G -Hermite Interpolation of Ruled Surfaces

Martin Peternell

Abstract. This article discusses two methods for G'-Hermite interpo-
lation of ruled surfaces with low degree rational ruled surfaces. We will
interpret ruled surfaces as one-parameter families of straight lines. Given
two generating lines GG1, G2 and tangent planes at points of these lines,
we want to construct polynomial or rational ruled surfaces of low degree
interpolating these boundary data.

§1. Introduction and Fundamentals

Ruled surfaces are among the simplest surfaces used for modeling and design,
since one family of parameter curves are straight lines. Applications of ruled
surfaces include surface modeling, motion design and wire-cut EDM. In the
last years several articles deal with design of ruled surfaces, see for instance
[2,5,7]. Different viewpoints and techniques can be chosen to study ruled
surfaces. Here, they shall be treated as (differentiable) one-parameter families
of lines.
A ruled surface ® in Euclidean space IR® possesses a parametric represen-
tation
x(u,v) = a(u) + vr(u), uelveR, (1)

where a(u) denotes a directrix curve and r(u) # (0,0, 0) denotes a vector field.
In the following, we assume sufficient differentiability and regularity of the
functions involved. The generating lines G(u) of ® are obtained by inserting
a constant ug into (1). If r(u) = c is a constant vector, (1) parametrizes a
general cylinder.

The tangent plane at a regular surface point is spanned by the partial
derivative vectors x,, = a + vr and x, = r. Thus, the surface normal at x is

n(u,v) = x, X X, = a(u) X r(u) +v(t(u) X r(u)) = ny(u) + vng(u).

A generating line G(ug) is called non—torsal iff det(a(ug),r(ug),r(ug)) # 0,
which expresses linear independence of ny =a xr and ny =1 X r.
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Fig. 1. Non-torsal ruled surface and torsal ruled surface with cuspidal line.
The surface normals along the generator G(ug) are parametrized by
y(v,w) = a(ug) + vr(ug) + w(ng(up) + vng(up)).

Because of bilinearity in the parameters v and w, this parametrization rep-
resents a hyperbolic paraboloid. The points a + vr on G(ug) are in bijective
correspondence to the normals nj + vny (or tangent planes) by

a(ug) + vr(ug) — ny(ug) + vng(ug). (2)

We can extend formula (2) for the parameter value v = oo. This implies
that the point at infinity of G(ug) possesses a tangent plane with normal
vector na(ug). The mapping (2) is called contact projectivity along a non—
torsal generator. This leads to the following Lemma.

Lemma 1. Two ruled surfaces x1,Xs are tangent at all points of a common
generator G, iff X1, X9 possess same tangent planes at three points of G.

A generator G(ug) is called torsal if all regular points of G(ug) possess
the same tangent plane. Analytically, we have

det(a(uo), r(uo), ¥(ug)) = 0. (3)

There are two cases to be distinguished. First, if rank(r(ug), (ug)) = 1, all
points on G(ug) are regular and the common surface normal along G(ug) is
axr. If ¢ is a cylinder surface, all rulings are of this type and parallel to each
other. Thus, G/(ug) are called cylindrical. Secondly, if G(ug) is not cylindrical,
there exists exactly one singular point on G(ug), whose parameter value is

(Axr)-(rxr)
(txr)-(fxr)

Ve = — (4)
It is called cuspidal point. The surface normal in all other points of G(ug) is
a x r. A ruled surface ® is called torsal, if it is developable, which expresses
that ® can be represented as envelope of its one-parameter family of tangent
planes

(x—a)-(axr)=0.

The singular curve x(u, v.(u)) = c(u) on @ is called line of regression or cuspidal
line. If the curve c(u) consists of one point only, ® is called cone.
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If G(ug) is a non-torsal generator, the parameter value vs = v, in (4)
parametrizes the striction curve a(u) + vsr(u). The distribution parameter

(u)

is a Euclidean differential invariant of first order. It measures how fast the
tangent plane turns around G(ug) if the point x(ug,v) travels along G(uy).
It is a signed invariant, and is zero for torsal generators (except for some
cylindrical generators of higher order). For more details on Euclidean line
geometry see for instance [1,3].

_ det(a,r, 1)
(r x 1)2

d(u) =

§3. An Elementary Method for G'-Hermite Interpolation

Let R : x(u,v) = y(u)+vr(u) be a given ruled surface in R?, v € I and v € R.
We assume that there is a cartesian coordinate system such that all generating
lines G(u) = y(u) + vr(u) intersect two parallel planes E; : z = 0 and FEj :
z = 1. Let ¢1(u), ca(u) be the intersection curves of R with E7, Fs. We pick
a sequence of generating lines G;, 1 = 1,..., N, and compute tangent planes
along them. Our task is to determine a ruled surface S which interpolates two
adjacent generators G, H C {G;} such that S and R are tangent at all points
of G and H. Let

a:GﬂEl, b:HﬂEl, p:GﬂEz, q:HﬁEg.

The intersection points of the tangent planes at a, b and p, q along G, H with
FEq, E5 are the inner points ¢, r, see Fig. 2.

We construct a low degree rational (or polynomial) ruled surface S as
tensor product surface of degrees (d, 1),

S x(u,v) = (1 —v)ky(u) + vka(u),

such that the planar intersection curves k; and ks interpolate points a, b and
P, q plus the given tangents determined by ¢ and r. This yields that S and R
possess common generating lines G, H and same tangent planes at the points
a,p and b, q.

Applying Lemma 1, R and S are tangent at all points of G (or H), if
they have the same tangent plane at a third point, different from a,p (or b,
q). For simplicity we choose this third point as midpoint of a, p (or b, q), see
Fig. 2.

There is a one parameter family of conics

1 — u)2a+ 2tu(l — u)c + u’b
(1 —u)?+ 2tu(l — u) + u?

kl(U) = (

satisfying the G'l-requirements in the plane F;. Since we set the weights at
a,b to 1, we use a special parametrization here. Additionally there is a one
parameter family of conics

(1 — u)?pwy + 2u(l — u)r + u?qus
wi (1 —u)? + 2u(l — u) + wou?

k2 (U) =
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Fig. 2. G! Hermite boundary data and solution of the interpolation problem.

satisfying the G'-requirements in the plane Ey. We put weights wi,ws to
points p,q to be flexible with the parametrization. Further, let n and m be
the given surface normals at the midpoints 1/2(a+ p) and 1/2(b + q).

Inserting the G' condition for the midpoints, we find that the surface S
is tangent to R at all points of G and H iff the following conditions on the
parameters ¢, wq, wy hold:
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Here, x = (x1,22) denotes the vector built by the first two coordinates of the
vector x € IR.

Expressing wi,ws in terms of ¢ yields a one parameter family of ruled
surfaces S(t) solving the G'-Hermite interpolation problem.

Useful solutions

The above discussed algorithm results in useful solutions if 71, 79 possess the
same sign. If this is not the case, one of the conics possesses points at infinity.
This is caused by a too large difference of the distribution parameters at G and
H. To avoid this, we can choose generators G, H ’closer’; or, alternatively, we
let E5 be the plane z = 0.5, for instance, which reduces the turning angle of
the tangent planes. If the segments on G, H are sufficiently small and G and
H are close enough, 71, 75 will have same sign. For a useful distance measure
between lines, see [6].

If G is a torsal generator, (¢ —a)-n = 0 and (r — p) - n vanishes too.
Thus, the G'-condition along a torsal generator is already satisfied, and the
weight wy can be chosen arbitrarily.

If both generators are torsal, all weights can be chosen arbitrarily, for
instance = 1. The solution S is in general a non-torsal polynomial ruled
surface of degree 4 with two torsal generators.

Theorem 2. Given G'-Hermite boundary data of a ruled surface, there is a
one parameter family S(t) of rational ruled surfaces of degrees (2,1) and order
4 which interpolate the given data. The surfaces S(t) carry a one parameter
family of conics, and intersect two given planes E1, E5 in conics.
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The presented method is general and works for arbitrary input data and
the planes E1, Fs need not be parallel.

In Section 4 we will compute a lowest degree solution of the G'-Hermite
interpolation problem, which consists of a smoothly joined pair of ruled quadrics.}j
But, since quadrics never possess torsal generators, this method is restricted
to ruled surfaces without torsal generators. To derive this method we have to
introduce some theory about lines in space.

A modeling scheme using cubic ruled surfaces is difficult because it can
be proved that cubic surfaces do not fit all possible data. A combined method
consisting of quadric pairs and cubic surface segments is discussed in [5].

63. Local Coordinates of Lines

A local parametrization of the set of lines in R?, or at least in a domain of
interest shall be constructed. With some restrictions, a line GG can be mapped
onto a vector G = (g1,...,94) € R*. This implies that a ruled surface ® is
mapped onto a curve and a two parametric family of lines is mapped onto a
surface in R*. Thus, the G'-Hermite interpolation of ruled surfaces in R>
will be translated to G'-Hermite interpolation with curves in IR*.

For practical purposes, it is often sufficient to consider patches of ruled
surfaces, bounded by two planes which enclose the domain of interest in R®. In
the following we will assume that these two planes are parallel and are chosen
to be F1:2=0and Ey: z = 1, perpendicular to the z-axis of the coordinate
system. The intersection points g1 = (g1, g2,0) and go = (g3, g4, 1) of a line
G and the planes F1, Fs define a parametrization of all non-horizontal lines
L by

p:R*=R?*xR?>— L
G = (91,92, 93, 94) = W(G) = G.

(6)

Parametrization p is a local mapping, and depends essentially on the coor-
dinate system. In applications, the z-axis of the coordinate system can be
computed as solution of a regression problem, see [6].

Some Linear Subsets of R* and their y-Images
Given two non—intersecting lines G, H in R?, there is a unique bilinear tensor
product surface (hyperbolic paraboloid)

x(u,v) = (1 —v) (1 —u)g1 + uge) +v ((1 — u)hy + uhy).

The p~'-image curve of x is the straight line segment in IR* connecting G =
pYHG) and H = p~1(H), see Fig. 3.

If G and H are intersecting, hy — g1 and hs — g9 are linearly dependent.
Analytically, this says that

(h1 — g1)(ha — ga) — (ha — g2)(h3 — g3) = 0.
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Fig. 4. Hyperbolic net in R? as p-image of a plane in R*.

The direction vector H — G = (hy — g1,...,hs — g4) satisfies the quadratic
equation of the indefinite quadratic form

I: <X7X>z = X114 — T2X3 = O,X S IR4. (7)

Vectors satisfying (7) shall be called isotropic. The p-image of an isotropic
line (1 — u)G + uH (line with isotropic direction vector) is a pencil of lines,
spanned by intersecting lines G, H. We summarize.

Corollary 3. The p-image of a line G in IR* is a pencil of lines or a hyperbolic
paraboloid, depending on whether GG is an isotropic line or not.

Let E be a plane in IR* which is parametrized by E : A+o(B—A)+7(C—
A). What does the corresponding set of lines in R? look like? We compute
the isotropic directions in £ and obtain the following quadratic equation in
the homogeneous parameter (o : 7):

(c(B—A)+7(C—A),0(B—A)+7(C—A)); =0. (8)

If (8) vanishes identically, the plane E is called isotropic since it contains only
isotropic directions. The family of lines p(F) in IR® is a bundle (all lines
through a fixed point) or a field (lines in a fixed plane).

Otherwise, the equation (8) has two, one or zero solutions and the planes
are of hyperbolic, parabolic or elliptic type. The family of lines x(E) in R? is
called hyperbolic, parabolic or elliptic net.

A plane F of hyperbolic type carries two 1-parameter families of isotropic
lines, parallel to the isotropic directions. The corresponding hyperbolic net
p(E) consists of two 1-parameter families of pencils of lines. The vertices of
these pencils form the two horizontal focal lines or axes of the net, see Figure 4.
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A plane E of elliptic type in IR* contains no real isotropic directions such
that the focal lines of the elliptic net u(FE) are conjugate imaginary. There
are no pencils contained in that net p(FE) and pairwise distinct lines G, H of
pn(E) are skew.

A plane F of parabolic type carries a 1-parameter family of isotropic lines
such that the parabolic net pu(FE) consists of a 1-parameter family of pencils
of lines. The vertices of these pencils lie on one horizontal focal line and the
planes containing the pencils pass through this focal line. The vertices and
the planes are in a projective correspondence.

Corollary 4. The p-image of a plane E in R* is a bundle or field of lines in
case when E contains only isotropic directions and otherwise it is an elliptic,
parabolic or hyperbolic net of lines.

Ruled Surfaces as py-images of curves ¢ R*

Consider a smooth curve C(t) in IR*, different from a straight line. The ruled
surface pu(C(t)) is parametrizable in the form

x(t,v) = (1 — v)e(t) + vea(t), 9)

where ¢, ¢y are the intersection curves of ;(C) with the planes Ey, Es.

The tangent line C(to) + AC(to) determines the first order properties of
the ruled surface u(C) at the generating line u(C(to)). If C(to) is isotropic,
1(C(to)) is a torsal generator and the cuspidal point v(to) is the vertex of the
pencil of lines u(C + AC)(to).

If C(tg) is not isotropic, the hyperbolic paraboloid determined by the
tangent line C(ty) +AC(to) touches the ruled surface z(C) in all points of the
generator u(C(ty)).

Let C(t) be a planar curve in a non-isotropic plane E. The ruled surface
pu(C(t)) is contained in the net of lines u(E). If E is isotropic, pu(C(t)) is a
cone or the set of tangent lines of a planar curve, depending on whether p(FE)
is a bundle or field of lines.

In particular, if C is a conic in a non-isotropic plane, u(C) is a rational
ruled surface of order < 4. The parametrization (9) is a (2,1) tensor product
representation and cq,cs are conics in the planes Fq, F5. The degree is less
than 4 if ¢; and co possess common points for common parameter values.
These parameter values as well as the common points need not to be real.
Additionally, common points could lie at infinity.

In general, let C(t) be a rational curve of degree d in R*. A (d, 1) rational
tensor product point representation of ;(C) is given by (9). The order of the
ruled surface is at most 2d, since the planar curves ci,co are in general of
degree d.

64. Interpolation by Pairs of Quadrics

Given two generating lines A, B of a ruled surface R and tangent planes (or
surface normals) at points of A and B, we want to construct a ruled surface,
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Fig. 5. Isotropic biarc in R* and pair of quadrics in R3.

consisting of a pair of ruled quadrics, which interpolates the given boundary
data. Since ruled quadrics do not possess torsal generators, we have to restrict
ourselves to ruled surfaces R without torsal generators. This implies that the
distribution parameter § has no sign changes in the interval determined by A
and B.

The local parameterization g maps generating lines A, B with associated
tangent planes onto points A, B with associated tangent lines with direction
vectors S and T, respectively. In general, the data A, B, T, S span a 3—space
in R*.

In Section 3 we introduced an indefinite quadratic form I in formula (7).
Similar to Kuclidean space, one can define isotropic circles with respect to I.
A curve K is an isotropic circle if it is a planar intersection of an isotropic
sphere X : (X, X); = r. Additionally, we require that the plane carrying K
is not tangent to .. This excludes degeneracies where p(K) is contained in a
bundle or a field or is the union of two pencils.

An isotropic circle (i-circle) in a plane of hyperbolic or elliptic type is a
conic K, whose points X possess constant isotropic distance r from a given
center M,

IM - X|l; = /(M- X,M — X); = r = const.

An isotropic circle in a plane of parabolic type is a parabola K with isotropic
axis. The following theorem holds.

Theorem 5. The p-images of isotropic circles K are ruled quadrics.

This theorem allows us to apply an isotropic biarc construction in R*. We
will construct two isotropic circles Kj(t), Ko(t), which interpolate the given
data A, T and B, S and join smoothly at a point C. Taking into account that
no torsal generators occur in the segment under consideration, we can assume
that

sign((S,S);) = sign((T, T);).

This allows the normalization ||S||; = ||T||; = 1. Further, by letting Y =
B — A we have to guarantee that sign({Y,Y);) = sign((T,T);), which can
always be achieved by an appropriate choice of the data lines A, B.

The biarc K, K2 possesses inner Bézier points D, E and junction point
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Ty

Fig. 6. Sequence of pairs of ruled quadrics interpolating G !_Hermite data.

C, see Fig. 5, with

D-A+).E-B-,T.C=-" D+ 2 g
A4 A+

The weights w1, w2 of the inner control points D, E are computed by

_ (C-AD-A); ~_ (B-C,E-C);

“JC-AD-Al; " [B-CE-C[:’

The points A, B, C, D, E and weights wq, wo determine a biarc if and only if
(E-D,E—-D); = (A +p)°

w1

Elaborating this gives a bilinear equation in A and g,
We summarize the result:

Theorem 6. Given G'-Hermite boundary data satisfying above restrictions,
there exists a one-parameter family of isotropic biarcs in R*, interpolating the
given data. Finally, there is a one-parameter family of quadric pairs solving
the G'-Hermite interpolation problem in R3.

To obtain a unique solution we might let A = p or A + g — min, see [4].
More generally, optimization in curve design is often done by minimizing a
functional involving second derivatives. Thus, we can require that

t1
F = (C, C)edt — min, (10)
to
where ;(C(t)) is a ruled surface. Here, (X, X), = 22 +23+22+25+2123+ 1274
denotes a Euclidean scalar product in IR* which induces a distance measure
between lines, see [6]. The minimization of (10) is equivalent to minimizing
the functional

3/1:1 /01[(1 — )&y + ués)*dudt, (11)

where (1 — u)cq + uce are level curves of the ruled surface p(C). Thus, we
minimize the linearized curvatures of all these level curves.
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Theorem 7. Minimizing the functional (11) over all level curves (1 —u)cy +
ucy of the ruled surface S = p(C(t)) equals minimizing the linearized bending
energy of the image curve C(t) in R* with respect to the Euclidean scalar
product {, ).
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