On the Computational
Geometry of Ruled Surfaces
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The paper presents a brief introduction to clas-
sical geometry of ruled surfaces with emphasis on
the Klein image and studies aspects which arise
in connection with a computational treatment of
these surfaces. Since ruled surfaces are one param-
eter families of lines, one can apply curve theory
and algorithms to the Klein image, when handling
these surfaces. We study representations of rational
ruled surfaces and get efficient algorithms for com-
putation of planar intersections and contour out-
lines. Further, low degree boundary curves, useful
for tensor product representations, are studied and
illustrated at hand of several examples. Finally, we
show how to compute efficiently low degree rational
G ruled surfaces.
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Introduction

Ruled surfaces are one of the simplest objects in ge-
ometric modeling, since they are generated basically
by moving a line in space. They occur in several ap-
plications such as NC milling with a cylindrical cut-
ter and wire electrical discharge machining (EDM).

13,28 Pottmann 26 and

Besides articles by Ravani
Hoschek '® there is a certain lack on efficient algo-
rithms concerning the computational treatment of

ruled surfaces. We want to interpret ruled surfaces
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as one parameter sets of lines. The mathematical
tools for this, such as Pliicker coordinates and Klein
image of the set of lines in 3—space are collected in
a separate paper of the same issue 23,

We give a short introduction to the geometry of
ruled surfaces in Euclidean and projective 3—space.
Then we mainly concentrate on rational ruled sur-
faces, their control structure in line space (Bézier
points) and low degree representations. At last,
a construction of rational ' ruled surfaces, com-
posed of quadrics, is given. Some examples, mainly
for low degree ruled surfaces shall illustrate the al-
gorithms. Although not everything is documented
by a figure, all methods have been implemented by
the authors in the way described here.

Ruled Surfaces in Euclidean 3—
Space

A surface ® in real Euclidean 3-space E? is called a
ruled surface, if it possesses a parametric represen-
tation
x(u,v) = a(u)+ovr(u),ve I,veR, (1)
where a(u) is a regular directriz curve,i.e. a(u) # o
and r(u) # o is a vector field. The surface contains
a one parameter family of lines, since x(ug, v) repre-
sents the generator or ruling R(ug) for a fixed value
ug, see figure 1. Roughly speaking, a ruled surface
is generated by moving a line in space. ® is called
a C" surface if (1) is a C" parametrization and it is
defined over the parameter domain I x R.
A representation of @ in Pliicker coordinates can



be found by

R(u) = (v(u), a(u) x v(u)).

The tangent plane at a regular surface point is
spanned by the partial derivative vectors x,, = a+or
and x, = r. Thus, the surface normal at x is

n(u,v) =X, X X, = a(u) x r(u)+ v(r(u) X r(u)).
A generator R(ug) is called non—torsal iff

det(a(uo), r(ug), r(ug)) # 0,

which expresses linear independence of n; :=a X r
and ny = 1 X r. We fix the parameter value
1y and study the normals along the generator
R(ug). The ruled surface formed by these normals
is parametrized by

y(v,w) = alug) + vr(ug) + w(ny(ug) + vna(ug)).

Because of bilinearity in the parameters v and w this
parametrization represents a hyperbolic paraboloid.
The relation between points x(ug,v) on R(ug) and
surface normals n(ug,v) is bijective and linear be-
cause of

(2)

We consider all planes through the fixed generator
R(ug) and for easier notation we add the point at
infinity to this ruling which is obtained for v = cc.
Then above relation says that each plane is tangent
plane at exactly one point on R(ug). This relation is
bijective and called contact projectivity. The plane
with normal #(ug) X r(ug) is tangent at infinity. In
other words, if the point x(ug, v) runs along R(ug),
its tangent plane (or normal) turns around the gen-
erator, see figure 2. But note that this is only true
for non—torsal generators.
A generator R(ug) is called torsal iff

a(ug) + vr(ug) — ny(ug) + vna(ug).

det(a(ug), r(ug), ¥(ug)) = 0, (3)

and under the assumption that x(ug,v) is a regular
surface point this means

(4)

rank(a,r,r)(ug) = 2.

a(u)

a(u

Figure 1: Directrix curve and vector field of a ruled
surface

All regular surface points along R(ug) have a fixed
tangent plane.

A special situation occurs if rank(r(ug), t(ug)) =
1. One can easily check that all points on such gen-
erators are regular and the surface normal is axr. If
® is a cylinder surface all rulings are of this type and
parallel to each other. This motivates that those
generators R(ug) are called cylindrical.

We continue the discussion of torsal,
cylindrical generators. The singular surface points
are characterized by linear dependence of a+»r and
r. This leads to

non—

axr4+orXr=o.

A non—cylindrical torsal generator R(ug) carries ex-

actly one singular point with parameter value
(axr)-(rxr)
(Fxr)-(rxr)

Ve =

It is called cuspidal point. All other points have
r X r as surface normal, which is constant along a
fixed generator.

If rank(a,r,t) = 2 holds in a non empty interval
and the surface is not cylindrical, x(u, v.(u)) = e(u)
is a singular curve on ® and called line of regression
or cuspidal line, see figure 3. The ruled surface is
called torsal or developable and ® can also be gen-
erated as envelope of its one parameter family of
tangent planes

x-(rxr)=det(a,r,r).

If the curve ¢(u) consists of one point only, i.e. ¢ =
o, the developable surface is called cone.



Although all ruled surface patches in practical
use can be embedded in Euclidean 3-space, we will
switch to the projective treatment of ruled surfaces,
since from the mathematical point of view this rep-
resentation is more uniform. Most of the properties
of ruled surfaces discussed here are invariant under
projective transformations, as torsality of a ruling,
differentiability class of a surface, order of an alge-
braic ruled surface, rationality and Bézier represen-
tations of rational ruled surfaces.

As we will see in the next section, the geometry
of ruled surfaces in projective 3—space P? is the ge-
ometry of curves on the Klein quadric Mj.

Ruled Surfaces in P?

Ruled surfaces are one-parameter sets of lines.
More precisely, a set R of lines in P? is called a C”
ruled surface, iff its Klein image R~y is a C” curve
in M} C P> and therefore possesses a C” parame-
terization in Pliicker coordinates,

uéel— Ru)R e P (5)
For local considerations, it is sufficient to consider
an open real parameter interval 1. When discussing
algebraic ruled surfaces, we will also admit the real
projective line P! as parameter domain. We will
also write RR for the Klein image R~ of the ruled
surface R. A ruled surface is clearly also a two—
parameter set of points in P3. One can prove that
it is possible to span each ruling R(u) by two points
running on (7 parametric curves

ag(u)R and a;(u)R,

which are called directriz curves, see figure 2. In
Euclidean space we have parametrized each ruling
by a parameter » € R. To obtain also the value v =
oo we will now use a homogeneous real parameter

A= (A1, 09) #(0,0), ie. A€ P

to parametrize each ruling. The ruled surface as a
point set ® C P2 is parameterized over I x P! via

x(u, A) = Aag(u) + Aqaq(u). (6)

Conversely, given this representation, one can define
a C” parameterization in Pliicker coordinates

R(u) = ag(u) A ay(u),

and thus the two representations (5) and (6) are
equivalent.

A generator R(ug) of a C'! ruled surface is called
regular if the Klein image R(ug)R is a regular point
of the curve R(u)R, that means linear independence
of R(u) and R(u). The tangent lines T(u) to the
image curve R(u)R are given in Pliicker coordinates

by

T(u) = aR(w) + BR(u), (0, 8) £ (0,0).  (7)
We want to note that R(u) represents a point on the
tangent T'(u) in P5.

A very important and powerful concept for fur-
ther considerations is the order of contact. Recall,
that two curves or surfaces are said to have con-
tact of order r at a common point P, if there ex-
ist parameterizations which are regular at P and
agree there in all derivatives up to order r. Let us
now consider two C* ruled surfaces Ry, Ry, whose
Klein images have contact of order r (r < k) at
some point. Then, appropriate parameterizations
Ri(u), Ra(u) agree at u = ug up to derivatives of or-
der r. In another, equivalent and CAGD related in-
terpretation, we may switch at u = ug from Ry to Ry
and obtain a new curve RR, which has a C" param-
eterization R(u) in Pliicker coordinates. Then, the
corresponding point representation of the ruled sur-
face R is C'" and thus the two ruled surfaces Rq,R2
possess contact of order r at each regular point of
the common generator R(ug). This is called contact
of order r along the reqular generator.

Theorem 1 If the Klein image curves Rq7v, Roy of
two ruled surfaces Ry, Ry possess contact of order
r at a regular point Rgy, then the surfaces Ry, R+
possess contact of order r along the common regular
generator Ry.

In standard CAGD terminology, the theorem says
that G" joins between curves on the Klein quadric
imply G” joins between ruled surfaces along gener-
ators. We will use this principle for the design and
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Figure 2: Non—torsal generator and parabolic net of
surface tangents

approximation of ruled surfaces. An illustration is
given in figure 12.

Remark: The converse of this well-known result is not
true since it does not work in general for torsal ruled
surfaces. We give a counter example: Take two quadratic
cones in P? which are tangent along a common generator,
but possess different vertices. The Klein image of the
cones are two conics, lying in planes entirely contained
in M. Since these planes are Klein images of bundles
of lines (with different vertices), these two planes have
exactly one point in common. This says that the two

conics cannot touch each other.

First order properties

Let R(u)R be a curve on M. Tt is the Klein image
of a ruled surface R = R(u). First order differential
properties of a ruled surface at a generator depend
on the tangent line T of its Klein image.

There are two different cases to be distinguished.
A regular generator R(ug) of a C'! ruled surface R is
called torsal iff the tangent T'(ug) of the Klein image
R~y at R(ug)y is contained in the Klein quadric Mj.
Using formula (7) this says in particular that

R(uo)R € My and R(ug)R € M3, <=
QR(uo)) =0 and  Q(R(up)) = 0.

Otherwise, the regular generator is called non—
torsal and R(uo)R is never on Mjy.

We will study the meaning of non—torsal and torsal
rulings with respect to a representation by directrix

and aj(u) in P2, The tangent lines to
are parametrized by

curves ag(u)
these curves

aag + [ag
aay + faq, (047 ﬁ) 7£ (07 0)7

to =

t =

where ag and a; are points and («, 3) is a homoge-
neous parameter on each tangent. A regular non—
torsal generator R(ug) is characterized by

(8)

which says that the tangents of the directriz curves
ag and a; are non—intersecting. As we already have
got to know at the study of ruled surfaces in Fu-
clidean space, all points of a regular generator R(ug)
are regular surface points. Further, the mapping
from points of R(ug) to their tangent planes is the
contact projectivity, compare formula (2).

The set of surface tangents at points of R(ug) is
a parabolic net, see figure 2. It consists of pencils
of lines with vertices on R(ug). The extended Klein
image of this parabolic net is defined by the tangent
line of the curve R(u)R at the point R(ug)R. That
means, the Pliicker coordinates L of surface tangents
along R(ug) satisfy

rank(ag(uo), ao( o), a1(ug),ar1(ug)) = 4,

Q(R(uo), L) = Q(R(u0)7 L)=0. (9)

Compare the section on ’Sets of linear complexes’
in the first contribution 22.

The contact projectivity also implies that any
plane through a regular non-torsal generator R(ug)

is tangent plane at some point of R(ug).

Let us move to a regular torsal generator R(ug).
Here, the tangent T'(ug) of the Klein image curve
lies in the Klein quadric. Its preimage is a pen-
cil of lines in P3, whose vertex and plane are called
cuspidal point and torsal plane, respectively. By the
preservation of contact order 1, one can see that the
cuspidal point is the only singular point of the rul-
ing, and that all other points have the torsal plane
as common tangent plane. Using the point repre-
sentation (6), a regular torsal ruling is characterized

by

(10)

rank(ag(uo), ao(uo ), a1(uo), a1(ug)) = 3,



cuspidal line

Figure 3: Torsal ruled surface

which expresses intersecting, but different tangents
of the directriz curves. The plane spanned by these
tangents is the torsal plane, see figure 3.

The conversion from a representation in P* to a rep-
resentation in Fuclidean space can be done as fol-
lows. An inhomogeneous Cartesian representation
of a ruled surface may be

x(u,v) = (1 —v)ag(u) + vas(u)

with u € I as before and v € R. Using the direction
vectors r(u) = aj(u) — ag(u) of the rulings R(u),
we obtain representation (1). Then the just given
discussion of torsal and non—torsal rulings leads di-
rectly to the classification we had in the last section.
But clearly rulings at infinity have to be excluded.
Further, in Fuclidean space one has to distinguish
between non—cylindrical and cylindrical regular tor-
sal generators. The latter possess cuspidal points at
infinity. A ruled surface in P3 or E?, all whose rul-
ings are torsal, is called a torsal ruled surface. 1f a
ruled surface is not torsal, it is called a skew ruled
surface.

Remark: In any open neighborhood of a generator of
a torsal C? ruled surface R € P?, there exists a ruling
R(ug) and an open neighborhood Ro C R of R(ug) such
that R is a cone or tangent surface of a C'! curve. Here,
the topology in the set of rulings is induced by the topol-
ogy in the parameter interval. We did not say that the
surfaces are piecewise cones (in case of E3, we have to
add cylinders, which are cones with vertex at infinity)
or tangent surfaces, since the intervals in which the sur-
face type changes may accumulate and cause a problem

For

practical considerations, this situation is not important

in such a formulation at the accumulation point.

and thus we model torsal ruled surfaces by appropriately
joined pieces of cones and tangent surfaces.

Remark: Developable surfaces in E3 can be mapped
isometrically into the Euclidean plane and are therefore
important in applications. It is well-known that these
surfaces are pieced together by (parts of) torsal ruled
surfaces. Although torsal ruled surfaces will be included
in some of our discussions, we will not further elabo-
rate their computational treatment. We just mention

that there are two different approaches in the literature

23,6, 21, One uses a representation (6) or (1) and en-

sures developability by fulfilling the condition for torsal
generators (10), (3) or (4).

The other approach views the surfaces as envelopes of
their one-parameter set of tangent planes, i.e. as curves
in dual projective space (see articles 417,25 and the ref-

erences therein).

Algebraic ruled surfaces

A real irreducible algebraic ruled surface R in P>
(using the complex extension) is the Klein preimage
of a real irreducible algebraic curve R+ on the Klein
quadric My C P®. The algebraic order of Rv is
called the degree of R. Tt can be shown that any
irreducible algebraic tuled surface R in P? is, as
point set, an irreducible algebraic surface ®.

Recall that the order of an algebraic surface ®
equals the (algebraically counted) number of inter-
section points with any line L that is not contained
in ®. We will apply this to a ruled surface R. The
order of R equals the (algebr. counted) number of
rulings R(u;) intersecting L. If we assume that R(u)
is a proper parametrization of the Klein image R,
this equals the number of zeros of the function

Q(R(u), L).

In case of a rational curve R, this function is just a
polynomial. Otherwise, the algebraic ruled surface
R can also be given as intersection of algebraic com-
plexes. This sounds complicated, but the geometric
meaning is that the Pliicker coordinates R of the
rulings of R are solutions of a polynomial system of
equations; see some simple examples in 22.

Dual to the order of an algebraic surface ®, the
algebraic class of ® is defined as the number of tan-



Figure 4: Intersection with a line

gent planes passing through a line I (not in ).
Applying this to an algebraic skew ruled surface
R we have again to count the number of rulings
R(u;) intersecting I, since the contact projectivity
(2) guarantees that each plane spanned by I and an
intersecting ruling R(u;) is tangent plane in some
point of R(u;).

But note that the property ’skew’ is absolutely
necessary here, since in case of a torsal ruled surface
®, the plane spanned by L and an intersecting ruling
will in general not be tangent to .

We summarize that order and class of a skew irre-
ducible algebraic ruled surface are equal to its degree.
For details see that classical literature !> 22,

For algebraic ruled surfaces, property ’skew’ is
much stronger than in the general case. A skew
irreducible algebraic ruled surface can have only a
finite number of torsal rulings. The torsal rulings Rq
are characterized by the property that the tangent
line of the Klein image lies on the Klein quadric.
In Pliicker coordinates, the torsal rulings are calcu-
lated by solving

Q(R,R),

which is an algebraic function with only a finite
number of zeros.
surface this can be assumed to be a polynomial.

In case of a rational ruled skew

Rational ruled surfaces and their
Bézier representation

By definition, a real rational ruled surface R pos-
sesses a real rational Klein image curve R~y. This
curve has a real parameterization R(u)R, which
is polynomial in an inhomogeneous parameter u.
Hence, we may write the polynomials in the Bern-
stein basis and obtain the following Bézier repre-
sentation of the Klein image,

d

R(u) = Z Bé(u)C;.

1=0

(11)

To parameterize the entire curve one must use a ho-

mogeneous parameter running in the real projective
line P'. With u = (ug : u1) € P!, we define

B(u) = (d) i (g — r P,

and continue to use (11). In case that u is a Liiroth
parameter (general curve points belong to exactly
one parameter value) and the polynomials in the
coordinate functions are relative prime, d equals the
degree of R, which is equal to order and class of
the point set ® of a skew ruled surface. The d + 1
points C;R € P° are Bézier points of R+ and its
frame points, see Farin 2, are given by

F,:R = (Ci‘|‘Ci+1)R7 1=0,...,d—1.

Remark: The usual de Casteljau algorithm for poly-
nomial curves in affine space does not require the defi-
nition of frame points. This algorithm just uses ratios
or affine scales on each leg b;, b,;11 of the control poly-
gon bg, ..., b,. The affine scale on b;, b; 41 is set up by
identifying 0 = b; and 1 = b; ;1. In case of representing
rational curves in projective space one can use weights
w;, w;41 associated to the control points. Instead of the
weights one can use frame points on each leg and usu-
ally one defines f;R = (b; + b;11)R to be the projective
midpoint of that leg. Since the three points b;R, f;R
and b; 1R define a projective scale (associated with the
parameter values 0,1/2,1) on that leg, one can define
a projective version of de Casteljau’s algorithm, which
is appropriate to generate rational curves. By the way,
the algorithm based on frame points is invariant under



Figure 5: Control structure of a rational ruled sur-
face and planar intersection

projective transformations, whereas the weights are not
invariant.

Apart from CoR, C;R, which describe the curve
points to parameters v = 0 and u = 1, these points
of the control structure are in general not lying in
the Klein quadric My, see figure 5. Hence, they
may be viewed as extended Klein images of linear
complexes. Any of these complexes uniquely defines
a null polarity in P?. We therefore briefly denote
C;R and F;R as Bézier null polarities and frame
null polarities; together they form the set of control
null polarities. They are singular for CoR and C4;R
and therefore describe rulings for parameter values
w=0and u=1.

Remark: There are other methods controlling ruled sur-

faces in the literature 28 31,

There are some geometric processing algorithms, as
computing planar intersections, contours and con-
tour outlines, in which the line geometric represen-
tation and the associated control points of the Klein
image turn out to be very useful.

Planar intersections

First of all we want to discuss the intersection of the
surface R with a line L: The intersection points are
determined by those generators R(u;) of R which
intersect L. The parameter values u; are obtained
by solving

Q(L,R(u)) = 0.

The intersection points are L N R(u;). We see that
the computation of an implicit representation of the
surface can be avoided; for implicitization of ratio-

nal ruled surfaces we refer to the work by Sederberg
and Saito®.

Let us now intersect a rational ruled surface ®
given in Pliicker coordinates

d d
R(u) = (v, 7)(u) = (z: BEZ(U)%Z: Bf(ﬂ)cz') ;

with a plane R(vg,v) in P3. The control points in
P5 are given by C; = (¢;,¢;) and are in general not
Pliicker coordinates of lines. Intersecting R(u) with
the plane Rv we use the intersection formula derived
in 23, This leads to

(po,)(u) (v-r(u), —vor(u) + v X r(u))

d
Z Bfl(u)(v - ¢, —VC; + V X ¢;).

1=0

To obtain a Bézier representation of the rational
curve p(u) we have to define control points

d;R = (v-¢;, —voc; + v x ¢;)R,

which can be linearly computed with help of the
control points of the Klein image of the ruled sur-
face. Further, the frame points F;R = (f;, f;)R lead
directly to frame points ;R = (d; 4+ d;41)R of the
intersection curve

(V - £, —vof; + v X ‘E) =
(V-ci,—voci +V X €)+
(V- Cit1,—00Ciq1 + VX Cig1) =d; + diyq = &;.

Summarizing this, we obtain a correctly normalized
Bézier representation of the intersection curve

d

(po,p)(u) = Z Bfl(u)di.

1=0

(12)

Representation (12) is linear in the coordinates of
the control points C;R of the Klein image of the
ruled surface R. Further, we want to give a geo-
metric interpretation of these results.
points d; and e; are null points of the plane Rv with
respect to the control null polarities C;R and F;R,
respectively. This leads to the following result, see
also %6,

The control



Theorem 2 Any irreducible planar intersection of a
rational ruled surface R of degree d is representable
as a rational Bézier curve of degree d. Its Bézier
points and frame points are linear in the coordinates
of the control points of the Klein image of R.

Parameterization (12) has base points (nontrivial
common factors (u — ug) of the coordinate func-
tions) if the plane Rv contains a generator R(uo).
Then, one has to divide through the common fac-
tor and obtains a degree reduced intersection of the
remaining part of the complete intersection. Note
that parameterization (12) might be useful without
this division if wug is not in the considered interval;
the interpretation of its control points as given in
the theorem is still valid, but one has to note that
this is a degree elevated representation of part of
the complete intersection only.

Contour of a skew ruled surface

The contour of a surface ® with respect to a projec-
tion center zR is the curve of contact of the surface
with the tangent cone I'(z) with vertex zR.

Presenting a surface ® in descriptive geometry
one uses the contour outline with respect to a pro-
jection. This is the intersection curve of the tangent
cone I'(z) with some chosen image plane Rv, not
through zR. For skew ruled surfaces, represented in
Pliicker coordinates, there are efficient algorithms to
calculate contour and contour outline. The property
skew’ is of importance here, since the contour of a
torsal ruled surface mainly consists of those genera-
tors whose tangent (torsal) planes pass through the
projection center zR.

Let R(u) be a Pliicker coordinate representation
of a ruled surface ®. For applications in Euclidean
space we have to distinguish between parallel and
central projection, depending whether the projec-
tion center zR is at infinity or not. Here we will
only discuss the case of central projection and as-
sume that zR = (1,0)R is the origin of our coordi-
nate system.

The generator lines I of the projection cone I'(z)
are those surface tangents of ®, which pass through
zR. Their Pliicker coordinates are solutions of

QR(u),L) =v(u) -1+ r(u)-1 = 0

e |
|

Q(R(u), L) = v(u) - 14 #(u) - 0 (13)

O.

e |
|

For a fixed chosen parameter value u, first two equa-
tions describe the parabolic net of surface tangents
along the generator R(u); the last vector equation
guarantees the incidence zR € L. From that we
easily get a Pliicker coordinate representation of the
tangent cone

I'(z): G(u)R = (¥(u) x ¥(u),0).

To obtain the contour cR we just have to intersect
the generators GR of T'" with the generators RR of
®. One can verify that this yields

c(u)R = (-r-r,v(u) x r(u)) R.

We want to calculate the contour outline s in some
image plane Rv. For that we have to intersect gen-
erators G(u)R of the tangent cone with the image
plane Rv = R(vg, v). This results in a point repre-
sentation of the contour outline
s(u) = (v-g(u), —vog(u) +v x g(u))
(v - (x(u) x r(u)), —vo(r(u) x ¥(u)))
— (det(v.E,E), —uo(E(u) x F(u))) . (14)

If we assume R to be a rational ruled surface of or-
der d, then the tangent cone I'(z) as well as the con-
tour outline s(u)R is of order 2(d — 1). For storing
and manipulating data in a CAD-systems, a rep-
resentation of degree d is possible, if one switches
to the dual representation of the tangent cone I'(z).
What does this mean?

We start with the interpretation of I'(z) as enve-
lope of its one parameter family of tangent planes
R7(u). Since the tangent planes are just the con-
necting planes of R(u)R and zR, an equation for Rr
is r(u)-x = 0. Forming homogeneous plane coordi-
nates leads to a dual representation of the tangent
cone

T'(z)(u) : 7(u) = R(0, r(u)). (15)

Further, a representation of the contour outline
s(u)R as envelope of its tangent lines T'(u)(dual rep-
resentation) is then obtained by intersecting tangent



image plane

Figure 6: Contour and contour outline of a skew
ruled surface

planes Rr(u) with the image plane Rv. Pliicker co-
ordinates for the tangents T'(u) of the contour out-
line are

T(u) = Rr(u)NRv = (v x r,vr).

The degree for this representation is just d. If we
want to plot the contour outline, we have to convert
to the point representation s(u). This can be done
by intersecting T(u) N T'(u) and we will get back
formula (14).

Remark: For parallel projection with center zR at in-
finity one cannot use the formulas given here but has
to substitute 1 = o in (13) by the incidence condition
zR € L. The calculation of ¢R and sR is similar to that

one given here.

Bézier representation of the contour out-
line

Let R(u) = Y%, BY(u)C; be a Bézier representation
of the Klein image of a rational skew ruled surface
R, where C;R and F;R = (C; + C;41)R are control
points of the Klein image. A Bézier representation
of the contour outline in an image plane Rv with
respect to a central projection with center zR =
(1,0)R will be given.

First we start with the dual representation of the

tangent cone (compare formula (15))

d
T'(z):7(u)=R (07Z:Bfl(u)ci) ,

which says that the Bézier and frame planes are

R(0,),i =0, ...,d,
R(0,¢; + €i41),1=0,...,d— 1.

v =
¢ =

We want to remark that 4; and ¢; are null planes of
the projection center zR = (1,0)R with respect to
the Bézier and frame null polarities C;R and F;R,
respectively.

We proceed as in the last section and intersect
tangent planes of I'(z) with the image plane Rv to
get a dual representation of the contour outline in
terms of tangent lines T'(u). Their Pliicker coordi-
nates are

d d
T(u) = (VXZ:BZd(U)Ei?UOZ:BZd(U)Ei)

d

= ZBEI(U)(V X €, V0C; ),
1=0
d

= Z B (u)D;.

1=0

This is a dual Bézier representation '? of the planar
contour outline s and its Bézier lines are D; = D;RR.
Because of linearity, the frame lines F; are repre-

sented by (D; + D;41)R.

Geometrically this means

D; =
B =

v NRv,i=0,...,d,
¢iﬂRV7iIO7...7d—17

that these control lines are the intersection lines of
the control planes 4; and ¢; of the tangent cone I'(z)
with the image plane Rv.

We want to point out that the dual representation
of the tangent cone and the contour outline depends
linearly on the control points C;R of the Klein image
of R.

We summarize this algorithm: Compute the con-
trol planes ~;, ¢; of the tangent cone 1'(z) as null
planes of zZR with respect to the control null polari-

ties C;R and F;R of R.



Further, intersecting the control planes v;, ¢; with
the image plane Rv yields 2d + 1 lines D; = v; N Rv
and E; = ¢; N Rv. These are the Bézier and frame
lines of the dual Bézier representation of the contour
outline.

If the contour outline is irreducible, the resulting
dual parameterization is not degree reducible. For
planar intersections we gave an analogous state-
ment. Common factors in the dual parameteriza-
tion originate from rulings passing through the pro-
jection center.

We want to note that the just presented (dual)
algorithm computes the contour outline as envelope
of projections of its rulings.

Warning: In case of a torsal ruled surface, this is
not the contour outline, but the projection of the
curve of regression of the torsal ruled surface.

Low degree representations

Planar intersections are also useful for converting a
rational ruled surface given in the Pliicker represen-
tation (11) into the standard form used in CAGD,
namely a tensor product representation. We use two
planar intersection curves agR and a;R in Bézier
form as directrix curves,

d
aj(u) = Z Bzd(u)bmﬁ J=0,1,
1=0

and obtain the surface as rational tensor product
Bézier surface of degree (d, 1),

(1 —v)ag(u) + vay(u)

d 1
> Bi(u)Bj(v)bi.

1=0 7=0

x(u,v) =

(16)

To get the entire surface, we have to use a homoge-
neous parameter

v=(v9:1) € P,

which gives (16) with Bl = vo — vy, B} = v;. The
parameter curves agR, aqR with Bézier points b; ;R
are not arbitrarily located. The intersection line of
their planes intersects the surface in d points and
these d points are intersection points (to common
parameter values) of the curves a;R.

On the other hand,
given by an arbitrary tensor product representation
of degree (n, 1),

if a rational ruled surface is

Zn:Z Bl (u)Bj(v)bi,

1=0 7=0

(17)

x(u,v) =

the corresponding line coordinate representation is

R(u) = x(u,0) A x(u, 1),

2n
Z B(u)Cg, with

R(u) =
k=0
1 ny\(n
“ = Z() (5o 19

Thus, the ruled surface is in general of degree d =
2n.

But, as we have said before, each intersection
point of the directrix curves a;R = x(u,7)R,i=0,1
to a common parameter value ug € C, leads to a
common zero of the 6 coordinate functions. This
makes a division by u — ug possible and reduces the
degree of the Pliicker coordinate representation by
1. Such a phenomenon occurred above, where we
found a (d,1) tensor product representation (16)
for a ruled surface of degree d, using directrices
agR, a;R with d common points.

A degree reduction in (18) also happens if the
degree of one directrix, say ag can be reduced to
m < n. In other words, we prescribe two directrix
curves ag and a; of degree m and n, respectively
and write the surface as

(19)
Yo Z Bzm(u)bzp + m Z B?(u)bM
=0 j:O

x(u,v) = woag(u)+ viar(u)

Since this is not a Bézier representation anyway, we
have now used another parameter v = (vg : v1) € P!
on the generators. Then, the line representation is
in general of degree n 4+ m and the control points of
the Klein image are given by

1 m\ (n
Cr = Zgy (~)(-)bm/\b‘,h
( Z)z—lgik ) \J !
k=0,....,n+m.

10



Here and in the sequel we focus on Bézier represen-
tations. It is clear how to modify the results for
piecewise rational ruled surfaces, given as B-spline
tensor product surfaces or as B—spline curves in the
Klein quadric.

There are 'minimal degree representations’ of the
form (19), since the following result can be proved!!.

Theorem 3 Any rational ruled surface of degree d
in P? has a representation as a linear blend (19) of
a rational directrix curve ag(u)R of degree m and
a rational directrix curve aj(u)R of degree n = d —
m > m. These curves do not possess a common
point to the same parameter value u.

Proof: Let us sketch a constructive proof of this
well-known result because it is applicable in prac-
tical computations. We know of the existence of a
representation (19), but need to show n 4+ m = d.
One may start with planar directrix curves de-
rived from a Pliicker coordinate representation with
a Liiroth parameter.
a;(u) are Liiroth parameterizations. The intersec-
tion curve of the surface and a plane h-x = 0 is
formed by the intersection points between its rul-
ings and the plane, and hence it is parameterized
as

Thus we can assume that

c(u) = =(h-ai(u))ao(u) + (h-ao(u))ai(u).

This is a rational curve of order < n + m. In gen-
eral, the plane does not contain rulings and thus
this curve is the complete intersection. Moreover,
we can assume that cR is not a singular curve of
the ruled surface ® of order d (considered as alge-
braic surface) and thus the order of cR equals the
order d of ®. Let us now show that

(20)

d=n+m — s,

where s denotes the algebraically counted number
of intersection points of agR and a;R. A reduction
in the degree n+m of ¢(u) can occur only for a zero
ug, 1.€.

—(h -a1(uo))ao(uo)
+(h -ag(ug))ai(ug) = 0.

Since the plane does not contain generators it is im-
possible that both coefficients h - a;(ug), ¢« = 0,1,

(21)

c(ug) =

vanish simultaneously. Hence a zero ug implies lin-
early dependent vectors a;(ug), i = 0,1, which de-
scribe an intersection point of the directrix curves
a;R. This proves (20).

Any such zero ug implies ay(ug) = Aoag(ug) and
there might be other zeros, say uq,...,u; giving
the same relation. Then, consider the new directrix
curve

ar(u) := —Aoao(u) + ay(u).

Its parameterization degree can be reduced by the
sum g of multiplicities of the zero ug, ..., ux, occur-
ing in a;(u). Hence, its order equals the maximum
of the orders of the directrix curves aglR,a;R mi-
nus p. Simplifying our representation in this way,
we end up with directrix curves that do not inter-
sect. Calling their orders again m < n, we have
d=m+ n. O

If m < n, there is exactly one directrix curve of
order m, since otherwise the degree would be 2m <
d. Directrix curves of order n are

c(u) = vo(u)ag(u) + var(u), (22)
with a polynomial vo(u) of degree n — m and con-
stant v;.  Therefore, we have an (n — m + 1)
parameter set of directrices of degree n. For m = n,
there is a one—parameter set of directrices of degree
m, given by (22) with constant vg,v1. Examples
for rational ruled surfaces of degrees d = 2,3,4 are
given in the next section.

To get a tensor product Bézier representation, the
directrix curve with lower degree, say m, may be
degree elevated to an n-th degree representation and
then we obtain a tensor product surface of degree
(n,1). This is clearly not the only way to get such
a representation, since any two of the (n —m + 1)
dimensional set of curves of degree n on the surface
may serve as directrices in the Bézier representation.

An interesting application of minimal degree rep-
resentations is the construction of low degree trim-
ming curves on rational ruled surfaces.

Rational cones of degree d are clearly obtained by
shrinking one directrix curve to a point agR (m = 0)
and taking another directrix curve aj(u)R of order
n = d, which does not contain the vertex aglR.

11



Low degree rational ruled surfaces

Let us exclude cones and briefly discuss the simplest
and most important cases of irreducible skew ratio-
nal ruled surfaces and low degree Bézier representa-
tions. We will use that notation of the last section
concerning the degrees of the directrix curves.

Ruled quadrics

Since we have degree d = 2 we must havem =n =1
and aglR, a;R are linearly parametrized skew lines.
The generators connect associated points between
agR and a;R, and there is a one-parameter set of
such directrix lines. Thus, we find the well-known
result that R is a regulus which possesses a regulus
of directing lines. Both reguli lie on the same ruled
quadric.

How can this be done practically? Let L, M and
N be three pairwise skew generators of R. By solv-

ing
Q(L,X) = Q(M,X) = Q(N,X) = 0, X, X) = 0

one gets the regulus R of directrix lines. We choose
two independent lines ¥ and Z from R with linear
parametrizations ag(u) and aq(v), respectively, see
figure 7. Intersecting L, M and N with ¥V and 7
gives us parameter values wu;, v;. The linear blend is
then obtained firstly by determining the projective

mapping

_au+ I5;

oyu46°
Inserting w; and »; for ¢+ = 1,2,3 here leads to a
linear homogeneous system for parameters a, ..., 6.

Inserting this into ay(v) gives a parametrization of

R

x(u,v) = (1 —v)ag(u) + vay(u),
with linear ag,a;. Another method computing R is
given in the following.

Example: Let again L, M and N be three pairwise skew
generators of R. Since the Klein image of R is a conic C'
on My, a quadratic Bézier representation of Ry = C'is

C(t) = (1 =)L 4+ 2t(1 — t)wF + *N, (23)
where F is the intersection point of tangents to C'in LR
and NR, and w is a weight guaranteeing that C() is

Figure 7: Regulus on a ruled quadric

contained in Mj. Tt is easy to verify that F and w can
be chosen as

F=Q(N,M)L-Q(L, N)M+Q(L, M)N, w = + %

The sign of w determines the arc of C' which contains
the point M, or the segment of R, which contains the
generator M.

Skew ruled cubic surfaces

Before discussing the generation let us note that
any real irreducible skew ruled surface of degree 3 is
rational and lies in exactly one linear congruence,
which is either a hyperbolic or a parabolic net. This
is easily proved since the Klein image R~ is an ir-
reducible cubic C M. Tt cannot be planar, since
planar curves on the Klein quadric are either con-
ics or lie in planes which are entirely contained in
Mj. The latter case corresponds to cones and tan-
gent surfaces of planar curves, which are not skew.
Hence, cubic Ry must span a 3-space G° and there-
fore it is a rational normal curve and R is rational.
By the way, any irreducible cubic surface, different
from a cone, is rational. The intersection of G with
M3 is a quadric Ay, Klein image of a net of lines.
Since a real cubic cannot lie in an oval quadric, Ny
is ruled or a quadratic cone. Hence, R lies in a
hyperbolic or parabolic net A/.

By theorem 3 any cubic ruled surface has a unique
linearly parameterized directrix line I, = aglR cor-
responding to m = 1 and a two—parameter set of
directrix conics a1R corresponding to n = 2,

ao(uo,u1) = boug+ byuy,

12



2 2
ar(ug,u1) = booug + borugus + byyui,

with constant vectors b;, b;; and homogeneous pa-
rameter u = (ug,u1) € P'. The conics are obtained
with formula (22) by inserting

v1 = const. and vy = apug + a1uq.

This parameterization is over P! x P!. A parame-
terization over the projective plane P? may be ob-
tained by setting v; = 1. This yields a quadratic
homogeneous parameterization in (ug, 1, vo),

X(ug, u1,v0) = voag(uo, u1) + lag(ug, ur).

Therefore the surface has a representation in trian-
gular quadratic Bézier form. This parameterization
has a base point for parameter values (ug, u1,v9) =
(0,0,1) that means x(0,0,1) = o.

The straight lines in P? belong in general to con-
ics on the surface. Those lines ug = kuy, which
pass through the base point, are mapped to its gen-
erators. A condition on the control points of a
quadratic Bézier triangle to represent a cubic sur-
face has been derived by W. Degen? interpreting the
surface as projection of a Veronese manifold in P5
(quadratically parameterized surface x(ug, u1,u2) =
(ud, gy, uguz, ui, uyug, u3)R).

Let us look at skew cubic ruled surfaces in a hy-
perbolic net. The focal lines of the net are the di-
rectrix line I, and a line F, which is a degenerate
directrix conic in form of a quadratically parame-
terized line. Hence, an easy way to input a cubic
ruled surface in a hyperbolic net is the following:
Choose a linear parameterization ag(z) of a line L
and a quadratic parameterization a;(u) on a line F,
skew to L, and blend them linearly. It is given by
(19) with m = 1,n = 2. The three Bézier points
and two frame points are five input points for a;(u)
that can be chosen independently on F.

Figure 8 shows a cubic ruled surface with two real
torsal generators. The quadratically parametrized
focal line is displayed, the other one is at infinity,
which means that the generator lines of the surface
are parallel to a reference plane.

Ruled surface through four generators

Let four pairwise skew lines A;, ¢ = 1,...,4 in gen-
eral position be given. They define a net of lines,

13

Figure 8: Cubic ruled surface with real torsal lines

which can be hyperbolic, parabolic or elliptic. The
Klein images of these four lines A; span a 3-space
U which can be parametrized by

4
U:X:ZOQA“OQ S R7

=1

and the quadric @ = U N My is the Klein image of
all lines in the net defined by A;. This quadric ¢
can be a ruled quadric, a cone or an oval quadric, as
we have discussed earlier 2. We want to construct
a rational ruled surface R interpolating the given
lines and contained in the net. Only the case of a
hyperbolic net shall be discussed here.

The axes of the net are those lines L and F', which
intersect the given lines A;. So their Pliicker coor-
dinates are solutions of

Q(ALX)=0,i=1,...,4 and Q(X,X) = 0.

The first four linear equation are solved by points
of a line ¢ polar to U with respect to M3 € P3. The
intersection points

g M} = {L,F}

also solve the last quadratic equation. These points
are real and distinct in case of a hyperbolic net and
are the Klein images of the axes.

We choose linear parametrizations ag(u) and
ai(v) on L and F, in parameters u and v, respec-
tively. The intersection points LN A; and FFNA; de-
termine parameter values uq,...,uq and vy,..., vy,
respectively. A quadratic parametrization on F' can



be obtained by using the correspondence

o= fo+ fiu+ fou?
go + g1u+ gau?’

(24)

Fach u determines one v, that is each point on L
determines a corresponding point on F. But each
point on F' corresponds to two points (not necessar-
ily real and distinct) on L. Inserting (24) in ay(v)
leads to a quadratic parametrization on F in u.

Practically, we insert the obtained parameter val-
ues u; and v; in (24) to determine the unknown ho-
mogeneous coefficients f;, ¢;. This gives four homo-
geneous linear equations

ui(go + g1vi + g2v3) = fo + frvi + forli=1,...,4.

In general, we have one degree of freedom, which
means that there is a one parameter family of cu-
bic skew ruled surfaces interpolating given four lines
A;. To obtain a ’unique’ solution one can add a
linear condition to this linear system, as interpolat-
ing a fifth line As. But As has to lie in the net
determined by Aq,...,As. By the way, the solu-
tion is just unique up to the choice of L as linear
parametrized directrix line.

We summarize: Five lines of a hyperbolic net can
in general be interpolated by two cubic ruled sur-
faces.

Looking at the Klein image, this is equivalent to
constructing a cubic on a ruled quadric through five
given points of the quadric. Note that only 4 arbi-
trarily located lines in 3-space need not be gener-
ators of a cubic ruled surface, since the lines could
lie in an elliptic net.

Rational quartic skew ruled surfaces

A rational skew ruled quartic surface is always con-
tained in a linear complex. One kind of rational
quartic ruled surfaces belongs to m = n = 2 and
carries a one parameter set of conics. The mini-
mal degree parametric representation can be given
as a Bézier tensor product surface of degree (2,1).
Among this type of ruled surfaces are also those de-
velopable surfaces, which are the tangent surfaces
of twisted cubics.

The other type of surfaces to (m,n) = (1,3) has a
unique directrix line and a n—m+1 = 3—parameter

set of cubics. Here, a minimal degree representation
for the surfaces in P? is not in tensor product form.
A rational Bézier representation is of degree (3,1),
but the parameter curves » = const. have two com-
mon points to parameter values ug,u;. These sur-
faces, as well as the cubic ruled surfaces discussed
before are never developable, since a developable
surface with a directrix line needs to be planar.

A refined classification of ruled surfaces of degrees

4,5 and 6 may be found in the classical literature
11, 22

Figure 9: Quartic ruled surface with one parameter
set of conics

Example: Let a Plicker representation of a quartic
skew ruled surface be given

g(t) = (2t(1+t2),(1+t2)(t2_2t+3),

—(1+ )3 +12), (3 + 122, 2(3 + 1), —4t2) .
To apply theorem 3 we intersect the ruled surface with

(parallel) planes vo = (—1,0,0,1) and vy = (1,0,0,1)

and obtain

ao(t) = (—(1+t)(3+1%), -4,
—6— 2t — 207 =28, —(1 +1*)(3 + 1)),
ai(t) = (—(1 4+ 4+, —4t(2+ %),

—124 2t —10t* + 267 — 2t* (1 +t3)(3 + 7).

The intersection line of these planes is (0,0,0,0,0,1)R
and we obtain the common points of the planar sections
for parameter values ¢t = =+i and ¢ = +iy/3. Forming
ag + a; and ag — a; and dividing by a common factor
leads to two directrix conics

bo(?)
bl(t) =

(14+1%,2t,34+1%,0),
(0,2¢,87 — 2t + 3, —(3 +%)).

(25)
(26)
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Figure 10: Quartic ruled surface of type (3,1)

Figure 9 shows a patch of the surface. The displayed

curves are conics.

Example: We proceed as above and start with a Plucker
representation

((1 ), (14 1), —t(t% — 1),

41,12t = 1), —2t2).

g(t) =

We choose planes vg = (0,—1,1,0) and v; = (0,1,1,0)

and obtain the planar quartics

ao(t) =
al(t) =

These two planes intersect in the line (0,0,1,0,0,0)R
and the intersection points correspond to ¢ = 0 and ¢t =
0. By adding and subtracting ag and a; and dividing
by a common factor we obtain two cubics, say

(—(14+1%), =262, =262 12 (=14 2t + %)),
(—(=1 42t 4+1%), =2t 267, —*(t* + 1)).

(141,260, 4%(1 + 1)),
(t—1,0,=2t% —t3(t — 1)),

q(t) =

Ch(t)

which have two points in common. Further, b = q, + q;
is a linearly parametrized line. With q, and b we can
form representation (19). A patch of this type of quartic
surface is displayed in figure 10.

Ruled surface through five generators

Let five pairwise skew lines A;, 7 = 1,...,5 be given,
which span in general a regular linear complex .
These lines A; shall be interpolated by a rational
quartic ruled surface R. Any plane in P? intersects
these lines in five points on a conic. So, if a quartic

ruled surface exists, it shall be generated as a lin-
ear blend between two conics C, Cy, which lie in
planes 7, w9, respectively. Actually, this requires
that there exists a projective map a between planes
w1 and w9, which maps A; N7y onto A; N1y, We give
an algorithm how to find such a map a. This is also
sufficient, since a restricted to the conics C, C5 is
a projectivity, which means that R is representable
by formula (16) with d = 2.

Let A; be given by their Pliicker coordinates A; =
(a;,a;) and without loss of generality let 71 be the
plane at infinity 29 = 0. The intersection points
y,R = A; N7y are given by y; = (0,a;). Figure
11 shows a perspective view of this situation. The
image points z;R = (z9;,2;)R to y;R under a are

given by
204 0 n 0 ¢
()-(e i) (2) e

where n € R” and the regular 3 x 3-matrix M =
(mj;) are unknown. We have to guarantee that the
image points z;R are lying on the given lines A;,
which can be written as

z;-a; =0,—z20;2;, + z X a; = 0.

These four scalar linear equations are not indepen-
dent, only two of them are necessary. Inserting (27)
into these incident relations gives 5x2 equations,
linear homogeneous in the 12 unknown coefficients
of n and M.

The one parameter family of projective mappings
a leads to a one parameter family of planes 79 =
a(my) and each plane 75 carries a conic Cy = a(Ch).
Let ag(u) be a quadratic parametrization of .
Then «a yields a quadratic parametrization of C,
which determines a representation of R in form (16)
with degree d = 2.

Corresponding to the one parameter family of
projectivities a, one would guess that, after free
choice of 71, there is a one parameter family of quar-
tic ruled surfaces interpolating A;. But actually the
one parameter family of conics Cy = a(C) deter-
mined above is precisely the one parameter family
of conics, which characterize these type of quartic
ruled surfaces, see figure 11.
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Figure 11: Rational quartic surface through five
lines

In other words: after free choice of 7 there is a
unique quartic ruled surface interpolating five lines

A;.

Ruled surfaces in nets

A rational ruled surface R of degree d all whose gen-
erators lie in a line net A has as Klein image R~y
a rational curve of degree d on a quadric Ny in a
projective 3—space. Hence, one can establish a one-
to-one correspondence between rational curves on
quadrics in P? and rational ruled surfaces in a linear
congruence A. This fact, although derived differ-
ently, has been used by Dietz, Jiittler and Hoschek
10 in their method for designing rational curves on
quadrics (has been extended to surface patches on
quadrics as well).

Approximating ruled surfaces to a set of
line segments

For several applications it is appropriate not to work
with lines but with line segments. An oriented line
segment I can be captured by the ordered pair
(p,q) of its endpoints, which naturally defines a
mapping to real affine 6-space by L ~— (p,q). One
can define a useful measure for the distance between
two line segments. Approximation in the set of line
segments can be translated to curve approximation
by using this measurement as distance function in
6-space. This is used by Chen and Pottmann ® for
approximation by ruled surfaces.

If the endpoints p, q of the line segments are con-
tained in parallel planes, one can build up an ap-
proximation technique which is based on a stereo-
graphic projection of the Klein quadric My and an
appropriate distance function in the image 4-space.
This will be one of our future work.

G! rational ruled surfaces

To construct a G ruled surface approximant to a
given ruled surface R one could proceed as follows.
Take two planar intersections of R and approximate
them by quadratic rational splines. Blending these
quadratic spines linearly using (16) or (19) will pro-
duce a piecewise quartic C'! ruled surface, namely a
(2,1) tensor product surface.

However, to design a G ruled surface without
real torsal generators, it is sufficient to use quadratic
ruled surfaces as segments. If R possesses real torsal
generators, one cannot use segments on quadrics,
since they possess no torsal rulings. In this case one
has to insert cubic segments. It shall be shown how
the Klein image serves for solving this problem by
using well-known algorithms for curve design.

A quadratic ruled surface (regulus, quadratic
cone or tangent set of a conic) has a conic C M,
as Klein image. Let us now focus on the case of
skew ruled surfaces, since there the line geometric
approach is the most elegant one. If two reguli touch
each other along a common ruling Rg, they possess
same contact projectivity and surface tangents, that
means same parabolic tangent net along Rg, com-
pare formulae (2) and (9).

Hence their Klein images are two conics touching
at a common point Rgy. We see that the design of
skew, piecewise quadratic G ruled surfaces in P3 is
equivalent to the design of non—planar quadratic G*
spline curves on the Klein quadric.

Remark: A spline in a plane C M3 would describe a
piecewise quadratic cone or the tangent set of a piecewise
quadratic planar curve and therefore refers to torsal ruled
surfaces.
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Piecewise quadratic G' ruled surfaces

We are now proposing an approximation scheme us-
ing conic biarcs on the Klein quadric. Given a ruled
surface without real torsal rulings to be approxi-
mated, we select a number of rulings, Rg,..., Rxn
and compute the tangent behaviour (contact pro-
jectivity) there. Any pair R;, R;11 of consecutive
rulings plus contact projectivity will be interpolated
by a G pair Q;, Q;41 of quadratic ruled surfaces.

To construct such a pair Qqy, Q1 we look at the
Klein image. The input rulings define two points
RoR = Roy and Ri{R = Ryy on Mj. The tangent
data are mapped to a tangent of Mj at each of
these points. Additional points on these tangents
shall be ToR and T{R. They may be computed
from a Pliicker coordinate representation R(u) =
ap(u) A ay(u) as

T = R(u;) = (28)
ap(u;) A ag(u;) + ao(ui) Aag(u;), i =0,1.

These two points plus tangents have to be joined
by a pair of conic segments C M;. In the general
case, the input data span a 3-space G® C P°. Tt
intersects the Klein quadric M in a quadric ®, on
which the conic pair has to lie. Translating to E?,
the quadratic ruled surface pair Qg, Q1 lies in a line
net, spanned by the input data. We have now re-
duced our problem to a familiar one, namely the
construction of biarcs on quadrics in 3-space G,
which was studied by Wang and Joe®?.

Let us briefly describe how the problem in 3-
space is solved. Using a projective coordinate sys-
tem in G, we have input points rgR, r; R and points
toR,t;R on their tangents. If the quadric ® has
equation x” - A - x = 0, these points satisfy

oA =0,r1 A t;=0,i=0,1. (29)

The Bézier points of the pair of conic segments are
roR, bR, cR, dR, r{R. The inner Bézier points of the
two segments lie on the given tangents,

b= o + Ato7 d= r + ,utl. (30)

Their connection touches ® at the point of contact
cR
c=ab+ Ad,

where homogeneous parameters o and 3 have to be
such that equation (ab + 3d)T - A - (ab 4 d) = 0

has a double root at a : 3. This is equivalent to
(b7 - A-d)? = (b"-A-b)(d"-A-d)=0.

Inserting (29) and (30), we see that this condition
is factored into two independent bilinear relations
between A, pu,

A ML Al At (il At £y) = 0.
(31)
with v = \/(tg - A-to)(t] - A-t;). This says that
the tangents (which never lie on the quadric since
we have non-torsal rulings R;) have to lie on the
same side of the quadric. This is always true for an
oval quadric, but needs to be checked otherwise.

If the tangents lie on different sides of a ruled
quadric, these data come from a ruled surface which
possesses a torsal generator in the considered inter-
val. Such data cannot be approximated by quadric
pieces since quadrics do not possess torsal genera-
tors. In such cases it is necessary to insert a cubic
segment on M instead of biarcs. How to construct
this cubic segment is discussed later.

Note that we have also a direction in which we
traverse the set of rulings, which defines the right
equation in (31). Because of the bilinearity, the
mapping bR — dR is a projective map and thus
the contact tangents bRAR to the one—parameter
set of interpolating biarcs lie on a ruled quadric T.
Quadrics ® and ' must be tangent to each other
along the curve of possible contact points cR of the
biarcs. This curve is therefore a conic, which passes
through rgR and r{R. A quadratic parametrization
for this conic can be obtained as follows. To repre-
sent cR we get

c=—(b-A-d)b+(b-A-b)d.

Inserting representations for b and d and applying
a substitution by using (31) leads to

¢ = F(uy)(ro + Ato) + Alto - A-to)(r1 + pty),

after a division by A. We still have to express u
in terms of A by using (31) and get ¢, quadrati-
cally parametrized in A. Choosing finally A, one can
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Figure 12: Pair of quadrics interpolating given rul-
ings plus contact projectivity

parametrize the Klein image of a quadratic ruled
surface Q; similar to (23).

Translating to P>, we see that there is a one-
parameter set of solution pairs Qq, Qq; the transi-
tion rulings in these pairs form a requlus through Rg
and R;.

To pick out a best solution pair Qg, @ from this
one parameter family one could minimize some use-
ful distance function of the given ruled surface R
and the transition rulings, given by c(\). Since in
practice only segments of rulings actually appear,
it is preferable to work with a measure for line seg-
ments instead of lines. We do not discuss this here
and so the optimal choice of the transition ruling is
left.

Figure 12 shows a G pair of quadric patches plus
control structure. The data come from a cubic sur-
face without real torsal generators.

Cubic segments

If a ruled surface contains real torsal rulings, we
have to insert cubic segments. We consider two
generators Rg, R, let Rg be a torsal and Ry be a
non—torsal generator. As before, the Klein image of
these data should span a 3-space G2 which inter-
sects My in a ruled quadric ®. The case where G*
is tangent to My such that ® is a quadratic cone
can be avoided by an appropriate choice of the gen-
erator Rq. So, let ® be a regular ruled quadric with
equation xT - A-x = 0 and let roR, 1R and toR, t; R

be given as above. Additionally to relations (29) we
have

tl - A-tg=0, but t7 - A-t; #0.

The Bézier points of the desired cubic segment are

roR, bR, cR and R, with
b=ro+ Ao, c =11 + pty.

A cubic segment is tangent to roRtgR in rgR if and
only if the osculating plane o of the cubic at rgR
is tangent to ® in rolR. This implies that cR is the
intersection point of the tangent line r{Rt;R with
o. One obtains a one parameter family of cubic
segments which interpolate the given data.

Let us summarize: Given a ruled surface to be ap-
proximated by low degree rational ruled surfaces, we
compute a sequence of generators R, ..., R,, which
contains all torsal generators. FEach pair R;, R;q
should contain only one torsal generator. Then one
constructs a piecewise ' ruled surface, which is
composed of pairs of quadric pieces if no torsal gen-
erators are involved in the considered segment. If
a segment determined by two generators R;, R;yq
contains a torsal generator, we insert a cubic piece.

Conclusion and future research

We have presented some results on the computa-
tional treatment of ruled surfaces using line geome-
try, mainly from the projective point of view. There
is still a lot of room for future investigations, some
of which we will briefly indicate.

In the study of ruled surfaces, algorithms for G*
surfaces of low degree and the inclusion of Fuclidean
invariants'® are missing. Particularly, parameter of
distribution and striction curve should be consid-
ered in designing ruled surfaces. Related to that and
to so—called Minding isometries between ruled sur-
faces is a study of 'nearly developable surfaces’ and
their approximate development (a contribution in a
similar direction has been made by G. Aumann!).
Another topics are the numerical estimation of in-
variants in connection with results from difference
geometry %2 and an analysis of line-based subdivi-
sion schemes.
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