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1 Introduction

In advanced classical geometry, point models for spaces of simple geometric
objects, such as planes, lines and spheres, play an important role. For exam-
ple, the set of hyperplanes of a projective space is the point set of a projective
space (the so-called dual projective space). To give a further example, we note
that an appropriate point model for the set of lines in projective 3-space is
the so-called Klein quadric {2 in projective 5-space P?: Lines in P? are rep-
resented as points of £2, pencils of lines in P? are seen as lines in {2, ruled
surfaces are visualized as curves in {2, and so on [9].

These classical concepts have recently found a variety of applications in
geometric computing. It is, for example, convenient to view a developable
surface as envelope of a one-parameter family of planes and thus treat it as
a curve in dual projective space [1,2,12,13,23,27]. There are also advantages
of viewing a canal surface, which is defined as envelope of a one-parameter
family of spheres, as a curve in R* (as a point model for the set of spheres)
[15-19,24]. Analogously, ruled surfaces can be treated as curves in the Klein
quadric [9,20,26,28].

For computational applications the treatment of approximation problems
is fundamental. Therefore, we will first discuss how to formulate approxi-
mation problems in the sets of spheres, planes and lines and apply these to
canal surfaces, developable surfaces and ruled surfaces, respectively. In the
final section, we will then summarize by formulating a more general strategy.
Thereby, we are able to view the previously discussed cases (spheres, planes,
lines) as a special case for approximation in a set of affinely equivalent geo-
metric objects. Connections to kinematic mappings and motion design, and
pointers to future research conclude our paper.
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2 Approximation in the space of spheres

Recently, it could be shown that certain problems in geometric computing
such as computations with canal surfaces, offsets, and medial axis, can be ef-
ficiently solved by using concepts from sphere geometry [4,5,15-19,24]. Thus,
we will start our investigation with approximation in the space of spheres.

There are different types of classical sphere geometries. Mdobius geometry
incorporates planes as special case of spheres and will not be pursued here.
Laguerre geometry works with oriented spheres and includes points as special
cases of spheres. It will be (partially) used henceforth. Lie geometry subsumes
both Laguerre and Mobius geometry as special cases.

An oriented sphere in Euclidean 3-space E® shall be given by its cen-
ter (my, mo, ms) and its signed radius r. Vanishing radius r = 0 charac-
terizes points (as degenerate spheres). r > 0 belongs to positively oriented
spheres (unit normals pointing outside), r < 0 characterizes negatively ori-
ented spheres (unit normals pointing inside). Laguerre geometry then also
uses oriented planes as another type of fundamental objects and oriented
contact as fundamental relation. This will not be needed in the sequel. We
will just need the so-called cyclographic model for spheres. This is a point
model for the set of oriented spheres obtained by the cyclographic mapping
¢, which maps a sphere S with center (my,m2,m3) and radius r to a point
in R* via

¢: 8+ (m1,ma,m3,r) € R (1)

The cyclographic mapping is a well studied classical subject. For its relation
to geometric computing, the reader may consult [15,19,24].

Using ¢ we can transform a set of spheres into a set of points. In order
to solve approximation problems for spheres, we need to come up with an
appropriate distance measure between spheres and interpret it in the point
model. It is easy to see that the natural distance measure of Laguerre geome-
try (tangential distance) is not useful for our purpose. Hence, we now present
an alternative. It has an additional advantage over the tangential distance:
whereas the latter leads to a pseudo-Euclidean metric, our distance measure
will result in a Euclidean metric in the image space R* of the set of spheres.

Given two oriented spheres A, B with

C(A) = (a15027a3va4)7 C(B) = (blaanb3ab4)7

there exists a unique central similarity ¢ which maps A onto B. Let the
centers of A and B be denoted by a = (a1,a2,a3) and b = (b1, bs, b3), the

center of o is )

a4—b4

CcC =

(a4b — b4a).

It is at infinity for congruent spheres (as = by). Let D be the difference
vector of the point x € A and the image point o(x) € B (see Fig. 1). Note
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Fig. 1. Distance between two spheres

that all the lines zo () pass through c. For concentric spheres, these lines are
orthogonal to both spheres, and we then measure orthogonal distances. For
other cases, this is not true. However, we can still expect that the integral
mean of || D||?, viewed as a function on the unit sphere S?, is a useful measure
for the distance d(A, B) of the two spheres,

(A, B)? = —/ I1D|2de, 2)

with dw as surface element of S2.
Surprisingly, this distance measure leads to the canonical Euclidean metric
in R*, since we have the following result.

Theorem 1. The distance of two oriented spheres A (center a and radius
as) and B (center b and radius by ), defined via (2), is given by the Euclidean
distance of their image points ((A) and ((B) in R,

d(A,B)* = Z(ai —bi)*. 3)

Proof. Let the unit sphere S? be parametrized by
s(u,v) = (81, 82, 3)(u,v) = (cosu cosv,sinu cos v, sinv).

The difference vector D = x — o(x) between corresponding points on A and
B and its squared length are given by
D(u,v) =a—b+ (as — by)s,
IDIP = Jla — B2 + (as — ba)? + 2(as — bs) (a — b) - s(u, v).

With the surface element dw = cosvdudv we obtain

[ IDIPdw = dm(lla = bIE + (s~ b0 —47rz
S2
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3 Canal surfaces

A canal surface @ is defined to be the envelope of a one-parameter family of
(oriented) spheres

S(t) : (w1 = mi(8)? + (22 = ma(t))* + (w3 — ma(t))” = r(t)?, (4)

where t is a real parameter varying in an interval [a,b] C R. The functions
m;(t) and r(t) are considered to be sufficiently often differentiable in [a, b].
The center curve (or spine curve) of the spheres shall be denoted by M(t).
The envelope @ is tangent to the spheres S(t) in points of the characteristic
curves c(t). These curves are obtained by intersecting S(¢) with the plane
S5(1),

3
S(t) : (s — ma())rig(t) + r(8)i(t) = 0. ()
i=1
Thus, the family c(#) consists of circles which form one family of principal
curvature lines on @. The normal vector of S is M (t) = (11,12, 1m3). The
circles ¢(t) are real (consist of real points) if and only if the reality condition

IML()]* — #()* >0 (6)

holds. Then, & is a real surface.

If equality holds in condition(6) for an isolated parameter value to then
the plane S(to) is tangent to the sphere S(to) in an umbilic point of &. The
sphere S(to) has second order contact with @ there. The canal surface ¢ can

Fig. 2. Geometric properties of a canal surface

be represented by an equation which is obtained by eliminating parameter ¢
from equations (4) and (5). A parametrization of & is constructed as follows.
The circles ¢(t) possess centers N (t) and radii 7 (t) with

NGy = () EEL), no) = eIl — o
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The centers N () are the intersection points of the tangent lines of M (t) and
the planes S(t); see Fig. 3. The radii r(t) are obviously real if (6) holds. The
curve M (t) possesses an orthonormal frame (T, E, F) with

1 . 1
-~ N(t), E(t) = —
o FO = Fa

T(t) T(t) and F(t) = T(t) x E(t),

where X x Y denotes the cross product of two vectors in R®. T' denotes the
unit tangent vector of M and E, F form an orthonormal basis of the normal
plane. A parametrization of @ is then obtained by

X(t,u) = N(t) + 71 (t) cos(u) E(t) + 1 (t) sin(u) F(2). (7)

Instead of principal normal vector £ and binormal vector F', any other or-
thonormal basis in the normal plane of the spine curve M (t) may be used in
this parameterization.

In particular, let C(¢) be an arbitrary piecewise polynomial curve of degree
n in R*. It possesses a B-spline representation,

C(t) = Y N7 ()G (®)

with N/'(t) as normalized B-spline functions of degree n over an appropriate
knot vector and control points C;. An analogous representation we have for
piecewise rational curves. There, the C; are homogeneous coordinate vectors
of points in the projective extension of R?, see [22]. It is proved in [18] that
the envelope @ of the one parameter family of spheres (~1(C(t)) is a rational
surface, thus representable as a rational tensor product spline surface. This
result shows that we may use B-spline curves in R? in order to compute with
canal surfaces, which possess an exact NURBS representation.

Nevertheless, the computation of a rational parametrization is not straight-
forward: if m;(t) and r(¢) are rational functions, parametrization (7) is in
general not rational.

3.1 Approximation of canal surfaces

Approximation algorithms will be based on the interpretation of canal sur-
faces as envelopes of one-parameter families of spheres S(¢). The mapping (1)
allows to change the point of view in the sense that we will not consider the
envelope @ in the following but its image curve ((S(t)) in the cyclographic
model R*.

Applying the mapping (, interpolation or approximation problems con-
cerning spheres and canal surfaces can be transformed into interpolation or
approximation problems concerning points and curves in R*.

Let us consider the following problem. Given k spheres Xy,... .Y and
corresponding parameter values 71,... , 7, approximate these spheres by a
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canal surface & = S(t) such that S(7;) is close to X; for j = 1,...k. Clearly,
close is meant according to the distance (3) between corresponding spheres.
We want to determine a canal surface & = S(t) which minimizes

F =Y d(S(m), ). (9)

If (S(t)) is chosen to be a B-spline curve (8), functional F is quadratic in the
coefficients of the unknown control points C;. Thus, the minimization leads
to a linear system.

Fig. 3. Canal surface S(¢) approximating six spheres; ¢(S) is a cubic B-spline curve
consisting of two segments

Since monotonicity of the radius function is an essential shape property
of canal surfaces we will study the following problem. Consider spheres and
parameter values as in the previously formulated problem, but additionally
a monotonic sequence of radii of the spheres X (7;). We want to determine an
approximating canal surface with monotonic radius function.

A sufficient condition for possessing monotonic radii is that the fourth co-

ordinates c¢;4, 7 = 1,... , k of the control points C; are a monotonic sequence.
Thus,
coa < 14 < ... < Cp—1,4 < Cpa. (10)

Having computed an optimal approximation X* by minimizing (9), we will
look for an approximation X satisfying constraints (10) and being as close
as possible to X*. This is a constraint optimization problem and is solved by
quadratic programming [7].

Since parameter values 7; have to be chosen in advance and have a great
influence on the resulting canal surface one can start with an initial guess
and improve it by a parameter correction (see [11]).
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4 Approximation in the space of planes

Our motivation for studying approximation in the set of planes comes from
the computational geometry of developable surfaces. There, it turned out that
viewing these surfaces as envelopes of planes yields computational advantages
[1,2,12,13,23,27].

In order to solve approximation problems in the set of planes, it is nec-
essary to introduce an appropriate distance between two planes. Euclidean
geometry does not directly provide such a distance function. All invariants
are expressed in terms of the angle between planes and are inappropriate
for our purposes. In view of applications, we are interested in the distances
of points of the two planes which are near some region of interest, and this
distance can become arbitrarily large with the angle getting arbitrarily close
to zero at the same time.

We use the following well-known facts from projective geometry. If we
extend real Euclidean 3-space E® by ideal points (points at infinity), i.e.,
intersections of parallel lines, we obtain a model of real projective 3-space
P3. All ideal points form a plane in P3, the so-called ideal plane. The set
of planes in P? is a projective space itself, the dual projective space. It is
isomorphic to P3.

Analytically, one uses homogeneous Cartesian coordinates (xg, x1, 2, x3)
for points. For points not at infinity, i.e., g # 0, the corresponding inhomo-
geneous Cartesian coordinates will be denoted by

I o o

r=—, y= , 2= .
Lo Lo Lo

T3

A plane with equation ugxg + u121 + usxs + uzzsz = 0, or, equivalently,
ug + w1 + usy + uzz = 0 can be represented by its homogeneous plane
coordinates U = (ug, u1, ua, us).

We will later introduce a Euclidean metric in the dual space and thus we
first have to obtain the structure of an affine space. Given a projective space
P, we obtain an affine space if we remove a hyperplane from P. Thus, we
have to remove the points of a plane from the dual space. Viewed from the
original space P?, this means we have to remove a bundle of planes from P3.
Since we actually want to remove the ideal plane, this bundle must have a
vertex at infinity. Hence, if we remove all planes passing through a fixed ideal
point (for example, planes through the ideal point of the z-axis = planes
parallel to the z-axis), we get a set of planes which has the structure of an
affine space. This is easily seen in the analytic model. Planes, which are not
parallel to the z-axis, can be written in the form

Z = Uug + urr + uay, (11)

i.e., they have homogeneous plane coordinates U = (uq,u,u2,—1). We see
that (uo,u1,us) are affine coordinates in the resulting affine space A* (of
planes, which are not parallel to the z-axis).
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We will now introduce a Euclidean metric in A*. Thereby we make sure
that the deviation between two planes shall be measured within some region
of interest. This region shall be captured by its projection I" onto the xy-
plane.

For a positive measure p in R? we define the distance d, between planes
A= (ag,al,ag, —1) and B = (bo,bl,bg, —1) as

du(A, B) = [|(a0 — bo) + (a1 — b1)z + (a2 — b2)y||r2() (12)

i.e., the L%(u)-distance of the linear functions whose graphs are A and B.
This, of course, makes sense only if the linear function which represents the
difference between the two planes is in L?(u). We will always assume that
the measure p is such that all linear and quadratic functions possess finite
integral.

Fig. 4. To the definition of the deviation of two planes

A useful choice for p is the Lebesgue measure dxdy times the characteristic
function xp of the region of interest I' (Fig. 4). If u = dxdyxr, we have

du(A,B)? = / ((a0 — bo) + (a1 — b))z + (a2 — b2)y)*dzdy. (13)
r
We write dr (A, B) instead of d, (A, B). With ¢; := a; — b;, equation (13) can
be written as
Jt [z [y o
dr(A,B)* = (co,e1,¢0) - | [z [2® [ay | | e |- (14)

Ty [zy [y ca

This is a quadratic form, whose matrix depends on the domain of integration
I" for the integrals (where we omitted the differentials dzdy for brevity).

Another possibility is that p equals the sum of several point masses at
points (z;,y;); see [12]. In this case we have

du(A,B)* = ((ao = bo) + (a1 — bi)a;j + (a2 — ba)y;)*. (15)

J
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Theorem 2. The distance d,, defines a Euclidean metric in the set of planes
of type (11), if and only if p is not concentrated in a straight line.

Proof. See [27].

In this way, approximation problems in the set of planes are transformed
into approximation problems in the set of points in Euclidean 3-space, whose
metric is based on d,. In the next section, we will illustrate this at hand of
developable surfaces.

5 Approximation algorithms for developable
surfaces

5.1 Developable NURBS surfaces as envelopes of planes

Developable surfaces can be isometrically mapped (developed) into the plane,
at least locally. When sufficient differentiability is assumed, they are charac-
terized by vanishing Gaussian curvature. A non-flat developable surface is the
envelope of its one parameter family of tangent planes. Such a developable
surface locally is either a conical surface, a cylindrical surface, or the tangent
surface of a twisted curve. Globally, of course, it can be a rather complicated
composition of these three surface types. Thus, developable surfaces are ruled
surfaces, but with the special property that they possess the same tangent
plane at all points of the same generator (=ruling).

Because in all points of a generator line the tangent plane is the same,
we can identify a developable surface with the one-parameter family of its
tangent planes U(t), or in other words, with a certain curve in dual projective
space. If this curve is a NURBS curve

U(t) = Enj U;N{ (t), (16)
=0

the original surface is a developable NURBS surface. Methods for comput-
ing a parameterization in standard NURBS tensor product form have been
developed [23].

The symbol U; denotes a homogeneous coordinate quadruple of the i-th
control plane U;. Of course the coordinate quadruple contains more informa-
tion than just the plane as a point set, but for simplicity we just speak of the
coordinates of the plane.

For the approximation algorithms discussed in this paper, we will restrict
the class of developable surfaces we are working with: We only consider sur-
faces whose family of tangent planes is of the form

U(t) = (uo(t),ur (t),u2(t), —1) <= 2z =1ug(t) +ui(t)x + ua(t)y. (17)
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For NURBS surfaces this is equivalent to the choice of control planes U; =
(uo0,i5 1,4, U2,i, us,;) such that always us ; = —1. This means that for all pos-
sible planes U we no longer allow to choose an arbitrary coordinate quadruple
describing U, but we restrict ourselves to the unique one whose last coordi-
nate equals —1. This is not possible if the last coordinate is zero, so we have
to exclude all surfaces with tangent planes parallel to the z-axis. In most
cases this requirement is easily fulfilled by choosing an appropriate coordi-
nate system.

Dual projective space with the bundle of planes (uq, u1,us,0) removed is
an affine space and (ug, u1,u2), describing the plane (ug, u1, us, —1), are affine
coordinates in it. The surfaces (17) become ordinary piecewise polynomial B-
spline curves in this dual model.

Recently, algorithms for the computation with the dual representation,
the conversion to the standard tensor product representation and the solu-
tion of interpolation and some approximation algorithms have been developed
[12,13,23]. The general approximation scheme briefly outlined below is dis-
cussed in detail in [27]. We include it here since it is a typical example for
our concept of geometric approximation.

5.2 Approximation of tangent planes

Consider the following approximation problem. Given m planes Vi,... V),
and corresponding parameter values v;, approximate these planes by a devel-
opable surface U(t), such that U(v;) is close to the given plane V; within an
associated area of interest, where i ranges from 1 to m.

The meaning of ‘close’ is the following: There is a Cartesian coordinate
system fixed in space such that all planes are graphs of linear functions of
the zy-plane. Its third unit vector may be found as solution of a regression
problem to the given plane normals. For all i there is a region of interest I7,
or, more generally, a measure yu;, in the zy-plane. We want to minimize

F = Zdu,-(v,»,U(vi))?, (18)

for an unknown developable surface U (t). If U(t) is a NURBS surface of type
(17), Fy is a quadratic function in the unknown coordinates of the control
planes U;. These can then be found by solving a linear system of equations.

A good choice for p; would be w;xr,dxdy. An example of this can be
seen in Fig. 5. The positive weights w; can be used to assign more or less
importance to the single parameter values v;. It would also be possible to
choose different coordinate systems for different planes V;, but this is not
necessary, because it is equivalent to multiplying the weights w; with appro-
priate factors. With w; = sin®5;, where 7; is the Euclidean angle, which is
enclosed between V; and the z-axis, we can correct the influence of measuring
distances in the z-direction of a fixed coordinate system for all 7.
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Fig. 5. Approximation of a set of planes by a developable surface

One may fix some boundary control planes in order to ensure a smooth
join of subsequent surface segments. Note that the computation of the sur-
face U(t) is equivalent to a polynomial B-spline curve approximation prob-
lem using different Euclidean metrics at different points to be approximated.
Working with the same p or I' for all planes, we get an ordinary curve ap-
proximation problem in Euclidean 3-space [6,11,22].

Since the parameters v; have to be fixed in advance and another choice
could have given better results, one will start with an initial guess and then
improve it by parameter correction. With the Euclidean norms defined above,
we can directly apply the known computational schemes [11].

For more details and extensions, such as approximation of points and
generators and control of the curve of regression, we refer to Pottmann and
Wallner [27].

6 Approximation in line space and applications

Recent research on surface reconstruction, kinematics of parallel manipula-
tors and NC machining [3,25,31] led us to various approximation problems
in line space. Thus we started to develop a concept for approximation in line
space which will be outlined and illustrated in the sequel.

To understand the nature of the problem, let us briefly review a few facts
from line geometry [9,10,26,28].

For two points with homogeneous coordinates (zo, . .. ,z3) and (yo, - .. ,¥s3),
one defines the six homogeneous Pliicker coordinates of the spanning line L
as

(l1, e ,lﬁ) = (l(]l, l02, l(]3j l23, l31j l12) with lij =LY — LY (19)
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These coordinates do not depend on the choice of the two points on L and
are related by the Plicker identity

lily + l3ls + I3lg = 0. (20)
There is a bijective map between ordered, homogeneous 6-tuples (I1,. .. ,lg) #
(0,...,0) of real numbers and lines in real projective 3—space P3. Therefore,

one may view the six Pliicker coordinates of a line L as homogeneous coordi-
nates of a point (L) in real projective 5-space P°. The thereby defined Klein
mapping y provides a bijection between the set of lines £ in P? and the set of
points in a quadric £2 C P® with equation (20), usually referred to as Klein
quadric. We see that projective line space, which is clearly a four-dimensional
manifold, has the structure of a quadric in P°.

If we work in R® and thereby rule out lines at infinity, we remove a 2
dimensional plane (y-image of the lines at infinity) from the Klein quadric.
Thus, approximation in the set £ of lines in R? means approximation in the
Klein quadric with a plane I being removed. Unfortunately the resulting set
' := 2\ II does not have the structure of an affine space. However, it is
well-known that removal of a cut with a tangential hyperplane I' at some
point C of a quadric gives the structure of an affine space. The mapping
to an affine space is then realized by stereographic projection with center
C. Stereographic projection of a quadric ¢ from one of its points C' € & is
the restriction to the quadric of a central projection with center C' € ¢ and
any image hyperplane (not through C). The affine structure in the image
hyperplane H is obtained by removing from the projective hyperplane the
points of the tangent hyperplane I of @ at C. The reader may visualize this
with help of the familiar stereographic projection of a sphere.

From line geometry we know that the points of a tangential cut of (2 at
a point C' € 2 are the Klein images of all lines in 3-space which intersect
the line U = v~1(C). Since we work in R? and thus neglect lines at infinity,
the following operation introduces an affine structure into L: remove all lines
which intersect some line at infinity U. Let U be the line at infinity of the
zy—plane and thus we remove the set £’ of lines orthogonal to the z—axis to
get LO:=L\ L.

The realization of the corresponding stereographic projection with center
C is very simple: A line A € L£° may be defined by its intersection point
Ao = (a1,a2,0) with mg : 2z = 0 and its intersection 41 = (as,a4,1) with
m @ z =1 (see Fig. 6). The mapping

o: A€ L (a,a2,a3,a4) € R (21)

from the set L£° onto real affine 4—space describes a stereographic projection
of the Klein quadric. This is proved as follows. The Pliicker coordinates of L
and U are

v(A) = (ag — a1, a4 — a2, 1,a2,—a1,a1a4 — azaz), v(U) = (0,...,0,1).
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Embedding R* into P° by
o(A) = (a1,a2,a3,a4) = o' (A) = (a3 — a1,a4 — as, 1,a2,—ay,0),

it follows that the point o'(A) is collinear with v(A4) and v(U) = C, and
thus it is the image of y(A) for projection with center C' onto the hyperplane
H:z4=0in P5.

Fig. 6. Introducing a distance measure between two lines in an area of interest
located between parallel planes 7o, m1

For approximation we need a distance measure between two lines A, B. In
practice, the distance within some area of interest will be important. Placing
this area between the parallel planes 7y and 71, we may map the two lines
linearly onto each other via

.’I,'(t) = (1 - t)A() +tA; — y(t) = (1 - t)BO + tBs. (22)

Viewing the z-axis as vertical, we may say that the line segments z(¢)y(t) are
horizontal (cf. Fig. 6). It seems reasonable to measure the deviation of the
two lines A, B in the domain between the reference planes mg, 71 by

a5 = [ et - y(o)Fat.
Inserting (22) we obtain
d(A,B)? = (Ag — Bo)* + (A1 — B1)* + (49 — By) - (41 — By)
= Z(al — bz)2 + (a1 — bl)(a3 — b3) + (0,2 — b2)(0,4 — b4) (23)

This is the distance of their image points o(A4),0(B) € R* in a Euclidean
metric in R*, defined by positive definite quadratic form

(X, X) =224+ ... + 25 + 2123 + To24. (24)
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For the definition of d(A, B) one integrates squared distances between A, B
measured in parallel planes between mg, . These distances differ from or-
thogonal distances to A by a factor between 1 and 1/ cos, if ¢ is the angle
between A and the z—axis. At least for lines whose angle with the z—axis does
not exceed some tolerance dependent value o < 7/2, (23) is a useful distance
measure. Its behaviour is a counterpart to the well-known fact, that the dis-
tance distortion for stereographic projection of a sphere in R® increases with
the distance from the antipodal point of the projection center.

Theorem 3. Consider two parallel planes mg, 7 in R and the set L° of
all lines which are not parallel to them. Then intersection of any line in L°
with mo, ™ gives a pair (p,q) of points, which may be considered as point
in real affine {—space R*. This mapping from L° onto R* can be interpreted
as stereographic projection of the Klein quadric. The image space R* can be
endowed with a Euclidean metric (in an adapted coordinate system given by
(24)), which corresponds to the deviation of the lines within the parallel strip
bounded by planes mo, 71 .

This result provides a transfer principle from approximation in line space
to approximation in Euclidean j—space. We will illustrate it at hand of some
examples.

6.1 Scattered data fitting in line space

We consider the problem of scattered data interpolation and approximation
for functions defined on line space. Let a finite set of lines L; (data lines) and
associated real numbers f;, obtained by some measurement or computation,
be given. We would like to construct a function F', which is defined on all
lines L within some domain D of interest (for example, lines with a maximum
distance d to a fixed point) and exactly or approximately satisfies F'(L;) = f;.
One approach is the following [21]. Consider a centrally symmetric covering
of the unit sphere ¥ € R? by circular caps I}, i = 1,...,m with rotational
axes a; and spherical radii p;. For each axis a;, let £; be the set of lines
that form an angle < p; with a; and lie in the domain of interest. With two
parallel planes that are orthogonal to a; and enclose the domain of interest,
we perform the mapping into R*. There, the images of data lines L, € £; are
data points with associated function values. Using the corresponding metric,
they can be interpolated or approximated by any method which works in R?*,
for example radial basis functions [11]. Of course, we use the metric based on
(24) instead of the canonical Euclidean metric. This gives a partial solution
function F; defined on any line in £;. Finally one just has to combine these
partial solutions into a single one. This approach has been discussed in more
detail by Peternell and Pottmann [21].
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6.2 Ruled surface approximation

Theorem 3 provides a technique to interpret ruled surface approximation
problems as curve approximation problems in the image space R*. In more
detail we want to study the following. Given m lines L; and corresponding
parameter values 7;, we will construct a ruled surface surface ¢ with genera-
tors X (t), such that X (7;) is close to L;, in the sense of the distance function
defined by (23).

Note that the distance d(A, B) of two lines is not invariant under motions
in R?, but essentially depends on the choice of the z-axis and the planes
o, m1. We can overcome this disadvantage by the following construction.

We have to determine a unit vector z as third coordinate axis, such that
the angles formed by z and given lines L; are as small as possible. To achieve
this, the vector z is computed as solution of a regression problem to the given
direction vectors (l;1, 12, l;3) of lines L;. If some angle Z(L;, z) is larger than
a user defined bound vy < 7/2 one has to perform a segmentation of the
data. Additionally, planes 7y, m; have to be chosen in such a way that they
bound the domain of interest.

In order to determine X () we minimize

m

F:=Y d(Li,X(r))? (25)

i=1

for an unknown ruled surface with generating lines X (¢). With respect to
the mapping (21) we will restrict the class of ruled surfaces to those whose
intersection curves with the planes 7y, 7; are B-spline curves. Thus, the image
curve of X (t) in R* is a B-spline curve

Y(t) =o(X(1) =) NPOC
=0

with control points C; and B-splines of degree n as basis functions over a
chosen knot vector.
Let the intersection curves of X (t) with mp,7; be denoted by

a(t) = (z1(¢),z2(¢),0) and b(t) = (z3(t), z4(t), 1). (26)

Since x;(t) are piecewise polynomials, F' is a quadratic function in the un-
known coefficients of the control points C;. This implies that the minimization
is done by solving a linear system of equations.

The ruled surface strip @ determined by (26) possesses the following para-
meterization as point set in R?,

y(t,u) = (1 —w)a(t) + ub(t), (27)

where u € [0, 1] parametrizes the line segments on the generating lines X (¢).
The shape of y(t,u) essentially depends on the chosen knot sequence and on
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Fig. 7. Ruled surface approximating the given (dashed) lines L;; the image
(X (t)) C R* is a cubic B-spline curve consisting of two segments

the parameter values 7;. To improve the behaviour of the approximant &,
we can combine (25) with the minimization of a fairness functional. A good
choice, although parameter dependent, is usually the functional

t1 1
G(y) = / / (Y7 + 2y, + i) dudt.
to 0

Inserting (27) and elaborating this we obtain a functional involving coordi-
nate functions of o (X (t)) = Y (¢) = (a, b)(t),

1 [t . t, .
GY)= 5/ (@ + ab + b*)dt + 2/ (b* — 2ab + a*)du.
to to
Substituting Y (t) = (a(t), b(t)) we obtain
1 tro L t | .
G(Y):§/ (Y,Y)dt+2/ V.M.V,

to to

where M is the positive semidefinite matrix

I-17 .. . [10
= 1) = [11].

As an improvement of minimizing (25) we can minimize the quadratic func-
tion
F(X)+ \G(X).
This amounts again to the solution of a linear system in the unknown coor-
dinates of the control points C;.
Another possibility to improve the approximation is to apply a correction

of the parameter values as mentioned in previous sections and described in
[11].
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6.3 Approximating line congruences

A two-parameter set of lines or more precisely, the preimage of a two-dim.
surface in the Klein quadric, is called a line congruence. Its image under map-
ping o (21) is a two-dimensional surface in R*. Thus, approximation problems
for line congruences are transferred into surface approximation problems in
Euclidean 4-space.

Approximating line congruences have applications in tool motion planning
for 5-axis NC machining [31]. There, we have an additional requirement on
the congruences: they shall form a fibration in some neighborhood of the
surface to be machined. The inclusion of this property into the approximation
algorithm is one of our current research topics.

7 Summary: A concept for approximation in spaces of
geometric objects

We have treated spaces of different geometric objects: planes, lines and spheres.
At first glance, the methods for approximation seem to be quite different.
However, in all cases there are some basic steps involved:

e First, construct an appropriate point model for the k-dimensional space
S* of objects under consideration. If this is not yet a projective space,
define — at least locally — a mapping into projective k-space PF.

e By removing a hyperplane from the projective space P* (removing an
appropriate subset of the considered space of objects), we get an affine
space A*.

e Define an appropriate (Euclidean) metric in A*, which is motivated by a
deviation measure between two objects in S*.

e The computation of m-parameter families of objects in S*, which approx-
imate some given objects from S*, is thus transferred into an approxima-
tion problem for m-dimensional surfaces in Euclidean k—space.

Note that we presented the cases with increasing level of complication:
For spheres, we immediately arrived at an affine space. For planes, we first
got a projective space P3. For lines, we first had a quadric as point model
which could then be mapped onto an affine space.

The general concept still remains on a very high, not sufficiently detailed
level. However, it is a nice feature that the discussed special cases fit into the
following specific general framework. It concerns spaces of affinely equivalent
geometric objects. This means, that any two objects of the considered class
may be mapped into each other by an affine mapping (which needs not be
unique, as we will see later).

We outline the concept for objects in R?, since its generalization to arbi-
trary dimensions is straightforward. Consider an object I" in R?. We think of
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I as a curve, surface or solid. With respect to some tetrahedron Vg, ..., V3,
it may have the parametric barycentric representation

X(u) = Zfi(“)‘/%; with Y fi(u) = 1. (28)

i=0

The parameters v are from a domain in R with I = 1 for a curve I', I = 2 for
a surface I" and [ = 3 for a solid I'. The space S = S* of geometric objects is
generated by the affine images of I'. Let the tetrahedron Vg ,... V3! be the
affine image of the tetrahedron Vjp, ... , V3. Then, the corresponding element
I'! of S has the representation

I': X'Yu) = Zfi(u)v;l.

A simple way to get a point model for S is to interpret the 12 coordinates of
the four points V',..., V3 as a point G = o(I'!) in 12-dimensional affine
space A2, Tt is a point model for the affine maps in A3 (see [29] for a more
general point model of projective maps, which contains the present one as a
subspace).

The mapping o : S — A'? maps elements of S to points in A'2, We still
have to introduce a metric in A'2 based on the deviation of elements in S.
This is done as follows. Two elements I't, I'? of S, written as

3
Fj : Xj(u) = Zfz(u)v;]; Jj=12

i=0

may be mapped onto each other by the affine map a which maps the corre-
sponding tetrahedra onto each other, i.e., a(V;') = V2. The vectors connect-
ing corresponding points are

D(U)ZXQ(U)—Xl(U)ZZfi(U)(Vf—Vil)- (29)

We view ||D?(u)|| as a function defined on the fundamental object I" and
integrate it over I' to get a distance d between I'" and I'?,

(I, r? .= % /F D?(u)drI". (30)

Here, we have normalized with the integral over I,

N:/dF.
r
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Inserting (29) into (30), we realize d” as a positive definite quadratic form in
the coordinates of the difference vectors D; = V> — V!,

arr?) = 4 | b3 [ feoar (31)
+2D0-Dl/Ffo(u)fl(u)dr+...+D§/Ff§(u)dr}.

Hence, we have introduced a Euclidean metric in A'? and thus have a way to
solve approximation problems in S via approximation in Euclidean 12-space.

Theorem 4. The above defined mapping o maps elements from a space S
of affinely equivalent geometric objects in R® to points in A'2. The deviation
measure (30) between objects I'',I'? in S introduces a Euclidean metric in
the image space A2,

The occurring integrals are extended over a representative I" of the space
S. If I' has the dimension of the space it spans (i.e., is either a line, a planar
domain or a 3D solid), it does not matter which element of .S has been chosen
as I'. This is so, since ratios of volume integrals are invariant under affine
maps. Otherwise, this choice has an influence on the definition of the metric.

Let us briefly discuss now, in which way our previous investigations are
special cases of the present more general concept.

1. For the deviation measure between planes (based on the same domain
I" of interest), we may see the affine maps between two planes realized
by a projection parallel to the z-axis. The space of geometric objects is
then the set of images of the domain I" under projections parallel to the
z-axis onto all planes which are not parallel to the z-axis. Clearly, we
need no reference tetrahedron for the affine image of the planar figure
I', and now the space S and the image space A% are only 3-dimensional.
Otherwise, except for the (unnecessary) normalization, the concept for
planes is precisely a special case of the general concept.

2. The deviation measure between lines defines affine maps between two
lines with help of the auxiliary planes. In this way we set up the affine
mapping via two points and their affine images. Clearly, we do not need
more for our concept. Note that the same idea applies to the 6-dimensional
space of line segments in R® (see [3,8]).

3. Finally, for the set of spheres we have set up a special affine mapping
between two spheres, namely the central similarity (compatible with the
orientation). This is the only case where I" spans 3-space and where we
do not have a volume integral over the spanning space. Clearly, we could
not use the whole space of affine images of a sphere, since we did not
want to work with ellipsoids but with spheres only. In this way, we arrive
at a 4-dimensional point model. The deviation measure is exactly the one
which corresponds to the definition in the general concept.
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There is still a lot of room for work in the area of approximation in spaces
of geometric objects. For example, other important spaces (CSG primitives
and other fundamental objects in CAD systems) could be investigated. Even
the special cases of planes, lines and spheres need more research, in particular
for m-parametric families of objects with m > 1.

There are also relations to known approaches which deserve further inves-
tigations. In particular, the present ideas are closely related to kinematic map-
pings which are used in motion design (see [30] and the references therein).
It has to be investigated whether we can improve the construction of approx-
imating motions based on our approach.
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