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Abstract

We study the recently introduced notion of polylines that form a discrete version of planar curves
in affine arc length parametrization, showing that they match the control polylines of curvature
continuous uniform quadratic B-splines (with analogous results in Rn). It is demonstrated how
inflection-free planar curves may be approximated by such affine arc length polylines in a way
that the polyline is close to an affinely equidistant discretization of the curve and allows good
approximations of the smooth affine curvature.
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1. Introduction and Overview

Affine geometry is the study of geometric objects and properties that are invariant under
(equi-)affine transformations. Many of the concepts from Euclidean planar curve geometry can
be reproduced in an analogous way in planar affine geometry; thus we have affine arc length,
affine curve normal, affine curvature, affine evolutes, affine osculating conics (analogous to the
Euclidean osculating circle). Inflection-free planar curves can be parametrized by the affine arc
length. This parametrization has simple expressions for the affine normal, curvature etc., as
opposed to the rather unwieldy formulae in a general parametrization.

There is a geometrically simple discrete analogon to planar curves in affine arc length para-
metrization: Polylines where the area spanned by three consecutive vertices is constant, that is
det(xi−xi−1, xi+1−xi) = A, or equivalently, where xi+1−xi ‖ xi+2−xi−1. We term those affine arc length
polylines. They were studied recently by [1]. Using some of the theory contained in that work, we
will extend it to include notions not studied before. These include the discrete osculating conic
and the connection to curvature continuous quadratic B-splines.

For most applications cubic B-splines are preferred over quadratic B-splines because they
generically have C2 continuity as opposed to only C1, which is often not enough. For a given
control polyline or data to be interpolated the smoothness of quadratic B-splines can be increased
by either using non-uniform parameters or allowing non-uniform control vertex weights, which
results in rational B-splines (NURBS). This involves a tradeoff, as the main advantage of using
uniform B-splines lies in the algorithmic simplicity and speed of evaluation.

There is, however, a different approach to constructing splines with the desired smoothness,
which lies in the concept of imposing conditions on the control polyline (the data) itself. This work
will show how the condition for curvature continuity (equivalent to geometrical G2 continuity in
the plane) is such that the control polylines coincide with the aforementioned affine arc length
polylines.

A frequently occuring task is the approximation of a given curve by some type of curve
governed by discrete data, in our case a curvature continous uniform quadratic B-spline. At
a first glance the geometric constraints on the control polygon might be thought as being too
restrictive to allow the satisfactory approximation of arbitrary curves. A simple approach will
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result in affine arc length polylines with strong oscillations of the discrete affine curvatures. This
makes the polyline visually uneven, because the affine arc lengths of the segments of the smooth
curve between two consecutive discrete polyline vertices oscillate as well. However, in Section 4
we present an algorithm which, by means of an uncomplicated iterative process, optimizes the
smoothness of the discrete affine curvatures, thus yielding polylines with relatively few vertices
and desirable geometric properties.

Generally affine arc length polylines have higher vertex density where the (Euclidean) curva-
ture is higher, thus offering a good compromise between simplicity (few vertices) and quality of
approximation (many vertices). The advantage of smoothing the affine curvatures is that it makes
the polyline locally as affinely regular as possible. This ensures that the affine arc length polyline
is nearly an affinely equidistant discretization of the cuve. It also provides good approximations
of the smooth affine curvature of the original curve.

Previous work
Affine differential geometry is a classical field of study going back to the early 1900s due to the

research of G. Pick, W. Blaschke, G. Thomson and others. Well-known textbooks on the subject
are e.g. [2, 3]. At that time, discretization of those smooth notions was not considered.

Discrete affine differential geometry has mostly focused on surfaces inR3, in particular discrete
affine minimal surfaces, which in the case of negative curvature can described by A-nets with an
added geometric constraint [4, 5]. Using those nets as control nets of bilinear B-spline surfaces
yields geometrically smooth surfaces. Thus the principle of imposing geometric conditions on
the discrete data in order to make the resulting B-spline object (curve resp. surface) geometrically
smoother that it would generically be is the same as in this paper.

The recent work [1] studied the same model of discrete curves in affine arc length parametri-
zation (called equal area polygons) as we have undertaken, focusing on the notion of the discrete
affine evolute. They also proved a discrete version of the well-known classical six-sextactic-point
theorem, which is the affine version of the four-vertex theorem. Affine osculating conics were not
considered, and neither was the connection to curvature continuous quadratic B-splines.

Splines with higher smoothness than C1, in particular curvature continuity were studied
extensively in classical B-spline literature (geometric splines, ν-splines, uniform cubic B-splines),
see e.g. [6, 7]. For example, [8] stated the general conditions for the curvature continuous joining of
Bézier curve segments. The majority of these works did not look at quadratic splines in particular,
and most assumed a degree ≥ 3.

However, there is also a number of works were G2 quadratic spline interpolation was studied
explicitly, like [9]. The splines in that paper allow a representation as non-uniform B-splines,
where the non-uniformity is necessary in order to do without geometric constraints on the control
polygon (apart from the obvious one of convexity).

Although the equal-area condition for G2 continuity of uniform quadratic B-splines clearly
was realized in the literature, its interpretation in terms of discrete affine differential geometry
provides new insights into its geometric meaning.

Contributions and overview
1. Section 2 introduces a way of describing polylines in an affine-invariant way and uses that

notation to describe affine arc length polylines, which can be seen as discrete affine arc length
parametrized curves. Building upon the work done by [1] on the discrete affine evolute, we
study discretizations of conics and introduce the notion of the discrete osculating conic.
Finally we show the connection between affine arc length polylines and G2 continuous
uniform quadratic B-splines.

2. Section 3 generalizes some of the results of the previous section to curves inRn and uniform
B-splines of order n.

3. In Section 4 it is shown how inflection-free planar curves can be approximated by discrete
affine arc length polylines such that the affine arc length polyline is close to an affinely
equidistant discretization of the original curve. Those approximations have desirable geo-
metric qualities, as the vertex density of the polyline is higher where the Euclidean curvature
is higher and the polyline is locally as near affinely regular as possible. They also allow good
approximations of the affine smooth affine curvature.

2



2. Discrete planar affine curve geometry

There are several geometries that are commonly termed affine geometry. The one we will be
using is (planar) equiaffine geometry, that is the study of geometric notions that are invariant under
the group of equiaffine transformations (also called the special affine group) of the plane which
comprises the transformations

x 7→Mx + v, M ∈ R2×2 with det M = 1, v ∈ R2.

Generally the invariant geometric properties of equiaffine geometry are parallelity, ratios of par-
allel lengths and areas.

On the other hand, general affine geometry allows all transformations x 7→Mx+v with det M , 0.
In this paper affine will always refer to equiaffine geometry, because it is the main object of study.
General affine geometry will always be referred to as such.

The affine polyline coordinates introduced below belong to equiaffine geometry, but the notion
of the affine arc length polyline as well as its affine curvature, osculating conics and the algorithm
for approximating curves by affine arc length polylines in Section 4 are fully invariant under the
general affine group, thus being objects of general affine geometry.

2.1. Affine polyline coordinates
Let xi ∈ R2, i = 0, . . . ,N be a polyline. We will use the forward difference operator frequently,

defined as δαi = αi+1 − αi for any sequence α. We also write vi := δxi = xi+1 − xi as an abbreviation.
Then we define affine polyline coordinates Ai, Bi by

Ai = det(vi−1,vi) and Bi = det(vi−1,vi+1). (1)

They are illustrated in Figure 1. Ai and Bi are invariant under equiaffine transformations, and
they associate 2(N + 1) − 5 numbers with the polyline consisting of N + 1 vertices, which describe
the polyline uniquely up to equiaffine transformations: x0 and x1 can be freely chosen, and x2 has
one degree of freedom left under the condition det(x1 − x0, x2 − x1) = A1. After that, the rest of the
polyline can be constructed uniquely by way of the equation

Bivi = Ai+1vi−1 + Aivi+1, (2)

as long as Bi , 0. This formula can be easily verified byBi det(vi,vi+1) = Ai+1 det(vi−1,vi+1) + Ai · 0
and Bi det(vi,vi−1) = Ai+1 · 0 + Ai det(vi+1,vi−1). The 5 degrees of freedom in choosing x0, x1, x2
correspond to the 5 degrees of freedom of the equiaffine group.

xi−1

xi

xi+1

xi+2BiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBiBi

vi−1 vi

vi+1
AiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAiAi

Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1Ai+1

Figure 1: Affine polyline coordinates: A polyline xi, i = 0, . . . ,N is determined up to equiaffine
transformations by the areas Ai, i = 1, . . . ,N − 1 and Bi, i = 1, . . . ,N − 2.

2.2. Affine arc length polylines
The affine arc length of a curve f : R→ R2 is defined (e.g. in [2, §4]) as

s(t) =

∫ t

0
det

(
˙f (t̃) f̈ (t̃)

) 1
3 dt̃.

Therefore noninflecting curves possess a parametrization with respect to the affine arc length.
Using affine polyline coordinates this definition can be discretized to define the affine length

of a polyline in an obvious way:

L2(x0, . . . , xN) :=
N−1∑
i=1

A
1
3
i . (3)
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Lengths are therefore carried by triples of consecutive polyline vertices xi−1, xi, xi+1. A polyline
can be said to be in discrete affine arc length parametrization if all lengths are the same, that is
A := Ai = const. , 0 We call such a polyline an affine arc length polyline. See Figure 2 for an example.
As Ai is the area of the parallelogram spanned by xi−1, xi, xi+1, [1] (who only considered closed
curves) called them equal-area polygons. Throughout the paper we will assume A > 0, meaning
we are restricted to polylines that are noninflecting in a discrete sense. However, in Section 4.4
we demonstrate how several affine arc length polylines may be concatenated to discretize curves
with inflection points.

xi−1

xi

xi+1

xi+2

ni

ni+1
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Figure 2: Affine arc length polyline: The polyline edges xixi+1 are parallel to the diagonals xi−1xi+2,
which is equivalent to the parallelogram areas spanned by 3 vertices all being equal (shown in
gray for xi−1, xi, xi+1). The arrows depict the discrete affine normals ni.

2.3. Affine curvatures of affine arc length polylines
The affine curvature is defined by the equation f ′′′+κ f ′ = 0, or equivalently byκ := det( f ′′, f ′′′),

where f ′′ is the affine curve normal [2]. Analogously to the Euclidean case the envelope of the
normal lines f (t) + λ f (t)′′ is called the affine evolute.

In the discrete setting of affine arc length polylines the affine normal lines are

xi + λni with ni := δ2xi−1 = xi−1 − 2xi + xi+1

and the vertices of the (discrete) affine evolute result as intersection points of consecutive affine
normal lines, as shown in Fig. 3. One can now define the affine curvature ki of an affine arc
length polyline xi−1, . . . , xi+2 by straightforward discretization through δ3xi−1 + ki δxi = 0. Useful
equivalent characterisations are

xi+2 − xi−1 = (3 − ki)(xi+1 − xi), or ki =
det(ni,ni+1)

A
, or ki = 2 −

Bi

A
. (4)

From this it is easy to see that the affine evolute ξi of an affine arc length polyline can be expressed
by

ξi = xi + 1
ki

ni = xi+1 + 1
ki

ni+1. (5)

The discrete affine evolute was studied extensively by [1]. We will focus on the notion of the
osculating conic (Section 2.4).

x0 x1

x2

x3

x4x5

n1

n2

n3

n4

ξ1

ξ2ξ3

Figure 3: Affine evolute ξi of an affine arc length polyline xi. The evolute points ξi are the
intersections of consecutive affine normals ni = xi+1 − 2xi + xi−1 attached to xi, and thus form the
discrete envelope of the normal map. ξi is associated with the curvature ki and the quadruple of
vertices xi−1, . . . , xi+2 (or the edge xixi+1).
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Affinely regular polylines were introduced by [10] as the orbits of equiaffine transformations. In
particular they arise as equidistant discretizations of conics in affine arc length parametrization.
[1] show how an affine arc length polyline is affinely regular if and only if its affine evolute is a
single point. Due to eq. (5) that is equivalent to ki being constant.

This is the discrete analogon to the well-known result from classical affine differential geometry,
that a planar curve with constant affine curvature is a conic, see e.g. [2].

That result can be somewhat generalized:

Theorem 1. An affine arc length polyline xi discretizes a conic if and only if the sequence of its affine
curvatures alternates between two constant values, that is, ki−1 = ki+1 ∀ i. (For an example see Fig. 5.)

Proof. We need to show that 6 consecutive vertices xi−2, . . . , xi+3 of an affine arc length polyline lie
on a conic if and only if ki−1 = ki+1.

We lay the unique conic through xi−2, . . . , xi+2 and apply an equiaffine transformation such that
the x-axis is a symmetry axis of the conic and the symmetry maps xi ↔ xi+1. See Figure 4.

The affine arc length polyline property Ai = Ai+1 implies that also xi−1 ↔ xi+2. Then the
line xi−2xi+1 (which is parallel to xi−1xi) is symmetric to the line through xi parallel to xi+1xi+2,
on which xi+3 must lie. Then due to eq. (4), ki−1 = ki+1 ⇔ ‖xi+3 − xi‖ = (3 − ki+1)‖xi+2 − xi+1‖ =
(3−ki−1)‖xi−1−xi‖ = ‖xi−2−xi+1‖ ⇔ the symmetry maps xi−2 ↔ xi+3 ⇔ xi+3 lies on the conic through
xi−2, . . . , xi+2 ⇔ xi−2, . . . , xi+3 lie on a conic.

xi−2

xi−1

xi
xi+1xi+2

xi+3
⇒

xi−2

xi−1

xi

xi+1

xi+2

xi+3

x-axis

Figure 4: Proof of Theorem 1 by means of symmetry. xi+3 lies on the conic through xi−2, . . . , xi+2 iff
ki−1 = ki+1.

�

Figure 5: The same conic discretized by different affine arc length polylines with the same value
A and the same first vertex x0. The left one has constant ki and is therefore affinely regular; the
others have ki alternating between two values.

2.4. Osculating conics of affine arc length polylines
In planar affine differential geometry the affine evolute point is also the center of a unique

conic which has 5-point (4th order) contact with the curve, called the osculating conic. For κ = 0
the affine evolute point is ideal and the osculating conic a parabola.

Because of xi+1 − xi ‖ xi+2 − xi−1 the set of the centers of all conics that contain xi−1, . . . , xi+2 is
the line through (xi + xi+1)/2 and (xi−1 + xi+2)/2 (including the ideal point), which passes through
the affine evolute point. Thus we can define a unique conic through xi−1, . . . , xi+2 with the affine
evolute point as its center, which we call the outer osculating conic.

5



Another way of defining a discrete osculating conic (again with ξi as center point) is to make
the three edges involved (xi−1xi, xixi+1 and xi+1xi+2) tangents of the conic. This can be termed the
inner osculating conic. Both conics are displayed in Figure 6.

Just like in the classical smooth setting, we can infer the type of the conic from the sign of the
affine curvature:

The inner and outer osculating conics are


hyperbolas
parabolas
ellipses

⇔


ki < 0
ki = 0
ki > 0

. (6)

Both choices of discrete osculating conics, however, are not ideal when one considers the
(constant) affine curvatures of those conics as planar curves. The rationale of an osculating conic
is that its affine curvature matches that of the given curve at the point of osculation. This is not
the case with either of the conics defined above, but a better solution suggests itself:

Theorem 2. For an affine arc length polyline we define three types of osculating conics of xi−1, . . . , xi+2:

osculating conic definition affine curvature
outer center ξi, through xi−1, . . . , xi+2 κo

i
inner center ξi, tangential to xi−1xi, xixi+1 and xi+1xi+2 κi

i
middle center ξi, geometric mean of inner and outer conic κm

i

Then the inner and outer osculating conic are related by uniform scaling around the center (or a translation
in the case ki = 0), which allows us to define the middle osculating conic as their geometric mean. κo

i , κ
i
i, κ

m
i

are the conics’ classical smooth affine curvatures (see Section 2.3), which are constants for each conic. Then
they have the following values:

κo
i = A−

2
3 ki

(
1 − ki

4

) 1
3

κi
i = A−

2
3 ki

(
1 − ki

4

)− 1
3

κm
i = A−

2
3 ki.

(7)

xi−1

xi

xi+1

xi+2

ξi ni

ni+1

Figure 6: Affine osculating conics of an affine arc length polyline xi−1, . . . , xi+2. Each one has the
affine evolute point ξi as center. The outer osculating conic interpolates the four vertices, the inner
osculating conic has the three edges as tangents and the middle osculating conic is the geometric mean
of both. Among those three conics the middle osculating conic has the advantage of being the best
approximation of the polygon (the maximum distance of the polygon from the conic is lowest), as
well as having its smooth affine curvature match the discrete affine curvature by having the value
κm

i = ki A−
2
3 .

Proof. Depending on the sign of ki, every polyline xi−1, . . . , xi+2 can be brought into one of the
forms

hyperbola parabola ellipse

xi = r
(

coshλi
− sinhλi

)
xi =

(
i
λi2

)
xi = r

(
cosλi
sinλi

)
A = −2r2 sinhλ(1 − coshλ) A = 2λ A = 2r2 sinλ(1 − cosλ)

ki = 2(1 − coshλ) < 0 ki = 0 ki = 2(1 − cosλ) > 0
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with r, λ > 0 by an equiaffine transformation. The points of contact of the polyline edges with the
inner osculating conic are the polyline edge midpoints 1

2 (xi−1 + xi) etc. for reasons of symmetry.
If we consider the elliptic case, in the special form from the table above the osculating conics

are circles with center at 0. The outer conic has radius r. The inner conic’s radius is ‖(xi +xi+1)/2‖ =

r cos λ
2 = r

√
(1 + cosλ)/2 =

√
1 − ki/4 (with the value of ki from the table). This gives us a

scaling factor
√

1 − ki/4 between the outer and inner osculating conic. In the hyperbolic case we
analogously find the same factor. The scaling factor “inner : middle : outer osculating conic”

is therefore
(
1 − ki

4

)1/4
(ki , 0). In the case ki = 0 symmetry shows that the inner osculating

conic is also an x-symmetric parabola, and inserting the edge midpoints proves that it has the
form (i, λi2 + λ/4)T. It is therefore related to the outer osculating conic by translation with vector
(0,A/8)T. Thus they have the same smooth affine curvature.

Keeping in mind that the (constant) smooth affine curvatures for hyperbola, parabola and
ellipse are −r−

4
3 , 0 and r−

4
3 , respectively, the desired results follow from straight-forward calcula-

tion. �

2.5. Planar discrete affine arc length polylines and B-splines
Trying to connect planar affine geometry with the theory of B-splines the obvious choice is

to look at quadratic B-splines, because they consist of parabolae which have vanishing curvature
from the point of view of affine geometry.

So we will take a polyline x0, . . . , xN to be the control polyline of a uniform quadratic B-
spline. The algorithm of Chaikin [11] is the version of the Lane-Riesenfeld subdivision algorithm
[12] that goes with quadratic B-splines. It replaces the polyline with x 1

4
, x 3

4
, . . . , xN− 1

4
, where

xi± 1
4

:= 3
4 xi + 1

4 xi±1. Now it is easy to see (Fig. 7) that the Chaikin algorithm does not change the
affine arc length of the polyline:

L2(x0, . . . , xN) = L2(x 1
4
, . . . , xN− 1

4
)

In addition an affine arc length polyline will maintain that property under subdivision, where the
new constant A′ has the value A′ = 1

8 A.
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Figure 7: Chaikin subdivision of a polyline results in Ai− 1
4

= Ai+ 1
4

= 1
8 Ai.

In fact we find that affine arc length polylines have a distinguished role in the context of
uniform quadratic B-splines. The two consecutive parabola segments of the B-spline with control
polyline x0, . . . , x3 are parametrized by p1(t) = x1 −

(1−t)2

2 v0 + t2

2 v1 and p2(t) = x2 −
(1−t)2

2 v1 + t2

2 v2
(with 0 ≤ t ≤ 1 each). Calculating their (Euclidean) curvatures at the intersection point we find
κ1(1) = κ2(0) ⇔ A1‖v1‖

−3 = A2‖v1‖
−3
⇔ A1 = A2. Thus we see that a uniform quadratic B-spline is

curvature continuous if and only if its control polyline is an affine arc length polyline.

3. Affine arc length polylines in Rn

Affine differential geometry differs from its Euclidean counterpart by the fact that the notion
of the affine arc length of a curve is explicitly dependent on the dimension of the containing space.

As in the planar case, we use as affine equivalence transformations those linear maps which
leave n-dimensional volumes constant, that is, those maps of the form x 7→Mx+v with det(M) = 1,
v ∈ Rn. Thus the obvious way of defining an affinely-invariant arc length element is to use a
determinant of derivatives of the curve f , which is det( ˙f , f̈ , . . . , f (n)) in Rn. To make this term
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invariant under changes of variables, however, it is necessary to add a suitable exponent (1/3 in
the planar case). Thus one gets for the affine arc length in n dimensions

s(t) =

∫
det

(
˙f (t), . . . , f (n)(t)

) 2
n(n+1) dt.

Therefore affine arc length parametrization has s = t⇒ det( ˙f , f̈ , . . . , f (n)) ≡ 1. Allowing (as in the
planar case) any constant value , 0 instead of 1, we now define

Definition 3. A polyline x0, . . . , xN ∈ Rn consists of N − n + 1 discrete affine length elements, which
are the subpolylines xi, . . . , xi+n, which have the affine lengths

Ln(xi, . . . , xi+n) = det(δxi, . . . , δxi+n−1)
2

n(n+1) , (8)

in particular L2(xi−1, xi, xi+1) = A1/3
i . The polyline is called an affine arc length polyline iff all values of

Ln are the same , 0, that is
∃A , 0: det(δxi, . . . , δxi+n−1) = A ∀ i. (9)

In the plane it was advantageous to use affine arc length polylines as control polylines of
uniform quadratic B-splines; in Rn that role is played by uniform B-splines of degree n:

Theorem 4. Affine arc length polylines are exactly those polylines xi ∈ Rn which when taken as control
polylines of uniform B-spline curves of degree n result in all Frenet curvatures k1, . . . , kn−1 being continuous
at the transitions of the B-spline segments.

Proof. The B-spline basis functions Bk
j(t) for equidistant knots t j = j are recursively defined by

B
k
j(t) =

t − j
k
B

k−1
j (t) +

j + k + 1 − t
k

B
k−1
j+1(t) and B

0
j (t) =

1, t ∈ [ j, j + 1)
0, else

and form the B-spline curve f (t) =
∑N

i=0B
n
i (t) xi with control points xi (see e.g. [14]). As B-spline

curves are translation invariant, in the useable region t ∈ [n,N − n] the basis functions form a
partition of unity.

The curvatures k1, . . . , kn−2 of f are continuous because they only depend on the first n − 1
derivatives of f and the basis functions Bn

i are Cn−1. The curvature kn−1 (called the torsion τ in R3)
is calculated in [13] to be

kn−1 =
det

(
˙f , . . . , f (n)

)
·

∣∣∣[ ˙f , . . . , f (n−2)
]∣∣∣

‖ ˙f ‖ ·
∣∣∣[ ˙f , . . . , f (n−1)

]∣∣∣2 ,

where [a0, . . . , ak] denotes the multivector spanned by a0, . . . , ak, whose length is equal to the k-di-
mensional volume of the parallelotope spanned by a0, . . . , ak. The only term in the formula which
has to be tested for continuity is the determinant, as it is the only one which contains f (n). Using
[14, Thm. 6.18] with equidistant knots to calculate the derivatives of the first B-spline segment we
get

f (k)(t) =

n−k∑
i=0

B
n−k
i+k (t) δkxi for n ≤ t ≤ n + 1.

Using the calculus of multivectors we can now employ induction for k starting from k = n + 1
down to 1.

[
f (k)(t), f (k+1)(t), . . . , f (n)(t)

]
=

[
f (k)(t), δk+1x0, . . . , δ

k+1xn−k−1

]
=

n−k∑
i=0

B
n−k
i+k (t)

[
δkxi, δ

k+1x0, . . . , δ
k+1xn−k−1

]
=

=

n−k∑
i=0

B
n−k
i+k (t)(−1)i

[
δkx1 − δ

kx0, . . . , δ
kxi − δ

kxi−1, δ
kxi, δ

kxi+1 − δ
kxi, . . . , δ

kxn−k − δ
kxn−k−1

]
=

=

n−k∑
i=0

B
n−k
i+k (t)(−1)i

[
− δkx0, . . . ,−δ

kxi−1, δ
kxi, δ

kxi+1, . . . , δ
kxn−k

]
=

=

n−k∑
i=0

B
n−k
i+k (t)

[
δkx0, . . . , δ

kxn−k

]
=

[
δkx0, . . . , δ

kxn−k

]
.
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With e.g. [15, p.16] and k = 1 we then see det( ˙f (t), . . . , f (n)(t)) · [e1, . . . , en] =
[

˙f (t), . . . , f (n)(t)
]

=

[δx0, . . . , δxn−1] = det(δx0, . . . , δxn−1) · [e1, . . . , en] for all n ≤ t ≤ n + 1. Therefore the determinant
is continuous over segment transitions (even constant) if and only if the control polyline xi fulfils
equation (9). �

In addition, we saw in Section 2.5 that if we subdivide a general planar polyline x0, . . . , xN
by the Chaikin algorithm to a polyline x′0, . . . , x

′

2N−1, the overall affine length will stay the same:∑N−1
i=1 A1/3

i =
∑2N−2

i=1 A′i
1/3. We now find that the same holds true inRn if we use the Lane-Riesenfeld

algorithm of degree n, as is appropriate for B-Splines of degree n.

Theorem 5. Let x0, . . . , xN be the vertices of the polyline x inRn. Let µx :=
(

x0+x1
2 , . . . , xN−1+xN

2

)
denote the

averaging operator for finite sequences and δx := (x1 − x0, . . . , xN − xN−1) the forward difference operator.
The Lane-Riesenfeld refinement of degree n [12] of x produces a polyline x′, which is described by

x′ = (x′0, . . . , x
′

N+1) := µn(x0, x0, x1, x1, . . . , xN, xN).

Then the discrete affine arc lengths (as defined by eq. (8)) of x′ are

Ln(x′0, . . . , x
′

n) = Ln(x′1, . . . , x
′

n+1) = 1
2 Ln(x0, . . . , xn). (10)

Proof. Let v = (v0, . . . ,v2n) := (0, x1 − x0, 0, x2 − x1, . . . , 0, xn − xn−1, 0) and thus δx′ = µnv. We also
note that (δµv)2i = 1

2 (v2i+2 − v2i) = 0, from which (δmµmv)2i = 0, m ≥ 0 follows by iteration, as the
operators δ and µ commute.

We will use induction for k to show[
(µkv) j, (µkv) j+1, . . . , (µkv) j+(k−1))

]
= 2−

k(k+1)
2 [v j+1,v j+3, . . . ,v j+2k−1] (11)

for k ≤ n and j = 0, 2, . . . , 2(n−k). For k = 1 the statement is true, because v j = 0 for even j. Assume
therefore that it holds for some k < n, and pass to k + 1.

As an abbreviation we introduce the sequence w = (w0, . . . ,wn) := µkv.[
(µk+1v) j, (µk+1v) j+1, . . . , (µk+1v) j+k

]
= 2−(k+1)[w j + w j+1, . . . ,w j+k + w j+k+1] =

= 2−(k+1)
[ k∑

i=0

(
(w j+i + w j+i+1)(−1)i

i∑
l=0

(k
l
))
,w j+1 + w j+2, . . . ,w j+k + w j+k+1

]
=

= 2−(k+1)
[ k∑

i=0

(−1)i(k
i
)

w j+i︸             ︷︷             ︸
= (−1)kδkw j = 0

+(−2)kw j+k+1,w j+1 + w j+2, . . . ,w j+k + w j+k+1

]
=

= 2−1[w j+1,w j+2, . . . ,w j+k+1] =
↑

eq. (11) with j + 2 in place of j

2−1− k(k+1)
2 [w j+1,v j+3,v j+5, . . . ,v j+2k+1] = 2−

(k+1)(k+2)
2 [v j+1,v j+3, . . . ,v j+2k+1].

To complete the proof we let k = n in (11) to see [(δx′)0, . . . , (δx′)n] = 2−n(n+1)/2[(δx)0, . . . , (δx)n],
which is the proposition according to Definition 3. The length of (x′1, . . . , x

′

n+1) is the same, as can
be seen by reversing the ordering of the vertices. �

4. Curve approximation by affine arc length polylines

We now want to study the problem of approximating an inflection-free planar curve f by an
affine arc length polyline x such that xi = f (ti). Let Si :=

∫ ti+1

ti
det( ˙f (t), f̈ (t))1/3 dt be the affine arc

length from xi to xi−1. Curves with inflection points can be treated by allowing a jump of the
affine arc length constant A at each inflection point (including a sign change). See Section 4.4 for
a demonstration of that approach.

A simple approach to the problem of discretizing a given inflection-free planar curve calls for
the choice of two initial points x0 and x1 on the curve. With a likewise fixed value A the method
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proceeds by imposing det(xi+1−xi, xi+2−xi+1) = A, thus finding xi+2 at the intersection of the curve
with a line parallel to xi+1 − xi. This is the path taken in [1].

Figure 5 demonstrates this procedure for different values of t1 but identical A in discretizing
a conic. All of these discretizations have the sequence of discrete affine curvatures ki alternate
between two constant values (see Theorem 1), except for the one with constant ki, which is affinely
regular. Clearly this discretization is the most desirable one, because it has Si = const., making it
an affinely equidistant discretization of the conic.

For a generic curve f discretizations by affine arc length polylines cannot be affinely equidistant,
but we will try to make the differences Si+1 − Si as small as possible. The path we will be taking
to achieve this is to minimize

∑
i(δki)2. It is motivated by the following theorem:

Theorem 6. Consider the affine arc length polyline xi = f (ti), with Si being the affine arc length from
xi to xi+1. Then if Si is sufficiently small (Si+1 − Si)/Si is a monotonous function of δki. In particular
asymptotically for Si → 0 the function (Si+1 − Si)/Si attains 0 at δki = 0.

Proof. We consider a quintuple of an affine arc length polyline with vertices lying on f such that

(t−2, t−1, t0, t1, t2) :=
(
− t(2 + z(t)), −t, 0, t(1 + w(t)), t(2 + y(t))

)
Assume f is parametrized by the affine arc length and let xi := f (ti), i = −2, . . . , 2. Then Si = ti+1−ti.
We calculate Taylor polynomials of the discrete polyline coordinates (Section 2.1) by using the
following table

det(., .) f ′0 f ′′0 f ′′′0 f (4)
0 f (5)

0
f ′0 0 1 0 −κ0 −2κ′0
f ′′0 −1 0 κ0 κ′0
f ′′′0 0 −κ0 0
f (4)
0 κ0 −κ′0

f (5)
0 2κ′0

where f ( j)
0 := f ( j)(0), κ0 := κ(0) etc.

We know that in the Taylor series of xi derivatives f ( j)
0 only appear in terms where the exponent

of t is ≥ j, and δxi = O(t). Therefore the remainder of the Taylor series of Ai(t) = det(δxi−1, δxi)
which is not calculable from the table, coming from sums of determinants det( f ( j)

0 , f (k)
0 ), j + k ≥ 7, is

O(t7). This means that we can calculate the coefficients of Ai(t) = Ai,3t3 +Ai,4t4 +Ai,5t5 +Ai,6t6 +O(t7).
For instance

A−1(t) = t3 2+3z0+z2
0

2 + t4 3+2z0
2 z′0 + t5

(
− κ0

6+15z0+14z2
0+6z3

0+z4
0

24 + 1
2 (z′0)2 + 3+2z0

4 z′′0
)
+

+ t6
(
κ′0

60+176z0+205z2
0+120z3

0+35z4
0+4z5

0
240 − κ0z′0

15+28z0+18z2
0+4z3

0
24 + 1

2 z′0z′′0 + 3+2z0
12 z′′′0

)
+ O(t7).

Now we demand that x−2, . . . , x2 is an affine arc length polyline⇔ A−1(t) = A0(t) = A1(t). Equating
coefficients of those conditions yields equations in the Taylor coefficients of w(t), y(t), z(t). E.g.
A−1,3 = A0,3 ⇒ z0 = w0 or z0 = −3 − w0. The second solution is excluded because it implies
x−2 = x1. Under the assumption z0 = w0 the equation A−1,4 = A0,4 results in z′0 = w′0. Proceeding
like this to consecutively solve the eight equations A−1, j = A0, j = A1, j, j = 3, 4, 5, 6 we find

A−1(t) = A0(t)⇒ w(t) − z(t) = 2+w0
60 (1 + w0)(5 + 6w0 + 2w2

0)κ′0 t3 + O(t4)

A0(t) = A1(t)⇒ y(t) − w(t) = 2+w0
60 (5 + 4w0 + w2

0)κ′0 t3 + O(t4)

Now we can do the analogous calculation for the equation of constant discrete affine curvature,
k−1 = k0 ⇔ B−1(t) = B0(t), inserting the results from above for z(t) and y(t) to get

det(δx−2, δx0) = det(δx−1, δx1)⇒ w(t) = −
κ′0
6 t3 + O(t4)

and thus S0 − S−1 = −
κ′0
6 t4 + O(t5). If the discrete affine curvature is not constant, we use the

equation B0 − B−1 + A0 δk−1 = 0 (see (4)) to obtain

S0 = t
(
δk−1 +

√
16 + (δk−1)2

)
/4 + t3κ0 α(δk−1) − t4 κ

′

0
6 β(δk−1) + O(t5).
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Here α and β are abbreviations for differentiable terms in δk−1 with α(0) = 0 and β(0) = 1,
whose exact forms are not necessary to know. For slightly simpler notation we may define φ by
δk−1 = 4 sinh(φ), then we equivalently get

S0 = t eφ + t3κ0 α̃(φ) − t4 κ
′

0
6 β̃(φ) + O(t5), (12)

where α̃(0) = 0 and β̃(0) = 1 like α, β above. Thus the relative change of the affine arc lengths is

S0 − S−1

S−1
≈ eφ − 1 for Si → 0. (13)

�

This shows that minimizing the (δk j)2 is effective in order to make an affine arc length polyline
a near affine equidistant discretization of f . In fact it turns out that the (δk j)2 are a very sensitive
measure for the non-constantness of the Si: If x0 = f (0) and x1 = f (t1), even a small deviation of
t1 from the optimum value ((S1 − S0)/S0 � 1%) will cause strong oscillations in ki, and thus large
values of (δk j)2, as evidenced by Figure 11. We find the optimal value of t1 by minimizing

∑
(δk j)2.

This optimization process, as well as the initial value for t1 is discussed in detail in Section 4.2.

Another way of characterising the optimal affine arc length polyline in our problem is to define
them it be (locally) “as affinely regular as possible”. By this we mean that locally its deviation
from an affinely regular polyline is as small as possible.

To justify this we will denote the sector areas with respect to the discrete affine evolute point
ξi of xi−1, . . . , xi+2 by A j, as shown in Figure 8. The polyline xi−1, . . . , xi+2 is affinely regular with
respect to ξi, and so we haveA−1 = A0 = A1. Calculating the areas of the next triangles outside

A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1
A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1A−1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2
A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2A−2

ξixi−2

xi−1

xi
xi+1

xi+2

xi+3

Figure 8: If ξi is the affine evolute point of xi−1, . . . , xi+2, the three areas A−1, A0, A1 are the
same. The next areas outside of them have the relative changes (A−2 − A0)/A0 = ki − ki−1 and
(A2−A0)/A0 = ki−ki+1. Therefore minimizing

∑
i(ki+1−ki)2 makes the polygon (locally) as affinely

regular as possible.

those three we get the relative changes

A−2 −A0

A0
= ki − ki−1 and

A2 −A0

A0
= ki − ki+1.

Thus for xi−2, . . . , xi+3 to be near affinely regular we want ki − ki−1 and ki+1 − ki as near zero as
possible. So finally we can state our problem clearly:

We wish to discretize f by an affine arc length polyline xi such that equivalently

xi discretizes f in a nearly
affinely equidistant way ⇔

xi is locally near
affinely regular ⇔

∑
i

(δki)2 = min (14)

The method we will be using to minimize the (δki)2 is a simple iterative algorithm called golden
section search. It is explained in detail in Section 4.2.

It turns out that if we approximate the curve f by a affine arc length polyline with minimal∑
i(ki+1 − ki)2, the affine curvatures of the middle osculating conics κm

i = ki A−
2
3 form good approx-

imations of the smooth affine curvature of f . See Figs. 11 and 13 as well as table 1 for examples.
For non-optimal choices of t1 this approximation is destroyed by the strong oscillations of ki.
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4.1. Preprocessing
As mentioned in the previous section, the construction of an affine arc length polyline x0, . . . , xn

with xi = f (ti) calls for frequent calculation of intersection points of the given curve f and straight
lines; it needs to be performed for every vertex xi in every optimization step. This can be nontrivial
and thus time-consuming. Therefore it is proposed here to preprocess f , replacing it by a curve f̃
which is a very close approximation of f , and whose structure makes those intersection operations
easy.

This can be achieved by obtaining a fine sampling p j, j = 0, . . . ,N of f and interpolating this
polyline by parabolic arcs. It is appropriate to construct those arcs in an affine-invariant way:
Make the tangent direction of the arc from p j to p j+1 in p j to be p j+1 − p j−1 and in p j+1 to be
p j+2 − p j. It is illustrated in Fig. (9). We will always assume that f̃ : [0,N] → R2 is parametrized
in such a way that f̃ ( j) = p j (which lies on f ). Thus for f̃ (t) the integral part of t specifies the
parabolic arc this point is on, and the fractional part the position on that arc.

It is important to note that p is not an affine arc length polyline, because it does not have
curvature continuity. It is only a tool to facilitate the construction of the affine arc length polyline
x.

pi−1 pi= f̃ (i)

pi+1= f̃ (i+1)

pi+2

Figure 9: Before constructing the affine arc length polyline we replace f by a curve f̃ , which
is constructed from a fine sampling p of f , interpolated by parabolic segments as shown in the
figure. This is done because the construction of xi involves frequent intersecting of f (resp. f̃ ) with
straight lines, which is simplified considerably by using a piecewise parabolic replacement for f .

It turns out that the density (number of vertices) of the polyline p strongly affects the quality
of the end result x: it must be sufficiently high. We suggest |p| ≈ 20 · |x|. In the example below we
aimed to approximate f by an affine arc length polyline x with 60 vertices, so we replaced f by a
curve made from 1000 parabolic segments. See Table 1 for details.

number of vertices of p 200 400 600 800 1000
max 90% 14% 2.9% 1.3% 0.9%

mean 19% 2.4% 0.7% 0.37% 0.25%

Table 1: Effect of the vertex density in the preprocessing step on the quality of affine curvature
approximation shown for the curve from Example 1 (Section 4.3): The deviations of the affine
curvatures of the middle osculating conics A−2/3ki of the affine arc length polyline x compared
to the exact affine curvature of the underlying curve f increases steeply for lower numbers of
vertices of p.

While it is also possible to replace f with a piecewise linear curve instead of a piecewise
quadratic one, due to the lower approximation quality the vertex count of p must be much higher
to enable the same smoothness of the final affine arc length polyline x.

4.2. Initialisation and golden section search
After choosing a first vertex on f̃ , e.g. x0 := f̃ (0), we need an initial value t1, x1 := f̃ (t1) to start

the optimization. We do this by calculating the exact affine arc length of the replacement curve f̃ ,
which is easy (and another advantage of a piecewise parabolic replacement of f ). If we take the
affine polyline coordinates of p j to be A∗j and B∗j, then the segment from p j to p j+1 has the affine
arc length

S j :=
( 4A∗jA

∗

j+1

A∗j + B∗j + A∗j+1

)1/3

. (15)
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The total length of f̃ is S :=
∑N−1

j=0 S j. If we want to approximate the curve by the affine arc length
polyline x0, . . . , xn it is a good choice to use A := (S/n)3. As initial value for t1 we want to place
x1 = f̃ (t1) such that the affine arc length from x0 to x1 is roughly 1/n of the total affine arc length.
For simplicity we initialize t1 with an integral value:

t1 such that
t1−1∑
j=0

S j ≈ S/n.

From this the rest of the affine arc length polyline x0, . . . , xn can be constructed easily as described
in Section 4.

Now we want to perform optimization on t1 in order to minimize the error function ψ(t1) :=∑
i(ki+1 − ki)2, keeping x0 and A fixed. The error function is unimodal with respect to t1. Therefore

we can use the iterative method called golden section search (see [16]). This method is a variant of
ternary search which finds a minimum of a unimodal function of one variable in an interval. As
initial interval we can use e.g. [0, 2t1] =: [a, d]. It is split into three parts with length ratios φ : 1 : φ,
where φ is the golden section. This gives us four points a < b < c < d. Now the function ψ to be
minimized is evaluated at the middle points b and c. If ψ(b) < ψ(c) the minimum cannot lie in the
right interval (c, d], which is discarded. The remaining interval [a, c] is once again subdivided into
3 intervals with the length ratios φ : 1 : φ. Here the properties of the golden section guarantee that
φ needs only be evaluated one more time to achieve this: (a, b, c, d) 7→ (a, a+c−b, b, c). Ifψ(b) ≥ ψ(c),
the left interval is the one discarded. Every iteration decreases the total interval size by a factor
of φ − 1 ≈ 0.618 until the interval is judged small enough. In the end we simply set t1 := 1

2 (b + c).
Examples below were created in that way.

4.3. Summary and example
Below is the summary of the proposed method of approximating a noninflecting planar curve

f with an affine arc length polyline x0, . . . , xn.

1. Preprocessing: Replace f by a piecewise parabolic curve f̃ , to facilitate the constructions in
the following steps. f̃ : [0,N] → R2, f̃ ( j) = p j, where p j lies on f ; the tangent directions of
f̃ ( j) are chosen as shown in Figure 9. It is important that the number of parabolic segments
is sufficiently high, to make the replacement curve f̃ a good approximation of f .

2. If S j is the affine length of the parabolic segment of f̃ from p j to p j+1 (as given by eq. (15)),
the total affine length of f̃ is S :=

∑N−1
j=0 S j. Let x0 := f̃ (0). We set t1 to an initial integral value

such that
∑t1−1

j=0 S j is as close to S/n as possible. Thus x1 := f̃ (t1) = pt1 .
3. The affine arc length polyline x0, . . . , xn can now be constructed uniquely from x0, x1 and the

constant A, which we set to the value A := (S/n)3. The construction consecutively finds xi at
the intersection of the curve f̃ and the straight line of all points z with det(xi−1−xi−2, z−xi−1) =
A. The affine arc length polyline determines the affine curvatures k1, . . . , kn−2.

4. Golden section search is performed to find the optimal value t1 which minimizes ψ(t1) :=∑
i(ki+1 − ki)2. The affine arc length polyline is constructed anew from x0, A and the updated

t1 to get the new value of ψ(t1) in every optimization step. The optimization terminates after
a fixed number of iterations.

As an example we take f to be a Bézier curve of degree 8, to be approximated by an affine arc
length polyline with 60 vertices. Fig 11 and Table 1 compare the affine curvatures of the middle
osculating conics ki A−2/3 with the exact affine curvatures of the original Bézier curve at that point,
κ((ti−1 + ti + ti+1 + ti+2)/4).

4.4. Approximating curves with inflection points
Curves with inflection points do not have an affine arc length parametrization in the classical

sense and can therefore not be represented by affine arc length polylines. It is however possible to
split them at the inflection points and treat the segments separately, with visually pleasing results.
Below is a description of the procedure.

Assume that we want to approximate a curve f (t), 0 ≤ t ≤ 1 which has k inflection points by a
polyline xi containing n + 1 vertices.
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x0

x59

Figure 10: Bézier curve of degree 8 and its approximation by a 60 vertex affine arc length polyline,
optimized for

∑
i(ki+1 − ki)2 = min.

Figure 11: Affine curvatures κm
i = ki A−2/3 of the middle osculating conics of the example depicted

in Figure 10. The exact affine curvature of the smooth curve is the thin curve. The top diagram is
for the value of t1 (where x1 = f̃ (t1)) which minimizes

∑
i(ki+1−ki)2, the bottom one has t1 increased

by 0.2% to show the sensitivity of the smoothness of ki (and thus of the local affine regularity of x)
to t1.

1. Identify the inflection points f̃ (si), 0 < s1 < · · · < sk < N of the piecewise parabolic replace-
ment curve f̃ . This is easy, as si ∈ Z.

2. Let x0 := f̃ (0) and n0 := 0. We want to place vertex xni close to the i-th inflection point for
each i ≥ 1. To find a good choice for the indices ni we calculate S̃i :=

∫ si

0 |det( ˙̃f , ¨̃f )|1/3dt,

S̃ :=
∫ N

0 |det( ˙̃f , ¨̃f )|1/3dt and then choose the ni as to fulfil

S̃1 : S̃2 : · · · : S̃k : S̃ ≈ n1 : n2 : · · · : nk : n

as closely as possible.
3. Now we consecutively construct the sub-polylines xni−1 , . . . , xn1 , constructing xni−1+1, . . . , xni

for the already fixed xni−1 and A := (S̃i − S̃i−1)/(ni − ni−1). For the smoothing optimization in
this step it is advisable to disregard a few vertices that are closest to the inflection points.
The sub-polyline xni−1 , . . . , xn1 determines the affine curvatures kni−1+1, . . . , kni−2. Therefore,
if we skip l vertices at each end of the sub-polyline this means that we will minimize∑ni−3−l

j=ni−1+1+l(k j+1 − k j)2, for e.g. l = 2.
This may be redone with adjusted value for A if the resulting xni is too far from the inflection
point, but an exact coincidence is not necessary.

An example of this situation is shown in Figures 12 and 13.
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x0

xn1=x19 xn2=x31

x49

Figure 12: Curve with two inflection points and its approximation by a 50 vertex polyline, which
consists of three concatenated affine arc length polylines, each optimized for

∑
i(ki+1 − ki)2 = min.

The vertices close to the inflection points (x31 and x19) are shared between two affine arc length
polylines each.

Figure 13: Affine curvatures ki A−2/3 of the middle osculating conics of a curve with two inflection
points. The exact affine curvature of the smooth curve is the thin graph. Values that depend on
vertices on both sides of an inflection point are meaningless and therefore omitted. The highlighted
curvature values were disregarded in the optimizations

∑
i(ki+1 − ki)2 = min for being too close to

the inflection points.

Conclusion and future work

We have shown that the theory of affine arc length polylines, the discretization of curves in
affine arc length parametrization, can be extended beyond the previous work by [1]. In particular
we defined discrete osculating conics. In addition we showed how affine arc length polylines
equivalently arise as control polygons of curvature continuous uniform quadratic B-splines. Some
of our results were shown to also hold inRn for uniform B-splines of degree n. Finally, we presented
an algorithm for the approximation of inflection-free planar curves by affine arc length polylines
in a way that the smoothness of the discrete affine curvature was optimized, making it a good
approximation of the smooth affine curvature of the original curve. This demonstrates how the
added geometric constraints on the discrete data pose no obstacle to the practical problem of
approximating an arbitrary given curve.

There are several directions for future research that look promising. One possibility is to try to
extend discrete affine curve geometry in R3 and Rn. Another idea is to further study the concept
of imposing geometric constraints on discrete data in order to make piecewise smooth objects
deriving from it (geometrically) smoother than in the generic case. In particular, we need to see
whether the notion affine arc length polylines can be transferred into the theory of surfaces in R3.
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