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Abstract
The realization of architectural freeform skins is a big challenge, in particular if one
desires a smooth appearance and uses curved panels. These have to be brought
into shape by special manufacturing technologies, most of which require the costly
production of molds. Previous approaches to mold re-use relied on optimization
algorithms which play with the available tolerances and allowed deviations from the
reference geometry. One aims at a good trade-off between fabrication cost and a
visual appearance which comes close to the original design intent.

For general freeform surfaces, there may be no other ways to computationally solve
the paneling problem. However, we will show in this paper that there is a rich
class of surfaces which very much look like freeform shapes, but have significant
advantages over totally unrestricted freeform geometry. These surfaces are known
as Weingarten surfaces. They are characterized by a relation between their principal
curvatures, leading to a just one-parametric family of curvature elements and thus
local surface shapes. This allows one to fabricate N panels with a number of molds
which is roughly just

√
N . Moreover, if the panels are fabricated from material which

is not rigid after panel production, one can exploit the allowed deformations through
bending and further increase the accessible shape variety or reduce the number of
molds even more. We also provide an overview of computational techniques for
the computation of Weingarten surfaces and their deformation through bending and
illustrate the approach through a number of architectural case studies.

Keywords: Paneling, architectural freeform skin, mold re-use, Weingarten surface,
optimization, discrete differential geometry
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Figure 1: Isometric deformations of a spherical patch. All these surfaces can be cladded by bending
panels formed on the same spherical mold. A sample building designed with these surfaces is
shown in Fig. 2 (right).

1 Introduction
Paneling is a highly important topic in freeform architecture, especially if the
panels are not flat and need to be brought into shape by special manufacturing
technologies. For double curved panels, this is mostly done with help of molds.
Their fabrication is typically more expensive than the production of the panel with
that mold.

A general freeform shape, no matter which layout of panel seams is chosen, will lead
to panels all of which are at least slightly different from each other. This lack of
repetition in panel shapes is a severe problem and a major factor in cost explosion.
One obvious way to deal with this problem is to give up on the smoothness of the
overall skin and work with simpler panel shapes, in particular flat ones. A large
portion of architectural geometry deals with this problem and provides solutions that
have already found their way into architectural practice; for a survey see Pottmann
et al. (2015).

Paneling is an optimization problem which has discrete and continuous variables.
The discrete variables include the ones which select the type of panel (planar,
cylindrical, various types of double curved panels, etc.) and assigns molds to those
where molds are needed. This facilitates mold re-use when possible. The continuous
variables are those which determine the exact parameters of a panel, which depend
on their type, and their exact position in space. A solution for this problem has
been presented by Eigensatz et al. (2010): Given a design surface and a layout
of panel seams, it minimizes the cost under provided tolerances on the allowed
deviation from the design surface and on gaps between panels (which will be hidden
in the seams) and kink angles (angles between normals) at adjacent panels. In
this way one can find a balance between the quality of the architectural skin and
its fabrication cost. By the nature of the optimization problem one has to apply
heuristics and thus it is not guaranteed that a minimum is found.

In the present paper we take a slightly different perspective. We aim at special
shapes which facilitate mold re-use, but look very much like freeform shapes
and should be sufficient in terms of possible shape varieties for the architectural
application. This amounts to a search for surfaces where one has a precise or nearly
precise agreement of local surface shapes at the size of a panel. This depends on
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Figure 2: Architectural cladding with intrinsic repetition. On the left, a building composed by a
repeated shape that is isometric to a Weingarten surface. For this kind of shapes, if dealing with
flexible cladding materials, N panels can be formed with approximately

√
N molds and applied

over the surface by isometric bending. On the right, a building made of surfaces isometric to the
same sphere. In this case, all panels can be formed on a single mold and bent on the surface.

the type of material one is using:

If the panel is rigid after production, one needs local extrinsic repetition, meaning
that there exist many instances of local neighborhoods on the surface which are
congruent to each other. An example is provided by surfaces of revolution or helical
surfaces. They can be moved in themselves and thus one has this local extrinsic
repetition along the trajectories of the generating motion, i.e., along parallel circles
or helical paths. Giving up a bit on that, we will argue that surfaces which possess
curves along which the curvature behavior is the same (the two principal curvatures
are constant along these curves), offer similar advantages for paneling.

If the panel is not rigid and still can be bent within some limits (but not stretched),
one can look for local intrinsic repetition. This means that certain local neighbor-
hoods of the size of a patch can be matched by an isometric (length-preserving)
deformation. Obviously, all surfaces which arise from those with extrinsic repetition
by an isometric deformation, are in this class. Here, one gets quite easily shapes
that are generated from simple ones, but have a freeform appearance (see Fig. 1).
This is due to the human eyes not recognizing intrinsic repetition as well as extrinsic
repetition.
1.1 Overview and contributions
• We show that so-called Weingarten surfaces, whose principal curvatures κ1,κ2
are related by a function, F (κ1,κ2) = 0, offer advantages in cost effective paneling.
They possess an extrinsic repetition property, namely for their curvature elements.

• We present an overview of existing, partially very recent contributions to the
computation of important classes of Weingarten surfaces.

• We show how to effectively perform an isometric deformation of a given shape
using a very recent approach to discrete surface mappings based on quad meshes.

• We accompany our work with examples and design studies and outline promising
directions for future research.
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2 Basic geometry
2.1 Surfaces with extrinsic repetition
The simplest way of obtaining repetition in panels on a surface is the presence of
symmetries. There may be a part of the surface which after applying the present
symmetries (e.g. reflections at planes) yields the entire surface. One could call
this part the fundamental domain F , which is common terminology in the study
of tilings. If the fundamental domain F is covered with m panels and there are k
copies of F which make up the overall surface S, then the total number of panels
is N = km. Since k is usually a small integer, one does not gain too much in this
way, as the number m of molds will still be high for a sufficiently complex design.
In particular, the more extrinsic symmetries are present, the less the surface S will
have a real freeform appearance.

As already mentioned above, there is a case where m and k can be of the same order
of magnitude. It happens if the surface allows for a motion in itself. This is the
case if S is either a rotational surface, a helical surface or a general cylinder. The
latter case is a special single curved surface and does not deserve much attention
here, as our focus is on double curved panels. For a rotational or helical surface,
k+1 positions of a profile curve p (needs not be planar) and the m+1 trajectories
of m+1 points on p determine a curve network with N = km faces. Since panels
along trajectories are congruent, this requires only m molds. However, now k and
m can be both large. For example, we may have k =m and thus a reduction from
N panels to

√
N molds. Note that so far we would achieve a perfectly smooth

skin, but have the disadvantage of a surface which is clearly not freeform.

To come closer to freeform surfaces while keeping some extrinsic repetition of
panels, we have to give up a bit on the quality of the resulting surface by allowing
small gaps and kinks between adjacent panels. However, there is still a chance to
get pretty close to the appearance of a smooth surface. Usually, an architectural
skin does not exhibit strong and sudden curvature variations. This means that
the curvature element at a point p, which may be represented by the osculating
paraboloid (see Pottmann et al. (2007)), will fit well in some neighborhood of p.
We make then the assumption that, on architectural surfaces, this neighborhood
has approximately the size of a single panel. As we want again a reduction from N
to
√
N molds, we have to make sure that curvature elements agree along curves on

the surface. We want then such curves to be a one-parameter family of curves that
cover the entire surface. This means that we have just a one-parameter family of
different curvature elements, or equivalently, pairs (κ1,κ2) of principal curvatures.
These pairs may be seen as points in the (κ1,κ2)-plane, where they form a curve.
A curve has an implicit representation

F (κ1,κ2) = 0. (1)

Hence, we have a functional relation between the principal curvatures on the surface
S. Such surfaces are called Weingarten surfaces, named after Julius Weingarten
(1861) who studied them first. In fact, his study has been about surfaces with
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intrinsic repetition, namely those which are isometric to surfaces of revolution. He
showed that the focal surfaces (formed by the principal curvature centers) of these
surfaces exhibit a relation between their principal curvatures. Hence, extrinsic and
intrinsic repetition are closely connected topics.

Let us point out that the agreement of curvature pairs (κ1,κ2) happens along the
isolines of curvature. These are curves along which (κ1,κ2) are constant. Due
to relation (1), it suffices to require that κ1 or κ2 or another function of them
(different from F ) is constant. Since curvature elements agree along isolines of
curvature, panels which can be formed by the same mold are roughly aligned along
them (see Fig. 3).

Let us briefly address some familiar classes of Weingarten surfaces. Of course,
helical and rotational surfaces are Weingarten surfaces. Although one is usually not
concerned so much about relation (1), it could be even prescribed for rotational
and helical surfaces mathematically (leading to an ordinary differential equation),
but the relation between equation and shape is not intuitive. Another class of
Weingarten surfaces are tubes with constant radius r around space curves. There,
one principal curvature, say κ1, equals 1/r and thus F = κ1−1/r. The simplest
and most important functions of the principal curvatures are mean curvature
H = (κ1 +κ2)/2 and Gaussian curvature K = κ1κ2. Surfaces with constant values
of H or K have been extensively studied in differential geometry. In particular, we
point to minimal surfaces H = 0 and developable surfaces K = 0.

There is a considerable amount of mathematical research going on studying so
called linear Weingarten surfaces. These are surfaces with an (affine) linear relation
between the Gaussian and mean curvature (see e.g., Pámpano (2020)).

Particularly interesting for applications are surfaces with a constant ratio c of prin-
cipal curvatures, i.e., F (κ1,κ2) = κ1− cκ2 = 0. Here, all molds for manufacturing
panels are geometrically similar to each other. Additionally, for c < 0, such surfaces
allow for mounting a curved support structure consisting of bent rectangular strips
orthogonally on the surface. This structure follows the network of asymptotic curves
with constant intersection angle (see Jimenez et al. (2020), Schling et al. (2018)).

2.2 Surfaces with intrinsic repetition
Let us assume that the panels are not rigid and still allow for some bending without
stretching. Then, we can apply isometric deformations to panelizations which have
extrinsic repetition and obtain ones with intrinsic repetition. The molds can be
the same as for the extrinsically repetitive surface. Since isometric mappings allow
for the generation of a large shape variety, one could actually realize very different
architectural skins with the same set of molds.

Let us first discuss isometric mappings between surfaces. They have the attractive
property of preserving all lengths of curves, hence also angles between tangents and
areas of domains. In fact, they even preserve the Gaussian curvature K. Hence
intrinsic repetition happens along iso-lines of Gaussian curvature.
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(a) (b) (c)

Figure 3: Panels design for mold re-use. (a) Weingarten surfaces designed with (Pellis et al.,
2020). Isolines of curvatures κ1 and κ2 are shown in red and blue respectively. Coincident isolines
layouts indicate that if one of the principal curvatures is constant, so is the other one. (b) Extrinsic
repetition. Panels are clustered according to curvature isolines. Panels belonging to the same
cluster (shown with the same color) can be formed on the same mold. (c) Intrinsic repetition. The
surface is deformed isometrically with (Jiang et al., 2020). If realized with a flexible material, panels
clustered on (b) can take their shape on the surface (c) by isometric deformation. Architectural
applications are shown in Fig. 8.

If we are fine with an intrinsic counterpart to the Weingarten surfaces discussed
above, we simply have to apply isometric mappings to them. This can change
their appearance significantly as demonstrated in Fig. 4. It is well known that
a rotational surface can be mapped isometrically to a two-parameter family of
different rotational surfaces and a one-parameter family of helical surfaces (Bour’s
theorem). A beautiful constructive proof with help of strip models formed by
rotational cones or parts of developable helical surfaces can be found in the first
book on discrete differential geometry (difference geometry) by R. Sauer (1970).

3 Algorithms and computational tools
3.1 Computation of Weingarten surfaces
This subsection is an overview of possible approaches to the computation of
Weingarten surfaces. It would lead too far to discuss these methods in detail. Note
that our focus is on the demonstration of the potential which Weingarten surfaces
provide for paneling architectural skins.

Generating Weingarten surfaces by analytical descriptions is a challenging math-
ematical research topic. However, for applications it is important to get hands
on computational tools that enable a designer to work directly with the shape
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Figure 4: Isometric deformations of a rotational surface with (Wang et al., 2019). We can observe
the high design freedom allowed by isometric deformations of a given shape.

incorporating also handle-based editing strategies. To that end, it is advisable to
model Weingarten surfaces as discrete nets/meshes which are also well suited for
computation by optimization.

Smooth Weingarten surfaces such as minimal surfaces, CMC (constant mean
curvature) surfaces, and surfaces with constant Gaussian curvature, on which there
is a vast amount of theory, have been discretized in various ways. Discretizations
of such surfaces which focus on preserving integrability lie at the heart of structure
preserving discrete differential geometry (Bobenko and Suris, 2008).

Robust computation methods of discrete CMC surfaces with fixed given or free
boundaries performs computations on a type of Voronoi tesselation (Pan et al.,
2012). This method works very well to generate the shape of CMC surfaces, but
naturally neglects the mesh layout as part of the design. This however can be very
important particularly for architectural applications such as paneling.

Studying methods for modeling developable surfaces, which are also Weingarten
surfaces, is an active research topic (Rabinovich et al., 2018a,b; Jiang et al., 2020).
Architectural applications reach from famous designs by F. Gehry to cost effective
paneling to curved support structures (Schling et al., 2018).

Weingarten surfaces, defined by an affine linear relation aH+ bK− c= 0 between
mean curvature H and Gaussian curvature K have been recently studied by Tellier
(2020), both from a computational perspective and with a view towards applications
in architecture. We add here their advantage in connection with paneling.

Weingarten surfaces with a linear relation between the principal curvatures have the
property that all molds for manufacturing panels are geometrically similar to each
other. On the theoretical side these surfaces can be generated as PQ-nets by a
Christoffel-type dualization process out of special spherical PQ-nets (Jimenez et al.,
2020). More important for applications however are such surfaces in the context of
A-nets when these surfaces are negatively curved. These A-nets assume a constant
intersection angle of parameter lines along which one can attach a curved support
structure (Jimenez et al., 2020). Here the supporting strips sit orthogonally on the
surface and can be unfolded into the plane becoming elongated rectangles which
makes fabrication by bendable material quite efficient.
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Mold re-use with bendable material is also achieved when paneling surfaces that
are isometric to a surface of revolution. Discrete models perfectly suitable to
model surfaces that are isometric to rotational surfaces are described by discrete
orthogonal geodesic coordinates. They utilize the fact that the meridian curves
and parallel circles of a surface of revolution constitute special orthogonal geodesic
coordinates on the surface (Wang et al., 2019). Handle-based editing allows for
modeling surfaces that are isometric to rotational surfaces without knowing the
latter.

Another recent approach to the design of Weingarten surfaces, also addressing mold
re-use, is to model surfaces by special discrete S-nets (Pellis et al., 2020). S-nets
are, apart from singular vertices, regular quadrilateral meshes where each vertex
and its four connected neighbors lie on a sphere (see also Schling et al. (2018)).
This carries a lot of curvature information of the net. By solving an optimization
problem, the discrete principal curvatures can be constrained to fulfill affine linear
relations.

3.2 Computing isometric deformations
Isometric or near isometric deformations have received a lot of interest in Geometry
Processing and Computer Graphics; see e.g. Chern et al. (2018), Pietroni et al.
(2010), Sorkine and Alexa (2007). We use here the probably simplest approach
to isometric deformations due to Jiang et al. (2020). It represents the surface
to be deformed as a quad mesh S and encodes the isometry condition into the
quadrilateral faces. Let v1, . . . ,v4 be a quad before deformation and v′1, . . . ,v′4 its
image after deformation (Fig. 5). Isometry requires that (i) the lengths of diagonals
in corresponding quads are the same,

(v1−v3)2 = (v′1−v′3)2, (v2−v4)2 = (v′2−v′4)2, (2)

and that (ii) the angle between the diagonals remains unchanged during deformation.
In view of Equation (2), this can be expressed as

(v1−v3) · (v2−v4) = (v′1−v′3) · (v′2−v′4). (3)

Hence, one has very simple quadratic constraints which can nicely be satisfied using
a Levenberg-Marquardt optimization algorithm (see Jiang et al. (2020)).

3.3 Paneling
The state of the art method of Eigensatz et al. (2010) for computing cost opti-
mal paneling solutions on freeform surfaces relies on a time-consuming discrete
optimization algorithm to identify panel repetition, i.e., to find extrinsically similar
regions of a reference surface where the same panel can be used. On a Weingarten
surface such regions occur along isolines of curvature. This allows us to replace
the expensive discrete optimization by a simple clustering step and directly proceed
with non-linear optimization to minimize gaps and kink angles between neighboring
panels as proposed by Eigensatz et al. (2010).
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Figure 5: Isometric deformation of a surface represented as a quad mesh (yellow). In each pair of
corresponding quads (in general not planar), corresponding diagonals (red, blue) have the same
length and they form the same angle.

Given a curve network of panel seams with N faces (each such face has to be
covered by a panel) on a reference surface, we cluster the faces according to
curvature to form roughly

√
N clusters, see Section 4.1. Each cluster contains

all panels that are manufactured using the same mold. Computationally, panels
that stem from the same mold share their shape parameters, for example the
coefficients of the defining polynomial when dealing with paraboloids and cubics.
We compare this approach with Eigensatz et al. (2010) by tuning the parameters in
their algorithm to obtain approximately

√
N unique molds. In the examples shown

in Figures 6 and 7 we restrict the admissible panel types to cubics.

4 Applications
We outline now a possible workflow for the design of freeform shapes with intrinsic
and extrinsic panel repetition.

4.1 Design with extrinsic panel repetition
The first step is to design a Weingarten surface, following one of the approaches
presented in Section 3.1. In our examples, we modeled such surfaces through a
quad mesh with (Pellis et al., 2020). Once we have a suitable shape, a desired
panel layout can be designed over the surface. There are no particular restrictions
on the layout. Hence, individual panels shall be clustered in groups that can be
formed on the same mold. Clustering can be done according to the average of
the principal curvatures within each panel. Since on Weingarten surfaces principal
curvatures are in functional relation, panel clusters will occur approximately along
the curvature isolines (see Fig. 3). Once we have the panel clusters, the shape of
each mold can be computed trough optimization as described in Section 3.3.

4.2 Design with intrinsic panel repetition
If the cladding is realized with a flexible material, one can aim at intrinsic repetition.
In this case, for shape design, a Weingarten surface can be further modified through
isometric deformation. As shown in Figures 1 and 4, isometric deformation allows
us significantly greater design freedom. To this end, the method of Jiang et al.
(2020) can be used for interactive modeling. A panel layout can then be designed on
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(a)

(b)

kink angles [◦]gap [m]

Figure 6: Comparison of paneling solutions on Weingarten surfaces obtained with (a) our method
and (b) Eigensatz et al. (2010). The top row shows a solution with 960 unique cubic panels. From
the left, the panels clusters and the resulting zebra striping of the panelized surface are shown.
The histograms display the corresponding gaps and kink angles between adjacent panels, measured
along the network of seam curves at 10216 regularly spaced locations. See Table 1 for further
statistical data.

the final shape. Since extrinsic repetition of local shape occurs on the undeformed
surface, for clustering and mold design the panel layout shall be mapped back to
the starting Weingarten surface. We can then proceed as in Section 4.1. Since
made with bendable material, the resulting panels will take their final shape on the
design surface by (approximately) isometric deformation.

While the majority of examples in our paper follow a quadrilateral panel layout, this
is not necessary, as illustrated by a hexagonal paneling in Figure 9.

It is important to note the following: The panelizations in Figures 9 and 2 are
smooth even across panel boundaries, since the original rotational surface (sphere)
has a precise extrinsic repetitive structure. This is not true for panelizations of
other Weingarten surfaces, whether extrinsic or intrinsic. Depending how well the
panelization algorithm outlined in Section 3.3 has performed, there will be kink
angles and small gaps of a size so that they can be hidden in the seams.

5 Conclusion and future research
We have proposed Weingarten surfaces as preferable shapes for the design of
architectural skins due to their advantage in paneling them. While these surfaces
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(a)

(b)

kink angles [◦]gap [m]

Figure 7: Comparison of paneling solutions on Weingarten surfaces obtained with (a) our method
and (b) Eigensatz et al. (2010). The top row shows a solution with 480 unique cubic panels.
From the left, the panels clusters and the resulting zebra striping of the panelized surface are
shown. The histograms display the corresponding gaps and kink angles between adjacent panels,
measured along the network of seam curves at 5336 regularly spaced locations. See Table 1 for
further statistical data.

#molds #panels med (max) gap med (max) kink
Fig. 6 (a) 30 960 0.0023 (0.0544) m 0.549◦ (12.954◦)

(b) 31 960 0.0055 (0.0445) m 1.305◦ (8.004◦)
Fig. 7 (a) 20 480 0.0029 (0.0280) m 0.438◦ (3.536◦)

(b) 22 480 0.0033 (0.0322) m 0.454◦ (2.810◦)
Table 1: Divergence (gap) and kink angle analysis for the examples shown in Figures 6 and 7. The
respective median values as well as the maximum are listed.
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Figure 8: Intrinsic repetition. Architectural skins with panel layouts shown in Fig. 3 (c).

look like freeform shapes, they are repetitive in curvature elements (small surface
patches). This yields a significant reduction in the number of molds, namely
roughly

√
N molds for the production of N panels. If one uses panels which after

production can still be bent, one can enrich the class of preferred design surfaces
by those which are isometric to Weingarten surfaces. They still have the same
advantages in terms of mold re-use.

In mathematics, there is ongoing research on Weingarten surfaces, also on dis-
crete models which may be directly useful for architectural applications. On the
computational side, it may be very interesting to come up with an algorithm
which approximates an arbitrary freeform surface by a Weingarten surface. The
functional relation F (κ1,κ2) = 0 would not be prescribed, but emerge as a result
of an optimization algorithm. That algorithm needed to take as input a surface
S which is not Weingarten, which means that the set of principal curvature pairs
(κ1,κ2) forms a certain domain D in the (κ1,κ2)-plane. During optimization, S
needed to be modified minimally to a new surface S′ whose associated curvature
domain D′ is a curve or at least very close to a curve. For the paneling application,
it may be even better to directly combine this with local surface approximations
(of the size of panels) rather than working with curvatures.

The presented approach to paneling with flexible material is more special than
required from a purely geometric perspective. One could nicely cover arbitrary
freeform surfaces S with panels from flexible material. There, mold repetition should
occur roughly along the curves of constant Gaussian curvature of S. However,
we are currently lacking a panelization algorithm in the style of Eigensatz et al.
(2010), which exploits isometric deformations of panels. The efficient computation
of isometries according to Jiang et al. (2020) should make this possible. Since
isometric deformations have more degrees of freedom than rigid body motions, the
results on arbitrary surfaces with isometrically bent panels could be even better
than those for Weingarten surfaces with rigid panels.
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(a) (b)
Figure 9: Hexagonal paneling with mold re-use. (a) A hexagonal panel layout designed on a shape
isometric to a rotational surface. (b) For panel clustering and mold design, the panel layout shall
be mapped back to the corresponding undeformed rotational surface. On the left, we illustrate
shapes from Figures 4 and 1, cladded with hexagonal flexible panels.
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