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The paper presents a brief tutorial on classical line

geometry and investigates new aspects of line ge-
ometry which arise in connection with a computa-
tional treatment. These mainly concern approxima-
tion and interpolation problems in the set of lines or
line segments in Fuclidean 3-space. In particular,
we study approximation of data lines by, in a certain
sense, 'linear’ families of lines. These sets are for in-
stance linear complexes and linear congruences. An
application is the reconstruction of helical surfaces
or surfaces of revolution from scattered data points.
This is based on the fact that the normals of these
surfaces lie in linear complexes; in particular, nor-
mals of surfaces of revolution intersect the axis of
revolution.

Approximation with linear complexes or congru-
ences is also useful to detect singular positions of
serial or parallel robots. These are positions where
the robot should be a rigid system but possesses an
undesirable and unexpected instantaneous self mo-
tion.
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Introduction and Motivation

Line geometry investigates the set of lines in 3-
space. The ambient space can be a real projective,
affine, Fuclidean or a non—euclidean space. There
is a vast literature on this branch of classical geom-

etry including several monographs 6 & 10,22, 34, 36,
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Line geometry possesses a close relation to spatial
214,16, 34 and has therefore found ap-
plications in mechanism design and robot kinemat-

kinematics

ics. Despite recent applications in robotics, a care-
ful study of line geometry from the computational
point of view has not been undertaken so far.

Let us look at an example to motivate the devel-
opment of computational line geometry: A parallel
manipulator has a singular position iff the axes of its
hydraulic cylindrical legs lie in a linear complex, a
special 3—parameter set of lines. In practice, several
sources for errors (manufacturing, material proper-
ties, computing, ...) are hardly avoidable. Thus, the
question is whether the lines near their realization
on the objects are close — within some tolerance —
to lines of a linear complex. This is an approxima-
tion or regression problem in line space.

In this paper we will survey central results of clas-
sical line geometry and also present new results on
computational line geometry. The general concepts
will be illustrated at hand of specific applications in
areas such as robot kinematics and surface recon-
struction. We also prepare a computational study
of ruled surfaces, which appears in a separate paper
of the same issue 2.

Line geometry and Pliicker coor-
dinates

Let us introduce our notation and get started with
some essential fundamentals. First we work in real
Fuclidean space E3. We use a Cartesian coordinate
system and points are represented by their coordi-
nate vectors x. A straight line L can be determined
by a point p € L and a normalized direction vector



Figure 1: Direction and moment vector of a line

lof L,i.e. [|l]| = 1. To obtain coordinates for I one
forms the moment vector

l:=px1

(1)

with respect to the origin. If p is substituted by
any point q = p + Al on I, formula (1) says that 1
is independent of the special choice of p on L. The
6 coordinates (1,1) with

1 = (11712713)7 and I = (14715716)

are called normalized Pliicker coordinates of L. The
set of lines in E? is a four-dimensional manifold and
accordingly the six Pliicker coordinates satisfy two
relations. Omne is the normalization and the other
one is, by (1), the so-called Pliicker relation

1-1=0, (2)
which expresses the orthogonality of I and 1.
Conversely, any 6-tupel (1,1) with [[I]| = 1, which
satisfies the Pliicker relation 1-1 = 0 represents a line
in E3. Since we do not care about the orientation,

(LL1) and (-1, —1) describe the same line I.

For some applications it is convenient to study lines
in real projective space P2, which can be considered
as projective extension of E>. This is the closure of
E? by all points at infinity (intersections of paral-
lel lines; for a simple introduction to concepts from
projective geometry we refer the reader to Boehm
and Prautzsch '). We use homogeneous Cartesian
coordinate vectors (zg,...,23) = x. These coordi-
nates are only determined up to a common scalar
multiple, which means that

x and xp, p € R\ {0},

define the same point which shall be denoted
by xR. A point at infinity is characterized by
zg = 0 and points not at infinity possess the cor-
responding inhomogeneous Cartesian coordinates
(21/%0, 22/ %0, 25/20). It is convenient to collect the
projective homogeneous coordinates x in the follow-
ing way

x = (20,%) with 2o € R,x € R”.

Let a plane in P? be given by a linear homogeneous
equation

(3)

The vector u = (ug,u1,us,us) is called homoge-

UgTo + U Ty + Uz + uzzrz = 0.

neous plane coordinate vector of that plane. Since
the coordinates u; are also only determined up to
a common scalar multiple we denote the plane by
Ru. The left and right scalar multiples in plane
and point coordinates are just a convention to dis-
tinguish them. Analogously one uses the notation
u = (ug,u) with ug € R and u € R®. All points
at infinity form the plane at infinity (ideal plane)
2o = 0, which is in our notation represented by the
vector (1,0). Any other plane possesses u as normal
vector.

Now points and planes are represented in exactly
the same way. Moreover, equation (3) can be seen as
incidence relation between point (20, x)R and plane
R(ug,u) and it is symmetric. This is the basis of the
principle of duality in projective geometry, which we
will encounter later. Basically it says that exchang-
ing the meaning of points and planes and keeping
lines and incidences in a result yields a correct ’dual’
result.

To represent lines in P? one has to give up the
normalization of Pliicker coordinates since a line L
at infinity (intersection of parallel planes) does not
possess a direction vector.

To cover all cases, one spans a line L by two points
xR, yR, possibly at infinity. Then, the homogeneous
Plicker coordinates are found as

L=xAy := (20y — YX;XXy), (4)
=(LD) = (l,lo 1314 15,06) € RO,

As the homogenized form of the previously dis-
cussed case of normalized Pliicker coordinates, these



coordinates again satisfy the Pliicker relation 1-1=
0. Lines L at infinity are characterized by 1 = o.
Note that a line I at infinity is determined by par-
allel planes through it. A normal vector of these
planes is 1. If I is not at infinity, it can be spanned
by a point in E? with coordinates x = (1,x) and a
point at infinity y = (0,y). Inserting in (4) we see
that 1 = y is a (not necessarily normalized) direc-
tion vector of I and 1 = x x 1is the moment vector
of the force 1 on L about the origin.

The interpretation of a line I as connection of
two points xR, yR can be dualized to the inter-
pretation of a line I as intersection of two planes
Ru = R(ug,u) and Rv = R(vg,v). Then the homo-
geneous Pliicker coordinates of the intersection line
are

L= (L1) = (u x v,ugv — vou).

If . = RunRv is not at infinity, u x v is a direction
vector of L.

The rule of duality says that exchanging the
meaning of point and plane coordinates in a for-
mula and exchanging vectors 1 and 1in the Pliicker
coordinates, gives a correct dual formula.

Example: One can prove that the intersection points
s;R of a line I with the coordinate planes z; = 0 are

(0711712713)7 $1 = (_11707167_15)7
(_127 _167 07 14)7 S3 = (_137 157 _147 0)

Sp =
B —

To verify this, we compute the Plicker coordinates from
any pair of points s;,s; via (4) and, possibly making use
of homogeneity and the Plucker relation, we find in all
cases (I1,...,1ls). Two of the four points s; are certainly
different. If a line L lies in a plane Ru = R(ug,u), all
points s;R lie in that plane. These four linear equations,
where only two are necessary, can be collected to

l-u=0,—ul+uxl=o,

()

which is the incidence condition of a line I and a plane
Ru. Dual to that one gets the incidence condition of a
line L and a point xR by

1-x=0,—zl+xx1=o.

(6)

Example: The intersection point pR = (po,p)R of a
line L and a plane Ru = R(ug,u) can be calculated as
follows. Let s;,s; be two distinct points and As; + pus; be
a parametrization of L in homogeneous parameters. The
intersection point satisfies A(s; - u) + p(s; - u) = 0, which

leads to homogeneous parameters (A : p) = (—s; - u :
s; - u). Inserting this, some algebra leads to the formula
of the intersection point

(po,p) = (u-1, —ugl + u x i) (7

Dual to this the connecting plane R(ug,u) of a point xR
and a line L is given by

(g, ) = (x -1, —2ol + x x 1). (8)
Let s;, s; and t;, t; be two distinct pairs of points
in coordinate planes on lines G = (g,g)R and
H = (h,h)R, respectively. The two lines G and
H intersect, iff the four mentioned points lie in a
common plane. This can be expressed by

det(si75j7ti7tj) = 0.

Inserting the Pliicker coordinates G and H it follows
that the lines G and H intersect iff

0 = giha + g2hs5 + g3he + gah1 + gsha + gehs
= g-h+g-h (9)

Sometimes, we will briefly denote the bilinear form
g-h+g-hin this intersection condition by Q(G, H).

We want to derive a formula for the intersection
point sR = (sq,s)R of intersecting lines G and H
with Pliicker coordinates (g,g) and (h,h). Using
the incidence condition (6), we obtain

g-s=0,—50g+sXg=o,
B-s:O7—50B+sxh:0.

Assuming that g, h are linearly independent, the
two left hand side equations require s = Ag X h,
A # 0. Further, one calculates sg and finally we
obtain

(8075):(_g'57gxB):(g'h7gXB)' (10)

We get two formulas since Q(G,H) = 0 holds. But
note that the linear independence of g and h is the
crucial point in this formula. It does not work in
general if one line, say (G passes through the origin
(g = 0). In this case a direct computation leads to

(50,8) = ((g x h) - (g x h),det(g, h, h)g).

Formula (10) does not work also for parallel lines
(g = Ah), but in this case the intersection point is

known as sR = (0, g)R.



Figure 2: Subspaces on the Klein quadric

The Klein mapping

The homogeneous Pliicker coordinates define a
mapping from lines I in P? to ordered, homoge-
neous 6-tupels

L=(L,1) e R°\ {0}.

These 6-tupels may be interpreted as points in 5-
dimensional real projective space P?. We write LR
to indicate homogeneity and also denote points in
P? in this way. This means that we obtain a map-
ping from the set of lines in P? to points in P,
which is called Klein mapping. Not all points in P®
are Klein images of lines. By the Pliicker relation
(2), exactly those points in P are images of lines
in P? under the Klein mapping 7, which lie on the
Klein quadric M

1114 + 1215 + 1316 = 0. (11)
The quadratic form 1-1 = l3l4 4 ... + Islg will also
be written as Q(L).

The Klein mapping v has the following important
properties. The lines of a pencil are mapped to the
points of a line. This can be seen in the following
way. Let a pencil of lines be spanned by two in-
tersecting lines Ly, Lo with intersection point xR.
Their Pliicker coordinates shall be Ly, Ly and let
y1R, y,R be a point on I and L, respectively. An
arbitrary line I of this pencil can be spanned by
the vertex xR and a point yR on the line through
y1R, y;R. Such a point has a coordinate vector
y = Ay; + Aay,. Hence, the Pliicker coordinates of

L are

L = xA(Ayr + Azys)
= Al(X A yl) + AQ(X/\ y2) = All_l + AQLQ.

This says that the Klein image LR lies on a line
spanned by LiR and LyR on My, see figure 2.

Further, the lines of a bundle are mapped to points
of a plane, entirely contained in My. A bundle
consists of all lines through a fixed point, say xR.
Let Ly, Lo, L3 be three lines in the bundle. Their
Pliicker coordinates shall be Ly, Ly, L3 and let y, R,
yoR, ysR a point on each line. An arbitrary line
L of this bundle can be spanned by the vertex xR
and a point yR in the plane spanned by y;R, y,R
and y3R, i.e. y = A\yy; + Agyy + Asys. The Pliicker
coordinates of I, are therefore

L = xA(Ayg + Aays + Asys)
= M(XAyp)+ Aa(xAyy) + As(x Ays)
= ML+ Aly 4 Asls.
This says that the Klein image points LR to the

lines in a bundle are forming a plane. Of course,
this plane is contained in the Klein quadric.

Using similar arguments we see that the lines ly-
ing in a fixed plane are also mapped to points of a
plane, entirely contained in M. Thus, the Klein
quadric M carries exactly two 3-parameter fam-
ilies of two—dimensional planes, which are the ~—
images of line bundles and line fields (lines in a fixed
plane), respectively.

Two planes on M belong to the same family, iff
they have a point in common. This point is the
Klein image of the connecting line of two bundles
or the Klein image of the intersection line of two
fields.

Otherwise two planes on M. intersect in a line or
are skew, depending on whether the vertex of the
bundle is contained in the plane of the field of lines
or not.

A regular quadric in P® cannot contain 3-
dimensional subspaces and thus M; carries maxi-
mal dimensional subspaces.

Example: All lines in P3 passing through the origin sat-
isfy 1 = o (see (1)). This means that their y—images are
contained in the plane Iy = I5 = ls = 0, which entirely
lies on M3



Example: Let us consider lines in P3 lying in the plane
at infinity g = 0. With formula (4) it follows that they
satisfy 1 = o. This means that their y—images lie in the

plane [y =I5 = I3 = 0, entirely contained in M;.

Special sets of lines

We will give a short overview of special sets of lines
in Fuclidean or projective 3—space. Especially prob-
lems in constraint solving ® lead us to interesting ex-
amples. Detailed studies follow later in connection
with space kinematics.

One-parameter families of lines

We have already got to know pencils of lines which
are the simplest one-parameter sets of lines. Their
Klein images are lines on M. One-parameter fami-
lies of lines form ruled surfaces. Their Klein images
are curves on M3 and will be discussed in detail in
a separate contribution 23. Here we will give just
some basic examples to get a better understanding
of the Klein mapping.

Let a conic ¢ in P® be the intersection of a 2—
plane ¢ with My. We note that ¢ is not contained in
M3. Tt can be shown that the points of ¢ are Klein
images of lines on a ruled quadric ® in P2, precisely,
one family of generator lines of ®.

Example: Let a ruled quadric ® be given by the equa-
tion —22+ 22+ 22 — 22 = 0. The Pliicker coordinates of
one family of generator lines are

G(t) = (—sint, cost, 1,sint, — cost, 1), ¢ € [0, 27).

Any two lines G(t1), G(ta), t1 # to are skew. The plane
¢ containing the Klein images of these lines is

€121 = —T4,Ty = —T5,T3 = Tg.
By the way, @ carries a second family of generator lines
H(s) = (—sin s, coss, —1,—sin s, coss, 1), s € [0, 27),

and, by (9), each line G(¢) intersects each line H(s). The
Klein images H(s)R lie in a plane ¢ which is skew to e.

If the conic ¢ lies in a plane ¢, entirely contained in
M3, its points are Klein images of generator lines of
a quadratic cone or tangent lines of a conic in P2,

depending on whether € is Klein image of a bundle
or a field of lines.
Example: Let a quadratic cone be given by the equa-

tion z7 + 22 — 23 = 0. The Pliicker coordinates of the
generator lines are

L(t) = (cost,sint, 1,0,0,0), t € [0, 27).

This defines the homogeneous parameter representation
of a conic in M; which lies in the plane x4 = 25 = x4 = 0.
As another example,

L(t) = (0,0,0,cost,sint, 1), ¢t € [0,27)

parameterizes the tangent lines of the conic zg = 0, 27 +

22 — x2 = 0, lying in the plane at infinity. Note that
these are the lines at infinity of all planes which form
the constant angle 7/4 with the z—axis. Again we see

that the Klein image of this line set is a conic.

Two-parameter families of lines

The simplest two-parameter families are bundles
and fields of lines and their Klein images are planes,
entirely contained in M. Further, the normals of
a surface in 3-space form a two-parameter family
of lines, called normal congruence. General two-
parameter families are called line congruences and
their Klein images are a two-dimensional manifolds
on Mj. Later, when we study more projective line
geometry, we will have more examples.
stance, the intersections of M3 with 3-spaces, that
are two-dimensional quadrics in M., are Klein im-
ages of important families of lines (linear congru-
ences).

For in-

Three-parameter families of lines

Three-parameter families of lines are much harder
to imagine and we give two examples which come
from constraint solving.

Example: We are searching for all lines L, which have
a constant distance d from a given point p. Without loss
of generality let d = 1 and p be the origin of the coordi-
nate system. The family of lines . we are considering are
just all tangent lines of the unit sphere S?. Using nor-
malized Plicker coordinates (I,I) for a moment, we first
note that the length [[1]| gives the distance of the line
to the origin. Hence, the lines under discussion satisfy
12 = 1 in normalized Pliicker coordinates, which, by the



normalization, is equivalent to 12 = 12. Obviously, this
homogeneous quadratic equation is already the desired
relation in homogeneous Plicker coordinates,

Voiil-1-1-1=0.

It defines the quadratic hypersurface V5! in P®. The
upper index denotes the dimension, the lower index the
degree. This means that the Klein images of tangent

lines of the unit sphere lie in the intersection My N V5!

In general, such families of lines satisfying a
quadratic equation in addition to the Pliicker re-
lation are called quadratic complexes. The tangent
line complexes of quadrics are examples of quadratic
complexes, but there are other types as well.
Example: We are interested in all lines I which inter-
sect a given circle, say the unit circle in the zy-plane.
It is easy to see that the Plicker coordinates of lines
satisfy —I3 + I3 + I2 = 0. Again, we have a quadratic
complex.

A further example of the same type is the following.
We are interested in all lines I which enclose an angle
of 7/4 with the zy-plane. Tn Pliicker coordinates (1,1),
the first vector 11s a direction vector, and therefore these
lines satisfy I? + 12 — 12 = 0 and again form a quadratic

complex.

Above examples have led to quadratic complexes.
What about the lines which satisfy a linear equation
in Pliicker coordinates? Using formula (9) we see
that all lines H intersecting a fixed line G are given
by a linear equation. But (9) is just a special case of
a linear equation in Pliicker coordinates, since both
G and H satisfy the Pliicker relation.
We use the notation

C - (C7 é) = (Cl7 €2, C3,Cy4,Cs, C6)~

where ¢, ¢ are not necessarily Pliicker coordinates
of a line. A set of lines I = (1,1) satisfying a linear
equation in Pliicker coordinates,

cali + esly + csls + crly+ eals + eslg =0 (12)
is called a linear line complex or linear complex.
The strange numbering of the coefficients ¢; will be
explained later, (see formulae (15)). The expression
on the leftise-14 ¢ -L which will also be written

as Q(C,L).

There are two different types of linear complexes.
Firstly, if (¢, ¢) are Pliicker coordinates of a line C',
the linear complex consists of all lines intersecting
C, see (9). Such a linear complex is called singular.

Secondly, ¢ - ¢ # 0 characterizes regular linear
complexes. So far we have no idea of such sets
of lines and cannot explain their properties. Later
they will be discussed in connection with kinematics
and with so-called null polarities.

We want to motivate the study of line geometry
by giving more examples on complexes. A general
algebraic line complex is defined by a homogeneous
algebraic equation G(L,1) = 0 in Pliicker coordi-
nates, clearly different from (11). For our exam-
ples only those complexes are used which we already
have understood.

Intersection of complexes

The intersection of two algebraic complexes in gen-
eral position is an algebraic line congruence, the in-
tersection of three algebraic complexes in general
position is an algebraic ruled surface. This seems
to be rather theoretical but the following examples
shall demonstrate the practical use of this interpre-
tation.

Let A;, 7 =1,2,3 be three given skew lines in 3—
space. All lines L intersecting A; shall be calculated.
By the intersection condition (9) one obtains the
Pliicker coordinates of I as solutions of

QA L) = a;-14a;-1=0, fori=1,2,3,
QL) = 1-1=0.

Thus, the lines L lie in the intersection of three sin-
gular linear complexes. The last equation just guar-
antees that (1,1) are Pliicker coordinates of lines I.

Interpreting these equations in P we see that the
Klein images LR form an intersection of M3 with
a two-dimensional plane which is the intersection
of the three hyperplanes Q(A;, L) = 0,7 = 1,2,3.
Thus, the Klein images LR of the considered lines lie
on a conic. Using the result of a previous example it
follows that the lines I form one family of generator
lines of a ruled quadric ®. The quadric ® contains
a second family of lines GG, which contains the lines
A; and all lines G intersect all lines L.



Example: Let the lines A; be given by their Plucker
coordinates

Al = (17070707070)7
As = (0,1,0,—1,0,0),
As (0,0,1,1,—1,0).

All points in P? satisfying Q(A;, X) = 0 form 2-plane «,
parametrized in homogeneous parameters by

Y:(y7y):(Avﬂvyvov)‘v_)\+/i)~

Only those points in ¢ are Klein images of lines L € P3
which lie on M. Thus we solve y -y = 0 and this leads
to the expected quadratic parameterization

L(t) = (H(1+1), 8,1 +1,0,4(1 + 1), —1?).
Further, the family G(s) containing A; is given by
G(s) = (1—s,s(1—s),s, 2, —s, 0).

Clearly we have A1 = G(0), A2 = G(o0) and A3z = G(1)
and L(t), G(s) are both families of generator lines on the
ruled quadric determined by A;.

Another constraint solving problem is the follow-
ing. We are looking for all lines I which intersect
a given line GG orthogonally and have a certain dis-
tance d from a fixed point p. From a previous ex-
ample we know already that lines having a constant
distance from a point form a quadratic complex. We
choose again d = 1 and p as origin of the coordi-
nate system. Together with the further constraints
we obtain the system

Vil 11
g.I_I_g.
g.

M3l

-

ol e |
[P

o o o ©

o |

The intersection of these four hypersurfaces (M
and V3! are quadratic, the other two are linear) in
P5 is, by Bézout’s theorem, in general a curve of
order 4. We will see later that this curve is the
Klein image of a ruled surface of order 4, which is
the solution of our problem.

So far we have studied the correspondence between
lines L in 3-space and their Klein images LR in
P?. We have got a point model (M) for the set

of lines, which is a helpful tool for solving certain
problems. The coordinates of points CR € P° not
on the Klein quadric, i.e. ¢-¢ # 0, appear nat-
urally in connection with regular linear complexes
(12). But to get a better understanding of linear
complexes and those points CR we need more pro-
jective geometry. This will turn out as very useful in
a study of rational ruled surfaces 23. However, be-
fore extending our tutorial on the projective theory,
we would like to draw a picture of the nice relation
between linear complexes and kinematics and use it
for some applications in surface reconstruction and
robot kinematics.

Line geometry and kinematics

The relation between line geometry and kinematics
in B3 will help us to understand linear complexes
from a practical point of view.

A continuous motion in E®, composed of a contin-
uous rotation around a line A (with constant angu-
lar velocity) and a continuous translation parallel to
A (with constant velocity) is called a helical motion
or screw motion with azis A and pitch p, see figure
3. If A is chosen to be the z—axis of a Cartesian
coordinate system, a helical motion is given by

0 cost —sint 0
x(t) = 0 + | sint  cost 0 |-x(0),
pt 0 0 1

but in the following this special choice of A is not
used. For p = 0, the motion reduces to a pure ro-

Figure 3: Helical motion with axis A, pitch p

tation around A. If p # 0, all points of the axis



A travel along it, whereas the paths (trajectories)
of the remaining points of the moving system are
helices. As limit case p = oo, we include a continu-
ous translation, where the rotational part vanishes
and all points travel with constant velocity along
parallel lines.

The velocity vector field for these motions is time
independent and linear, see Bottema and Roth 2. A
point x has velocity vector

v(x)=c+e¢ Xx, (13)
where the constant vectors c,c¢ € R? are related to
axis A = (a,a) and pitch p of a helical or rotational
motion via

(14)

Here, ¢ is not necessarily normalized. We note that
¢ = o belongs to translations parallel to c.

Lines through points x normal to v(x) are normal
to the trajectory at x and are called path normals.
Their Pliicker coordinates satisfy a linear equation

c-c _ _
P=g (a,a) = (c,c — pe).

0 = v-l=c-14+(exx)-1=

c-ltec-(xxl)=c-l+c-L (15)
We have called such three parameter sets linear
complexes, defined by the coefficient vectors ¢ and
c. Hence, the path normals of a helical motion, rota-
tion or translation form a linear complez C = (c, ).
But note that in general ¢-c¢ # 0, such that (c,c)
are not Pliicker coordinates of a line in F?>.

Conversely, any linear complex in 3, defined by
vectors ¢, ¢, defines a velocity vector field (13), and
thus is formed by the path normals of a helical (ro-
tational, translational) motion. We have called a
linear complex singular, iff the coefficient vectors
¢, ¢ satisfy the Pliicker relation ¢-¢ =0, and (¢, c)
are (not necessarily normalized) Pliicker coordinates
of a line.

Using the kinematical interpretation, singular
complexes belong to p = 0 and p = oo. In the case
p = 0 the linear complex consists of all lines inter-
secting the rotational axis A = (c,c¢), whereas in
the case p = oo it consists of all lines which are per-
pendicular to the vector ¢, which means that these
lines intersect a line at infinity.

Figure 4: Path normals of a helical /rotational mo-
tion with axis A

Since a linear complex determines a helical, ro-
tational or translational motion, we also speak of
pitch p and axis A of the linear complex C, which
are found via (14) in the non-translational case.

At any non—stationary instant of a one—parameter
motion in £, the velocity vector field is of the form
(13) and thus the instantaneous path normals form
a linear complex.

Approximation in Line Space

In practice, errors in data are often unavoidable. In
certain applications which will be discussed here the
question arises how to construct a linear complex C,
which — in a sense to be specified — best approxi-
mates a given set of lines L;, 1 = 1,...,k. In other
words, we are interested in the construction of a
linear complex of regression to a given set of data
lines.

An important input to the solution of the problem
is an appropriate measure of the deviation of a given
line I from a given linear complex C in E3. Let
us represent L with normalized Pliicker coordinates
(L 1), [|I]| = 1. The linear complex C shall be defined
by the equation ¢ -x+ ¢ -x = 0. For the moment,
the linear complex C shall be different from the path
normal complex of a translation and thus satisfy
c#o.

According to F. Klein '7 we use the moment of L
with respect to C,

(16)



Figure 5: Moment of a line w.r.t. a linear complex

to measure the deviation of L from C. Usually one
defines the moment between an oriented line and
an oriented linear complex (linear complex with ori-
ented axis) and thus omits the absolute value in the
definition. We do not need orientations and thus
define the moment as a nonnegative real number.

The moment has the following geometric inter-
pretation, see figure 5. Pick an arbitrary point x
on L. Let r be distance of x from the axis A of
the complex C with pitch p. Let a € [0,7/2] be the
smallest angle between L and a line of C through
X, or, in other words, the angle between I and the
plane (path normal plane of x), in which the lines
of C through x are lying, see figure 5. Then, the
moment m can also be expressed as

m(L,C)=/r?+ p?sina.

Lines with vanishing moment, m(L,C) = 0, are ex-
actly the lines of C. The formula above indicates
that the moment is a useful deviation measure of
a line from a linear complex (pretty much like the
distance of a point to a plane in 3-space).

(17)

Linear complex of regression

Let us now compute a linear complex C which is as
close as possible to the given lines L;, ¢+ = 1,...,k
with normalized Pliicker coordinates (1;,1;). For
that we compute C as minimizer of

k

> m(Li, X)?

=1

(18)

among all linear complexes X, represented by X =
(x,%) € R°. With (16) this is equivalent to mini-
mizing the positive semidefinite quadratic form

k
F(X):=Y (x-L+x-1;)?=:X"-M-X

=1

(19)

under the normalization condition

1=[x|]*=:X"-D-X, (20)
where D = diag(1,1,1,0,0,0). This is a familiar
general eigenvalue problem. Using a Lagrangian
multiplier A\, we have to solve the system

(M =AD)-X=0,XT-D-X=1. (21)
The first equation has a non trivial solution X, if A
is a root of the equation

det(M — AD) = 0. (22)
Because three diagonal elements in D are zero, this
is just a cubic equation in A. For any root A and
corresponding general eigenvector X = (x,x), which
is a solution of (M — AD)-X =0 and with ||x|| = 1,
we have

FOX)=XT-M-X=xT-D-X=A\.

This says that all roots A are nonnegative and the
solution C is a general eigenvector to the smallest
general eigenvalue X > 0.

The standard deviation of the given lines L; from
the approximating linear complex C is

A

. (23)

o =
In case of a sufficiently small deviation o, the given
lines L; can be well approximated by lines of the lin-
ear complex C. We use (14) to compute axis A and
pitch p of the complex C. Note that the moment
m, the standard deviation o as well as the pitch p
are distances in Fuclidean geometry and thus their
magnitude has to be seen in comparison to the error
tolerances and the size of the objects under discus-
sion.

Linear complexes with pitch p = oo have so far been
excluded. They are characterized by ¢ = o and the



complex consists of all lines in E? which are orthog-
onal to the vector ¢. The deviation of a line I from
such a complex can simply be taken as cosine of the
angle between I and ¢. Thus, we now minimize

k
Z:(i -1;)?

(24)

over all unit vectors x € R®. This is an eigenvalue
problem in R®. Note that one might not know in ad-
vance whether an approximation of the given data
lines L; with this special type of a singular linear
complex would be possible. If it is possible, the
general algorithm as outlined above will cause nu-
merical problems since all coefficients in (22) will be
close to zero. There are two simple ways to over-
come this problem. One can either check for a com-
plex with p = oo first or run at first the general algo-
rithm with another normalization condition, namely
X? = 1. The latter case is equivalent to setting D
as unit matrix. Note, however, that this leads to a
characteristic equation (22) of degree 6.

Families of solution complexes: Tt might be that
in solving (22) two small eigenvalues Ay, Ay occur.
Then there exist two nearly equally good solution
complexes C1,Co to the given set of lines ;. Thus,
the lines I; can be well approximated by lines of the
intersection Cy NCy. This is a special two parameter
family of lines, which shall be discussed later in the
section on "The Klein image of a linear complex’.

Analogously, three small eigenvalues i, Ay, A3 de-
fine three linear complexes. The intersection of in-
dependent complexes Cy, C3 and Cs is in general a
one parameter family of generator lines of a ruled
quadric, see also the section 'The Klein image of a
linear complex’.

A detailed treatment of special cases and the ap-
proximation of line segments by lines in a linear
complex is done by Pottmann et al. %°.

Rotational / helical surface reconstruction

Let us look at a problem that arises in the context of
reverse engineering of geometric models®®. There,
a real part has to be transformed into a computer
model, including a CAD description of its geometry.
The surface of a part may consist of different surface

’/l/////f{i r‘ N\*\-\&\‘\\\
“jf;///f/[f z‘-\ \\:\\3
= / SR N
/WS U ?\\Q\Q\\"’\\\
Pl ) \\\\\;\\‘Q\*\\
/I/f//'lfg } ARRE

Figure 6: Perturbated data points of a rotational
surface with estimated normal vectors

types. There might be simple surfaces like planes,
spheres, cones and cylinders of revolution and tori.
It might also contain more general surfaces of rev-
olution, general cylinders and helical surfaces and
it might exhibit general freeform surfaces. Both for
the CAD representation and for the manufacturing
of the part, it is essential to recognize the simpler
surface types and fit the given data, usually clouds
of points with measurement errors, by surfaces of
the determined type.

Recall that a general cylinder is traced out by a
curve which is moved under a continuous (straight)
translation. A surface of revolution is generated by
a curve that is undergoing a continuous rotation.
Since the simplest surface types are special cylin-
ders or surfaces of revolution, it seems to be im-
portant to recognize whether the given data can be
fitted well with a cylinder or a surface of revolu-
tion and to develop an algorithm for computing a
fit with the surface of the determined type. The
method of Pottmann and Randrup?® then suggests
to look more generally at helical surfaces, which are
generated by curves under screw motions. The ap-
proach is based on the following well-known result.
The normals of a C' surface lie in a linear complex
if and only if the surface is (part of ) a cylinder, a
surface of revolution or a helical surface.

Let us now return to our problem, how to recognize
helical and rotational surfaces. Let a set of scattered
(noisy) data points of a helical surface ¢ or one
of its special or limit forms (surface of revolution,
cylinder) be given.

1. Firstly, we have to estimate the surface normals
N; at the given data points d;, + = 1,...,k,

10



see figure 6. For methods that can be em-
ployed to estimate surface normals, we refer to
the CAGD literature!!. Here one has to take
care that the density of the points d; at which
we compute the normals N; is approximately
the same everywhere. For reverse engineering
applications we will perform a data reduction
algorithm?® and compute the normals just on a
subset of the original data points. We assume
that d; is already an appropriate set of data
points.

. Secondly, because of the fundamental result
mentioned above we now have to calculate an
approximating linear complex C to the esti-
mated normals N;. In case of a small devia-
tion (23) of the normals N; from C, there will
be a good helical surface approximant to the
given data points d;. To determine the helical
surface we use (14) to compute axis and pitch
p of the generating motion. This gives impor-
tant information for type recognition, since for
instance the normals of a surface of revolution
lie in a singular complex with p = 0. We will
not pursue this here but refer the reader to the
articles 25 26 28,

In connection with type recognition it has to be
mentioned, that cylinder surfaces, which would
cause numerical problems in the algorithm, can
be detected earlier. The unit normal vectors of
a cylinder form a great circle (Gaussian image)
on the unit sphere. So one should first check the
Gaussian image of the surface before running
the approximation algorithm.

. So far, we have discussed the construction of
the generating motion. Thirdly, we want to
reconstruct the surface. What is missing is just
a curve ¢, which generates the surface under
the just defined motion. To determine ¢, we
project (move) the given data points d;, ¢ =
1,...,k with help of their trajectories into an
appropriate plane 7, see figure 7. For a surface
of revolution, 7 passes through the axis, for a
cylinder it is orthogonal to its generators and
for a helical surface one can choose 7 as path

normal plane of an appropriate data point 26.

Figure 7: The auxiliary plane = with the projected
points and approximation curve ¢ (shifted)
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Figure 8: Approximating surface of the data points

The resulting points p; in = form a set, which
should lie close to the curve ¢ to be constructed.
For computing an approximating curve ¢ of the

points p;, one can use the methods devised by
Lee'® or Randrup?®.

4. Finally, moving ¢ with help of the determined
motion yields the approximating surface (figure
8), which may have to be trimmed according to
the region of given data.

On the stability of a parallel manipulator’s
position

Let us consider a siz—legged parallel manipulator.
Here, the moving system 3 and the fixed base sys-
tem LY are connected by 6 legs, which are prismatic
joints (hydraulic cylinders) attached to both sys-
tems via spherical joints. Geometrically, we may
think of the legs L;, + = 1,...,6 as lines. Special
cases of such manipulators appear for example in
flight simulators. Research on this kind of robots

11



Figure 9: Parallel manipulator

has been quite active in the past decade!®. We will
show its relation to line geometry and in particular
point to a stability concept based on approzimation
in line space.

Keeping the leg lengths fixed at a position (%)
of the moving system, we should obtain a rigid sys-
tem. However, it may be infinitesimally movable
and even admit a finite motion. Such positions are
referred to as singular. Since the legs L; of fixed
length 7; are fixed at points m; € X9, they can
only move on spheres ®; with centers m; and radii
r;. Hence, the legs appear as path normals and
we immediately arrive at the following well-known
result'® 21, A position of a parallel robot with k > 6
legs is singular if and only if the positions of the legs
lie in a linear complex. In practice, such positions
are avoided. Moreover, if a robot has two different,
but in space nearby configurations for the same leg
lengths, the robot may snap into the neighboring
position, which is clearly undesirable. Such posi-
tions are close to a singular position '®. Therefore
snapping into a neighboring position can be avoided
by avoiding positions where the legs can be fitted well
by a linear complex. Note that we have given the
computational tools for checking this. Moreover,
various sources for errors occur in practice such that
the test for a singular position itself should be for-
mulated as a regression problem.

In case that the leg positions L;(¢) lie in the in-
tersection of two independent linear complexes, we
even have an instantaneous movability of a two—
parameter motion. Finally, if the legs lie in the
intersection of three independent linear complexes,
the indeterminacy of the points of the moving sys-
tem is in three independent directions in general (in

two directions for the spherical links)?!. Again, our
results are suitable to detect such positions 2°.

An analogous application occurs in the context
of serial robots. For example, if the robot has six
revolute joints, a necessary (but not sufficient) con-
dition for a singular position (defined by vanishing
Jacobian of the mapping from the 6-dimensional
configuration space to the motion group SFE(3)) is
that the positions of joint axes lie in a linear com-
plex 15,16

More projective geometry

We have seen that the path normals of a helical (ro-
tational, translational) motion lie in a regular (sin-
gular) linear complex. We will now study more pro-
jective geometry to get another interpretation for
linear complexes in connection with so-called null
polarities. Especially studying their Klein images
will be important for dealing with rational ruled
surfaces 23.

Let P3 be projective 3—space, as above. We use
homogeneous coordinates x = (2g,X) to represent
points xR. In the same way, u = (ug,u) are ho-
mogeneous plane coordinates of a plane Ru with
respect to a fixed coordinate system.

A regular linear map f : P? — P3 from points xR
to points y'R can be written with help of a regular
4 X 4-matrix A as

fiy=A4-x (25)
Such a map is called a projective map or a
collineation. These maps play a fundamental role
in projective geometry, since projective geometry
studies properties which are invariant under projec-
tive maps. Note that, by linearity, a collineation
maps lines and planes (as point sets) to lines and
planes, respectively.

In connection with our study of line geometry it
is quite useful to know that a projective map in-
duces a bijective transformation in the set of lines.
This transformation is seen in the Klein image as a
mapping of the Klein quadric M onto itself; it can
be shown that this mapping is the restriction of a
collineation in P° onto the Klein quadric.

12



In view of the importance of linear mappings and
the duality between points and planes it is natu-
ral to study also linear maps between the sets of
points and planes. For that we use equation (25)
and interpret y’ as coordinate vector of a plane Ry’.
We get a linear map from points to planes, which
is called a projective correlation. Linearity implies
that points on a line are mapped to planes through
a line. By the way, this induces a bijective map in
the set of lines which is also seen in the Klein im-
age as a collineation. Moreover, a correlation maps
points in a plane to planes through a point; hence,
in the explained sense, it maps planes to points.
Summarizing, one can say that a correlation maps
a projective figure to a dual counterpart of it. In
this sense, it realizes the principle of duality we have
come across earlier.

Example: A point xR shall run on a conic ¢. With-

out loss of generality, let x(t) = (0,cost,sint, 1) be a
parametrization of

cixo=027 4+ 23 —23=0.

The correlation § : u’ = I -x with I as identity ma-
trix maps points xR to planes Ru’ = R(0, cost,sint, 1),
which envelop the cone 8(c) : 2 + 22 — 22 = 0. The ori-
gin, which is the vertex of é(¢) corresponds to the plane
zg = 0 containing ¢. Moreover, the tangent lines of ¢ are
mapped to the generator lines of the cone é(c).

Remark: Reading the foregoing example carefully, one

will say that 27 + 22 — 22 = 0 is not an equation in

plane coordinates. The correct equation for §(¢) in plane
coordinates is of course

8(c) g =0,uf +ud —uj =0,

which represents a one-parameter family of tangent
planes. Nevertheless, this plane representation is con-
verted to a point representation of é(¢) by computing
the envelope of the plane set, which is 27 + 3 — 23 = 0.

By the way, any developable surface, different from
a plane, is representable as a one-parameter family of
tangent planes and clearly as a two-parameter family of
points.

Linear complexes and null polarities

Regular (singular) linear complexes occurred as
path normal complexes of helical (rotational, trans-
lational) motions in Euclidean 3-space. This inter-

pretation serves also to derive a definition of linear
complexes in projective space.

Let a helical motion be defined by its velocity
vectors (13). For a fixed point zR = (1,2/29)R not
at infinity the path normals form a pencil of lines
in the path normal plane v(z). Using formula (13),
this plane is given by the equation

z z . X
(e Dyt (e 2y X

v(z): —(e Zo)+(c+c><zo) o

< (z-¢)zg+(—2c+zxc)-x = 0.

We can use this equation to define a mapping s
from points zR to planes v(z). Obviously, it depends
linearly on z and serves also to map points (0,z)R
at infinity. Thus, this mapping is a correlation. If
u’ are homogeneous plane coordinates of the image
plane v(z), the correlation s, which is called null
polarity, is given by

z=(20,2)—u =(z-¢,—2c+zxc) (26)
The image plane Ru’ is called null plane of zZR. The
point zR = (0,¢)R is mapped onto Ru’ = R(1,0)
which is the plane at infinity 29 = 0. All other
points at infinity are mapped to planes parallel to
the axis A of the helical motion. Using the notation
¢ = (¢1,¢2,¢3) and € = (¢4, ¢5,¢6) one can form the
skew symmetric matrix

0 Cyq Cy Cq
—C4 0 C3 —C9
= 2
C —C; —C3 0 1 ( 7)
—Cq Co —C1 0

It satisfies CT = —(C', and the above defined null
polarity s¢is given by the equation u’ = ('-z, which
again shows the linearity of s. Note that for any
skew symmetric matrix one obtains

T .z2= 2T.c.2= 7" .v=0.

This expresses the incidence of a point zR with its
null plane Ru’; point zR is called null point of that
plane.

Any correlation with a regular skew—symmetric
transformation matrix is called a null polarity. Our
derivations show that any null polarity can be in-
terpreted as mapping from points to path normal
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planes of a helical motion as long as we map only
points which are not at infinity.

Example: A null polarity shall be defined by

(zoy .-y x3) — (up, ..., uh) = (—x3, —22, 21, T0).

Interpreting this in £3 we have the helical motion defined
by ¢ = (0,0,1), ¢ = (0,0, 1) with pitch p = 1 and axis

(a,a) = (0,0,1,0,0,0)R,

which is the z—axis of a Cartesian coordinate system.
The angular velocity is normalized to 1. The velocity
vector field reads as v(x) = (—y, z, 1), where (29, x)R =
(1,2,y,2)R.

The inverse mapping to s can be derived in the
following way. FEach plane Ru = R(ug,u) in E3
not parallel to the axis of a helical motion can be
considered as path normal plane of a point zR =
(1,z)R not at infinity. The linear dependency of u
and the velocity vector of zIR can be expressed by
(c+ ¢ xz)xu=0. Since the incidence condition
ug = —u - z holds, one obtains

1

u-c¢

z = (—upc+ u x c).
The homogeneous representation of the inverse
mapping to » is then given by

Ru— ZR = (u-c,—upc+ u x ¢)R. (28)
The planes Ru parallel to the axis , i.e. u-c = 0,
cannot occur as path normal planes and the for-
mula gives image points at infinity. If C' is a regular
matrix, which defines a helical motion in E?®, the
corresponding null polarity is called regular.

Let now C' be singular, that is det(C') = (¢-€)? =
0. We exclude rank(C) = 0 and the only interesting
case is rank(C) = 2, where C defines a singular null
polarity with A = (c,¢) as singular line or axis.

Comparing formulae (8) and (26), we see that in
the singular case the null plane of a point zR is the
connecting plane with the axis A and is not defined
for points on A. Further, comparing formulae (7)
and (28) says that the null point of a plane is the
intersection point with the axis A and not defined
for planes through A.

Figure 10: Null lines of a null polarity

Example: The first example for a singular null polarity
18

(zo, .-y x3) V= (uh, ..., us) = (0, =22, 21,0).

In E3 this corresponds to the rotation around the z—axis
with angular velocity 1. The second example, which is
derived from a translation parallel to the z—axis, is

(zo, ... x3) V= (ug, ..., us) = (—x3,0,0, z0).

But in projective geometry these two examples are equiv-
alent, which means that there exists a linear (projective)
mapping, which maps the singular line of the first exam-
ple (z—axis) to the singular line of the second one (line
at infinity of planes orthogonal to the z-axis).

Remark: All regular linear complexes in P? are visu-
alizable as path normal complexes of corresponding he-
lical motions in E3. All singular linear complexes in P3
are visualizable in E2 in two ways. Choosing the singu-
lar line at infinity leads to a path normal complex of a
translation whereas a singular complex with axis A not
at infinity can be considered as path normal complex of

a rotation around this line A in E3.

As a correlation, a null polarity maps lines (as point
sets) to lines (as carriers of a pencil of planes).
Which lines I remain fixed in this line mapping?
Consider a point on such a fixed line L; its image
plane must pass through the line L. Tt turns out
that this is sufficient: to get a fixed line (also called
null line), take a point and construct its image plane
under the null polarity. Then any line which passes
through the point and lies in its image plane is a null
line. If C is regular, the path normals of the cor-
responding helical motion in E? are null lines. One
can show that the connecting line of two points xR,
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yR is a null line exactly if the point yR lies in the
null plane of the point xR. Then also xR lies in the
null plane of yR, see figure 10.

From the preceding discussion it follows that the
null lines of a null polarity lie in a linear com-
plex and satisfy a linear homogeneous equation in
Pliicker coordinates. We have used the following
notation

QC,Ly:=1-c+1-c (29)
= c4lh + c5ly + cols + c1ls + cals + c3lg = 0.

It is now easy to answer the question of the meaning
of points in P?, which do not lie in M. Tt will be of
importance for the study of rational curves on M4,
which are just the Klein images of rational ruled
surfaces in P2, see 23,

The Klein image of a linear complex

With formula (29) it is clear that the Klein image
of the lines of a linear complex C is a hyperplanar
intersection of the Klein quadric M3. The bilinear
form to equation (11) of the Klein quadric shows
that the pole of the hyperplane Q(C,X) = 0 with
respect to M3 is the point CR = (¢,¢)R € P5. Tt
is called extended Klein image of the linear complex
C. For the concept of a polarity (special correlation)
we refer to any textbook on projective geometry or
the book by Boehm and Prautzsch !.

A singular linear complex C is characterized by
Q(C) = 0, which implies that the pole CR lies in
M. Thus the hyperplane Q(C,X) = 0 is tangent to
M3 at that point.

Sets of linear complexes

Sets of linear complexes, whose extended Klein im-
ages form a k - dimensional subspace of P® are called
k—dimensional spaces of linear complexes. The in-
tersection of all complexes in such a set is called its
carrier.

For k = 1, we obtain a pencil of linear complexes.
Let C4R and C3R be the extended Klein images of
two independent linear complexes (possibly singu-
lar). The Klein images of the lines in these com-
plexes are solutions of

QCLX) = 0,Q(X,X) = 0,i=1,2,

such that the common lines of both complexes are
also lying in any other complex of the pencil, i.e.
they satisfy

Q(/\1C1 —|— A2C~27X) = 0. (30)
We see that the carrier of the pencil is the inter-
section of M3 with a 3-space (intersection of the
hyperplanes ©(Cy,X) = 0 and Q(Cy, X) = 0), which
is the polar space to the line (A{Cqy + A2C3)R with
respect to My. The carrier is in general a linear
congruence or net of lines. This is a two—parameter
set of lines which is of one of the following types.

A hyperbolic net consists of all lines intersecting
two real skew lines which are called focal lines. The
Klein images of the focal lines are the real intersec-
tion points of (A1C1+A2Co)R with the Klein quadric
M.

An elliptic net is formed by the two—parameter
set of real lines intersecting two conjugate complex
lines. Their Klein images are conjugate complex in-
tersection points of (A Cy + ACo)R with M. To
get a better understanding of elliptic nets we con-
sider a special example in E>. Take a helical motion
with axis A and pitch p # 0 and let 7 be a plane
orthogonal to A. Then, the tangent lines to trajec-
tories (helices) at all points of the plane 7 form a
special elliptic net, called an elliptic net of revolu-
tion. These path tangents are generator lines of a
one parameter family of one—sheeted hyperboloids
of revolution, which possess same axis A, same cen-
ter € A and same minor vertices, see figure 11. Ap-
plying affine maps to an elliptic net of revolution,
one obtains all elliptic nets in £3.

A parabolic net is a limit case between these two,

where the line (A\{C; + X\2C)R is tangent to M. Tt
may be visualized as set of surface tangents at all
points of a ruling of a ruled quadric.
Remark: Since the Klein image of a net is the intersec-
tion of M3y with a 3-space, it is a ruled quadric in case
of a hyperbolic net. A hyperbolic net constists of two 1—
parameter families of pencils of lines, which is reflected
in the geometry of the ruled quadric.

The Klein image of an elliptic net 1s an oval quadric

and a parabolic net is mapped under ¥ onto a quadratic
cone.

Visualizing a parabolic net as set of surface tangents
as above, the pencils of tangent lines are mapped onto
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Figure 11: Elliptic net of revolution

the generators of the net’s Klein image cone and the y—
image of the generator of the ruled surface is the vertex

of the cone.

The case k = 2 leads to bundles of linear complezes,
whose carrier is in general a (not necessarily real)
regulus (one family of rulings on a ruled quadric).

Let CiR, CoR and C3RR be the extended Klein im-
ages of three independent linear complexes (possi-
bly singular). The Klein images of the lines in these
complexes are solutions of

Q(Ci,X) = 0,QX,X)=0,i=1,2,3

such that the common lines also lie in any of the
complexes

Q(/\1C1 + AQCQ + A3C37X) = 0. (31)
Thus, the carrier of the bundle is the intersection
of M with a 2-plane € (intersection of the three
hyperplanes Q(C;,X) = 0,7 = 1,2,3), which is the
polar space to the 2—plane

& (MG + 220+ A3C)R

with respect to M.

In case where € intersect M. in a conic, the carrier
of the bundle of complexes is a (not necessarily real)
requlus, that is one family of generating lines of a
ruled quadric Q. Then, also ¢ N M. is a conic and
its points are the Klein images of the other family
of generating lines on ).

The other types of bundles of complexes can be
found by discussing the intersection € N M., which
can be a pair of lines, a double counted line or the
whole plane ¢. Here we refer to the literature 3 36,

Conclusion and outlook

We presented an introduction to line geometry along
with applications in constraint solving, reverse engi-
neering and robot kinematics. For that, we enriched
the classical material by computational aspects such
as approximation by linear complexes. There is a
variety of open problems in this area, which would
deserve a careful investigation. Let us briefly indi-
cate some directions.

We touched approximation in line space, for
which general concepts as well as refined techniques
for specific applications need to be developed. Re-
lated to that are the numerical aspects of line geo-
metric computations. Other line families than the
ones treated in the present text deserve interest. As
a contribution in this direction one may view the
computational geometric investigation of ruled sur-
faces in a paper of the same issue 2*, but also there
a lot of open problems still remain.

Within algorithmic geometry (often called “com-
putational geometry”) there is also a lack of results
on basic algorithmic tasks in line space. Algorith-
mic questions about lines in 3-space arise in vari-
ous applications including ray tracing in computer
graphics, motion planning, placement and assem-
bly problems in robotics and object recognition in
computer vision. A paper by Chazelle et al.* gives
initial results, but remarks at the end: “In general,
it appears that most questions about lines in space
are still open”.

Summarizing, the field of “computational line ge-
ometry”, as a combination of classical line geometry
with new questions arising in context of a compu-
tational treatment, is an interesting area for future
research, both from an academic and practical point
of view.

This work has been supported by grant
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