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Abstract

This article discusses the reverse engineering problem of reconstructing objects with planar faces. We will present the main geometric

features of a modeling system which are the detection of planar faces and the generation of a cad model. The algorithms are applied to the

problem of reconstruction of buildings from airborne laser scanner data.
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1. Introduction and assumptions

Our main motivation to study the reconstruction of

piecewise planar objects comes from the problem of

building reconstruction while working on an industrial

project. There is quite a lot of literature available for this

topic, see for instance [2 –5,13,14]. More general

concepts for reconstruction of geometric objects are

studied in the field of reverse engineering of technical

objects. We want to point to some literature, see Refs.

[11,12,15] and the references therein. The method

described in the following is mainly designed for

reconstructing buildings from laser scanner data.

The reconstruction of buildings uses very special

methods on the one hand, but on the other hand there are

some methods useful for the reconstruction of all objects

which mainly or exclusively possess planar faces. So, we

will at first describe general methods common to recon-

struction of all objects with planar faces, and at second pay

attention to special features of building reconstruction.

Especially, the segmentation of an object or detection of

planar regions is very dependent on the density of the data

points.

We want to discuss the reconstruction of objects from

measured point clouds. It is assumed that the points p are

given by Cartesian coordinates p ¼ ðp1; p2; p3Þ: The point

cloud is often generated by an optical measurement device,

e.g. a laser scanner. In our case, the laser scanner is

positioned in an airplane and we simply say that the objects

are scanned from above. Thus, our objective is different

from that of street scenery reconstruction. In the latter case,

buildings are scanned from the side. Approximately we are

given 5–10 data points per square meter. We want to point

to the special literature dedicated to the measurement

process [10].

If an object is scanned just from one side, there will be

visible parts and not visible ones. In the following we

assume that the objects under consideration are scanned

from one viewpoint and we have the problem that not all

object points are registered. Scanning buildings shows that

vertical walls or very steep roof faces are not described by

data points. If the used coordinate system is chosen such that

the z-axis points upwards, then the data points can be

considered as measurements of a function over the xy-plane

z ¼ 0: Unfortunately, this function is not continuous

everywhere because vertical walls and height jumps on

the roof cause discontinuities of the considered function. On

the other hand, the function is piecewise continuous.

Architecture clearly uses more surface types than planar

patches. But since many roofs mainly consist of planar

faces, the reconstruction presented here uses the hypothesis

that the objects to be reconstructed are piecewise planar

and the roof scene can be described by a piecewise linear

function over the xy-plane. We also assume that building
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ground plans are available. Thus, building reconstruction of

a town district can be done building by building.

The article is organized in the following way: Section 2

discusses the segmentation of the object or, in other words,

the detection of planar regions. In Section 3 the computation

of regression planes with respect to some geometric

constraints, like common slope and orthogonality is treated.

Section 4.5.1 tells about the generation of a cad model,

beginning with the definition of adjacencies between planar

faces and computation of their intersections. An algorithm

for generating building models is discussed. Finally a

summary of the described method is given.

2. Segmentation or detection of planar faces

A commonly used segmentation technique is region

growing. One starts with a seed region and determines the

parameters of the geometric object modeling the data of

the seed region. The seed region is increased as long as the

parameters of the model do not vary too much. If a region is

segmented correctly, a new seed region is chosen as long as

there are parts of the object to be modeled. This technique

requires a very high density of the data points with respect to

the features of the object. When scanning machine parts

from near positions it is often useful to apply a data

reduction to be still efficient in the segmentation process.

Another segmentation technique is called direct segmen-

tation and is described in Ref. [1]. It is similar to our

method, but is designed to work for more general objects to

be reconstructed. The surface normal vector and local

quadric of regression are estimated for each data point. This

information is used to check for locally planar or spherical

regions first; if this is not the case, more complex geometric

surfaces are tested. Compared to the variety of surfaces

occurring at machine parts, our problem is simpler, since we

look for planar regions only. The difficulty of the present

task lies in the low resolution of the data, the high variation

of the size of the faces and features and the presence of all

kinds of errors. This results in problems of finding all

necessary roof faces and of forming the correct topology and

adjacencies of faces.

The data we work with are very different since they are

registered by a very far measurement device. The point

density is rather low and does not describe all features which

are present on a buildings roof. Small roof faces are not well

represented by the data and cannot be detected with required

accuracy. In addition, chimneys, dormer windows, etc. are

basically treated as outliers in the segmentation process.

A method similar to ours is described in Ref. [13]. They

use a spatial extension of the Hough transform to determine

roof faces, which is a special duality. In addition, we

introduce a metric in the dual space (which is later on

denoted by Ap), the parameter space of the Hough

transform, which should lead to improved results determin-

ing planar faces.

We are given a point cloud P describing an object

composed of planar patches. We assume, as said in Section

1 that the data points describe a function over the xy-plane

z ¼ 0; which needs not be continuous everywhere. The

allowed discontinuities are discussed later. Usually the point

cloud P contains scattered data points. For some measure-

ment devices one obtains data points which are organized in

stripes. This means that we have data points according to

curves on the object which are in our case always straight

line segments. Since it is not of advantage for our task we do

not pay attention to this fact. Often, the data points are

resampled in a way that data points over a regular grid in the

xy-plane are given. By resampling the data one looses

accuracy but on the other hand it is a great advantage, since

the computation of the neighborhood of data points on a

regular grid is very simple. Details to this fact are discussed

below.

The first task is to possibly find all planar regions of the

object. Since we assume that the object is scanned from

above, which means against the positive z-axis of the

coordinate system, we can only detect planar faces whose

slope against the xy-plane is not too large. Planar faces with

slope larger than 758 against xy are clearly not well

represented by the data points. In the case the data

acquisition is scanning from an airplane, the angle between

the laser beams and the z-axis is usually very small (, 78).

Given a set P of data points pi; i ¼ 1;…;N; we want to

find planar regions. For that we compute a local plane of

regression 1i to each data point pi: This leads to local

estimates for the planar faces. Further, we consider the set of

local regression planes 1i as points epi in dual space Ap: All

points qk which belong to one planar face of the object,

should have local regression planes 1i which are close to

each other. Thus, finding all planar faces can partially be

interpreted as computing point clusters in the set of points epi
in Ap: Fig. 1 shows data points of a building with underlying

grid and the image points epi of the local planes of regression

in Ap: Now we will discuss the necessary steps for detecting

planar faces in detail.

2.1. Local planes of regression

As mentioned above we compute local regression planes

1i to all data points pi: For that we choose data points qik in

an appropriate neighborhood Ui of pi: If pi are grid data, we

can choose qik to be the eight grid neighbors, for instance. If

pi are scattered data, we can choose Ui as circular

neighborhood of the projection of pi onto the xy-plane.

The points qik are those data points of P; whose projections

are in Ui: Sometimes it is an advantage to triangulate the set

of data points P: Then, the neighborhood Ui is determined

by the triangulation.

If we assume that the slope of the faces is not very large,

a local regression plane 1 can be considered to be the graph
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of a linear function

1 : z ¼ f ðx; yÞ ¼ ax þ by þ c: ð1Þ

If we assume that the errors of the measurements are

normally distributed, the least squares solution for 1 is the

right choice. So, 1 is computed by minimizingX
k

ðf ðxk; ykÞ2 zkÞ
2 ! min;

where ðxk; yk; zkÞ are the coordinates of the data points qik:

It is well known that if large errors are present, the

minimization in the least squares sense will not lead to good

local estimates. To improve this, one might first search for

large errors and after having removed them from the data,

compute a least squares solution. A cheap possibility for

searching for large errors of the data is the minimization of

the l1 norm of the errorsX
k

kf ðxk; ykÞ2 zkk! min:

This minimization can be formulated as a linear

programming problem and is equivalent to
X

k

dk ! min

subject to : 2 dk # f ðxk; ykÞ2 zk # dk; 0 # dk:

ð2Þ

Data points corresponding to large dk are removed

from the data set of the neighborhood Ui: After this

correction, the local estimate 1 is computed in the l2-sense

with respect to the reduced data set, since basically we

assume normally distributed errors. Alternatively, 1 can be

calculated via minimization of the l1-norm or another

robust estimator.

The objects under consideration possess edges or even

height jumps between the faces. Thus, the neighborhood of

data points near edges or height jumps often contain data

points lying on other planar faces. Those have to be treated

as outliers and should be detected in the computation of the

local regression plane. If the data point cloud represents a

building, data points on chimneys, antennas or other things

positioned at the roof faces can be considered as large errors

since they are typically much too small to be represented by

the data and to be reconstructed.

Finally we end up with a set of local regression planes

1i : z ¼ aix þ biy þ ci:

Interpreting ðai; bi; ciÞ as affine coordinates of points epi
in a three dimensional space Ap we obtain a point model

of all planes which can be written as graphs over the xy-

plane. It is obvious that vertical planes ax þ by þ c ¼ 0

cannot be represented as points in Ap: By the way, vertical

planes correspond to points at infinity in the projective

extension of Ap:

2.2. Finding planar faces

We mentioned earlier that data points pk lying in a

planar face of the object, possess local planes of

regression 1k which are close to one other. It is necessary

to specify what close shall mean in this context. Since Ap

is only an affine space till now, this is not well defined

yet. It is necessary to introduce a metric in Ap; which

measures the distance between two points ep1; ep2 or two

planes 11; 12:

To achieve this, we remember that the planes under

consideration are graphs of linear functions over the xy-

plane. What we are actually interested in are the distances

between corresponding points of two planes 11; 12: The

simplest but sufficient way to define a correspondence

between two planes

11 : z ¼ a1x þ b1y þ c1 and 12 : z ¼ a2x þ b2y þ c2

is the use of z-parallel lines, see Fig. 2. The orthogonal

projection of the objects to be reconstructed is a domain of

interest D in the xy-plane. Therefore, the squared distance

between two planes, containing faces of the object, can be

Fig. 1. Left: Data points of a building(with underlying grid). Right: Point clusters in Ap:
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defined in the following way:

dð11; 12Þ
2 ¼

1

areaðDÞ

ð
D
ðða2 2 a1Þx þ ðb2 2 b1Þy

þ ðc2 2 c1ÞÞÞ
2 dxdy:

The squared distance function is a positive definite

quadratic form in the coordinates ai; bi; ci: Thus, the

corresponding metric dð11; 12Þ is a Euclidean metric and Ap;

equipped with this metric, becomes a Euclidean space. The

scalar product matrix is not the unity matrix as it is for

the canonical Euclidean metric, but the matrix notation of

the squared distance function reads as

dDð11; 12Þ
2 ¼ ðc2 2 c1; a2 2 a1; b2 2 b1Þ

�

ð
1

ð
x

ð
y

ð
x

ð
x2

ð
xy

ð
y

ð
xy

ð
y
2

0
BBBBBBBB@

1
CCCCCCCCA

c2 2 c1

a2 2 a1

b2 2 b1

0
BB@

1
CCA: ð3Þ

As shown in Ref. [8] it is possible to apply a coordinate

transformation in Ap such that the scalar product matrix

becomes the unity matrix. This has some advantages, in

particular for the computation of distances between a large

number of data points. The transformation can be

determined by computing the eigenvalues and eigenvectors

of the scalar product matrix from Eq. (3).

Remark. The introduced metric depends on the chosen

coordinate system. In case of building reconstruction from

airborne laser scanner data the z-axis of the coordinate

system coincides approximately with the direction of the

laser beams.

In general it might be necessary to use different

coordinate systems in order to fully cover the space of

planes appropriately. This results in different local map-

pings of the space of planes to affine three-spaces Ap and in

different Euclidean metrics.

The method which is applied to find the point clusters in

Ap essentially depends on the number and the density of data

points representing the object. For the task of finding roof

faces of buildings and for the nowadays present density of

the data points (1–8 points per square meter) we basically

apply the following method.

We look for spherical neighborhoods Up
i (with respect to

the metric defined by Eq. (3) of image points epi in Ap which

contain sufficiently many points epj : The number of points

corresponds to the size of the roof faces to be reconstructed.

Typically, planar regions with less than 10 data points are

not of interest, moreover mostly not well represented by the

data points. The radius r of the spherical neighborhood Up
i

corresponds to the estimated standard deviation s of the z-

coordinates of the measurement points pi; which depends on

the measurement device. Usual accuracies of the z-

coordinates of airborne laser scanner data pi are 0.1–

0.15 cm.

A useful choice is r ¼ s: In addition we want to mention

that the variation of points epi is rather large, since the local

estimates for the roof planes are very inexact in points of the

boundary of the building. The right subfigure of Fig. 1

shows only a subset of the points epi obtained by calculating

all regression planes. We have to zoom into the total set of

points epi ; to make the clusters visible.

Each cluster in Ap corresponds to a plane 1 containing

one or possibly more faces of the object. If the object to be

reconstructed is convex, the segmentation is nearly

complete. We just have to find all data points pk; lying in

the plane 1: These can be slightly more data points than

those corresponding to the local regression planes forming

the cluster. Finally, the plane carrying the face is the plane

of regression to the data points pk:

If the object B is not convex and this is the case for many

buildings, especially in urban areas, the plane 1 correspond-

ing to a cluster will contain not only the data points of a face

of B but will intersect B in other faces and contain data not

lying in the considered face. It is even possible that there

exist planes containing more than one face of B: Thus, the

data points of a planar face have to be a connected set

of points within the plane 1 defined by the cluster.

According to this fact, a planar region is defined to be the

largest connected component of the data points pk which lie

close to 1:

To define a useful topology in the set of scattered data

points P one uses for instance a triangulation of the points

pi: If pi are grid data the neighborhoods of points are already

defined by the underlying grid.

If we have processed this for all clusters in Ap we obtain a

segmentation of the object B (Fig. 3). The segmentation

consists of planar regions R1;…;Rm and usually one has

some data points left, which do not lie in any of the

computed regions. If those are just few, we may interpret

them as errors; if many points are not covered by planar

regions it might be a contradiction to the hypothesis that B is

piecewise planar.

We summarize the algorithm to find planar regions:

1. Compute local planes of regression (local planar fits) 1i

for all data points pi:

Fig. 2. Definition of the correspondence and distance between two planes.
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2. Determine the plane 1 (point ep in Ap) which possesses a

maximal number of neighbors (planes) in a spherical

neighborhood in Apw: This set of neighboring planes

defines the maximal cluster of local regression planes.

3. Compute a plane of regression with respect to all data

points pk determined by the maximal cluster (defined by

local planes of regression 1kw).

4. The planar region is the maximal connected component

of all data points lying close to the plane w:

By repeating this procedure we will find all planes

containing the main roof faces sequentially. Small faces

are ignored.

2.3. Accuracy of finding planar faces

In general, after removing outliers, we may assume

normally distributed errors of the measurements, in

particular the z-coordinates of the data points pi ¼

ðxi; yi; ziÞ; i ¼ 1;…;m: Further we assume that the measure-

ments zi are uncorrelated which could be questionable

sometimes. For simplicity, xi; yi are assumed to be exact.

The variation of the data is computed as follows (if we

assume that the data are normally distributed): Let A·u ¼ f

the matrix notation of the regression problem with A as

m £ 3 coefficient matrix, f as right hand side and u ¼

ða; b; cÞ as vector of unknowns. Let v ¼ A·u 2 f ; where u is

the already computed least squares solution. The variation

of the data is

s2
0 ¼

1

m 2 3
vt·v:

It is the squared mean vertical distance of the data points

pi from the plane of regression z ¼ ax þ by þ c:

To determine the accuracy of the coefficients a; b; c one

might proceed as follows: The singular value decomposition

of A is

A ¼ UWV t

where V is a 3 £ 3 orthogonal matrix, W is a 3 £ 3 diagonal

matrix, containing the singular values wk; k ¼ 1; 2; 3 and U

is m £ 3 with orthogonal column vectors. The least squares

solution is obtained by u ¼ VW21Utf : Since the measure-

ments f possess equal variance and assuming that they are

uncorrelated, Eðf·f tÞ ¼ I holds. Taking additionally UtU ¼

I into account, the covariance matrix of the solution u ¼

ða; b; cÞ is

covðuÞ ¼ Eðu·utÞ ¼ V·W22V t
:

The standard deviations of the coordinates a; b; c are the

square roots of the diagonal elements of covðuÞ: From this

one can derive the accuracy of the planar faces.

3. Computation of regression planes under geometric
constraints

Many human made objects possess certain regularities

like symmetries, constant angles between faces, constant

slope of the faces with respect to a reference direction,

orthogonality or parallelity of face normals. In particular at

machine parts several of these properties may occur. We

want to point to relatively new articles dealing with this

topic, see Refs. [6,7]. Segmentation under geometric

constraints is sometimes called model beautification.

In case of buildings common slope of roof faces with

respect to a reference direction and parallelity or orthogon-

ality of the projections of the face normals onto the xy-plane

occur quite often. Thus it is desirable to respect these

properties in the modeling procedure if possible. Since

many buildings are oriented with respect to two orthogonal

main directions we start with the determination of these

directions. We do not want to go into details here but sketch

the most important features with respect to building

reconstruction.

3.1. Main directions of a building

Let Rj be the detected planar regions of the roof and let nj

be the projections of the normals of these regions. Let T be

the given ground plan polygon. Its segments are denoted by

ti: First we determine two orthogonal directions e; f such

that as many segments ti and normals nj are nearly parallel

or orthogonal to e and f : If all segments ti and normals nj are

nearly parallel or orthogonal to each other, it is possible to

compute e; f as solutions of a least squares adjustment. But

in general this property will not hold, and our experience

tells us that a solution in the l2-sense is too sensitive with

respect to outliers. Thus, we determine the vectors that form

angles larger than a threshold (5–108) with all others. These

vectors are classified as outliers with respect to the main

Fig. 3. Projection of the segmentation of an object: data points belonging to

regions are displayed as £ , stars, circles and squares; remaining data

points are displayed as simple dots. The solid lines represent the ground

plan of the building to be reconstructed.

M. Peternell, T. Steiner / Computer-Aided Design 36 (2004) 333–342 337



directions. If the remaining vectors can be partitioned into

two sets and these sets contain sufficiently many vectors

(compared to the input vectors) we compute e; f as solutions

of a minimization in the l2-sense.

3.2. Regression planes with respect to main directions

Let e; f be the main directions of the object. Consider a

planar region R whose projection n of the normal is nearly

parallel to e or f : The plane of regression 1 carrying the face

R should be computed such that the projection of its normal

is parallel to e or f : This results in a regression problem with

only two free parameters left. We set

1 : z ¼ gax þ gby þ c;

where ða;bÞ are the coordinates of either e or f ; depending

on if n is nearly parallel to e or f : Thus, g and c are the free

parameters to be determined.

It is even possible to compute planes of regression for

more than one planar region simultaneously, under the

assumption that the projections of their normals are parallel

to e or f :

We do not want to go into details here but mention that it

is also possible to compute planes of regression for regions

whose slope is nearly equal in a similar way. All planes can

be computed simultaneously whose regions possess similar

slopes.

Remark. In general, satisfying geometric constraints in

an optimization leads to complicated non linear systems of

equations. We have omitted this by computing the solution

step by step. At first we compute estimates of the planes

carrying the planar regions. At second we determine the

main directions and finally we calculate the regression

planes under the mentioned geometric constraints, but by

the use of the previous steps. This strategy seems to be

helpful since the computation is simple and each step results

in a linear problem.

4. Main steps of modeling piecewise planar objects

Now we want to describe the main features and

procedures of a modeling system which is able to generate

cad-models from measured scattered data points. We

assume that the segmentation of the point cloud is

performed as described in Section 2. Since the presented

examples all show models of buildings, we focus on the

reconstruction of these objects. However, most of the

methods work similarly for arbitrary piecewise planar

objects which can be considered as graphs over a planar

domain.

When we talk about cad-models of piecewise planar

objects, we consider a boundary representation of the object

(a representation of the object in terms of faces, edges and

vertices). The equations of the faces given, it is our goal to

compute the edges and vertices of each face. The edges are

clearly the intersection segments between adjacent faces

and the vertices are the intersection points of three or more

adjacent faces.

Given a set P of data points pi; the above mentioned

segmentation results in planar regions R1;…;Rm: All these

regions contain sufficiently many data points. Small regions

(with respect to the resolution of the data) are ignored since

they are not well represented by the data. In particular we

are only interested in the main geometric features of the

object because small and possibly not exactly determined

regions are more cumbersome than helpful for the

reconstruction process. There may be data points left,

which are not covered by any region. For modeling the

object, it is necessary to determine the adjacency relations

between the planar regions Rj: Since the object can possess

height discontinuities, it is possible that we have to

introduce height jumps between some regions. The basic

steps of the implemented modeling method are the

following:

1. Determine adjacencies between planar regions.

2. Calculate the intersection segments between intersecting

adjacent regions. Find the height jumps of non-

intersecting regions Rj; Rk whose projections R0
j; R0

k are

adjacent.

3. Determine the adjacencies of planar regions and walls,

which are determined by the given ground plans.

4. Calculate the intersection segments between planar

regions and adjacent walls.

5. Compute closed polygons for all roof faces.

6. Generate a cad model.

In the following sections we will describe these steps in

more detail.

4.1. Determine adjacencies between planar regions

Since the data acquisition is a scanning process with

direction mainly against the z-axis, it is nearly no loss of

information and thus sufficient to study the projections R0
j of

the regions Rj onto the xy-plane for defining adjacency

relations between the regions Rj: There are several

possibilities to define adjacencies between planar regions

R0
j: If the data points pi possess an underlying grid, we can

use this grid for the definition of adjacencies. If we work

with scattered data, we can use a (planar) triangulation of

the projections of the data points (triangular irregular

network). Whatever, it is basically simple to determine

neighboring regions. We increase the regions R0
j forming

outer offset regions �R0
j: The offset distance depends on the

resolution of the data. The intersection of two regions �R0
j; �R

0
k

shall be denoted by S0
jk: We call it simply intersection

region. In case that the data possess an underlying grid, the

offset operations as well as filling of possibly occurring

holes in the regions R0
j can be done with mathematical

morphological operations [9].
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Let Rj and Rk be two regions, whose projections R0
j and

R0
k are neighbors. We assume that the regions are adjacent in

a segment-like region of a length, which is relevant for the

object (Fig. 4).

If S0
jk is a segment-like region, we consider Rj and Rk as

neighbors. If Sjk consists of just one or very few points, the

adjacency of regions Rj and Rk is ignored. Let Rj; Rk be

neighbors, then there are mainly two possibilities:

1. The regions Rj; Rk intersect each other in a segment sjk

whose projection s0jk is at least partially contained in S0
jk:

2. The regions Rj; Rk do not intersect or the projection of the

intersection line does not meet the intersection region S0
jk:

This property indicates height jumps of the object. An

auxiliary vertical face has to be introduced to connect the

faces Rj and Rk: The position of the vertical face is

approximated by the intersection region S0
jk:

4.2. Estimates of the intersection segments

Let Rj and Rk be intersecting regions. The unbounded

line of intersection ljk is easily computed from the equations

of the planes 1j1j and 1k corresponding to the regions Rj; Rk:

We are just interested in the intersection segment sjk which

is really present at the object. Since in general it is not

possible to calculate the vertices at sjk immediately, we

compute estimates for the two boundary points on the true

segment. This estimation is denoted by ~sjk: Its carrier line is

clearly ljk; but the vertices are numerically not exact.

The segment ~sjk is bounded by two auxiliary vertical

planes hi : aix þ biy þ ci ¼ 0: These planes are chosen to be

orthogonal to ljk and to pass through the extremal points of

the intersection region S0
jk in the direction of ljk; see Fig. 5.

So, the segment ~sjk depends on the quality of the intersection

region Sjk
0:

Remark. If the object is truly piecewise planar with no

additional features present in the faces and all adjacencies

determined correctly, it is possible to find the vertices

bounding the intersection segments directly. To achieve this

goal we have to find three planar regions Ri; Rj; Rk which

share the property that the following relations hold:

Ri intersects Rj intersects Rk intersects Ri:

Any triple of regions with this property defines a vertex

which is common to the segments sij; sjk; ski: If there is a

height jump between two of these regions, this property is

no longer true. Also, the vertices which are intersections of

segments with walls, cannot be computed in this way.

Therefore we prefer to compute estimates ~s of the segments

first and compute the exact vertices afterwards. Moreover, if

adjacency relations are missing or parts of the objects are

not planar in a way that we are not able to compute planar

regions, it is not possible to find such triples of planar

regions immediately.

A note on non-trihedral vertices. When studying the

simplified geometry of buildings or other piecewise planar

Fig. 4. Intersection mask between regions and estimated intersection segment.

Fig. 5. Estimation of intersection segments.
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objects, one recognizes that there are trihedral and non-

trihedral vertices present. There are researchers and

publications which pay attention to this problem and

geometric constraints are formulated to model non-trihedral

vertices. We have decided to omit this and generate cad-

models with trihedral vertices only. This leads to the

disadvantage that the finally generated models sometimes

possess some vertices being close together.

4.3. Determining height jumps

For all pairs of regions Rj; Rk whose projections of

their intersection lines ljk do not cross the intersection

regions Sjk in sufficiently many points, we have to

introduce vertical auxiliary faces. It will be discussed

now, how these faces and their position can be

determined.

Let Rj and Rk be two planar regions whose top views are

neighbors but which do not intersect. Further we have

already computed the region Sjk
0: Considering a roof as a

piecewise linear function f ðx; yÞ; the region S0
jk estimates a

region of discontinuity. The discontinuity can be present

along a simple edge but also along a polygon (curve). We

have to determine the type of discontinuity.

At first, S0
jk approximates the region of discontinuity. At

second, we may consider a piecewise linear function f ðx; yÞ

over T with the property that the restrictions of f to the

domains R0
j; R0

k are exactly the values determined by the

carrier planes 1j; 1k of these faces. By calculating the norm

of the gradient 7f and searching for large values of k7f k; we

also find an approximation for the region where the height

jump between Rj and Rk takes place.

In practice, we may proceed as follows: If the height

jump takes place along a simple segment s0jk we try to find a

segment contained in the region S0
jk which is ‘perpendicular’

to 7f at points of S0
jk: This can only be true, if these

mentioned vectors 7f are nearly parallel.

If the height jump takes place along a curve or polygon,

the gradient 7f varies significantly at points of the region

S0
jk: Ideally, the direction of the gradient 7f is perpendicular

to the curve, forming the discontinuity of f : The determi-

nation is a challenging task because of the low resolution of

the data and the sensitivity of 7f with respect to noise.

In case that the object possesses main directions we try to

choose ~s0jk as a straight line segment parallel to the main

directions. If S0
jk is curve-like or polygonal, the problem is

difficult. We can try to find a polygon s0jk containing as few

as possible vertices such that the approximation of

the medial axis of S0
jk by the polygon s0jk is sufficiently

good. The segments of the polygon are chosen to be parallel

to the main directions, if possible.

We note that the currently implemented algorithm can

handle height jumps along edges only.

4.4. Intersections of roof faces with walls

This section does not possess any generalization to

arbitrary piecewise planar objects since now the given

ground plans which define the walls bounding the building

play a very important role. What has to be done here is to

determine all adjacency relations between planar regions at

the roof and the given vertical planes, representing the

walls. The determination is similar to the determination of

adjacencies of roof faces. Let the ground plan polygon be

denoted by T and its single segments be denoted by ti: For

any segment ti we determine adjacent planar regions R0
j: If pi

are data points with an underlying grid we define

adjacencies using the grid. If pi are scattered vector data

we will use a constrained triangulation of pi; which

additionally contains the segments ti of the ground plane

as edges. The procedure of intersecting the planar regions

with the given walls consists of two steps:

1. Determine the adjacencies between segments ti and

regions R0
j:

2. Compute the necessary intersection segments wij

between vertical planes Wi passing through ti and

planes 1j which carry faces Rj:

In practice it is again not always easy to find the exact

vertices bounding the intersection segments wij; thus we

compute estimates for these vertices first. The estimated

segments are denoted by ~wij: In particular, if two or more

roof faces are adjacent to a vertical wall and the roof

faces do not intersect each other, this estimation is

necessary.

On the other hand, if the segment t of the ground plan

polygon has only one neighboring face R and the

investigation of the adjacency indicates that the end points

of t are the projections of the end points of the intersection

segment wij; we have found the true segment.

In general, the output of this procedure are estimates ~wij

of the intersection segments wij of all roof faces Rj with

adjacent walls Wi: Fig. 5 shows regions and approximated

intersection segments of roof faces and walls for a building.

For simplicity, the tilde symbols are omitted in the

displayed notations.

4.5. Computation of faces bounded by closed polygons

and generation of the cad-model

So far, we have computed all intersection segments sjk

and wij between the segmented roof faces Rj; Rk and

between the walls Wi and the roof faces Rj; Our intention is

to calculate closed boundary polygons Rj for all roof faces

Rj: We use the notation from above, where T denotes the

polygon of the ground plan, ti denotes its segments, ~sjk

denotes the estimated intersection segment between the roof

faces Rj and Rk and ~wij is the estimated intersection segment

of the wall Wi and the roof face Rj: The polygons Rj to be
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computed, shall possess the following properties:

1. The projection r0 of each polygon r bounding the roof

face R is entirely contained in the polygon T :

2. Polygons r0j and r0k corresponding to adjacent regions R0
j;

R0
k touch along s0jk: This is the projection of the

intersection segment sjk or the projection of a vertical

auxiliary face between Rj; Rk:

3. The polygons Rj do not intersect each other.

Finally, we need an additional property: The domains

determined by the polygons Rj should form a complete and

valid partition of the domain bounded by T. That means, an

arbitrary point q of the interior of T is either a vertex of one

or more polygons, or it is contained in an edge of a polygon

or it is an interior point of a unique polygon rj:

The computation of closed polygons rj for each roof face

Rj uses the additional assumption, that the projection R0
j of

every roof face Rj is a simply connected domain. This

guarantees the boundary of R0
j to consist of one polygon rj

only. It is clear, this assumption will not hold in any case. A

simple counter example is the roof of a small elevator room

on the (flat) roof of a building. All small domains which are

islands in other roof faces are ignored for the computation of

the ‘outer’ boundary rj of a domain R0
j: These extra features

have to be treated as extra buildings and have to be modeled

in this way.

But that is in general a crucial point: modeling of those

extra features is dependent on the detection of height jumps

between regions/faces. If height jumps happen along

polygons or curves the modeling of auxiliary vertical

faces is most difficult.

The computation of closed polygons is basically easy if

all segments ~sjk and ~wij are present and are good estimates of

the true segments. To obtain a simpler notation we formally

unify the families of segments ~sjk and ~wij but denote the

resulting set of segments again by ~sjk: The two steps to be

done for each family of segments ~sjk; where j is fixed (index

of the roof face) and k ¼ 1;…;m are the following:

1. Sort the segments ~sjk in the way that the sorted segments

g1;…; gm have the property that the intersection gi > giþ1

is a vertex of the desired polygon.

2. Intersect consecutive segments or insert an artificial

segment if consecutive segments do not intersect.

3. Guarantee that the final polygon rj is entirely

contained in T and does not intersect any other

polygon rk:

That leads to closed polygons rj for all roof faces Rj: In

practice it might happen that the collection of all polygons rj

do not form a valid partition of the domain T ; but there exist

holes which are not contained in any polygon. It is necessary

to introduce extra faces to fill the holes. Fig. 6 shows holes

but also intersecting roof faces. The planes containing these

faces are estimated from data points lying near these holes.

4.5.1. Generation of a cad-model

So far we have computed closed planar 3D-polygons for

each roof face and we know which faces intersect and which

faces have to be connected by auxiliary vertical faces. The

last step is to finalize the cad-model. What is missing is the

computation of the auxiliary vertical faces. By analyzing all

interior edges s0jk; it is easy to check if a face has to be

introduced. If there is a height jump between regions Rj and

Rk; two z-values are present for each vertex of the segment

s0jk: The vertical face which is introduced is a vertical

trapezoid, with two vertical edges and two edges vj; vk

corresponding to s0jk; vj lies in the face Rj and vk is a segment

in Rk: If vj and vk do not intersect in an interior point, we are

done. If the segments vj; vk intersect in a boundary point, the

trapezoid becomes a vertical triangle. If the two segments vj;

vk intersect, the invalid trapezoid must be splitted into two

triangles. This completes the generation of a cad model, see

Figs. 7 and 8.

Fig. 6. Closed polygons as projections of roof faces within the ground plan.

Fig. 7. Cad-model of a building.
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4.6. Summary

We have described a method to generate building models

from laser scanner data. It mainly consists of these steps:

1. Detect planar regions.

2. Consider additional geometric constraints.

3. Generate a cad model.

A prototype of what is described here is implemented in

Matlab. Many features of the technique are also useful for

reverse engineering of other technical objects which are

piecewise planar. The details clearly depend on the

resolution of the data and the special geometry of the

objects to be reconstructed.
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[10] Steinle E, Vögtle T. Effects of different laser scanning modes on the

results of building recognition and reconstruction. International

Archives of the ISPRS, vol. XXXIII. Part B3. Proceedings of

ISPRS Congress, Amsterdam, July; 2000. p. 858–65.
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Fig. 8. Point cloud and cad-model of a building.
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