) into pe geometry.

As an example, we investigate pe biarcs which yields new insight and new results
on their cyclographic images, called double cyclide blends (Boehm, 1990). The problem
in R? reads: given two cones (or cylinders) of revolution A, A and a boundary circle
¢i, cp on each of them (see Fig. 6), find a smooth blend between ¢; and ¢,, composed of
two cyclide segments (since one is usually not sufficient). The input data define oriented
line elements a;,t; and a,, t; in pe 4-space R*, which have to be interpolated with a pair
of pe circle segments. The tangents are hyperbolic and therefore ¢; can be normalized to
(ti,ti)pe = 1, ¢ = 1,2. The inner Bézier points of the two pe circular segments shall be
b1 = a; + Ait1, by = aa — Aaty. The junction point is denoted by ¢ (Fig. 5).

An admissible pair of inner Bézier points is characterized by

(b = b1, by = bidpe = (A + X2)*.

This is equivalent to

(ay — a1, a2 — ar)pe — 221 (a2 — ar, t)pe — 2X2(a2 — a1, t2)pe
+2)\1/\2(<t|,t2>pe - 1) =0. (12)
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Fig. 5. Bézier points of a pe biarc in R*.

One may choose b; (A\) and then formula (12) determines a unique b (A2) and the
junction point
. Aabp 4+ Aihy
oM+

If A\; > 0, one uses the arc contained in the triangle a;, b;, c. Otherwise one has to use
the complementary arc. The signs of A; also define whether c is between b and b; or
not. The mapping b, — by is a projective map between the end tangents because of the
bilinearity of (12). Therefore the junction tangents b b, form in general a ruled quadric.
If the input data a,t; and az, ¢, span just a plane, we obtain the tangents of a conic or
the lines of a pencil (for ¢, = —t;). Inserting relation (12) into the expression for c, we
find that the locus of junction points ¢ is a pe circle d. Application of the cyclographic
map gives us the following result on the one parameter set of double cyclide blends.

Proposition 2.5. Given two cones or cylinders of revolution Ay, A, with a boundary
circle ¢y, c; on each of them, there is a one parameter family of double cyclide blends
that form a smooth join of the given surfaces between c; and c;. The junction circles of
the cyclide pairs lie in a Dupin cyclide, the cyclographic image of the pe circle d. The
axes of the junction circles are contained in a family of generators of a ruled quadric,
the tangents of a conic or the lines of a pencil.

If the input data in R* lie in a plane o, which happens if the axes of the two given
cones or cylinders in R? are coplanar, also the solution biarcs lie in a. Corresponding
to the y-hyperplanes passing through « in R*, the image cycles of points in « touch 2
planes, one plane along a line or 2 conjugate complex planes (see Section 2.5). The same
is true for the surfaces in the possible double-cyclide blends.

Let us now assume that the data span a hyperplane H (‘spatial data’). If H is a -
hyperplane, its points are mapped to cycles that touch the plane ¢*(H). Otherwise, the
projective extension of H intersects the absolute quadric (2 in a real or imaginary conic
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and we speak of a pseudoeuclidean or euclidean hyperplane, respectively. The points of
a pe H are mapped to cycles intersecting the plane h := H NR? in a fixed angle. For a
euclidean H, the image cycles are such that any two of them define a connecting cone of
revolution whose vertex lies in h := H N R>. Note that A is determined by the vertices
of the input cones A; and by the vertex of the cone connecting the two cycles C; which
touch A; along ¢;. The type of H depends on the type of h N C; which shows that all
three types of H may occur in applications. It can be shown that the pe biarcs lie in a
pe 2-sphere ) C H, i.e., the intersection quadric of a y-cone with H. Its points map to
cycles touching 2 cycles or a cycle and a plane in the case of a y-hyperplane H (see
Example 2.3).

Proposition 2.6. All double cyclide blends from Proposition 2.5 for skew axes of the

input cones A; are in line contact with two fixed cycles Cy,Cy, one of which may

degenerate to a plane. Cy,C, are exactly those cycles or planes which touch the input
cones A; at points of the boundary circles c;.

A euclidean hyperplane H can be transformed with a pe similarity into R*. This pe
similarity describes a Laguerre transformation which maps both data cones A; to lines
and the double cyclide blends to euclidean circular biarcs. Therefore, in the case of

‘euclidean input data’ our results are Laguerre geometrically equivalent to those in (Fuhs
and Stachel, 1988).

Practically useful double cyclide blends have to be free of singularities. This means
that the pe biarc in R* should not intersect R®. Moreover, it seems to be desirable that
the blend does not possess an unnecessarily large variation in the radius of the inscribed
spheres. We therefore propose to construct a double-cyclide blend with minimal radial
variation as follows. In view of the properties of the control structure, one can measure

voCy
i N AN A 2/
SN N \

a o AN /
- JAY NN

N
W
Fig. 6. Double cyclide blend with minimum radial variation.
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the radial variation p by the radial variation in the spheres of the complete control
structure and define

p =Nt 4+ Mtia (13)
with t; = (ti1,.-..t:4), i = 1,2, Rewriting (12) in the form
A 3
Ny = 2P
YA+ 6
the A;-value to the minimum satisfies
13 (YA + 8) + 13 4(ad — By) (@A + 3) = 0. (14)

An example of a blend with minimum radial variation in this sense is shown in Fig. 6.
It is, however, not guaranteed that this solution is free of singularities and there might
be no regular solution at all. Then, one can work with more than two cyclide pieces.

Remark 2.1. Let p,q be two curves in R* which possess contact of order d > 1 at a
point & & R> with hyperbolic tangent t. Then, the canal surfaces c(p),c(q) also meet
with contact of order d along a circle k which corresponds to the line element (z,t).

In particular, if z is an inflection point, the osculating tangent line is mapped to an
osculating cone of revolution. Otherwise the osculating pe circle q at x € p is mapped to
an osculating cyclide of the canal surface ¢(p). The parabolic points (points with vanish-
ing Gaussian curvature) of the cyclide c(q) lie in the planes which form the image ¢(s)

Fig. 7. Constructing parabolic points of a canal surface.
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of the osculating plane s O g (see Section 2.5). The line s N R? lies in ¢(s) and contains
the vertices of all circumscribed cones of the cyclide ¢(q). In particular s N R* contains
the vertex v = ¢ N R? of the cone c(t) that touches ¢(p) along k. Let V be the locus of
vertices of all circumscribed cones of the canal surface ¢(p). Then s N R? is tangent to
V in v. This yields a simple construction of the parabolic points of a characteristic circle
k of a canal surface illustrated in Fig. 7. From that we get information on the behavior
of canal surfaces ¢(p) to G! curves p C R* with continuous osculating planes.

2.5. Cyclographic mapping of surfaces in R* and some applications

The cyclographic mapping of surfaces in R* did not receive so much attention in the
classical literature as cyclographic images of curves in R3. On the other hand, surfaces
are a much more active research area in geometric design than curves. Therefore we
describe the surface case in some detail, although there are clearly many analogies to the
lower dimensional curve case.

Let s(u,v) be areal C"' surface C R*. Applying the cyclographic map c, we get a two
parameter set of cycles c(s(u,v)) possessing a real or imaginary envelope ¢(s) which
may consist of several sheets.

It is good to begin with a plane s. The ideal line of s contains 0, 1 or 2 real points of
the pe absolute quadric {2; we speak of a euclidean, isotropic or pseudoeuclidean plane,
respectively.

For a euclidean plane s, ¢(s) contains two real (oriented) planes ¢(s); = sy, ¢(s); = ss.
For each x € s, the planes s/, s, are tangent to the cycle ¢(z) at points |, z,. We call the
oriented surface elements (1, ;) and (z2, s2) the cyclographic image of the surface el-
ement (z, s). The planes s; and s are the intersections (c* images) of the y-hyperplanes

Fig. 8. Cyclographic image of a surface and optical interpretation.
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through s with the reference space R3. Clearly, the intersection of s; and s; is the line
sNR3.

If s is an isotropic plane (also called ~v-plane), all image cycles of points in s touch an
oriented plane e (orthogonal to the projection s’) at points of the line s N R?. Any point
x in s determines just one surface element (x;,e). The envelope ¢(s) to a pe plane s is
not real.

For general surfaces s, we proceed as above and map its surface elements (z,t), where
t is the tangent plane at z C s (Fig. 8).

A particular discussion is necessary for the case of a surface s all whose tangent planes
are isotropic; we call it a y-surface. At each of its points, there is a unique parabolic
surface tangent. Integrating this field of y-tangents we obtain a family of y-curves on s.
Their cyclographic images are principal curvature strips on the image surface c(s). The
projection s’ of s is locus of principal curvature centers, i.e., a sheet of the focal surface of
c(s). The surface c(s) possesses a second sheet of the focal surface corresponding to the
other family of principal curvature lines. The y-tangents of s form a y-hypersurface T (s)
in R*, which may also be considered as cyclographic preimage of all cycles touching the
oriented surface c(s) or as graph of the signed distance function to the surface c(s). The
surface s consists of singular points of T'(s). All intersections of T'(s) with hyperplanes
H parallel to R® are translates of the offsets of c(s) and possess edges of regression at
s H. This yields the well-known fact that edges of regression of the offsets to a surface
lie on its focal surface.

The cyclographic mapping of a general surface s C R* can now be formulated as
follows: pass the ~-hypersurfaces I'(s) through s and intersect them with R®. For a
surface s with only euclidean tangent planes, c(s) consists of 2 sheets, a y-surface is
mapped to a single surface sheet and a surface with only pseudoeuclidean tangent planes
possesses no real image surface c(s).

Consider two surface patches sy, s, C R4 joined along a curve p. If the joint is just
C?, the image surfaces c(s|) and c(sz) are joined smoothly by (the appropriate parts
of) the canal surface ¢(p). In this sense, the cyclographic map automatically generates
blends. A G* surface s; U s, yields a G* cyclographic image.

Example 2.3. Let s be a 2-dimensional pe sphere, i.e., the intersection of a hyperplane H
with a «y-cone I"(a). For a v-hyperplane H, the complete y-surface through s is HUI'(a)
and therefore c(s) is a cycle I'(a) NIR® and an or. plane H NR®. Otherwise, there exists
a pe reflection o at H which maps I'(a) to a second y-cone I'(o(a)) through s. The
cyclographic image ¢(s) is the union of two cycles c¢(a) and c(o(a)), the intersections
of I'(a) and I'(c(a)) with R®. A ‘polyhedral’ surface s with pe spherical faces and pe
circle segments as edges has a smooth cyclographic image ¢(s) consisting of sphericat
‘face patches’ blended by cyclide patches as ‘edge fillets’ and spherical ‘corner patches’.
Convex surfaces of this kind have been modeled by Gallagher and Piper (1994) with a
Maobius geometric approach:

A pair of oriented surfaces s;,s; in R* may be considered as cyclographic image
of a surface s in R* which is the intersection of the ~y-hypersurfaces through s;. The
projection s’ of s is the untrimmed bisector or Voronoi surface of sy, s». A connected
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domain D with boundary surfaces s; determines y-hypersurfaces whose intersections and
self-intersections form the untrimmed medial axis transform of D; s’ is the untrimmed
medial axis or skeleton. As in the curve case, the computation of an untrimmed bisector
or medial axis (transform) is now formulated as an intersection problem in R*. However,
in contrast to surface/surface intersection in 3-space, this problem has not yet received
much attention. We also see that cuspidal edges of the untrimmed medial axis lie on the
focal surfaces of the boundary of D. The trimming procedure is again formulated with
a visibility algorithm. Voronoi surfaces of polyhedra have been treated with the present
geometric method by Stachel and Abdelmoez (1992).

Let x € s be a point with euclidean tangent plane ¢. Then, the cyclographic image of the
surface element (, t) consists of two surface elements with points z; and x>. The normals
of these elements are 2’z and z’x;, which form the same angle with the tangent plane ¢/
to s” at 2’ (Fig. 8). Therefore, we can now formulate an analogous optical interpretation
as in the curve case. Considering the normals of ¢(s); = s, as light rays, ¢(s), = s
is a reflectional anticaustic to the mirror s’. If the surface s lies in a y-hyperplane or a
v¥-cone, we obtain parallel light rays or a central illumination, respectively.

Note the relation between the construction of anticaustics in the case of parallel light
rays (orthogonal to a plane, say a) and the transformation A* from the standard model
of Laguerre space to its dual isotropic model. An anticaustic for the given illumination
to a mirror surface s’ (interpreted as set of tangent planes) is obtained as (A4*)~!(s) and
easily computed with (10). Clearly, the same holds in the planar case.
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