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Abstract

We discuss recent progress on approximation in the space of planes.
Based on an appropriate distance measure introduced in this space,
modeling problems with developable surfaces can be solved with curve
approximation algorithms. Moreover, recognition and reconstruction
of planar faces in clouds of measurement points appears as a clustering
problem in the space of planes. Examples from applications illustrate
the practical applicability of this concept.
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1 Introduction

Our original motivation for studying approximation in the set of planes came
from the computational geometry of developable surfaces. There, it turned
out that viewing these surfaces as envelopes of planes yields computational
advantages [1, 5, 12, 13].

By projective duality, projective and algebraic properties of curves can
easily be transferred to developable surfaces. NURBS curves correspond to



NURBS developable surfaces. However, when dealing with approximation,
we need distance measures, and thus projective duality is not applicable.
We have shown in earlier papers how to solve this problem by introducing a
Euclidean metric in the space of planes [12, 11, 13].

In the present paper, we will further investigate the metric in the space
of planes and present new applications of this concept. The first application
concerns the recognition and reconstruction of planar faces in point clouds
(scanned objects). We will show a solution based on the detection of clusters
in the space of planes. The second application deals with the approximation
of a point cloud or a surface by a developable surface. In contrast to earlier
approaches [2, 5, 12] the data can come from a doubly curved surface. The
solution is based on curve fitting to a point cloud in the dual space.

2 A Euclidean metric in the space of planes

In order to solve approximation problems in the set of planes, it is necessary
to introduce an appropriate distance between two planes. Fuclidean geom-
etry does not directly provide such a distance function. All invariants are
expressed in terms of the angle between planes and are inappropriate for our
purposes. In view of applications, we are interested in the distances of points
of the two planes which are near some region of interest, and this distance
can become arbitrarily large with the angle getting arbitrarily close to zero
at the same time.

We use the following well-known facts from projective geometry. If we
extend real Euclidean 3-space E® by ideal points (points at infinity), i.e.,
intersections of parallel lines, we obtain a model of real projective 3-space
P3. All ideal points form a plane in P2, the so-called ideal plane. The set
of planes in P? is a projective space itself, the dual projective space. It is
isomorphic to P3.

Analytically, one uses homogeneous Cartesian coordinates (xg, 1, z2, 3)
for points. For points not at infinity, i.e., £y # 0, the corresponding inhomo-
geneous Cartesian coordinates will be denoted by

T ) T3
r=—, y=—, z=—.
Lo Lo Lo

A plane with equation ugxg + uixy + usxs + ugzrs = 0, or, equivalently,
Uy + u1x + uoy + uzz = 0 can be represented by its homogeneous plane
coordinates U = (ug, uy, us, u3).



2.1 Definition of a Euclidean metric in the space of
planes

In the following, we will review results from [12, 11] on the introduction of a
Euclidean metric in the dual space. We first have to obtain the structure of
an affine space. Given a projective space P, we obtain an affine space if we
remove a hyperplane from P. Thus, we have to remove the points of a plane
from the dual space. Viewed from the original space P23, this means we have
to remove a bundle of planes from P3. Since we actually want to remove the
ideal plane, this bundle must have a vertex at infinity. Hence, if we remove
all planes passing through a fixed ideal point (for example, planes through
the ideal point of the z-axis = planes parallel to the z-axis), we get a set of
planes which has the structure of an affine space. This is easily seen in the
analytic model. Planes, which are not parallel to the z-axis, can be written
in the form

z = ug + ur T + usy, (1)

i.e., they have homogeneous plane coordinates U = (ug, uy, us, —1). We see
that (ug,u1,us) are affine coordinates in the resulting affine space A* (of
planes, which are not parallel to the z-axis).

We will now introduce a Euclidean metric in A*. Thereby we make sure
that the deviation between two planes shall be measured within some region
of interest. This region shall be captured by its projection I' onto the xy-
plane.

For a positive measure p in R? we define the distance d, between planes
A = (ag,a1,a9,—1) and B = (by, by, by, —1) as

dN(A, B) = ||(Cl0 — bo) + (a1 — bl)f,E + (Cl2 — bg)y”L‘z(#), (2)

i.e., the L*(p)-distance of the linear functions whose graphs are A and B.
This, of course, makes sense only if the linear function which represents the
difference between the two planes is in L?(p). We will always assume that
the measure p is such that all linear and quadratic functions possess finite
integral.

A useful choice for y is the Lebesgue measure dxdy times the characteristic
function xr of the region of interest ' (Fig. 1). If p = dxdyxr, we have

d,(A, B)? = /F (a0 — bo) + (a1 — b)a + (a0 — bo)y)2dzdy.  (3)



Figure 1: To the definition of the deviation of two planes.

We write dr(A, B) instead of d,(A, B). With ¢; := a; — b;, equation (3) can
be written as

J1 [z [y o
dr(A, B)? = (co, c1, ¢o) - Jz [a* [zy || & |. (4)

Jv [zy [y ¢

This is a quadratic form, whose matrix depends on the domain of integration
[ for the integrals (where we omitted the differentials dzdy for brevity).

Another possibility is that p equals the sum of several point masses at
points (x;,y,); see [4]. In this case we have

(A, B)® = Z((ao — bo) + (a1 — by)x; + (az — b2)y;)”. (5)

J

Theorem 1 The distance d,, defines a Euclidean metric in the set of planes
of type (1), if and only if  is not concentrated in a straight line.

Proof: See [12]. O

In this way, approximation problems in the set of planes are transformed
into approximation problems in the set of points in Euclidean 3-space, whose
metric is based on d,.

The introduced metric depends on the choice of the reference direction,
which we identified with the z-axis of the underlying coordinate system. One
has to note that with decreasing angle between the considered planes and the
reference direction, the geometric meaning of the distance is getting worse.



This motivates the following method for determining an appropriate reference
direction.

Assuming for the moment an arbitrary coordinate system, the reference
direction (z-axis of the new coordinate system), which shall be represented
by the unit vector v, can be determined as follows: Let the planes U; under
consideration be given by Uj; : u; o + w; 12 + w; 2y + u; 32 = 0 with unit normal
vectors n; = (U1, Ui, u;3). We want to minimize the angles «; between the
unknown vector v and the unit normal vectors n;. For that we maximize the
sum of squared cosines of the angles ;. This results in the maximization of
the quadratic form

under the constraint ||v|| = 1. This is a well known eigenvalue problem.

It might even be necessary to use different reference directions in order
to fully cover the space of planes appropriately. This results in different local
mappings of the space of planes to affine 3-space and in different Euclidean
metrics. For the application we are dealing with in the next section, this
strategy is sufficient.

Remark: For the computation of an interpolating or approximating real
valued function defined on all planes within some region of interest, one will
construct partial solutions by local mappings to Euclidean 3-space and appli-
cation of known techniques for scattered data interpolation or approximation
in this point model. Those partial solutions have to merged later into a final
interpolating/approximating function. A method how this can be handled
follows from [10]. There, interpolating functions on lines are constructed
by local mappings of line space into affine 4-space. We are currently inves-
tigating applications of scattered data fitting in the space of planes: One
application deals with the detection of symmetries (with respect to planes)
of an object or point cloud. Another application concerns the approximation
of a surface or point cloud by a sweeping surface which is generated by the
motion of a planar profile curve.

2.2 Properties of the metric in the space of planes

At first sight, there seems to be a wide variety of possible choices of the metric
because of the choice of the domain of interest. However, it is clear that the
introduction of a Euclidean metric in an affine space requires the choice



of an ellipsoid which plays the role of the unit sphere. A uniform scaling
of this ellipsoid implies a multiplication of all arising Euclidean distances
with a constant factor, and thus it is not relevant. This amounts to 5 real
parameters which fix a Euclidean metric; they can be seen as the ratio of the
essential coefficients in the symmetric matrix in (4).

We now ask, to which special domains I' of interest we may confine our
considerations without losing the existing degrees of freedom. We will see
that it is sufficient to work with rectangular domains, which simplifies the
computation of the entries in (4).

For that we may introduce the Poinsot central ellipse p(T') of a domain T'.
Let us assume that the coordinate system is chosen such that the origin is the
barycenter of I' and that the coordinate axes agree with the principal axes
of I'. The area of I' and the quadratic moments M, M, of I' with respect to
the axes, which also appear in (4), are

A= /dxdy, M, = /dexdy, M, = /x2dxdy. (6)

The Poinsot central ellipse p(T") of T" is only dependent on the principal axes
and the moments M,, M,. With respect to the chosen coordinate system its
equation is

p(T) : M,z®+ Myy* = 1. (7)

Figure 2: Poinsot central ellipse of a planar domain.

Theorem 2 The Euclidean metric (4) in the space of planes to a given do-
main of interest I' depends only on the area of I' and on the Poinsot central
ellipse of T'. Up to an unimportant uniform scaling, all possible distance
functions can be achieved by working with a rectangle T'.



Proof: The definition of the metric in the space of planes is purely geometric
and thus it is independent of the choice of the coordinate system. We there-
fore associate a special Cartesian system with the domain I'. Its origin is the
barycenter of I', and its axes agree with the principal axes of the domain I'.
These are those lines L for which the moment of I' with respect to L assumes
an extremal value. Under these assumptions, we have

/:Edzdy = /yd:vdy = /a:yd:vdy =0.

Now the matrix in (4) is a diagonal matrix. The three nontrivial entries are
the area A of I', and the moments M, M, with respect to the principal (i.e.,
coordinate) axes.

Thus p(T') and the area completely determine the distance function (4).
Geometrically, only the ratio of the three entries in the matrix is important.
Picking a rectangle with the same barycenter and principal axes, i.e., [—a, a] X
[—b, b], we obtain

A:My:Mm:?):aQ:bQ.
Since the moments are positive in any case, we clearly obtain all ratios for
A: M, : M, by working with rectangles only. This completes the proof. O

To further understand the metric we investigate the spheres of planes
in the original space. Naturally, a sphere of planes with central plane C'
is the set of all planes which possess a constant distance from C'. This set
of planes appears in the affine dual space A* as ellipsoid. Since a duality
is determined by a linear transformation in the vector spaces, the planes
possessing constant distance from C will envelope a quadric in the original
space E3. More precisely, this quadric has the following properties (see Fig.
3).

Theorem 3 All planes having constant distance to a given plane C, envelope
a two-sheeted hyperboloid ). Intersecting 0 with planes parallel to C' results
in a family of ellipses. Their orthogonal projections onto the reference plane
form a family of ellipses which are homothetic to the Poinsot central ellipse

p(D).

Proof: Consider an affine map «, which maps the central plane C' : z =
Co + c1x + coy onto the reference plane P : z = 0,

a: v =a,y =y, ¥ =2—cy—c1z— coy.
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Figure 3: Left: Front view of a sphere of planes and sections with planes
parallel to C. Right: Axonometric view and top view of the section curves.

Under this affine map, the distance between two planes is mapped to the
distance between the image planes, since the differences of distances in z-
direction remain the same. Thus, the set of planes with constant distance d
to C' is mapped under « to the set of planes with the same constant distance d
to P. Using the notation from formula (6), the latter planes z = ug+ujz+usy
satisfy the equation

Aug + Myui + Myus — d* = 0, (8)

which represents a quadric € in (affine) plane coordinates. To obtain a
representation of 2 in affine point coordinates x,y, 2 we have to form the
inverse of the matrix of the quadratic form on the left hand side. This leads
to

L2y, ()

which is the equation of a two-sheeted hyperboloid. Intersecting {2 with a
plane V' parallel to P, i.e., a plane z = ¢, and projecting onto P yields

22 )2 1 2
M, T AT E (10)



For any constant ¢, for which C' > 0 holds, one obtains an ellipse which is
just a scaled version of the Poinsot central ellipse (7). Clearly, planes V' with
C = 0 are tangent to the hyperboloid and for planes V with C' < 0, the
intersection is not real.

Applying a1, the projection onto P does not change, and thus the the-
orem is proved even in the general case. O

2.3 A convenient coordinate transformation in A*

Since the distance between two planes is derived from the positive definite
quadratic form (11), A* becomes a Euclidean space itself. But unfortunately
the scalar product matrix in (4) usually differs from the canonical Euclidean
scalar product matrix. Thus, the reference surface for measuring distances
between two points in A* is not the unit sphere with respect to the canonical
Euclidean metric but an ellipsoid, defined by the scalar product matrix in
(4).

In order to visualize the images of planes in A* in a more convenient way
one may apply a coordinate transformation to the image points (ug, u1, us)
of planes z = ug+ ux + usy such that the scalar product matrix becomes the
identity matrix. Although our eyes are no measurement devices, measuring
with a reference sphere has visual advantages to measuring with a reference
ellipsoid. This is especially apparent if we are using orthogonal projections.

But also for computational reasons like computation of a lot of distances
between points in A* or computation of Euclidean invariants and applying
algorithms like curve fitting (see section 4.3) it is advantageous to apply a
coordinate transformation in A* such that the scalar product matrix becomes
the unity matrix.

So, let D be the scalar product matrix with respect to formula (11).
With help of eigenvectors and eigenvalues of D we define the mentioned
transformation. Let S be the matrix containing the eigenvectors v; of D
(normalized with vl - v; = 1) as column vectors and let sy, sy, 53 be the
corresponding eigenvalues. The matrix

1 1 1
T =
\/avla \/5,027 \/5,03

has the property that / = 77 - D - T and it is the inverse of the transfor-
mation matrix we are looking for. Since T possesses orthogonal columns the




transformation matrix 7", the inverse to T, is simply

Vsivy
T = | /5205 |,
V5303

where v} are row vectors. It follows that the distances between points 7" - z
in A* can be measured by the canonical Euclidean distance function (based
on the identity matrix).

Remark: The eigenvectors v; define the axes of the reference ellipsoid, the
eigenvalues are the squares of the inverse lengths of these axes.

3 Detection and reconstruction of planar faces
in point clouds

Assume that we are given a cloud of measurement points, which might be
scanned data from an object. Our goal is the automatic construction of a
CAD model of that object. This reverse engineering problem has a variety
of remarkable applications [16].

In the following we are interested in the detection and reconstruction
of planar faces in point clouds. A known solution to this problem uses the
Gaussian sphere [15]. For each data point, one computes a plane of regression
to the point and its nearest neighbors. The unit normal vectors of those
planes describe points on the Gaussian unit sphere. Points from a planar face
will give rise to nearly identical local regression planes and thus to a point
cluster on the Gaussian sphere. The detection of planar faces is reduced to the
detection of point clusters on the Gaussian sphere. An obvious disadvantage
of this approach is that we loose information when going from the regression
plane to the Gaussian sphere. Parallel planar faces cannot be separated
directly on the Gaussian sphere. Moreover, the loss of information is critical
in case of noisy data and complicated objects.

From the previous discussion, the readers will already observe, that map-
ping the planes to points in the dual space and using the Euclidean distance
introduced there to detect point clusters will result in an algorithm which
eliminates the problems of the Gaussian sphere method. We will now de-
scribe the algorithm in more detail.
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3.1 An algorithm to detect planar faces

We are given a cloud of data points obtained by measuring an object, which is
composed of planar faces, with a laser scanner. For simplicity we will restrict
ourselves to those planar faces, which are visible from one (far) viewpoint.
Additionally we assume that a coordinate system has been chosen such that
the laser rays enclose small angles with the chosen z-axis. The angles between
the faces and the z-axis should not be too small since faces of the object which
enclose small angles with the laser rays are clearly not well represented by
the data obtained by scanning from one viewpoint.

Let p; = (pi1,piz, Piz), © = 1,..., N, be unorganized points (measure-
ments) of the object. According to the assumptions, all faces are contained
in planes which are graphs 2z = ug 4+ w2 + usy over the plane P : z = (.

We give a brief outline of the algorithm of finding a single face of a
piecewise planar object.

1. Compute local planes of regression (local planar fits) ¢; for all data
points p;.

2. Compute the distances dr(.,.) between each pair of local planes of re-
gression €;, €;.

3. Determine the plane € (point E in A*) which possesses a maximal
number of neighbors (planes ¢;) in a spherical neighborhood in A*. This
set of neighboring planes defines the maximal cluster of local regression
planes.

4. Compute a plane of regression ¢ with respect to all data points pg
determined by the maximal cluster (defined by local planes of regression

Gk).

Each step of above outlined algorithm shall be described in more detail.

3.1.1 Computing local planes of regression

Step 1: The starting point in recognizing planar faces is to compute local
planes of regression with respect to data points in a neighborhood of each
data point p;. The neighborhood U; is chosen as symmetric domain in P :
z = 0 in the way that it contains sufficiently many data points to compute a
local regression plane. The size of U; depends on the distribution of the data
points and the application.

11



The computation of a regression plane is a well-studied subject. A least
squares formulation which incorporates the orthogonal distances to the solu-
tion plane leads to an eigenvalue problem (see e.g. [15]).

Since the objects under consideration possess edges (intersection of faces),
the data points ¢; in a neighborhood U; might belong to one, two, or even
more faces. In such cases the least squares solution which minimizes the
lo-norm or the errors might be a bad estimate of the carrier plane of the face
we are looking for. A convenient method to find heavy outliers is to compute
the local regression plane as minimizer of the /;-norm of the errors. After
having classified the heavy outliers we can compute the local regression plane
as minimizer of the ls-norm, but only with respect to the 'good’ data points
in the neighborhood of p;.

After having computed robust regression planes for all data points p;,
we obtain /N planes of regression ¢; which approximate the faces containing
data points p;. In particular, all data points which are contained in a fixed
face F' should possess local planes of regression which are close to the plane
describing the face F'.

For practical reasons we apply a small adjustment to the definition of the
distance dr(A, B)? of two planes A and B in formula (3) by normalizing by
the area of the domain of interest I,

1

(4, B)” = area(T")

/F((ao —bo) + (a1 — bi)z + (az — by)y)’dady.  (11)

Usually, the accuracy of the measurement device is known and one can
estimate standard deviations of the data points p; (their coordinates), in
particular a standard deviation 7 of the z-coordinate.

Practical tests have shown that the distance between two local planes
of regression ¢;1, €;o to data points p;1, p;o belonging to the same face F' is
usually lower than 7 (except for heavy outliers and points at edges).

Step 2: We compute all distances dr(e;, €j) between all local planes of re-
gression. Thus we have to allocate space for an array of size N(N —1)/2 and
we assume that this is possible. How to proceed if this fails will be discussed
below.

Remark concerning the choice of I': We are given a piecewise planar
object O in space all whose faces are not parallel to z. Its projection onto the
xy-plane shall be denoted by O'. The coordinate system in the xy-plane is

12



chosen such that the origin is the barycenter of O’ and the axes x and y agree
with the principal axes of O'. We compute the quadratic moments M,, M,
and the area A of O with equation (6) and choose I' to be a rectangular
domain [—a, a] x [—b,b] with A : M, : M, = 3 :a*: b*. This is in accordance
with the proof of theorem 2. Dependent on the application, other choices of
I’ might be more natural and more suitable.

3.1.2 Clustering in the space of planes

Step 3: We will determine the maximal cluster of image points Fj in A*
of the local regression planes ¢,. The maximal cluster shall be defined in
the following way: We look for the point £ possessing a maximal number of
points Ej in a spherical neighborhood S(7) of radius 7. All those points Ej,
form the maximal cluster in A* and correspond to local planes of regression
¢ in Euclidean 3-space which are close to each other. Further, such a cluster
of planes corresponds to points p, which are contained in a planar face F' of
the object.

Remark: We assumed implicitly that each plane carries only a single face of
the object. This is in general only true for convex objects. But if the object
possesses planes which carry more than one face one has to classify the data
points p; found in step three according to the faces they are belonging to.
This is again some sort of clustering since the faces belonging to a fixed plane
have to be spatially separated.

Step 4: The plane ¢ containing the face F' is computed as plane of regression
with respect to the data points ps, which are determined by the planes €,
of the cluster. Having computed the plane ¢ containing the face F' one
eliminates all planes ¢, belonging to the maximal cluster from all further
computations.

Remark: If the data set representing the object is very large, the allocation
of an array of size N(N —1)/2 for storing distances is not possible. We want
to give some hints on how to manage such a problem.

1. If all data points have to be taken into account we may partition the
problem in A* with help of an octree structure. Let the bounding box
of the data E}, in A* be the root of the tree. If the number of data
points contained in its leaves is suitable we run the algorithm on the
sub-boxes, otherwise we partition again.

13
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Figure 4: Left: Image points of planes of regression in A*. Right: CAD
model of a building.

2. One can apply a presegmentation on the Gaussian sphere. We define
a covering of the Gaussian image (unit normals) of all local planes of
regression by spherical caps. Then, above defined algorithm is applied
to any of those subsets defined by the spherical caps (under the as-
sumption that this method yields a significant data reduction). But
since the caps in the Gaussian sphere have to overlap we have to merge
the solutions (clusters) obtained with respect to the defined subsets.

3.1.3 Finding all faces of an object

Finally we discuss how one can find all faces belonging to an object. As in
section 3.1 we assume that all faces are visible from one far viewpoint such
that we can work with one space A* for all planes of regression computed
from the data points p;.

Applying the above described algorithm iteratively until no or just a thin
scattered set of local regression planes is left will serve finding all clusters
and thus all faces of the object.

Two examples which shall illustrate the algorithm are displayed in fig-
ures 4 and 5.

Remark: If an object is scanned from different positions to avoid hidden
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or badly represented faces we would have to partition the problem so that
each subset of data points we are working with describes points of faces
which are visible from one far viewpoint. This is necessary in particular for
the reconstruction of convex objects with planar faces. This partitioning is
reached by the following procedure:

1. Compute local regression planes to all data points. The unit nor-
mal vectors of these local regression planes are points on the Gaussian
sphere.

2. Compute a covering of the Gaussian sphere by regions Uj;, for instance
spherical caps. Determine the membership of unit normals vectors of
the regression planes with respect to the regions Uj.

3. Define an affine space A} (of local regression planes) for each region Uj
and associate a unit vector z; to each region.

The direction z; will be used as z—axis of a local coordinate system,
such that all local regression planes whose unit normals belong to U; are
graphs of linear functions over the zy-plane P, i.e. 2 = ug + u1x + usy.

4. Apply all necessary computations, for instance, finding clusters of points,
in the space Aj.

5. Go back to initial Euclidean space and merge the results obtained by
the local computations in the spaces AJ.

This procedure can be applied to different problems. The last step and
step before last have to be defined according to the actual task. Especially,
merging the partial solutions with respect to the spaces A*; may be quite
different and possibly difficult in various applications.

3.2 Reconstruction of buildings from airborne laser
scanner data

The reconstruction of 3D urban models from airborne laser scanner data is
an important research topic in geodesy and photogrammetry. We do not
review the literature on this problem here, but just point to a very recent
paper by Vosselman and Dijkman [17]. There, an extension of the Hough
transform to 3 dimensions is used to recognize planar faces of the buildings’
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Figure 5: Left: ITmage points of planes of regression in A*. Right: CAD
model of a building.

roofs. This approach has some similarity to ours, since the Hough transform
is also a special duality. However, in our method the metric in the space
of planes plays a crucial role and thus it can be expected that the present
approach is more reliable.

The examples displayed in figures 4 and 5 show in the right hand side
CAD-models, which represent the simplified geometry of the buildings. The
data are not original measurements but are resampled to a regular grid.
Additionally, the ground plans of the buildings were used to generate these
CAD-models. The left hand side shows in both cases the image points in A*
of the local planes of regression to all data points.

4 Approximation with developable surfaces

4.1 Some essentials on developable surfaces

Developable surfaces can be isometrically mapped (developed) into the plane,
at least locally. When sufficient differentiability is assumed, they are char-
acterized by vanishing Gaussian curvature. A non-flat developable surface
is the envelope of its one parameter family of tangent planes. Such a devel-
opable surface locally is either a conical surface, a cylindrical surface, or the
tangent surface of a twisted curve. Globally, of course, it can be a rather
complicated composition of these three surface types. Thus, developable sur-
faces are ruled surfaces, but with the special property that they possess the
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same tangent plane at all points of the same generator (=ruling).

Because in all points of a generator line the tangent plane is the same,
we can identify a developable surface with the one-parameter family of its
tangent planes U(t). Applying a duality in projective space, U(t) is a curve
in dual projective space. If this curve is a NURBS curve

U(t) = S UNEG), (12)

where U; are homogeneous coordinates of the control points and NF(t) are
normalized B-splines over a certain knot vector, the original surface is a
developable NURBS surface, since a duality is a linear (rational) mapping.
Methods for computing a parameterization in standard NURBS tensor prod-
uct form have been developed. For a detailed study of developable surfaces
from the computational point of view we refer the interested reader to the
textbook [13].

4.2 A brief summary of algorithms for developable sur-
face approximation

Consider the following approximation problem. Given m planes Vi,...,V,,
and corresponding parameter values ¢;, approximate these planes by a devel-
opable surface U(t), such that U(t;) is close to the given plane V;. Here close
is meant in an appropriately chosen Euclidean metric in the space of planes as
outlined in section 2. The given planes are points in the resulting Euclidean
space. Fitting a B-spline curve in A* to these points, we obtain in the orig-
inal space the tangent planes of a NURBS developable surface which solves
the given problem [12]. Using a special class of developable NURBS sur-
faces with a particularly simple representation in the dual model, Pottmann
and Wallner [12] also showed how to deal with given rulings of developable
surfaces and how to approximate given points. Moreover, they dealt with
the important issue of avoiding surface singularities within the domain of
interest,.

A class of developable surfaces useful for practical applications is the
class of surfaces composed of smoothly joined cones of revolution. These
cone spline surfaces are of degree 2, the development can be computed in
an elementary way and the offsets are of the same type. Various interpola-
tion and approximation algorithms for these surfaces have been developed

17



[2, 7, 8]. They work mainly with elementary geometric considerations in-
stead of the dual representation. An important advantage of cone splines
over arbitrary developable NURBS surfaces is the simple control over the
singularities, which are the vertices of the cone segments.

4.3 A new algorithm based on curve-like point arrange-
ments in the dual model

To approximate a nearly developable surface ® with a developable surface
we will use the dual model of the given surface.

If @ is given in analytic form (parametrization or implicit representation)
we start with a set of sample points p; on ® and compute the tangent planes
U; there.

If the surface ® is given by measurement points p;, estimates of the tan-
gent planes U; at p; can be computed with help of neighboring data points
of Di-

At first we compute a reference direction and an appropriate domain I’
as explained in the previous sections. In this way, the tangent planes U; are
mapped to a point cloud in A*. If the tangent planes came from a devel-
opable surface, the corresponding points u; in A* should be arranged along
a curve. Because of the assumed deviation from a developable surface, this
will no longer be the case. However, we can expect that the points u; form
a curve-like point cloud. Now, we may compute a best fit of this point cloud
by a B-spline curve u(t). Practically it is convenient to apply a coordinate
transformation in A*, such that the scalar product matrix becomes the unity
matrix, as described in section 2.3. We estimate the parameter values for
B-spline fitting with projections onto adjusting lines to data points in local
neighborhoods of selected data points. There are also more advanced algo-
rithms, see for instance [6]. The resulting B-spline curve u(t) determines in
the original space the set of tangent planes U(t) whose envelope is a devel-
opable approximation surface of the given surface ®.

This approach may be refined as follows. Small deviations of the given
surface may result in large changes of the tangent planes. Thus, it is impor-
tant to associate weights to the tangent planes U;. A large weight w; of Uj;
indicates that a large part of the surface ® lies in an £ neighborhood of U;.

The first test-example which is given in figure 6 shows a nearly devel-
opable surface ® and the developable approximation in the right hand side.
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The left hand side displays the image points u; of local estimates of the
tangent planes of . The sampled data points p; are obtained by the param-
etrization with respect to a regular grid in the uv plane. ® is chosen to be
the sum of a ruled surface of nearly constant slope s and a deviation function

(Cma €y, 62),

a cos(u) —bcos(u) €r
plu,v) = | bsin(u) | +v | —asin(u) |+ | ¢

0 sva? + b2 €,

® is displayed as mesh and the developable surface U(t) is shaded. The
boundary curves of the developable U(t) are lying in horizontal planes passing
through the lowest and highest point of ®. This is the reason why the
boundary curves of ® and U(t) do not fit together. The left hand side of
figure 6 also contains the approximating curve u(t) to the curve-like region
of scattered points u; in A*. The curve u(t) is the dual image curve in A* of
the determined developable surface in the original space.

If the surface ® is not fully visible from a single direction, it might be
necessary to work with several local mappings to dual spaces A*. The re-
sulting partial solutions then have to be merged to a final approximating
developable surface. The approximation by developable surfaces is current
research work and some practically important details are not yet considered.
They will be discussed in a further contribution.
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