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Freeform Honeycomb Structures
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Figure 1: We approximate the Cour Visconti roof in the Louvre, Paris, by a quad mesh with planar faces which caps a honey-
comb (consisting of hexagonal cells whose walls intersect at 120◦). This structure exhibits several features important in freeform
architectural design: planar faces, low valence of nodes, a torsion-free support structure, and repetitive node geometry.

Abstract
Motivated by requirements of freeform architecture, and inspired by the geometry of hexagonal combs in beehives,
this paper addresses torsion-free structures aligned with hexagonal meshes. Since repetitive geometry is a very
important contribution to the reduction of production costs, we study in detail “honeycomb structures”, which are
defined as torsion-free structures where the walls of cells meet at 120 degrees. Interestingly, the Gauss-Bonnet
theorem is useful in deriving information on the global distribution of node axes in such honeycombs. This paper
discusses the computation and modeling of honeycomb structures as well as applications, e.g. for shading systems,
or for quad meshing. We consider this paper as a contribution to the wider topic of freeform patterns, polyhedral
or otherwise. Such patterns require new approaches on the technical level, e.g. in the treatment of smoothness, but
they also extend our view of what constitutes aesthetic freeform geometry.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms

1. Introduction

Nature’s design strategies and solutions are a rich source of
inspiration for various branches of science and technology
(see e.g. the biomimicry web pages www.asknature.org and
biomimicry.net). Architecture and structural engineering are
certainly among those areas which learn from nature, and
this should be especially true for research on the realiza-

tion of complex architectural structures. The present paper
presents a contribution in this direction. It is inspired by
honeycombs which possess fascinating freeform shapes (see
Figure 1) and are composed of hexagonal cells whose faces
meet at angles close to 120 degrees. Structures containing
honeycomb geometry have been used in engineering for a
long time, as a means to minimize material without losing
structural strength [LSZ∗14]. This paper assumes a differ-
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Figure 2: Left: Natural honeycomb. Right: Design by E. van
Egeraat based on a hexagonal torsion-free support struc-
ture.

ent viewpoint and sees them in the context of architectural
geometry, as torsion-free support structures with congruent
regular nodes and hexagonal cells. The most important prop-
erty of such honeycomb structures is that all nodes are con-
gruent within a reasonable tolerance, which should facilitate
the fabrication of these structures. We will show how to com-
pute and design honeycomb structures, discuss applications
and their limitations, and we also discuss the new topic of
polyhedral patterns.

Related Work. Given a base mesh M of any connectivity,
computing a torsion-free structure based on M requires us to
assign a plane to each edge so that the planes around each
vertex (node) intersect in a straight line, which is called the
node axis. In the actual realization of this structure, beams
are positioned symmetric to the edge planes. For triangle
meshes, torsion-free support structures have very few de-
grees of freedom and are not interesting for applications.
This is because all node axes need to pass through a fixed
point, or are parallel [PLW∗07]. For meshes with planar
faces, torsion-free support structures have been well studied
in recent years: They are accessible via the concept of paral-
lel meshes. For quad meshes, support structures are related
to discrete line congruences [WJB∗13]. Neither applies to
honeycomb structures, which are based on hex meshes with
non-planar faces.

Special hex-dominant torsion-free structures can be de-
rived from triangle meshes with the circle-packing property
[SHWP09] which are equipped with a packing of spheres
centered in the vertices. The sphere’s tangent planes in the
points of contact form a torsion-free hex structure, and if all
spheres are of the same size it will be a honeycomb with
120 degree intersection angles. Such CP meshes therefore
are useful to initialize some optimization tasks discussed in
this paper. A more general construction of support structures
has been briefly addressed in connection with cell packing
structures [PJH∗14], but without aiming at congruent nodes.

Repetition of elements has been a successful ingredient
in reducing the fabrication cost of freeform architecture, see
e.g. [SEKC13], and thus this topic already received some at-
tention. Singh and Schaefer [SS10] optimize triangle meshes
so that there is only a relatively small set of different faces

Figure 3: Hexagonal support structure
derived from a circle-packing mesh,
each cell containing a sphere touching
the walls [SHWP09].

up to some chosen tolerance. Similarly, Fu et al. [FLHCO10]
reduce the number of essentially different faces in non-
polyhedral quad meshes. For arbitrary freeform shapes, the
goal of congruent faces appears to conflict mesh fairness.
We expect a similar effect for the goal of congruent nodes in
meshes with straight edges. However, giving up the straight-
ness of edges and using circular arcs instead, one can achieve
congruent and even regular nodes for triangular, quad and
hex combinatorics [BPK∗11].

Last, but not least we point to [ZCBK12], where the topics
of repetition and general polyhedral patterns are combined
by the analysis of the realization of surfaces with a bounded
number of “folding elements”.

Contributions

1. We analyze the geometry of honeycomb structures and
discuss their flexibility to approximate freeform shapes.
It turns out that a honeycomb can be orthogonal to a given
surface only if that surface is developable. The Gaussian
image of a honeycomb is an unusual kind of spherical 2D
tiling which is concentrated on curves.

2. We present computation and interactive design of honey-
combs, addressing special cases and particular applica-
tions relevant to architectural design.

3. Honeycombs can be converted to polyhedral patterns on
surfaces, e.g. quad patterns consisting of planar faces.
Such patterns, which are not a discrete version of a
smooth curve network, constitute a remarkable and novel
topic.

2. Geometry and flexibility of honeycomb structures

This section discusses geometric properties of honeycombs.
Our conclusions in particular yield insights in the degrees of
freedom which are available when approximating a design
surface by a honeycomb structure. It turns out that the con-
dition of congruent nodes is rather strong: It implies that the
honeycomb can always follow a given surface, but in general
it is not possible that the node axes remain orthogonal to it.
We show that this can happen only for developable surfaces.

Definitions. v′k

vk

vi

v′i

We summarize again
the definition of a honeycomb struc-
ture: It requires two combinatorially
equivalent meshes M = (V,E,F)
and M′ = (V ′,E′,F ′) such that each
pair vivk, v′iv

′
k of corresponding edges defines a planar quad-

rilateral wall which serves to border the open cells associated
with the faces of the mesh. Further we require that for each
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vertex the incident walls form angles of 120 degrees (imply-
ing that the valence of each vertex is ≤ 3 and faces will be
mostly hexagonal). The intersection of walls at a vertex vi is
called its node axis (it is the straight line viv′i).

The most relevant geometric information contained in
a honeycomb structure is not the meshes M,M′ but the
edge planes which carry the walls (connecting correspond-
ing edges), and the node axes which connect corresponding
vertices. If these data are given we may freely choose ver-
tices of M,M′ in the node axes, thereby defining a honey-
comb structure (this e.g. implies that any surface can triv-
ially be approximated by a honeycomb structure, by moving
the vertices of an existing honeycomb close to that surface).

We will see that for our computations it is mostly suffi-
cient to encode the relevant geometric data of honeycombs
by the vertices of the mesh M, and the normal vectors of
walls in the honeycomb.

The spherical image of a honeycomb. In order to under-
stand the global geometry of honeycombs we study the unit
vectors vσ

i which indicate the directions of the node axis
viv
′
i . In our applications the base mesh is always following

a smooth surface, and we assume that the vectors vσ
i con-

sistently point to one side of that surface. For any face f =
(vi1 ,vi2 , . . .) of the base mesh, the spherical image of that
face, resp. cell, is the spherical polygon f σ = (vσ

i1 ,v
σ
i2 , . . .),

see Figure 4. The spherical image Mσ of the honeycomb
consists of the spherical images of the individual cells.

Remark: There is a linear space of honeycomb structures
which belong to a given spherical image. The dimension of
that space is |E| − |V | ≈ 1

2 |V |, because there is one degree
of freedom per edge plane, and one condition per vertex.

The spherical zero-area property of honeycombs. Since
the walls of a honeycomb cell intersect at 120 degrees, the
spherical image f σ of this cell is a polygon whose edges are
great circles intersecting at 60◦ or 120◦. Figure 4 exhibits
two kinds of cells: f σ may be large (like the highlighted 5-

v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1
v5v5v5v5v5v5v5v5v5v5v5v5v5v5v5v5v5

vσ
1

vσ
2

vσ
3

vσ
4

vσ
5

f = (v1, . . . ,v5)

f σ = (vσ
1 , . . . ,vσ

5 )

Figure 4: Honeycomb and its spherical image. Left: Honey-
comb with node axes. A 6-gon and a 5-gon are highlighted in
red and blue, resp. Right: Spherical image Mσ of node axes,
with analogous highlighting. Observe the decomposition of
Mσ into curve-like structures.

gon), or it might be small, meaning that the node axes of the
corresponding cell point in roughly the same direction.

Recall the Gauss-Bonnet formula which relates the total
rotation number R of a geodesic polygon in a surface with
the Gauss curvature K and the angles αi which indicate the
turning of the edge in the individual vertices. We have

∑αi = 2πR−
Z

x
K(x)w(x), (1)

where w(x) is the number of times the polygon is winding
around the point x.

Example: For the blue polygon f σ in Figure 4 we have
K = 1, all αi equal 60◦, R = 1, and the winding coeffi-
cient w(x) equals 1 inside the polygon, and 0 outside. ThusR

K(x)w(x) reduces to the area of the polygon, and we get
5× π

3 = 2π− area( f σ) =⇒ area( f σ) = π

3 .

We sketch some planar 6-gons whose angles are 60◦ or
120◦, indicating R and the local winding number w(x):

R 1 1 0 0 2 1 2 2

1

-1

1

1
-1

1 +1-1
-1

1

1
-1

1

1
1

1
2 11

1
2	

(2)

The turning angles αi in vertices obey ∑αi = 2πR, which
follows from (1) when we let K = 0. A spherical 6-gon f σ,
on the other hand, satisfies Gauss-Bonnet with K = 1:

∑αi = 2πR−
Z

x
w(x) = 2πR− area( f σ), (3)

where area( f σ) is the oriented area of f σ, defined as
R

w(x),
meaning that each point contributes to the area with a certain
multiplicity defined by how often the polygon winds around
that point. If f σ has the same combinatorics and angles as a
planar hexagon, then ∑αi = 2πR immediately implies

area( f σ) = 0. (4)

There may be f σ’s whose area does not vanish, ∑αi 6= 2πR,
and we cannot find a planar 6-gon with the same angles and
rotation number R. However the smallest nonzero value of
|area( f σ)| equals π/3 because both ∑αi and 2πR are integer
multiples of that number (which, incidentally, is the area of
the highlighted 5-gon in Figure 4). We have proved:

Proposition 1. The oriented area of a spherical image f σ

of a honeycomb cell either vanishes or has absolute value
≥ π/3. In the first case there is a planar hexagon having the
same angles αi and rotation number R as f σ does.

The practical implication of this statement is that a 6-
gon honeycomb cell whose node axes are close together will
have a spherical image f σ of zero area. Figure 4 shows an
example of this: All hexagons in the spherical image have
zero area, and their shapes correspond to the examples in the
left hand section of Equ. (2).

Global distribution of node axes. Numerical evidence (see
e.g. Figures 4 and 5) shows that the spherical image of a
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honeycomb exhibits curve-like structures where zero-area
hexagons cluster, interspersed with individual polygons of
nonzero area (non-hexagonal ones mainly, but also hexagons
are possible). We argue why smoothness of honeycombs is
responsible for this behaviour.

Detail

Figure 5: This curve-like spherical image (right) of a hon-
eycomb (left) has the aspect of a tiling of the sphere by zero-
area hexagons shaped like the one shown above.

This smoothness is not meant in the literal sense, since the
shape of spherical image polygons entails high-frequency
oscillation of node axes in any case. Instead we require a
very modest kind of regularity: In a “regular” area of the
honeycomb, the spherical images of two neighbouring cells
should have roughly the same size and shape. The tiling of
cells of the honeycomb must translate to a tiling of hexagons
on the unit sphere. We therefore have to ask which of the
hexagons shown in Equation (2) can possibly have a similar-
shaped hexagon as a neighbour, along each of its six edges.

For polygons of type (also depicted in Figure 5), this
is possible. There is a combinatorially regular two-dimen-
sional tiling of such hexagons which is difficult to visualize,
but which can be seen in Figure 5. Three individual rows
of hexagons contained in such a tiling are shown below, at
right. For comparison we also show three rows of hexagons
in the tiling with a geometrically regular hexagon (at left).

(2) (3)

(1) (3)

(2)

(1)

Geometrically, this tiling exists because the sum α1 + α3 +
α5 of turning angles is an integer multiple of 360◦. For the
polygons , , , such a tiling does not exist, because
if they are made to have zero area, there is at least one pair
of opposite edges of very different lengths. For polygons of
type , opposite edges do have the same length, but an
attempt at tiling will still fail, because the above-mentioned
angle condition is not satisfied.

The image of the three rows also shows that a tiling of
hexagons of type is covering only a curve-like strip
(see also Fig 5). For the planar version of this hexagon this
is because the 6 parallel translations which map an edge to

its opposite edge all go in the same direction; for the spheri-
cal version of this hexagon this property holds only approx-
imately. We summarize:

Property 2. The spherical image of a regular honeycomb is
curve-like.

The practical implication of this statement is that node
axes of a honeycomb will not behave like the normals of
a surface, even if high-frequency oscillations are discarded.
Only for developable surfaces, the spherical image of nor-
mals is curve-like (see Figure 6). This implies:

Property 3. Node axes of a regular honeycomb approximate
the normals of a surface only if that surface is developable.

Remark: We also ask the converse question: Can we find
a “zero-area” tiling along a given spherical curve C, which is
the spherical image of a honeycomb structure? The answer
is yes by the following heuristic argument: we start with a
zigzag polyline following C and extend it by adding zero-
area hexagons layer by layer. For each new row there are as
many degrees of freedom (lateral displacement of vertices)
as there are conditions (zero area for each face).

If a honeycomb is guided by a surface S but the node axes
are not required to be close to the normals of S, then there
are many design options. When honeycombs are smooth (in
an appropriate meaning of the word) then node axes will au-
tomatically be close to the normals of some developable, but
that developable is present only implicitly and does not in-
terfere with computations.

(a)

(b)

(c)

Figure 6: (a) Honeycomb following a near-developable sur-
face S (which is the only kind of surface where node axes
can follow the surface normals). (b) Color coded quality of
a near-isometric parametrization of S, which has been used
for initializing the honeycomb, by mapping a regular hexag-
onal tiling onto S (distortion peak .30 and average .05). (c)
Spherical image of honeycomb. This result experimentally
confirms that our method of initialization provides almost-
isometric mappings; for details see text.
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(a) (b)

Figure 7: Computing a honeycomb on a complex architectural freeform skin (Yas Marina hotel, Abu Dhabi). (a) Given the base
mesh, we initialize a honeycomb structure (not yet consistent) orthogonal to the reference surface and apply guided projection
onto the constraint manifold. (b) This result is not satisfactorily regular, so the projection procedure has to be guided by a
fairness energy. We added equality of normal vectors of opposite walls in each hexagonal cell as soft constraints (with the same
weight as the regularizing term) to our algorithm. Note that the spherical image of this honeycomb exhibits Property 2.

3. Computational approach

Here we describe our computational setup for honeycomb
structures. We discuss the two processes of (i) finding an
initial hex mesh equipped with additional data which do not
yet define a torsion-free support structure, and (ii) optimiz-
ing these data so they will define a honeycomb structure.

Initialization of the base mesh. For initialization, we imple-
mented the method of [NPPZ12] to find a hexagonal mesh
M = (V,E,F) on a given surface S, whose edges follow a
given 6-RoSy field of directions. To find that field, we use a
direct extension of the method of [BZK09] which can eas-
ily accommodate alignment with features or a user’s design
strokes.

Choice of variables. The variables used in optimization are
the vertices together with unit vectors nij for each edge
vivj. In the following text we assume that nji = −nij but
of course only one of nij, nji is actually used in the im-
plementation. These vectors are initialized by letting nij =
R−π/2(

vi−vj
‖vi−vj‖ ), with R−π/2 as a clockwise rotation by 90

degrees about a surface normal in the midpoint of the edge
vivj. The vectors nij are in-
tended to serve as normal vec-
tors of walls in the honeycomb,
meaning that for each vertex vi
there should exist a node axis
viv′i which is orthogonal to nij
whenever vivj is an edge.

vi

vj

vk

vl
nij

nik

nil v′i
v′l

v′k

v′j

Reconstructing the honeycomb structure from the chosen
variables. This is done in the following way: We must find
the vertices v′i of the mesh M′ paired with M, by letting
v′i = vi + λivσ

i , where λi is the prescribed thickness of the
honeycomb and vσ

i = 1
‖v′i−vi‖ (v

′
i − vi) is a unit vector indi-

cating the node axis through vi which must be orthogonal to
all nij’s. It is found by principal component analysis, as an
eigenvector of the 3 by 3 matrix ∑ j nijn

T
ij .

Constraints. We impose the following constraints on our

variables. Firstly, every normal vector is normalized, so
nT

ij nij = 1. Secondly we have the consistency condition

nT
ij (vi−vj) = 0 whenever vivj ∈ E.

The intersection angle of walls associated with edges vivj

and vivk could be expressed by nT
ij nik = cos120◦ = −1/2.

For a valence 3 vertex vi with neighbours vj,vk,vl however,
the simple condition nij +nik +nil = o states that these three
normal vectors form an equilateral triangle. This expresses
both the angle condition and the existence of a common
node axis. Further constraints are vertices confined to the
design surface S or to a boundary curve. Since the geometry
of the honeycomb permits moving vertices along the node
axes, proximity to S can be considered a soft constraint.

Solution. Each constraint involves only a few variables
and (apart from interpolation constraints) is either linear or
quadratic. We therefore use the method of [TSG∗14] to solve
the constraint equations iteratively. In every round of itera-
tion a Newton linearization turns the constraints into a lin-
ear system of the form HX = R, with X as the increment in
the vector of variables. To allow for redundant constraints
and the general under-determinedness of the system, we do
not solve it directly, but we regularize and instead solve
‖HX−R‖2 +ε‖X‖2→min, with ε� 1. Note that our solu-
tion procedure is essentially the same as minimizing a least-
squares sum of constraints with a Gauss-Newton method.

Interpolation constraints have the form “v ∈ Φ” where Φ

is a curve (or surface). They are linarized in each round of
iteration by replacing Φ with the tangent (or tangent plane)
in the point v∗ ∈Φ which is closest to v.

Fairness is not used in the basic version of our algorithm.
It can be incorporated either as a set of soft constraints (with
small weights) or by adding a fairness energy to the regular-
izing term, which amounts to the same thing (see Fig. 7).

Relevance of geometric properties. Section 2 discussed in
detail geometric properties of honeycomb structures. Their
most important implications on our algorithm (this section)
and on applications (next section) are the following:

c© 2014 The Author(s)
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1. We cannot expect that the walls of honeycomb cells can
be made orthogonal to a reference surface – this is possi-
ble only if that surface is developable (cf. Property 2 and
Property 3).

2. We cannot expect the node axes (or the cell’s normal vec-
tors) to be smooth in the usual discrete sense of finite
differences, since the zero area property of Proposition 1
implies high frequency oscillations.

In particular we conclude that orthogonality of a honeycomb
to a surface cannot be a hard constraint, and that fairness
energies must be composed appropriately.

The next section discusses applications and extensions of
the concept of honeycomb, and also mentions where it is
necessary to modify the initialization or to add additional
variables and constraints to optimization.

4. Results

The previous sections already contained examples of hon-
eycombs, see Figures 4, 5, 6 and 7. Property 2 is validated
by the spherical images of honeycombs shown there. Fur-
ther, Figure 8 gives an impression on how well the constraint
equations are satisfied before and after optimization.

δmax = .018
δavg = .005
ωmax = 25◦

ωavg = 9.6◦

.0150 δ

δmax = 10−5

δavg = 2 · 10−6

ωmax = .04◦

ωavg = .003◦

Figure 8: We illustrate to which extent the constraints are
fulfilled, for the honeycomb of Figure 5, after initialization
and before optimization (left) and after optimization (right).
The planarity of wall quadrilaterals is indicated by color
coding the planarity measure δ, which is defined as the dis-
tance of diagonals of a quad divided by average edge length.
“ω” is the deviation from the desired intersection angle of
120◦.

Honeycombs following developable surfaces. Figure 6
shows a honeycomb whose guiding surface S is nearly de-
velopable and where initialization according to §3 yields
an almost-isometric parametrization of S. The honeycomb

e
e′

βmax = 0.6◦ , βavg = 0.09◦ 0◦ β 1◦

Figure 9: Honeycomb de-
fined by parallel meshes
M and M′. The angle
β between corresponding
edges e,e′ illustrates devi-
ation from parallelity.

Figure 10: An example of user guided design: The user ed-
its the honeycomb of Figure 5 by moving a node axis. This
change is also applied to neighbouring node axes, multi-
plied with a dampening function. Re-optimization modifies
the honeycomb such that walls intersect near the prescribed
node axis positions (see accompanying VIDEO).

is initialized by mapping a regular hexagonal grid onto S.
For the sake of experiment, we tried to make the parame-
trization more isometric, following [LXZ∗08] to iteratively
modify the 6-RoSy field our method is based on. We found
that this improvement has almost no visible effect and that
the original method yields a parametrization which is iso-
metric enough anyway.

User interaction. Solving the constraint equations neces-
sary for computing a honeycomb is fast enough to enable
user interaction. There are three kinds of deformation resp.
modeling we emphasize: (i) changing the base mesh and re-
computing the honeycomb for the modified mesh; (ii) repo-
sitioning vertices on the honeycomb’s node axes, so that
the wall planes remain unchanged, and (iii) editing the axes
with only minimal changes to the base mesh. All three are
shown in the accompanying VIDEO. As to computation, edit-
ing mode (i) corresponds to setting target values for the ver-
tex coordinates vi and re-running optimization. For (ii), no
optimization has to be performed; this deformation is con-
ceptually similar to editing a triangle mesh. For (iii), see
Figure 10, the user’s wish is translated to new target val-
ues ai for the node axis vectors 1

‖v′i−vi‖ (v
′
i − vi). They are

incorporated in our optimization by adding constraints

nT
ij ai = 0, whenever vivj ∈ E.

These equations express the wish that the wall planes in-
tersect in the updated node axes. In the optimization these
constraints are given a lower weight than those expressing
consistency and angles.

Honeycombs defined by parallel meshes. We are inter-
ested in the question if there are honeycombs defined by

c© 2014 The Author(s)
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v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1

v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2

v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3

v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4

vivivivivivivivivivivivivivivivivi vjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvj vkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvk

Figure 11: Zigzag quadrangulation: We show two views of a polyhedral quad mesh equipped with a honeycomb support struc-
ture, approximating the design surface of the Cour Visconti roof in the Louvre, Paris (see also Figure 1). The right hand image
illustrates the “zigzag” mesh polylines (with consecutive vertices v1, . . . ,v4) and “straight” mesh polylines (with consecutive
vertices vivjvk). Fairness of these polylines is a topic of optimization.

parallel meshes M,M′, meaning that corresponding edges
of M,M′ are parallel (note that parallelity of this kind is not
the same as parallelity of meshes as studied by [PLW∗07],
since M,M′ do not have planar faces). It is not difficult to add
this constraint to our optimization. Introducing vertices v′i as
additional variables, we add the appropriate consistency con-
dition nT

ij (v
′
i−v′j) = 0 for each edge vivj, as well as the par-

allelity constraint (vi−vj)× (v′i−v′j) = o. In order to verify
that optimization can succeed, we investigate the degrees of
freedom available when, given a honeycomb, we try to posi-
tion the vertices of both M,M′ on their respective node axes
such that edges become parallel.

Consider an n-gon cell, and assume that vertices
v1, . . . ,vn−1 and v′1, . . .v

′
n−1 are chosen already. In order to

construct the remaining vertices vn,v′n we observe that par-
allelity of corresponding edges means that the planes α,α′

spanned by v1,vn−1,vn and v′1,v
′
n−1,v

′
n, resp., are paral-

lel. Those planes are determined by the data already avail-
able: α passes through v1,vn−1 and is parallel to v′n−1−v′1,
and analogous for α

′. We therefore find vn, resp. v′n by
intersecting the given node axis
with α, resp. α

′. This shows that
in a honeycomb of regular com-
binatorics we can find parallel
meshes M,M′, simply by choos-
ing vertices on a zigzag sequence
of walls and working our way
outward from there, with 1 d.o.f.
per added face.

v1

v2

vn−1

v′1

v′2

v′n−1α
′

Figure 9 shows a result of this kind of optimization. The
additional variables v′i have been initialized by moving the
vertex vi a constant distance along the normal of the refer-
ence surface S.

Constant honeycomb depth. A honeycomb of constant
depth is very interesting for architectural geometry, be-
cause in this case, we can let beams of constant width fol-
low the edges of M,M′. It is not difficult to add constant

depth as a soft constraint, e.g. by adding quadratic equations
‖vi− v′i‖2 = c with a low weight. This turned out to be un-
necessary for the example of Figure 9.

Quadrangulation combined with torsion-free support
structures. For applications in freeform architecture the
ability to cover a given surface by planar elements is partic-
ularly relevant. Since a honeycomb structure is usually not
bounded by a hex mesh with planar faces, we demonstrate
how to cover a honeycomb by a pattern of planar quadrilat-
erals. The resulting mesh is polyhedral, and is equipped with
a torsion-free support structure (which even has the feature
of repetition in local node geometry).

Our approach is to split each hexagonal face of the base
mesh M into two quads which are required to be planar; thus
capping each cell of the honeycomb with two planar quads.
See Figures 1, 11 for the combinatorics of this splitting and
a result.

Figure 12: It may be difficult to approximate freeform ar-
chitectural designs (here: Cour Visconti, Louvre) by a quad
mesh with planar faces whose edges discretize a smooth net-
work of curves. This is because such meshes have to follow
conjugate curve networks, and the number of singularities of
these networks is determined by the curvature of the surface.

A major difference to previous approaches to planar-quad
meshing is that we do not require smoothness of the edge
polygons. In this way we no longer have the strong restric-
tions posed on quadrangulation which originate in an anal-
ogy between meshes and curve networks, cf. [ZSW10], e.g.
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for the surface used in our example, a “smooth” quadrangu-
lation with planar faces would have to look essentially like
the one in Figure 12.

In computations we use as additional variables the unit
normal vectors of those quads which are required to be pla-
nar. The vertices of these quads are already present as vari-
ables. Constraints (normalization and consistency) are anal-
ogous to the planar “wall” quads.

To capture the visual impression of smoothness (regular-
ity) of both straight and zigzag polylines in the hex mesh
M, we add soft constraints with small weight. Referring to
Figure 11, a zigzag polyline in a hex mesh is considered reg-
ular, if we approximately have (v1−v2)−(v3−v4) = o, for
all choices of consecutive vertices v1, . . . ,v4. For the poly-
lines transverse to the zigzag ones we merely want to punish
lateral deviation from the appearance of smoothness, mean-
ing that we want nT

ij (vj−vk) = 0 to hold for each choice of
3 consecutive vertices vi,vj,vk. Both kinds of equations are
added as soft constraints to our optimization procedure.

Remark: It is not difficult to add the condition of a min-
imum edge length lmin to our optimization. This can be
done by adding quadratic constraints ‖vi − vj‖2 = l2

min +
(dummy)2 which use dummy variables, cf. [TSG∗14].

Local edits and subdivision. The property of two planes
forming an angle of 120◦ is not destroyed by parallel transla-
tion. Likewise the intersection line of such planes may move
if such a transformation is applied, but it keeps its direc-
tion. Our aim is to exploit this fact and modify honeycomb
structures by parallel translating the walls. If we wish to
keep the property that three planes are incident with a node
axis, then the translations involved are not independent: If
the wall planes associated with edges vivj, resp. vivk, resp.
vivl undergo translation by the vector λijnij, resp. λiknik,
resp. λilnil, then a common intersection exists if and only
if λij + λik + λil = 0 (because the three normal vectors form
an equilateral triangle).

→

Figure 13: Resizing a honeycomb cell by moving walls in-
wards by the same amount.

One example of such a move is the resizing of a single
honeycomb cell (Figure 13): here all walls of the cell move
by the same amount, while the “radial” walls stay where they
are (in the vertex-centered notation used above, we have e.g.
λij = 0, λik =−λil).

By resizing all cells, we create new hexagonal cells where

(a) (b) (c)

Figure 14: Subdivision of honeycombs by graphical sten-
cils. There are several ways we can parallel translate walls
of a honeycomb so that intersection properties are main-
tained, and which are useful for refinement and the defini-
tion of other derived structures. These modifications are en-
coded in a symbolic way by a sketch of a cell or node which
shows the old and new positions of walls. (a), (b) The sym-
bol → signifies subdivision, generating a reg-
ular honeycomb with 1 new cell per old cell, and 1 new cell
per old wall, with all new cells roughly the same size. (c)
The analogous symbol → signifies subdivision
which is combinatorially the same but geometrically differ-
ent, where the newly created cells are of different sizes.

Figure 15: Using the language of Figure 14, the symbol
→ signifies the creation of a reciprocal structure,

replacing each node by a triangular cell.

the original walls had been: this is the subdivision procedure
shown by Figure 14. Shrinking each cell of the honeycomb
in Figure 14a to half its size (or another size) produces the
subdivided honeycomb of Figure 14b (or Figure 14c). Its
spherical image coincides with the original one, but it has
4 times as many cells.

Remark: For a general torsion-free support structure,
where planes intersect at different angles, local edits (and
in consequence, subdivision) are not so easy. Each node will
have its own condition on the three translations which affect
that node, and those conditions will generally not be consis-
tent when cycling around a cell.
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Fig. |V | |E| wangle wwall
cons wnorm wzig

fair wstr
fair w‖ wfaces

cons waxes # It ωmax ωavg δ
wall
max δ

wall
avg δ

face
max δ

face
avg T

5,8 1512 2214 1 1 10 5 .037 .003 1.2·10−5 2.2·10−6 0.6
7 8497 12434 1 1 10 5 .91 .04 7.0·10−4 7.3·10−6 4.1
9 6144 9120 1 1 10 1 5 .073 .012 1.3·10−5 6.6·10−5 4

11,1 3501 5165 1 1 10 .01 .01 .1 5 .051 .008 1.5·10−5 2.5·10−6 .007 .003 3
14a 958 1386 1 1 10 10 .30 .028 1.3·10−4 1.4·10−5 1.1
15 3198 4718 1 1 10 5 .37 .016 2.1·10−4 3.4·10−6 2
18 3293 4827 1 1 10 .1 5 .67 .16 1.8·10−3 8·10−4 2

Figure 16: Statistics and parameters. We show the weights given to constraint equations (wangle for the angle condition, wwall
cons,

wfaces
cons for consistency of wall quads and other quads, wnorm for normalization, wzig

fair, wstr
fair for fairness, w‖ for parallelity of

meshes, waxes for prescribed node axes), as well as the results’ deviation ω from the desired intersection angle 120◦ and the
planarity measure δ (cf. Figure 8). We further give the number of iterations needed for computation and the time in seconds.

A procedure destroying node axes is shown by Figure 15:
the walls of hexagonal cells are moved outward and in-
ward in an alternating way, defining a reciprocal structure,
cf. [SFG∗13]. This structure is still formally a honeycomb,
if we allow T-junctions.

Shading Systems. Wang et al. [WJB∗13] have proposed
shading systems as an application of discrete line congru-
ences. It is in fact not difficult to optimize honeycomb struc-
tures so that they serve the same purpose, such that the walls
of cells block light effectively while the depth of the honey-
comb remains small. We define a vector l which corresponds
to the direction of light, e.g. at 1 p.m. in summer. Since the
angles between walls are always 120◦ it would not make
sense to optimize the honeycomb such that walls are orthog-
onal to l. Instead we look for any field of unit vectors ai
attached to the individual vertices vi which are orthogonal
to l and which serve as prescribed directions of node axes.
We then optimize the honeycomb with constraints aT

i nij = 0
(for all edges vivj). In the optimization these constraints are
given a lower weight than those expressing consistency and
angles. A result can be seen in Figure 18.

5. Discussion

The success of the regularized Newton method used here has
already been demonstrated by [TSG∗14]. Referring to that
paper, we mention that it works well for constraints which
are linear or quadratic, and which do not involve many vari-
ables. Similar to [TSG∗14] we obtain high accuracy. Fig-
ure 16 gives details on optimization and geometric proper-
ties of the results. Timings refer to an Intel Xeon CPU with
2.67GHz (we also mention that as a sparse linear solver we
used the TAUCS library).

Limitations. The main geometric limitation of honeycombs
has been discussed in §2: it is the property that 120◦ angles
between walls imply that the honeycomb’s node axes do not
in general follow the surface normals of a given reference
shape. If we do not insist on this condition (which we could

do only for developable surfaces), honeycombs have rather
many degrees of freedom, and we found no obstructions in
our numerical experiments.

From the viewpoint of statics, structures based on hexago-
nal meshes are of course more difficult than structures based
on triangle meshes, for the simple reason that there are fewer
load-bearing edges. In practice, auxiliary force-transmitting
elements like cables are typically used. We do not consider
this aspect there.

6. Conclusion

We have presented geometry and computation of honey-
comb structures and their applicability to various tasks in
freeform architectural design. Notably honeycombs provide
a torsion-free support structure with identical nodes, but can
be used even for quadrangulation.

Figure 17: A pattern of planar quadrilaterals derived from
a honeycomb structure in much the same manner as Figure
11, but using a different set of diagonals through cells.

Future Research. As topics of future research we would
like to propose the investigation of polyhedral meshes whose
edges and faces are arranged in more general patterns, see
Figure 17. This requires to deviation from traditional notions
of smoothness, and to use this deviation as a design element.
Already in this paper we have seen that one gains additional
degrees of freedom in this way.
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Figure 18: Hexagonal support structure as shading system.
Given a field of preferred node axes which are orthogonal
to the rays of light, we optimize a honeycomb such that the
walls of cells fit the given node axis field, thus effectively
blocking light while still forming a shallow honeycomb (the
result of optimization here serves as freeform structure pro-
viding shade for people waiting for trains).
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