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Abstract. The geometry of webs has been investigated over more than a century driven by

still open problems. In our paper we contribute to extending the knowledge on webs from

the perspective of the geometry of webs on surfaces in three dimensional space. Our study
of AGAG-webs is motivated by architectural applications of gridshell structures where four

families of manufactured curves on a curved surface are realizations of asymptotic lines and
geodesic lines. We describe all discrete AGAG-webs in isotropic space and propose a method

to construct them. Furthermore, we prove that some sub-nets of an AGAG-web are timelike

minimal surfaces in Minkowski space and can be embedded into a one-parameter family of
discrete isotropic Voss nets.
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1. Introduction

With the present paper we contribute to the ongoing development and investigation of the
geometry of webs. The concept geometry of webs is so multifaceted that topics which fit under
its roof reach from differential topology, differential geometry, algebraic geometry to discrete
geometry.

A typical characterization of a web or an n-web consists of n families of curves on a surface or
in the plane, such that, through each point, there is a curve of each family passing through that
point, and such that any two curves from different families intersect each other at exactly one
point (see, e.g., [2]). There exist of course generalizations of that definition in several directions.

The existence of families of curves on surfaces which fulfill the web condition is (at least
locally) nothing particularly special. However, it becomes an interesting geometric or topological
problem as we ask for conditions on the families of curves. For example the classification of all
3-webs in the plane consisting of three families of straight lines has been found by Graf and
Sauer [9]: straight-lined 3-webs in the plane consist of all tangents of an algebraic curve of class
3. Remarkably, the generalization of this problem to the classification of all 3-webs in the plane
where all curves are circles [2], is still an open problem.

The classical results on the geometry of webs which have mainly been developed by Blaschke
and his school can be found in [2] and the survey article [6].

On curved surfaces in 3-space one can ask for webs where the foliating families of curves are
determined partially or completely by the curvature and metric of the surface. For example
Stephanidis [24] gives an integral condition for a negatively curved surface such that the families
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of curvature lines and asymptotic lines form a 4-web. Furthermore, it turns out that such 4-
webs on surfaces with constant mean curvature exist only on minimal surfaces and surfaces of
revolution.

Koch [12, 13] goes on with the investigation of 4-webs consisting of asymptotic lines and
curvature lines (including topological aspects of the networks). It can be shown that such 4-
webs exist if and only if the asymptotic net f(u, v) satisfies ‖fu‖ = ‖fv‖. In [13] Koch works
through well known surface classes and checks them for the existence of these special 4-webs or
gives conditions for when they exist. For example they exist on all negatively curved surfaces of
revolution, all non-developable ruled surfaces, all pseudospherical surfaces, all minimal surfaces,
and all negatively curved parts of Dupin cyclides.

Apart from the many theoretical investigations of webs there are practical applications of webs
in the areas of fabrication and architecture. Pottmann et. al [17] investigate gridshells fabricated
by bending three families of long, thin, and rectangular strips of bendable materials (like wood
or metal sheets) in the combinatorics of a discretized 3-web. In geometric terms such a web is
a 3-web of geodesics on a curved surface. The bendable strips follow tangentially the shape of
geodesics on the surface. Surfaces with 3-webs of geodesics have also been studied by Sauer [20]
and Mayrhofer [15].

Another application actually was the motivation of our present paper. Schling et. al [23]
investigate 4-webs on negatively curved surfaces in an architectural context. Thereby, two of the
four families of curves are the asymptotic curves and the other two families consist of geodesics.
The arrangement of curves around each point is such that they alternate cyclically (asymptotic-
geodesic-asymptotic-geodesic). They therefore call those webs AGAG-webs.

In the present paper, we contribute to the theory of webs by extending our knowledge on
AGAG-webs in a different Cayley-Klein geometry than in the above assumed Euclidean space,
namely in isotropic geometry.

Simply put, isotropic geometry is the geometry of R3 together with the pseudometric (see,
e.g., [19])

d((x1, y1, z1), (x2, y2, z2)) =
√

(x1 − x2)2 + (y1 − y2)2.

Isotropic geometry has been developed by Strubecker [25, 26, 27] and can be looked up in the
monograph of Sachs [19] and with a view towards applications in architecture in [18].

In isotropic space there is one direction (typically the z-axis direction) distinguished from the
other directions. It therefore comes natural that surface parametrizations as graph z(x, y) over
the xy-plane are also distinguished from general parametrizations. That fact leads to a natural
appearance of isotropic geometry in the treatment of stress functions in mechanics [28]. Notions
of stress and elasticity in mechanics appear as geometric properties of the Airy (stress) surface
which are solutions to the biharmonic equation ∆∆z(x, y) = 0.

Furthermore, we contribute to the understanding of isometries of surfaces in isotropic geom-
etry, which haven’t been discussed so far, apparently because of the degeneracy of the metric.
The notion of isometries of surfaces needed to be adapted to describe something sensible.

We develop our study of isotropic AGAG-webs in the setting of discrete differential geometry
in the sense of Bobenko and Suris [4].

In Section 2 we give a short introduction into isotropic geometry and its related concepts from
Cayley-Klein geometries that we need in our paper. We introduce different classes of discrete
nets and their relations and important formulas in Section 3, before we geometrically describe
all discrete AGAG-webs in isotropic space in Section 4 including a method of an explicit way
to construct them. Finally, in Section 5 we examine various types of sub-nets of a discrete
isotropic AGAG-web and interpret their geometric nature in isotropic, Minkowski, and dual
Minkowski space. We encounter discrete timelike minimal surfaces, K-nets (discrete constant
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Figure 1. Illustration of Cayley-Klein-spaces with their absolutes. The ideal plane is denoted by ω. Left: The
absolute of Euclidean geometry is a regular imaginary conic in the ideal plane. Second from left: The absolute of

isotropic geometry is a pair of complex conjugate straight lines in the ideal plane which intersect in a real point

at infinity. Third from left: The absolute of Minkowski (or pseudo-Euclidean) geometry is a regular conic in the
ideal plane. Right: The absolute of dual Minkowski (or dual pseudo-Euclidean) geometry is a cone Γ (or better

cylinder since its tip is a point at infinity).

Gaussian curvature nets), Voss nets together with a newly developed notion of discrete isometry
in isotropic space.

2. Isotropic Geometry and Other Cayley-Klein Geometries

The projective standard model of a Cayley-Klein geometry is a complex extended real n-
dimensional projective space Pn together with a group of transformations that leave an object
F , the absolute, fixed [8]. This absolute consists of a collection of quadrics and can be real or
imaginary. A straight line (real or imaginary) passing through the absolute is called isotropic.
Throughout the paper we will encounter four Cayley-Klein geometries: Euclidean, isotropic,
Minkowski and dual Minkowski.

Even though the Cayley-Klein spaces are defined in a projective invariant way we will use a
standard coordinate system of homogeneous coordinates in which the absolutes assume simple
and commonly used equations. The corresponding absolutes are:

Euclidean geometry x0 = 0, x2
1 + x2

2 + x2
3 = 0

isotropic geometry x0 = 0, (x1 + ix2)(x1 − ix2) = 0
Minkowski geometry x0 = 0, x2

1 + x2
2 − x2

3 = 0
dual-Minkowski geometry x2

1 + x2
2 − x2

3 = 0

where i =
√
−1 is the imaginary unit. For an illustration see Figure 1.

The main scene of the present paper is the isotropic space I3. The absolute of isotropic
geometry is a pair of complex conjugate lines in the ideal plane (plane at infinity) ω which
intersect in a real point at infinity, the absolute point, representing the (full) isotropic direction.

Straight lines passing through the absolute point are called isotropic straight lines and planes
passing through the absolute point are called isotropic planes.

With the above choice of the absolute, orientation preserving isotropic isometries are repre-
sented by affine transformations in R3 of the form

I3 −→ I3 :

xy
z

 7−→
cosϕ − sinϕ 0

sinϕ cosϕ 0
c1 c2 1

xy
z

 +

ab
c

 .

The orthogonal projection (x, y, z) 7→ (x, y) into the plane z = 0 is called top view. Con-
sequently, isotropic isometries are composed by Euclidean transformations in the top view and
shear transformations in z-direction. Therefore the Euclidean distance of the top view of two
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points is an isotropic invariant of two points pi = (xi, yi, zi) with i = 1, 2 and can therefore be
denoted as isotropic distance:

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2.

Two non-isotropic planes ε1, ε2 with equations z = uix+ viy+wi with i = 1, 2 intersect in an
isotropic angle

ψ(ε1, ε2) =
√

(u2 − u1)2 + (v2 − v1)2.

A projective duality is an inclusion reversing bijective relation between a projective space Pn

and its dual space Pn∗. In three-space the duality swaps points with planes but maps straight
lines to straight lines. A speciality of isotropic geometry is the existence of a projective duality
which additionally swaps metric quantities like the isotropic distance with the isotropic angle.
This so called metric duality δ can be realized by a null system via

(1) δ : P 3 ←→ P 3∗, point (a, b, c)←→ plane bx− ay − z + c = 0,

in affine coordinates. Null system means that corresponding points p and planes δ(p) in the
duality are incident: p ∈ δ(p). Note that points with the same top view are mapped to parallel
planes and vice versa. Important properties of metric duality are:

Lemma 1 ([19]). In the metric duality δ two points with isotropic distance d are mapped to two
planes with intersection angle d and vice versa:

d(p1, p2) = ψ(δ(p1), δ(p2)).

Lemma 2. The top view of a straight line L and its image under the metric duality δ(L) are
parallel.

Proof. Let L be spanned by two points p = (p1, p2, p3), q = (q1, q2, q3) ∈ R3. The two planes
δ(p), δ(q) have normal vectors (p2,−p1,−1) and (q2,−q1,−1), respectively. The direction of the
line of intersection of these two planes is parallel to the cross product of their normal vectors p2

−p1

−1

×
 q2

−q1

−1

 =

p1 − q1

p2 − q2

∗


and therefore parallel to p− q in the top view. �

The paraboloid S with equation

(2) z =
1

2
(x2 + y2)

is treated as isotropic unit sphere. The isotropic Gauss map between an admissible surface
and the isotropic unit sphere is realized through parallel tangent planes. Admissible surfaces in
isotropic geometry are regular surfaces without isotropic tangent planes. The isotropic Gaussian
curvature, which is also called relative curvature in the work of Strubecker [26], is the limit of
the ratio of areas between the surface and its Gaussian image as the diameter of the area goes
to zero.

Since distances are measured in the top view, a geodesic is a curve on an admissible surface
whose top view is a straight line which makes the investigation of the geometry of geodesics in
isotropic geometry simpler than in Euclidean geometry.

An often used notion of discrete Gauss image of polyhedral surfaces in Euclidean geometry is
the dual net consisting of those points on the unit sphere where the tangent plane is parallel to
the corresponding face on the given polyhedral surface. To obtain the discrete isotropic Gauss
image we only replace the Euclidean unit sphere by the isotropic unit sphere S. A vertex star
with central vertex v corresponds to a face σ in the Gauss image.
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We follow commonly used ideas (see, e.g., [16]) to define the discrete isotropic Gauss curvature
as the ratio of the area enclosed by σ divided by some weighted area of the vertex star around v:

(3) K =
area(σ)

weighted area(v)
,

where the weighted area of a vertex star can be the arithmetic mean or the sum of Voronoi cells
of the adjacent face areas.

In both geometries, Euclidean as well as isotropic geometry, there is a relation between surfaces
with constant Gaussian curvature and the existence of Chebyshev nets (i.e., nets f with ‖fu‖ =
‖fv‖ = const). Isotropic surfaces with constant Gaussian curvature are characterized by their
asymptotic nets forming a Chebyshev net. Discrete Chebyshev nets are nets with quadrilateral
faces where opposite edges have equal lengths. Discrete isotropic Chebyshev nets appear in the
top view as translational nets where each face is a parallelogram.

Finally note, that there are also other duality mappings δ̃ : P 3 ←→ P 3∗ in I3 which preserve
the metric duality. For example the polarity in the paraboloid S with Equation (2) which reads

(4) δ̃ : P 3 ←→ P 3∗, (a, b, c)←→ ax+ by − z − c = 0.

Lemma 3. The top view of the discrete Gauss map coincides with the top view of the image
under the polarity δ̃.

Proof. Consider a plane ε with equation ax + by − z − c = 0. Its image under the polarity is
δ̃(ε) = (a, b, c) with top view (a, b). On the other hand the point on S with the same top view
(a, b) is (a, b, 1

2 (a2 + b2)). The tangent plane in that point has normal vector (a, b,−1) and is
therefore parallel to the given plane. �

3. A-nets from planar Kœnigs nets

AGAG-webs contain an asymptotic sub-net (A-net) and a geodesic sub-net. A-nets then again
are related to Kœnigs nets. Since the aim of this paper is to investigate discrete AGAG-webs we
therefore start by recalling some facts about discrete A- and Kœnigs nets.

We investigate discrete nets which locally have Z2 combinatorics, i.e., a net is parametrized
by f : U → R3 over a simply connected domain U ⊂ Z2. A planar net is of the form f : U → R2.
We will often write parameters as indices: fij = f(i, j), fi+1,j = f(i + 1, j), etc. The discrete
partial derivatives (forward differences) are denoted by

δifij := fi+1,j − fij and δjfij = fi,j+1 − fij .

See Figure 2 (left) for an illustration of the notation.

fij

fi+1,j

fi+1,j+1

fi,j+1

δifij

δjfij
δjfi+1,j

fijfijfijfijfijfijfijfijfijfijfijfijfijfijfijfijfij

fi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,j

fi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,j

mijmijmijmijmijmijmijmijmijmijmijmijmijmijmijmijmij

mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1

mi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,j

mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1

Figure 2. Left: Notation: parameter are denoted as indices and discrete partial derivatives by δi, δj . Right:

Configuration of a discrete Kœnigs net. The vertices mij are the intersection points of the diagonals. A net is a
discrete Kœnigs net if and only if the three lines (mij ∨mi−1,j), (mi,j−1 ∨mi−1,j−1), (fi+1,j ∨mi−1,j) intersect

in a common point.
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The surface classes that we will work with the most are Q-nets (conjugate nets) which are
nets where all faces are planar quadrilaterals, and A-nets (asymptotic nets) which are nets where
each vertex star (which is a vertex with its four edge-connected neighbors) is planar (see e.g., [4]).

Both types of nets, Q-nets and A-nets, are preserved under projective transformations. Fur-
thermore, both types of nets are preserved under projective dualities. Any duality δ maps the
faces and vertices of a Q-net to the vertices and faces of its dual Q-net (see Figure 9 right).
Similarly, any duality δ maps planar vertex stars of A-nets to planar vertex stars its dual A-net.

Nets with Z2 combinatorics have two diagonal nets where the edges are diagonals of the Z2

lattice and where the faces correspond to every other vertex star of Z2. Thus, the vertices of one
diagonal net are {(i, j) ∈ Z2 | i+ j ≡ 0 mod 2} and of the other {(i, j) ∈ Z2 | i+ j ≡ 1 mod 2}.
For an illustration of the combinatorics see the image in the appendix (p. 5.3). The two diagonal
nets of an A-net are Q-nets since the vertex stars of A-nets are planar per definition.

Definition 4. Two nets f, f̂ : Z2 ⊃ U → R3 are said to be parallel or related by a discrete
Combescure transformation, if at each point corresponding partial derivative vectors are parallel,

i.e., δifij ‖ δif̂ij and δjfij ‖ δj f̂ij .
3.1. Kœnigs nets. The faces of Q-nets are planar quadrilaterals which implies that the diag-
onals of each quadrilateral intersect in a point mij = (fij ∨ fi+1,j+1) ∩ (fi+1,j ∨ fi,j+1). It is
therefore possible to consider the ratio of diagonal segments (fij −mij) : (fi+1,j+1 −mij) which
is a ratio of parallel vectors.

The so called discrete Kœnigs nets form a subclass of Q-nets [4]. A Q-net f : U → R3 is a
discrete Kœnigs net if and only if there exists a real-valued function ν : U → R \ {0} such that
for all faces

νi+1,j+1

νij
=
fi+1,j+1 −mij

fij −mij
and

νi+1,j

νi,j+1
=
fi+1,j −mij

fi,j+1 −mij
.

Kœnigs nets can be dualized in the sense that there exists a dual net f̂ : U → R3 solving the
system of difference equations (cf., [4, Th. 2.31])

(5) δif̂ij =
δifij

νijνi+1,j
and δj f̂ij =

δjfij
νijνi,j+1

.

The dual net f̂ is a Kœnigs net as well with corresponding function ν̂ = ν−1.

Example 5. Consider a discrete translational f net which is generated by translating a poly-
gon along another polygon. Each face of such a translational net is a parallelogram and the
intersection points mij are the midpoints of the diagonals. A translational net f together with
the function νij := (−1)i fulfills the above properties and is therefore a discrete Kœnigs net.
Translational nets will play an important role in Section 5.

Another equivalent characterization of Kœnigs nets in terms of incidence geometry is the
following. We will need this characterization later in the proof of Theorem 13.

Theorem 6 (Th. 3.10 [5]). A net is a discrete Kœnigs net if and only if the three lines (mij ∨
mi−1,j), (mi,j−1 ∨mi−1,j−1), (fi+1,j ∨ fi−1,j) intersect in a common point. For an illustration
see Figure 2 (right).

Let us consider a Kœnigs net in the plane f = (f1, f2) : U → R2. Its Moutard lift n : U → R3

with

(6) n := ν−1(f1, f2, 1)

is a discrete T-net fulfilling the so called discrete Moutard equation with minus sign (cf., [4,
Th. 2.32])

ni+1,j+1 − nij =
ν−1
i+1,j+1−ν

−1
ij

ν−1
i,j+1−ν

−1
i+1,j

(ni,j+1 − ni+1,j).
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Such T-nets will appear later as special normal vector fields of A-nets (Theorem 7).

3.2. A-nets. Each vertex star of an A-net is planar. Consequently, there is a normal vector n
at each vertex which is orthogonal to each adjacent edge

nij ⊥ δifij , δjfij , δifi−1,j , δjfi,j−1.

Such a discrete normalized normal vector field does not define an A-net uniquely however the
normal vectors equipped with a particular choice of individual lengths for each normal vector
can determine an A-net uniquely: A-nets f in R3 (up to translation) are in a one-to-one corre-
spondence with T-nets n via the discrete Lelieuvre representation (cf., [4, Th. 2.43])

(7) δifij = ni+1,j × nij , and δjfij = ni,j+1 × nij ,
where “×” denotes the vector cross product in R3. As we put together the above steps we
conclude the following theorem which we will use later in the construction of an A-net.

Theorem 7. Let f : U → R2 be a Kœnigs net in the plane. Its Moutard lift (6)

n = ν−1(f1, f2, 1)

is a discrete Lelieuvre representation of a discrete A-net.

3.3. Projection of A-nets. The central projection of a smooth A-net to a plane is a smooth
Kœnigs net in that plane. A proof of that can be found in [7] where smooth Kœnigs nets are
called nets with equal invariants. Also a form of converse statement is proved in [7] which says
that to each smooth Kœnigs net in the plane there exists a non-trivial smooth A-net in space
which can be projected to the given smooth Kœnigs net. These properties also hold in the
discrete setting. For example the fact that discrete A-nets are projected to discrete Kœnigs nets
can be found as an Exercise in [4, Ex. 2.29]. We could not find any references for the converse
result in the discrete setting, however, since we will need it later we will give an elementary proof
here.

Theorem 8. Let f : U → R2 be a discrete Kœnigs net in the plane with corresponding function

ν : U → R\{0} and let f̂ = (f̂1, f̂2) denote its Kœnigs dual with corresponding function ν̂ = ν−1.

Further, we rotate f̂ by π/2 to obtain (−f̂2, f̂1). Then the Moutard lift (6)

n := ν(−f̂2, f̂1, 1)

of the rotated net f̂ is the Lelieuvre representation of an A-net whose top view (horizontal pro-
jection) is the given net f up to translation. Note that the position vectors of the vertices of the

Lelieuvre representation n are parallel to the normal vectors of the metric dual (1) of f̂ .

Proof. Theorem 7 implies that n is the Lelieuvre representation of an A-net. We only have to
show that its top view is f .

We compute edge vectors of the A-net via the Lelieuvre representation (7)

ni+1,j × nij = νi+1,j

−f̂2
i+1,j

f̂1
i+1,j

1

× νij
−f̂2

ij

f̂1
ij

1

 = νi+1,jνij

f̂1
i+1,j − f̂1

ij

f̂2
i+1,j − f̂2

ij

∗

 (5)
=

δif1
ij

δif
2
ij

∗

 .

Consequently, we obtain the top view of this A-net by omitting the third component which
therefore is the top view of δifij . The same holds for the other direction. �

4. Discrete Webs from Asymptotic and Geodesic Lines in Isotropic Geometry

In this section we derive a sensible notion of discrete isotropic AGAG-webs and give a full geo-
metric characterization of these webs. We investigate properties of sub-nets of discrete isotropic
AGAG-webs and describe a method of constructing them.
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l1

l2

l3

l4

l5

l6

l1
l2

l3l4

l5

l6

fi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,jfi−1,j

fi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,jfi+1,j

mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1mi,j−1

mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1mi−1,j−1
mi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,jmi−1,j

mijmijmijmijmijmijmijmijmijmijmijmijmijmijmijmijmij

Figure 3. Top-left: The combinatorics of a 4-web consisting of four families of curves. Through each point there
is a curve of each family passing through. Any three of the families of curves from the 4-web form a 3-web.

Bottom-left: Brianchon’s theorem. Right: A 2 × 2 quadrilateral net f (green) in the plane with straight-lined

diagonals l1, . . . , l6. The six straight lines l1, . . . , l6 envelope a conic if and only if f is a Kœnigs net. The
incidence geometric Kœnigs property from Theorem 6 (see Figure 2 right; here illustrated by dashed red lines) is

a consequence of Brianchon’s theorem.

4.1. AGAG-webs. An n-web consists of n families of curves on a surface or in the plane, such
that, through each point, there is a curve of each family passing through that point, and such
that any two curves from different families intersect each other at exactly one point (see, e.g.,
[2]). A very special 4-web in R2 is illustrated in Figure 3 (top-left) consisting of all lines of the
form x = d1, y = d2, x+ y = d3, x− y = d4, with d1, . . . , d4 ∈ R.

Certainly, we can map such a special planar n-web (like the 4-web from above) to any em-
bedded surface patch. Thus, the existence of an n-web on a surface by itself is not particularly
worth noticing. However, it becomes significantly more interesting if such a web is determined
by the geometry of the surface or of the geometric properties of the curves (for example webs of
geodesics [15, 17]).

Example 9. In isotropic geometry all 3-webs of geodesics on an admissible surface (i.e., without
isotropic tangent planes) are obtained by projecting a straight-lined 3-web from the xy-plane to
the surface. Straight-lined 3-webs in the plane have been fully classified and consist of all tangents
of an algebraic curve of class 3 (see, e.g., [2]).

An application is the motivation for the present paper. Schling et. al [23] investigate 4-webs on
negatively curved surfaces in an architectural context. Thereby, two of the four families of curves
are the asymptotic curves and the other two families consist of geodesics. The arrangement of
curves around each point is such that they alternate cyclically (asymptotic-geodesic-asymptotic-
geodesic). We therefore recall formally the following definition.

Definition 10 ([23]). We call a 4-web on a negatively curved surface an AGAG-web if it consists
of the two families of asymptotic curves and two families of geodesics such that the four curves
through each point alternate cyclically (asymptotic-geodesic-asymptotic-geodesic).
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Figure 4. Left: The combinatorics of a discrete AGAG-web is a 4-web with vertices on the Z2 lattice such that

the geodesic lines correspond to the vertical and horizontal parameter lines (black) and where its two diagonal

nets form two A-nets (red dashed and green). Center: The combinatorics of a relaxed discrete AGAG-web where
only one of the two diagonal nets of the net of geodesics is an A-net (red). For that relaxed setting we can show

in Remark 17 the existence of a counter example to Theorem 16. Right: The blue net is one of the two diagonal

nets of the red A-net.

Note that not every negatively curved surface carries an AGAG-web. The discretization of
AGAG-webs is straightforward once we declare the notion of a discrete geodesic in I3. We follow
in our straightforward discretization the smooth characterization of geodesics in isotropic space.

Definition 11. A polygonal parameter curve on a discrete net is called a discrete geodesic in
isotropic space I3 if its top view is a straight line.

Definition 12. A discrete AGAG-web is a discrete 4-web with Z2 combinatorics such that the
geodesic lines correspond to the vertical and horizontal parameter lines (black lines in Figure 4
left) and where its two diagonal nets form two A-nets (red dashed and green nets in Figure 4
left). A discrete isotropic AGAG-web is a discrete AGAG-web in isotropic geometry.

The vertices of the net of geodesics are Z2 whereas the vertices of the A-nets are {(i, j) ∈ Z2 |
i+ j ≡ 0 mod 2} and {(i, j) ∈ Z2 | i+ j ≡ 1 mod 2}, respectively.

Theorem 13. The top view of a discrete AGAG-web in isotropic geometry is a 4-web consisting
of two discrete Kœnigs nets whose both families of diagonal curves are straight lines.

Proof. The top view of a discrete A-net is a discrete Kœnigs net and the top view of geodesic
curves are straight lines. �

Lemma 14. Consider a 2 × 2 quadrilateral net f in the plane with straight-lined diagonals
l1, . . . , l6 (as illustrated by Figure 3 right). Then f is a Kœnigs net if and only if the six straight
lines l1, . . . , l6 envelope a conic.

Proof. According to the incidence geometric characterization of Kœnigs nets, f is a Kœnigs
net if and only if the diagonal intersection points mij ,mi,j−1,mi−1,j ,mi−1,j−1 together with
fi,j−1, fi,j+1 fulfill the incidence relation described in Theorem 6 and illustrated by Figure 2
(right). Consequently, f is a Kœnigs net if and only if the three lines (mij ∨mi−1,j), (mi,j−1 ∨
mi−1,j−1), (fi+1,j ∨ fi−1,j) intersect in a common point. By Brianchon’s theorem (see e.g., [29]
and Figure 3 bottom-left) these three lines meet in a point if and only if the six lines

l1 := fi+1,j ∨mi,j−1 l4 := fi−1,j ∨mi−1,j−1

l2 := mi−1,j ∨mi,j−1 l5 := mi−1,j−1 ∨mij

l3 := mi−1,j ∨ fi−1,j l6 := mij ∨ fi+1,j
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are in tangential contact with a conic. Consequently, the diagonal net of a net of straight lines
enveloping a conic is a Kœnigs net. �

Corollary 15. Two families of straight lines enveloping a conic constitute the diagonal net of a
Kœnigs net.

Theorem 16. The geodesics in the top view of a discrete isotropic AGAG-web are straight lines
enveloping a single conic.

Proof. The geodesics in the top view appear as straight-lined diagonals of two Kœnigs nets. Let
us choose arbitrary coordinates (i, j) ∈ Z2. Lemma 14 implies that the six straight lines in the
top view consisting of the three geodesics represented by the three combinatorially vertical lines
through (i − 1, j), (i, j), (i + 1, j) as well as the three combinatorially horizontal lines through
(i, j − 1), (i, j), (i, j + 1) envelope a conic cij . A combinatorial illustration with the six tangents
corresponding to conic c53 can be found in Figure 5 (left). This holds for any (i, j). Since
two “neighboring” conics cij and ci+1,j share five tangents (three horizontal and two vertical)
they must be identical (cij = ci+1,j) as a conic is uniquely determined by five tangents [29].
Consequently, by induction all these conics are identical. �

Remark 17. Theorem 16 would not be true if we relaxed the definition of a discrete AGAG-web
by requiring that only one of the two diagonal nets of the geodesics net is an A-net (see Figure 4
right). The common conic would no longer exist. A counterexample for what we claim here would
consist of two collections of lines l1, . . . , ln and g1, . . . , gm (with n,m arbitrarily large) such that
for any i, j with i+ j ≡ 0 mod 2 the six lines

li−1, li, li+1, gj−1, gj , gj+1

are in tangential contact with a conic and that there are at least two different such conics. See
Figure 5 (left) for a combinatorial illustration. We present such a counterexample in the dual
projective plane which seems to be easier to visualize. For that, we construct two collections of
points L1, . . . , Ln and G1, . . . , Gm (with n,m arbitrarily large) such that for any i, j with i+j ≡ 0
mod 2 the six points

(8) Li−1, Li, Li+1, Gj−1, Gj , Gj+1

are contained in a conic and that there are at least two different such conics. See Figure 5 (right)
for such a counterexample: Li = ((−1)i+1, 2i − c) and Gj = ((−1)j , 2j + c) (with an arbitrary
constant c). Due to the symmetry of these points there exists a conic through any of the six
points of the form (8).

It remains an open question if this type of counterexample and all its metric and projective
equivalent versions is the only counterexample to the above described relaxed version of Theo-
rem 16.

4.2. Construction of discrete isotropic AGAG-webs. We would like to sketch a practical
way to construct discrete isotropic AGAG-webs. In order to do that we start with its top view.
By Theorem 16 we must assume the top view of the geodesic curves being straight lines enveloping
a conic. We therefore choose two discrete one-parameter families of tangents of an arbitrarily
chosen conic in the xy-plane.

By Corollary 15 its two diagonal nets are two planar Kœnigs nets. With the construction of
Theorem 8 we obtain two A-nets whose top view coincide with these Kœnigs nets and generate
the AGAG-webs. See Figures 6, 7 and 8 for some examples.

The A-net in Figure 7 lies in an affinely sheared helicoid. The two families of geodesics envelope
in the top view a circle with the same constant angular velocity. Therefore one diagonal in each
quad is a diameter of that circle and the other diagonal is orthogonal to it. In the smooth
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l1 l2 l3 l4 l5 l6 l7

g1

g2

g3

g4

g5

g6

g7

c53

L7

L6 L5L5L5L5L5L5L5L5L5L5L5L5L5L5L5L5L5

L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4

L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3

L2

L1

G7

G6G5G5G5G5G5G5G5G5G5G5G5G5G5G5G5G5G5

G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4

G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3

G2

G1

Figure 5. Left: Combinatorial illustration of the straight-lined diagonals of a Kœnigs net. Lemma 14 implies

that the six lines l1, l2, l3, g1, g2, g3 are in tangential contact with a conic which is combinatorially illustrated by

the dot at the intersection of l2 with g2. Right: A counterexample to the converse of Corollary 15 in the dual
projective plane. Instead of straight lines tangent to conics we have points lying on conics. The points L1, . . .

and G1, . . . lie on the Z2 lattice. The metric symmetry of the arrangement implies that the conics pass through

the indicated points.

Figure 6. Simple Examples. The parameter curves of the nets on the bottom are tangent lines of a circle. The

difference between the three figures is only the “speed” of the tangent lines, i.e., their arrangement. The nets
above them are A-nets. The top views of the diagonal nets of these A-nets are the nets in the bottom row.

counterpart this corresponds to a surface whose asymptotic curves appear in the top view as
concentric circles and their diameter lines. It follows immediately that one family of asymptotic
curves is straight and thus the surface is a ruled surface. Due to the right isotropic angle between
asymptotic directions we have a ruled isotropic minimal surface which is easily seen to be an
isotropic helicoid (affine to a Euclidean helicoid).

5. Discrete AGAG-Webs, Discrete Minimal Surfaces and Voss Nets

In the following we study the geometry of discrete isotropic AGAG-webs. As the geodesics
appear in the top view as straight lines enveloping a conic, the planes carrying these geodesics
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Figure 7. Discrete A-nets of two discrete AGAG-webs. The vertical line indicates the isotropic direction. The

corresponding net of geodesics envelope a circle at constant speed: regular n-gon left and perturbed regular n-gon
(right).

Figure 8. The tangents of the unit circle can be represented as T (ϕ) := (cosϕ, sinϕ) +R(− sinϕ, cosϕ). For the

illustrated A-net of an AGAG-web we start with a net of two families of tangents to the unit circle parametrized
by T (ϕi), T (ϕj), i, j = 0, . . . , 146 with ϕi = .3 cos(i∗δϕ), ϕj = π

2
+ .3 cos(j ∗δϕ), where δϕ = 6π

146
. Due to the cos

function changing signs the tangents move back and forth and cover the same domain three times. This results

in sharp edges on the A-net.

are tangent to a quadratic cylinder Γ with rulings that are isotropic lines in I3, i.e., real rulings
parallel to the z-axis. Most Q-nets in the following are formed by geodesic polylines in I3. They
are special cases of Q-nets with planar parameter lines, which have been studied recently in
connection with multi-nets [3] and applications in architecture [11].

5.1. Relation to timelike minimal surfaces in Minkowski space. Minimal surfaces are
typically defined as surfaces with vanishing mean curvature H with an appropriate mean cur-
vature notion in the respective geometry. On the other hand minimal surfaces can be seen as
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q′

ε′

Γ′

ε

ε∗

q
q∗

duality δ

Figure 9. Left: Top view Γ′ of the cylinder Γ and a discrete isotropic AGAG-web. The projection of one of the

two A-nets is indicated in red and one of its diagonal nets q which projects to q′. The polygons of q lie in tangent

planes ε of Γ. Right: A projective duality δ maps a Q-net q to a Q-net q∗. Co-planar edges of a parameter
polygon (contained in a plane ε) are mapped to edges meeting in a point ε∗ = δ(ε).

translation surfaces of two isotropic curves (see, e.g., [31] for Minkowski minimal surfaces) which
generalizes Lie’s original generation of Euclidean minimal surfaces from two complex conjugate
isotropic curves [14]. Discrete translation surfaces generated from discrete isotropic curves appear
as timelike minimal surfaces in Minkowski space in [33].

Let us consider a discrete AGAG-web. By Theorem 16 there exists a conic which is enveloped
by the straight lines corresponding to the top view of the geodesics of the discrete AGAG-web.
We denote the quadratic cylinder whose top view coincides with this conic by Γ.

Let us consider this quadratic cylinder Γ as the absolute of a Cayley-Klein geometry, namely
a dual Minkowski geometry (cf. Section 2 and Figure 1 right).

Theorem 18. A diagonal net of an A-net of a discrete isotropic AGAG-web represents a timelike
minimal surface in a dual Minkowski space, whose absolute is given by the cylinder Γ. The tangent
planes of Γ contain the geodesics of the web.

Proof. Let us consider one of the two diagonal nets of one of the two A-nets of a discrete AGAG-
web. Such a diagonal net q is a Q-net because every diagonal net of an A-net is a Q-net. The
discrete parameter lines of this Q-net q lie in tangent planes ε of Γ (see Figure 9 left). Since dual
Minkowski geometry is harder to visualize than the more familiar Minkowski geometry, we first
apply a projective duality δ which maps the tangent planes of Γ to the points of some conic c in
the ideal plane ω (x0 = 0). We can assume that c agrees with the ideal conic

x0 = 0, x2
1 + x2

2 − x2
3 = 0

(see Figure 1 third from left). It is then the absolute of the Minkowski space based on the
standard Minkowski scalar product. The projective duality δ maps the Q-net q to a Q-net q∗

(see Figure 9 right for an illustration). The edges of the parameter lines of q are contained in
tangent planes ε of Γ. Such a planar parameter polygon gets mapped to the edges connecting
two adjacent parameter lines of q∗. All these transversal edges are parallel, since they contain
the ideal image point ε∗ := δ(ε) ∈ c. This shows that all straight lines carrying the edges of q∗

meet c and thus are isotropic lines in Minkowski space.
Consequently, each face of q∗ is a parallelogram and thus the net q∗ is a translational net, gen-

erated by translating an isotropic polyline along another isotropic polyline. This generation is the
Minkowski-counterpart to Lie’s generation of Euclidean minimal surfaces as translation surfaces
(generated by conjugate complex minimal curves), and according to the work of Yasumoto [33]
a characterization of timelike minimal surfaces in Minkowski space. �
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Note that there are two A-nets contained in a discrete AGAG-web each of which carrying two
diagonal nets (see also the table in the appendix p. 5.3). Consequently there are four discrete
timelike minimal surfaces contained in a discrete AGAG-web.

It has to be noted that discrete isotropic AGAG-webs are only related to special minimal
surfaces in Minkowski space. This follows already from the fact that in the present setting
we have negatively curved surfaces (represented by A-nets), while timelike minimal surfaces in
Minkowski space may also be positively curved. This follows from their generation as translation
surfaces.

5.2. Isotropic Voss nets. A Q-net is called conjugate if the second fundamental form is diago-
nal, or equivalently, if the tangent vectors are orthogonal with respect to the second fundamental
form. Surfaces which possess a conjugate net of Euclidean geodesics have been first studied by
Voss [30] and are now called Voss surfaces or Voss nets or V-nets. Remarkably, they allow for
isometric deformations under which the geodesic net remains conjugate. Discrete versions are
flexible Q-nets: considering their planar faces as rigid bodies and their edges as hinges, they are
mechanisms which perform one-parameter motions [20]. All flexible Q-nets have been classified
by Izmestiev [10].

In what follows the notion of reciprocal-parallel nets will appear frequently. Two nets are
called combinatorially dual to each other if the vertices of one net correspond to the faces of the
other such that there is a natural bijection of the edges (edge-adjacent faces correspond to edge-
adjacent vertices). We call two nets reciprocal-parallel to each other if they are combinatorially
dual and if corresponding edges are parallel. Lemma 2 implies:

Lemma 19. Let q be a Q-net and δ the metric duality (1). Then the top views of corresponding
edges of q and δ(q) are parallel to each other. They form a pair of reciprocal-parallel nets (so
called reciprocal diagrams in the sense of graphic statics). The edge vectors of δ(q)′ are force
vectors which act in the corresponding edges of q′ to obtain equilibrium. The role of the two
diagrams can be exchanged. One is the force diagram of the other.

It is also known that discrete V-nets are reciprocal-parallel to discrete K-nets (surfaces of
constant Gaussian curvature [21, 22, 32]). In the language of graphic statics, they are reciprocal
force diagrams of each other.

A discrete isotropic AGAG-web contains four Q-nets formed by geodesics. In analog to the
Euclidean geometry Q-nets with geodesics as parameterlines in isotropic geometry can be con-
sidered isotropic V-nets.

Theorem 20. A diagonal net of an A-net q of a discrete isotropic AGAG-web is an isotropic
V-net with the following properties:

(i) The net q is metrically dual to a translational net q∗ all whose edges are parallel to a
quadratic cone.

(ii) The isotropic dihedral angle along each parameter line is constant.
(iii) The net q is reciprocal-parallel to an isotropic K-net k, i.e., a discrete surface with

constant negative isotropic Gaussian curvature.

Proof. We start with (i): We apply the isotropic metric duality δ, realized by the null system (1)
that maps a point (a, b, c) to the incident plane bx−ay− z+ c = 0. With the same arguments as
in the proof of Theorem 18, the metric dual q∗ of a discrete isotropic V-net q is a translational
net.

The parameter lines of q are tangent to the isotropic cylinder Γ with equation

x2
1 + x2

2 − x2
3 = 0.
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This cylinder Γ is mapped by the duality to the conic with equation

x0 = 0, x2
1 + x2

2 − x2
3 = 0

in the ideal plane. Thus all edges of q∗ pass through that conic in the ideal plane and are
therefore parallel to a quadratic cone through that ideal conic.

As for (ii), since q∗ is a translational net also its top view q∗′ is a translational net. Therefore,
the edges connecting two neighboring parameter curves of q∗ are congruent, both in Euclidean
and isotropic geometry. By the metric duality (Lemma 1), the isotropic dihedral angle of the
isotropic V-net q is constant along each (planar) parameter line.

To show (iii) we first recall that q∗ is a translational net and therefore so is q∗′. Consequently,
Example 5 implies that q∗′ is a Kœnigs net. Theorem 8 implies the existence of an A-net k∗

whose top view is q∗′. The metric dual k of k∗ is an A-net. Since vertices with the same top view,
like k∗ and q∗, correspond to parallel planes in the metric duality, the planes carrying the vertex
stars of k∗ are parallel to their corresponding faces in q. Furthermore, since two pairs of parallel
planes intersect in parallel lines, corresponding edges in q and k must be parallel. Consequently,
q and k are reciprocal-parallel.

Lemma 2 implies that the top view of corresponding edges of k and k∗ are parallel. Since
k∗′ = q∗′ is a translational net, parallelity of corresponding edges implies that k′ is a translational
net. Since the top view of the A-net k is translational it is also an isotropic Chebyshev net.

Thus, k is a discrete version of a surface with an asymptotic Chebyshev net, i.e., a surface
with constant negative isotropic Gaussian curvature [26]. �

Basically all properties of isotropic K-nets known from the smooth setting can be transferred
to the discrete case. This is particularly simple in the case where k is an isotropic rhombic net
and thus all isotropic dihedral angles of q agree (see [32] for the Euclidean counterpart): The
parameter lines of the K-net k posses constant discrete isotropic torsion; they belong to linear
line complexes and the entire net can be generated by so-called isotropic Clifford translation, like
their smooth counterparts [26].

Finally, we address the question whether an isotropic V-net can be embedded into a one-
parameter family of V-nets that are isometric to each other. In isotropic geometry, the definition
of isometry cannot be based only on the metric on the surface, which is seen in the top view.
However, we can in addition require that isotropic Gaussian curvature is preserved. As discrete
isotropic Gaussian curvature we use the quotient of the area of the face of the Gauss image divided
by a weighted area of the corresponding vertex star on the given net (cf. Equation (3)). The
following theorem will hold for any definition of wighted area of the vertex star which depends
affinely on the area of the vertex star (which is the case for commonly used definitions).

We will report on isometries in isotropic space in a separate publication, but briefly mention
the embedding of a V-net q into a one-parameter family of isometric V-nets by showing the
following result.

Theorem 21. An isotropic V-net q can be embedded into a continuous family of isometric
isotropic V-nets q(λ) so that all nets in the family not only have the same top view (i.e., same
metric), but also the same isotropic Gaussian curvature in corresponding vertices.

Proof. Applying the polarity δ̃ with respect to S (see (4)), which is also a metric duality in
isotropic space I3, Lemma 3 implies that the dual net q∗ of q has the same top view as the
Gaussian image qS of q. The vertices of the net qS are on S and the tangent planes of S at them
are parallel to the corresponding face planes of q.

With the same arguments as in the proof of Theorem 18, the top view q′S = q∗′ is a translational
net. Two successive parameter lines in q∗ are related by a translation. We scale each individual
such translation vector by a factor λ (inducing a Combescure transformation, cf. Definition 4) and
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it will still generate a net Q-net with the above properties. Analogously we scale the parameter
lines in the other direction with 1/λ and obtain, after scaling in both directions, a Q-net q∗(λ).
This Combescure transformation leaves the areas of all parallelograms unchanged. Now we
map such a Q-net q∗(λ) via δ̃ back to an isotropic V-net. Since all nets q∗(λ) have parallel
corresponding face planes, all nets q(λ) have the same top view (Lemma 3). The isotropic areas
(areas of top views) of the Gaussian images qS(λ) of the vertices in q(λ) (areas of faces of q∗(λ))
do not depend on λ. Consequently, the discrete Gaussian curvature (3) of all nets in the family
q(λ) is the same. �

Note that the properties of the metric duality (Lemma 1) imply that λ and 1/λ (in the proof
above) are the factors with which the dihedral angles of q get multiplied to obtain q(λ).

5.3. Two versions of infinitesimal flexibility, Kœnigs nets and dual Kœnigs nets. The
discrete theory of infinitesimally flexible nets has been studied in detail by Sauer [21]. In fact,
most of Sauer’s results concern two special types of infinitesimal flexibility:

(i) Flexibility with rigid faces: A net q has this type of flexibility if there is a vector field,
attached to the vertices of the net, so that per face the vector field belongs to a velocity
field of a rigid body motion in Euclidean 3-space. This type of flexibility is equivalent
to the existence of a reciprocal-parallel net k (and thus equivalent to static equilibrium
of q without external forces applied to inner vertices).

(ii) Flexibility with rigid vertex stars: Here, a vector field is attached to the vertices of
the net which agrees with the velocity field of a rigid body motion per vertex star. In
other words, the edge lines through a vertex form a pyramid, which is infinitesimally
rigid. This type of flexibility requires a Q-net q and is characterized by the existence
of a Q-net q̂, which is antiparallel to q. This means that corresponding edges and not
corresponding face diagonals are parallel. The existence of an antiparallel net is a known
characterization of Kœnigs nets (see also [4]).

Sauer shows that each of the two classes of infinitesimally flexible nets is invariant under
projective maps [21]. Furthermore, a projective duality (correlation) maps a Q-net of one type
to a Q-net of the other type [21]. Hence, Q-nets which are flexible with rigid faces are projective
duals of Kœnigs nets. Remarkably, the Q-nets appearing in discrete isotropic AGAG-webs belong
to both classes.

Theorem 22. The isotropic V-nets q contained in a discrete AGAG-web are Kœnigs nets and
dual Kœnigs nets.

Proof. By Theorem 20 (iii) there exists a reciprocal-parallel net (isotropic K-net k) and thus q
is a dual Kœnigs net. To show that q is also a Kœnigs net, we prove that the projectively dual
timelike minimal net q∗ in Minkowski space is a dual Kœnigs net: Each edge of q∗ is isotropic
and thus parallel to a ruling of the minimal cone x2

1 +x2
2−x2

3 = 0 and also parallel to a ruling in
an A-net s on the Minkowski sphere x2

1 + x2
2− x2

3 = 1. The edges in a transversal sequence of q∗

(joining neighboring parameter lines) are parallel to each other and thus parallel to a parameter
line (ruling) of s, showing the reciprocal-parallelism of s and q∗ and the dual Kœnigs property
of q∗. �

The proof reveals another analogy between timelike minimal surfaces in Minkowski space and
Euclidean minimal surfaces. In both cases, the minimal surface and the sphere carry reciprocal
force diagrams, a fact which has been pointed out in the Euclidean case by Blaschke [1].

Since an isotropic V-net q is a Kœnigs net there is a Kœnigs dual q̂ which is antiparallel to q.
The dual net q̂ shows the same properties as the given net:
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Theorem 23. The Kœnigs dual (antiparallel) net q̂ of an isotropic V-net q is also an isotropic
V-net. If the geodesics of one net lie in the tangent planes of an isotropic quadratic cylinder, the
same is true for the other net.

Proof. Planar parameter lines are mapped to planar parameter lines by any discrete Combescure
transformation (Definition 4). Hence, an isotropic V-net, characterized by parameter lines in
isotropic planes, is mapped to an isotropic V-net by any Combescure transformation. Let us
now take a net q whose parameter lines lie in the tangent planes of an isotropic quadratic
cylinder. In the top view, the parameter lines of q′ are straight and the tangents of a conic.
The top view q̂′ of the Kœnigs dual net is also a Kœnigs net whose parameter lines are straight.
Theorem 7 implies that this net is the top view of an A-net a. As an A-net, it has planar vertex
stars, which implies straight parameter lines and thus a consists of rulings of a quadric. Hence,
in the top view, the parameter lines are tangents of a conic, the contour of the quadric in the
top view. �

A geodesic net q from a discrete AGAG-web has two diagonal A-nets (cf. the table in the
appendix). Therefore its antiparallel (or Kœnigs dual) net q̂ has diagonal Q-nets and thus is not
part of a non-planar isotropic AGAG-web. While q represents a surface of negative Gaussian
curvature, q̂ is positively curved. If we view q̂ as relative sphere then q is a relative minimal
surface.

Conclusion and future research. Our problem has been motivated by a special type of
gridshells that can be fabricated by bending straight and flat slats. The corresponding curve
network must follow the curves of an AGAG-web. The existence of such smooth AGAG-webs
in Euclidean space so far has only been verified by numerical methods. While in Euclidean
space the problem is formulated between projective geometry (A-nets) and Euclidean geometry
(geodesics), in isotropic space the problem becomes purely projective as the geodesics lie in
isotropic planes. We could therefore describe all discrete AGAG-webs in isotropic geometry
and showed that these planes must be tangent to a quadratic cylinder. The resulting surfaces
exhibit relations to timelike minimal surfaces in Minkowski space and to isotropic counterparts
of Voss-nets.

The present paper opens up several directions for future research.

(i) The mathematical existence of smooth and discrete Euclidean AGAG-webs remains an
open problem. Our results on the isotropic counterpart could serve as initial guesses in
optimization algorithms for computing discrete Euclidean AGAG-webs [23].

(ii) In the present paper we discussed 4-webs of asymptotic lines and curves in planes of a
bundle. Are there other 4-webs of asymptotic lines and planar curves?

(iii) The Q-nets in a discrete AGAG-web turned out to be Kœnigs and dual Kœnigs nets. It
is interesting to determine all Q-nets with that property.

(iv) The newly introduced concept of isotropic isometries between surfaces turns out to yield
interesting results on which we will report in a forthcoming publication.
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[16] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete differential-geometry opera-

tors for triangulated 2-manifolds. In Hans-Christian Hege and Konrad Polthier, editors, Visualization and
Mathematics III, pages 35–57, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[17] Helmut Pottmann, Qixing Huang, Bailin Deng, Alexander Schiftner, Martin Kilian, Leonidas Guibas, and
Johannes Wallner. Geodesic patterns. ACM Trans. Graph., 29(4), jul 2010.

[18] Helmut Pottmann and Yang Liu. Discrete surfaces in isotropic geometry. In M. Ralph et al., editor, Mathe-

matics of Surfaces XII, pages 341–363, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
[19] Hans Sachs. Isotrope Geometrie des Raumes. Vieweg, 1990.
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verknüpfen lassen. Sitz. Bayer. Akad. Math.-nat. Abt., pages 353–397, 1926.
[21] Robert Sauer. Differenzengeometrie. Springer, 1970.

[22] Wolfgang Schief, Alexander Bobenko, and Tim Hoffmann. On the integrability of infinitesimal and finite

deformations of polyhedral surfaces. In A. Bobenko et al., editors, Discrete differential geometry, volume 38
of Oberwolfach Seminars, pages 67–93. Springer, 2008.

[23] Eike Schling, Hui Wang, Sebastian Hoyer, and Helmut Pottmann. Designing asymptotic geodesic hybrid

gridshells. Computer-Aided Design, 152, 2022.
[24] Nikolaus K. Stephanidis. Sechseckgewebe auf Flächen negativer Krümmung. Monatsh. Math., 70:261–269,
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Appendix

Here we provide a table of the combinatorics of the sub-nets of AGAG-webs which appear in
the paper. In the first row we have the base net which is the net of geodesics followed by its
two diagonal nets (1st and 2nd A-net). In the second row we illustrate all four possible diagonal
nets of the two A-nets. Below the images we list in what form they appear in the paper. The
abbreviation tv means “top view”.

• geodesic net in I3
• planar polylines in I3
• straight lines in tv
• – envelope conic in tv

• 1st A-net in I3
• diagonal net of geodesic

net in I3
• Kœnigs net in tv
• diagonal net of geodesic

net in tv
• geodesic net is diagonal net

of Kœnigs net in tv

• 2nd A-net in I3
• diagonal net of geodesic

net in I3
• Kœnigs net in tv
• diagonal net of geodesic

net in tv
• geodesic net is diagonal net

of Kœnigs net in tv

• 1st diagonal net of 1st A-
net in I3
• Q-net in I3
• planar polylines in I3
• V-net in I3
• diagonal net of Kœnigs net

in tv
• straight lines in tv
• – envelope conic in tv
• timelike minimal surface in

dual Minkowski space

• 2nd diagonal net of 1st A-
net in I3
• Q-net in I3
• planar polylines in I3
• V-net in I3
• diagonal net of Kœnigs net

in tv
• straight lines in tv
• – envelope conic in tv
• timelike minimal surface in

dual Minkowski space

• 1st diagonal net of 2nd A-
net in I3
• Q-net in I3
• planar polylines in I3
• V-net in I3
• diagonal net of Kœnigs net

in tv
• straight lines in tv
• – envelope conic in tv
• timelike minimal surface in

dual Minkowski space

• 2nd diagonal net of 2nd A-
net in I3
• Q-net in I3
• planar polylines in I3
• V-net in I3
• diagonal net of Kœnigs net

in tv
• straight lines in tv
• – envelope conic in tv
• timelike minimal surface in

dual Minkowski space


