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Abstract

Motivated by applications in architectural geometry, we study and compute surfaces with a constant ratio of principal
curvatures (CRPC surfaces) based on their characteristic parameterizations. For negative Gaussian curvature K, these
parameterizations are asymptotic. For positive K they are conjugate and symmetric with respect to the principal
curvature directions. CRPC surfaces are described by characteristic parameterizations whose parameter lines form
a constant angle. We use them to derive characteristic parameterizations of rotational CRPC surfaces in a simple
geometric way. Pairs of such surfaces with principal curvature ratio κ1/κ2 =±a can be seen as equilibrium shapes and
reciprocal force diagrams of each other. We then introduce discrete CRPC surfaces, expressed via discrete isogonal
characteristic nets, and show how to efficiently compute them through numerical optimization. In particular, we derive
discrete helical and spiral CRPC surfaces. We provide various ways how these and other special types of CRPC
surfaces can serve as a basis for computational design of more general CRPC surfaces. Our computational tools may
also serve as an experimental basis for mathematical studies of the largely unexplored class of CRPC surfaces.

Keywords: Weingarten surface, asymptotic parameterization, characteristic parameterization, constant ratio of
principal curvatures, rotational surface, helical surface, spiral surface, discrete differential geometry, principal
symmetric net, architectural geometry, asymptotic gridshell

1. Introduction

The present paper has been motivated by applications in Architectural Geometry. There, one goal is the design
of surfaces that have an appearance of freeform shapes, but possess properties which facilitate their construction.
An important part of fabrication concerns the cladding with panels. If those are doubly curved and their fabrication
therefore requires the use of a mold, it is an advantage to have a small number of molds. One way to achieve this is by a5

reduced number of curvature elements. This happens if the surface possesses a relation between its principal curvatures
κ1,κ2. These surfaces are called Weingarten surfaces, studied first by Julius Weingarten [1] in the same paper in which
he introduced the shape operator. The advantage of Weingarten surfaces for paneling architectural freeform surfaces
has recently been confirmed in several contributions [2, 3, 4]. There are also arguments for structural advantages of
certain types of Weingarten surfaces [5].10

The surfaces studied in the present paper also emerged through special architectural structures, called asymptotic
gridshells [6, 7, 8]. They are fabricated by bending flat straight lamellas, which in their final position are orthogonal
to an underlying smooth surface on which they follow asymptotic curves (Fig. 22). If one requires in addition a
constant angle at nodes, these structures realize surfaces whose asymptotic directions form a constant angle, i.e.
κ1/κ2 = a = const. < 0. Hence, they are special Weingarten surfaces, namely surfaces with a constant ratio of15

principal curvatures (CRPC surfaces). Also the positively curved CRPC surfaces are of interest in architecture. This
is not only true because of cost effective paneling with double curved panels. Our discrete versions of them provide
visually attractive meshes with planar faces, suitable for realization as steel glass structures (Fig. 1).
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Figure 1: Architectural design study exhibiting a structure from planar panels based on a discrete CRPC surface with a = 0.45. The constant node
angle ( 6= π/2) and the principal symmetric arrangement lead to a more interesting visual appearance than a mesh aligned with principal curvature
directions would have.

Interestingly, CRPC surfaces are related to yet another topic in architectural geometry, namely the so-called Caravel
meshes of Tellier et al. [9]. In an asymptotic analysis of Caravel quad meshes and Caravel hexagonal meshes with edge20

offsets, the principal curvature ratio appears in the aspect ratio of faces, so that CRPC surfaces give rise to particularly
well balanced Caravel meshes.

Applications mainly benefit from effective computational models, often based on discrete differential geometry [10].
From this perspective, Jimenez et al. [11] studied discrete CRPC surfaces, obtaining discrete principal parameterizations
through a novel Christoffel-type transformation of certain spherical nets. They also addressed the case of discrete25

asymptotic parameterizations (A-nets), but based it on a discrete angle condition which is less effective than the ones
used in our work.

CRPC surfaces are a natural generalization of minimal surfaces and thus deserve interest from a purely geometric
perspective. While there is a huge body of knowledge on minimal surfaces, very little is known about CRPC surfaces.
Explicit parameterizations are only available for rotational CRPC surfaces [12, 13, 14, 15, 16]. We especially point30

to a recent paper by Lopez and Pampano [16] which contains a classification of all surfaces with a linear relation
κ1 = aκ2 +b between principal curvatures, including a study of the special case b = 0 of rotational CRPC surfaces.
The authors also provide a variational characterization of the profiles of these surfaces. Rotational CRPC surfaces with
K < 0 have also been characterized via isogonal asymptotic parameterizations f (u,v) where ‖ fu‖= ‖ fv‖ [17, 18, 19].
For Weingarten surfaces to a linear relation of the form aκ1 +bκ2 + c = 0, it has been shown that they are rotational if35

they are foliated by a family of circles [20].

1.1. Contributions and overview

We study CRPC surfaces with help of their characteristic parameterizations, called C-nets henceforth, both in the
smooth and in the discrete setting. For Gaussian curvature K < 0, C-nets are asymptotic nets (A-nets). For K > 0, they
are those conjugate parameterizations which are symmetric with respect to the principal directions. Since the curves in40

a C-net form the angle γ = arctan
√
|κ1/κ2| with the first principal direction, the CRPC property is simply expressed

by a constant angle between the curves in a C-net. Thus, we look for isogonal C-nets.
In Section 2, we derive rotational CRPC surfaces in a new way, namely with help of their characteristic curves.

This is done via their spherical tangent images and leads to an explicit parameterization with an elementary polar
coordinate representation of the axis-parallel projections of the characteristic curves. We also study pairs of rotational45

CRPC surfaces to κ1/κ2 = ±a and show that their C-nets are reciprocal force diagrams of each other, implying
that the surfaces are membranes in equilibrium and pairs of relative minimal surfaces. We illustrate our results by
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interesting algebraic rotational CRPC surfaces. One may obtain the characteristic parameterizations also by solving
their differential equation based on the known parameterization of rotational CRPC surfaces found first by H. Hopf
[12] that uses the profiles in planes through the rotational axis. However, we believe it is more natural in the present50

context to derive them directly, since we obtain interesting and simple geometric insights that have not been noted so
far in the literature. Moreover, we use the characteristic parameterization later to initialize optimization algorithms for
computing more general CRPC surfaces and for quality assessment of our discretization.

Section 3 is devoted to discrete CRPC surfaces based on discrete isogonal C-nets. From a computational perspective,
these are special constrained quad meshes which can be computed effectively with a numerical optimization algorithm.55

In particular, we show how to compute discrete CRPC surfaces which are invariant under uniform motions in the group
Euclidean similarities. This extends the previously discussed rotational CRPC surfaces towards helical and spiral
CRPC surfaces. The main method for their generation relies on the availability of natural discrete surface normals and
the use of line geometry or line element geometry on the set of surface normals to express invariance under uniform
motions in the group of similarities.60

In Section 4 we provide a variety of examples which demonstrate the quality of the obtained surfaces and the
effectiveness of numerical optimization. We present ways how the provided algorithms can be used as a design tool for
CRPC surfaces and demonstrate this at hand of some examples that are targeted towards architectural applications.

Finally, we address directions for future research. Those need not only be in an applied setting. The presented
computational tools could also serve as a basis for getting conjectures and hopefully also theoretical results on CRPC65

surfaces. We address some directions into which one might go.

2. The characteristic curves of rotational CRPC surfaces

2.1. Characteristic parameterizations

We first consider general CRPC surfaces via their characteristic parameterizations (C-nets).
Let (κi, ti), i = 1,2, be the pairs of principal curvatures and associated curvature directions at a surface point p.

Then, the directions which form the angles ±γ ,

tanγ =
√
|κ1/κ2|,

with t1 are called characteristic directions henceforth. In case of negative Gaussian curvature K, the characteristic70

directions are the asymptotic directions. For K > 0, these are exactly those directions which are conjugate to each other
and symmetric with respect to the principal curvature directions.

For visualization, we may use the Dupin indicatrix ip, whose equation in the principal frame is given by κ1x2
1 +

κ2x2
2 =±1 (Fig. 2). Then, for K < 0 the characteristic tangents are the asymptotes of the two hyperbolas which form

ip, while for K > 0 they are the diagonals in the axis rectangle of the ellipse ip.75

The characteristic directions form the angle 2γ = 2arctan
√
|a|, which may be called characteristic angle. This

angle characterizes the shape of the curvature element (osculating paraboloid) up to similarities.
Let us take an arbitrary regular point p of a surface. The shape operator σ maps the principal directions ti,‖ti‖= 1,

to σ(ti) =−κiti. Hence, the characteristic directions d j, which form the angle γ with t1, are mapped as follows (Fig. 2):

d j =
1√
|κ1|

t1±
1√
|κ2|

t2 7→ σ(d j) =−sgn(κ1)
√
|κ1|t1∓ sgn(κ2)

√
|κ2|t2.

Hence, the two vectors σ(d j) form the angle γ with the other principal direction t2. For K < 0, σ(d j) is orthogonal to
d j. For K > 0, σ(d1) (σ(d2)) is orthogonal to d2 (d1, resp.). This is just another way to express that the directions
d1,d2 are self-conjugate for K < 0 and conjugate to each other for K > 0.80

Through integration of the characteristic directions we get the network of characteristic curves. They are the
isoparameter curves of characteristic parameterizations or C-nets.

By their definition, CRPC surfaces are those with a constant characteristic angle, or in other words, are characterized
through isogonal C-nets. Clearly, their curvature elements (osculating paraboloids and Dupin indicatrices), are similar
to each other.85
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Figure 2: Characteristic directions visualized via Dupin indicatrix and shape operator for K < 0 (left) and K > 0 (right).

Characteristic directions are not well defined at umbilics, including flat points. Hence, the combinatorial singulari-
ties of C-nets appear at these points, which are of course also the singularities of principal parameterizations. A flat
point κ1 = κ2 = 0 does not pose a restriction for a CRPC surface due to the indeterminate ratio κ1/κ2 = 0/0, which
can assume the correct value a when approaching such a point. Since negatively curved surfaces have their singularities
of the principal nets at flat points, CRPC surfaces with a < 0 appear to be easier to design than those with a > 0. Also90

note that the rich family of minimal surfaces (a =−1) is part of this class of surfaces. However, we do not know of a
similarly rich class of CRPC surfaces with positive curvature. The case a = 1 leads just to the sphere. A CRPC surface
with a > 0 cannot have an umbilic (a = 1) unless it is a sphere. This poses a rather strong shape restriction on CRPC
surfaces for a > 0. They may, however, possess flat points or singular umbilics (κ1 = κ2 = ∞). These points appear on
the rotational axis of positively curves CRPC surfaces of revolution (see Fig. 5).95

2.2. Gaussian image of the C-nets of rotational CRPC surfaces

For an arbitrary CRPC surface s, the characteristic curves intersect the principal curvature lines under the constant
angle ±γ . Hence, their Gaussian images intersect the Gaussian images of the principal curvature lines under the
constant angle π/2− γ (if angles are measured against the same principal direction).

This simple observation turns out to be very useful to directly determine the characteristic curves on rotational
CRPC surfaces s. The principal curvature lines of a rotational surface are its profile curves in planes through the axis
(which we identify with the x3-axis of a Cartesian system) and its parallel circles (in planes orthogonal to the axis, i.e.
x3 = const). Throughout the paper we assume that κ1 refers to the normal curvature of the circles and κ2 to the normal
curvature of the profile curves. The Gaussian images of the principal curvature lines of s are the circles of constant
latitude (in planes orthogonal to the x3-axis) and constant longitude (in planes through the x3-axis) on the unit sphere S2.
The characteristic curves c of s intersect the parallel circles of s under constant angle γ . Such curves (for any constant
angle) are called loxodromes. Their Gaussian normal images intersect the circles of constant longitude (or planes
through the x3-axis) under the constant angle γ (see Fig. 3). These curves are the well-known spherical loxodromes.
A spherical loxodrome n(u), as Gaussian normal image of a characteristic curve c(u) can be parameterized via the
rotational angle u about the x3-axis as (see e.g. [21]),

n(u) =
1

coshqu
(−sinu,cosu,sinhqu), q = cotγ =

√
|κ2/κ1|= 1/

√
|a|. (1)

Lemma 1. The Gaussian normal images of the characteristic curves of a rotational CRPC surface are spherical100

loxodromes and congruent to the curve (1).

Of course, the γ-loxodromes on any rotational surface form two families of congruent curves. Curves in one family
are related to each other by rotation about the axis and the two families are related by a reflection at profile planes. This
type of congruence also applies in the following statements.

This forms the basis for our further derivations. Since the characteristic curves may either be asymptotic curves or105

conjugate and symmetric to principal directions, we have to distinguish these two cases. However, having done the
case a < 0, it requires only small changes to obtain the rotational CRPC surfaces with a > 0.
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Figure 3: Spherical tangent and binormal images of characteristic curves on rotational CRPC surfaces. Left: Spherical motion of the Frenet frame
e1,e2,e3 of an asymptotic curve of a rotational CRPC surface (here a =−2): The tangent vector e1 generates a spherical tractrix (pull distance γ) of
a great circle cp in a plane orthogonal to the rotation axis of the surface. The binormals e3 run on a spherical loxodrome which intersects the great
circles through the rotation axis under the angle γ . Center and right: Spherical loxodromes (red) as binormal images and Gaussian images of selected
characteristic curves, and a tangent image e1 (plus projection into the horizontal plane) in case of negative curvature (middle, a =−2) and positive
curvature (right, a = 3).

2.3. The asymptotic curves of negatively curved rotational CRPC surfaces

We would like to determine a characteristic curve c(u) on a rotational CRPC surface s with a < 0. Since c is an
asymptotic curve, its osculating planes are tangent planes of s and thus the Darboux frame of s along c equals the110

Frenet frame e1,e2,e3 of c. The binormal vectors e3 are the normal vectors n of s along c, represented by the spherical
loxodrome (1). The loxodrome may be called the spherical binormal image of c.

The spherical tangent image e1(u) of c is obtained as follows. We compute the envelope of planes e3(u) ·x = 0,

T1(u) : x1 sinu− x2 cosu− x3 sinhqu = 0.

These planes are parallel to the osculating planes of c (tangent planes of s). Their envelope is a cone Γ1 with vertex o
through the spherical tangent image e1(u). We compute it by intersecting T1(u) with the derivative planes Ṫ1(u). The
intersection of Γ1 with the plane x3 = 1 is the curve

e∗1(u) = (sinhqusinu+qcoshqucosu,−sinhqucosu+qcoshqusinu,1). (2)

Normalization yields the spherical tangent image e1(u) = e∗1(u)/‖e∗1(u)‖.
In other words, the curves e3(u) and e1(u) are related by orthogonality on the spheres S2. It is well-known and

easily seen that this spherical duality maps a loxodrome e3(u) to a spherical tractrix of the great circle in the plane115

x3 = 0 with γ as the constant pull distance (see e.g. [21]; and Fig. 3). We have therefore shown the following result:

Lemma 2. The tangent images of the asymptotic curves on rotational CRPC surfaces with a < 0 are spherical
tractrices of a great circle in the plane orthogonal to the rotational axis. Up to rotation about the axis or a reflection at
a plane orthogonal to the axis, these curves are represented by e1(u) = e∗1(u)/‖e∗1(u)‖ with e∗1(u) from equation (2).

Remark. This result can also be derived directly with help of the Frenet frame as follows (Fig. 3, left). At any point of
c, the tangent vector e1 forms a constant angle with the tangent p of the parallel circle (normal of the profile plane).
Note that p lies in the tangent plane of s and thus in the osculating plane of c. Hence, the vector p is fixed in the moving
Frenet frame,

p = e1 cosγ + e2 sinγ.

The Frenet frame vectors describe the spherical tangent image e1(u), principal normal image e2(u) and binormal120

image e3(u) on S2. By the Frenet equations, the tangents ė1 and ė3 are parallel to e2. In other words, the great circle
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defined by e1,e2 touches the spherical tangent image e1(u) and the great circle in the plane e3,e2 is tangent to the
binormal image e3(u). The vector p traces out a great circle cp in a plane orthogonal to the rotational axis. The
constant angle between e1 and p implies that the great circular arc between e1 and p has constant spherical length γ

and is tangent at e1(u). This reveals the spherical tangent image e1(u) as a spherical tractrix of a great circle with γ as125

the constant pull distance. By the way, our asymptotic curves c are generalized curves of constant slope in the sense of
[22].

We now determine the asymptotic curves c from the known Frenet frame. Note that the binormals e3 agree with the
surface normals and lie in the profile planes P(u) : x1 cosu+ x2 sinu = 0. Hence, we have to ensure that c(u) also lies
in P(u). Therefore we represent c as

c(u) = (−r(u)sinu,r(u)cosu,h(u)). (3)

Of course, the cylinder coordinates (r(u),h(u)) are a parameterization of the profile curves of our surfaces s we look
for. The first derivative vectors of c must be parallel to e1(u) or equivalently e∗1(u),

(−ṙ sinu− r cosu, ṙ cosu− r sinu, ḣ) = λ (u)e∗1(u). (4)

This yields the following simple differential equations,

ṙ
r
=

1
q

tanhqu,
r
ḣ
=−qcoshqu. (5)

For the left one, one finds the solution

r =C cosh
1

q2 (qu).

As it is sufficient to determine our surfaces up to similarities, we set C = 1. Also, we note

1
q2 = |a|=−a,

and thus in the following write
r(u) = cosh−a(qu), q = 1/

√
|a|. (6)

Thus, we determine the top views of the asymptotic curves via elementary functions. For the third coordinate h(u) we
use the right equation in (5) and (6) to obtain

h(u) =±1
q

∫
cosh−a−1(qu)du. (7)

The ± signs are due to the fact that there are two families of asymptotic curves, which are related by a reflection at a
horizontal plane. This plane is x3 = 0 if we set the integration constant in (7) so that h(0) = 0, and then note the axial
symmetry of the asymptotic curve c(u) with respect to the x1-axis (h(−u) =−h(u), r(−u) = r(u)).130

2.4. Characteristic curves for positive curvature
For a rotational CRPC surface s with a > 0, we consider the developable surface ∆ which is tangent to s along a

characteristic curve c(u). Its rulings are conjugate to the tangents of c and therefore characteristic directions as well.
The surface ∆ is the tangent surface of a space curve d(u), the so-called regression curve of ∆. The tangent planes
along rulings of ∆ are the osculating planes of d. Hence, the binormal image of d is the normal image n(u), the tangent
image of d is a spherical tractrix and the tangents of d are parallel to the vectors e∗1(u) in (2). Characteristic directions
are symmetric with respect to the principal directions, and thus the tangent vectors of the curve d(u) are obtained from
those of c(u) by reflection at the corresponding tangent (cosu,sinu,0) of the parallel circle. This shows that the tangent
vectors e1(u) of c(u) are parallel to

ē1(u) = (−sinhqusinu+qcoshqucosu,sinhqucosu+qcoshqusinu,−1). (8)

Geometrically, one may express this as follows (indicated in Fig.3, left):

6



Lemma 3. The tangent images of the characteristic curves on rotational CRPC surfaces with a > 0 are obtained by
spherically reflecting the points of a spherical tractrix of a great circle at the corresponding points of this great circle.
Up to rotation about the axis, these curves are represented by e1(u) = ē1(u)/‖ē1(u)‖ with ē1(u) from equation (8).135

Remark. Now, the regression curves d of the tangent developables along the characteristic curves c are generalized
curves of constant slope [22].

As before, we represent the characteristic curve in the form (3) and make sure that its first derivative is parallel to
ē1(u) in (8). Hence, we have to replace e∗1 by ē1 in equation (4) and find the differential equations

ṙ
r
=−1

q
tanhqu,

r
ḣ
= qcoshqu. (9)

With − 1
q2 =−a, this results again in

r(u) = cosh−a(qu), h(u) =±1
q

∫
cosh−a−1(qu)du.

Let us summarize our results:

Theorem 1. The rotational surfaces with κ1/κ2 = a are parameterized as

s(u,v) = (r(u)cosv,r(u)sinv,h(u)), (10)

where the profile curve representation ((r(u),h(u)) is given by equations (6) and (7). Their characteristic curves
u± v =C have top views with an elementary polar coordinate representation (6).140

From our parameterization of the profile curves, it is easy to obtain their known graph representation h(r). Using

dh
dr

=
ḣ
ṙ
=

±1
sinh(qu)

=
±1√

cosh2(qu)−1
=

±r1/a√
1− r2/a

,

we find

h(r) =±
∫ r1/a√

1− r2/a
dr. (11)

There is a simple direct derivation of this form due to Hopf [12], described nicely in [13], Ex. 3.27.
It is well-known (see e.g. [23], pp. 162) that a rotational surface given in the form (10) can be mapped conformally

to an (X ,Y )-plane via

(X ,Y ) = (v,
∫ √

ṙ(u)2 + ḣ(u)2

r(u)
du).

For our surfaces, this conformal image is
(X ,Y ) = (v,u tanγ). (12)

Parallel circles and profile curves are mapped to lines parallel to the X-axis and Y -axis, respectively. Loxodromes
of s with a constant angle ω against the parallel circles are mapped to straight lines with slope tanω , and therefore
expressed as

u tanγ = v tanω.

For ω = γ this shows again that the curves u = v are γ-loxodromes. As is true for any rotational surface, the
loxodromes to different angles are related to each other by axial fan transformations, in cylinder coordinates expressed
by (r,v,h) 7→ (r,bv,h) with constant b.

We also see that the parameter change ū := u tanγ yields an isothermic parameterization s(ū,v) of the rotational145

CRPC surfaces.
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2.5. Pairs of surfaces with the same absolute value of the principal curvature ratio

It turns out that there is a remarkably simple relation between two rotational CRPC surfaces which belong to
principal curvature ratios ±a. It becomes most easily accessed if we turn to a characteristic parameterization S(U,V ),
where the curves U = const and V = const are the characteristic curves.150

Noting that in the current representation s(u,v), the preimages of the characteristic curves in the parameter
plane are the lines u = C± v, we see that a characteristic parameterization is achieved via the parameter change
u =U−V,v =U +V ,

S(U,V ) = s(U−V,U +V ).

This implies

SU = su + sv = (ṙ cosv− r sinv, ṙ sinv+ r cosv, ḣ),

SV =−su + sv = (−ṙ cosv− r sinv,−ṙ sinv+ r cosv,−ḣ).

We consider now a surface S(u,v) to the constant a and the surface S̄(u,v) to −a. In view of equations (5) and (9), the
corresponding functions r and h are related by

˙̄r
r̄
=− ṙ

r
,

r̄
˙̄h
=− r

ḣ
,

which yields

S̄U =
r̄
r

SV , S̄V =
r̄
r

SU . (13)

These relations characterize the two parameterizations as reciprocal parallel (see [24], pp. 177). They show that the
two surfaces may be seen as membranes in equilibrium and as reciprocal force diagrams of each other ([24], pp. 225),
which will become more intuitive at hand of the discrete versions in Section 3.4.1.

This mechanical interpretation is closely related to the following one, which relies on relative differential geometry,155

introduced by E. Müller [25]. One replaces the Euclidean sphere by another surface Σ, usually one with positive
curvature, but this is not necessary. Then, the Gauss map from a surface S to the relative sphere Σ is defined via parallel
oriented tangent planes, and relative principal curvatures κr

1,κ
r
2 are the eigenvalues of the (negative) derivative σ r of

this map. As long as one of the two corresponding points of S and Σ is elliptic (K > 0), there are two real eigenvalues.
Obviously curvatures do not change if one applies the same affine map to S and Σ. Relative minimal surfaces, studied160

by E. Müller [25], are defined by 2Hr = κr
1 +κr

2 = 0.
Points of S and S̄ to the same (U,V ) have parallel tangent planes, seen e.g. in equation (13), and thus correspond to

each other in the relative Gauss map σ r if we view one of them, e.g. S with a > 0, as relative sphere. The eigenvectors
of σ r (relative principal curvature directions) are the Euclidean principal curvature directions. With the Euclidean
shape operators σ and σ̄ , the relative shape operator is σ r = σ−1 ◦ σ̄ , whose trace vanishes, and thus Hr = 0. We have165

proved the following result:

Theorem 2. Two rotational surfaces S with κ1/κ2 = a and S̄ with κ1/κ2 =−a and parallel axes are reciprocal force
diagrams of each other (in their characteristic parameterization) and they form a pair of relative minimal surfaces.

Remark. Numerical tests on discrete models (Section 3) indicate that a similar result does not hold for general CRPC
surfaces. C-nets of CRPC surfaces to a < 0 are A-nets and as such can be brought into equilibrium. There is a family170

of possible reciprocal force diagrams which are related by Combescure transformations [24]. The corresponding
nets on the reciprocal surfaces are conjugate and isogonal, but in general not principal symmetric. For rotational
CRPC surfaces principal symmetry follows from rotational symmetry (see also Section 3.4.1). Another case where we
get principal symmetry for the reciprocal nets are minimal surfaces (a = −1). They possess reciprocal orthogonal
Q-nets. These are principal nets and Combescure transforms of their common Gaussian spherical image. This yields175

the well-known reciprocal pairs formed by an A-net on a minimal surface and an orthogonal spherical net.
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Figure 4: Pairs of rotational CRPC surfaces with the same value of |a|. Forces (color) can be assigned to characteristic nets so that such pairs are
reciprocal force diagrams of surfaces in equilibrium. Left two: Orthogonal system of spherical loxodromes (a = 1), which is a material minimizing
structure according to Michell, and the reciprocal force diagram aligned with the asymptotic curves on a catenoid (a =−1). Right two: Pair of
rotational CRPC surfaces with a =±3, with forces in the interpretation as reciprocal diagrams.
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Figure 5: Rotational CRPC surfaces. Left: a =−2,−3,−4,−5 and a =− 1
5 ,−

1
4 ,−

1
3 ,−

1
2 from outside to inside. Right: a = 3,4, 1

2 ,
1
3 .

2.6. Examples
a =±1: The simplest examples of rotational CRPC surfaces are the ones when a =±1, i.e., q = 1. Their characteristic
curves intersect under a right angle. The case a = 1 characterizes a surface with only umbilics and thus a sphere. Indeed,
we obtain r = 1/coshu,h = tanhu, which is a spherical loxodrome (1) to q = 1. The associated surface a =−1 must180

be a Euclidean rotational minimal surface, i.e. a catenoid: we find r = coshu,h =−u, and thus the profile is the known
catenary r = coshh. This is also in accordance with Theorem 2. The mechanical interpretation of minimal surfaces
and spheres as reciprocal force diagrams is due to W. Blaschke (see [26], pp.244). The equilibrium configuration of
orthogonal spherical loxodromes also appears as a material minimizing form in the seminal paper by Michell [27] (see
Fig. 4, left).185

a =−2: With r(u) = cosh2(u/
√

2),h(u) = ±2sinh(u/
√

2), we obtain 4r− h2 = 4 for the profile. Hence, it is a
parabola with its directrix as the rotational axis. The resulting rotational surface is of algebraic degree four.

While at first sight this is a bit surprising, it is just a direct consequence of a well-known construction of the
curvature centers of a parabola, illustrated in Fig. 6. One has to note that the principal curvature centers of a rotational
surface at a point p are the curvature center f1 of the profile curve at p and the intersection point f2 of the normal at p190

with the rotational axis.

a = 3: γ = π/3, r(u) = cosh−3(u/
√

3), h(u) =±(3tanh(u/
√

3)− tanh3(u/
√

3)). This profile curve (r(u),h(u)) is a
well-known rational algebraic curve of order 6 and class 4, namely a special involute of an astroid (see Fig. 7). To
verify its evolute as an astroid, we compute the intersection points of its tangents with the coordinate axes and find the
two points (2cosh−1(u/

√
3),0) and (0,−2tanh(u/

√
3)), whose distance equals 2 for all u. Hence, the evolute is the195

envelope of a straight line segment of constant length (red in Fig. 7, left) whose endpoints run on two orthogonal lines.
This curve is called astroid and has another kinematic generation as path of a point on a circle of diameter 1 which rolls
inside a circle of radius 2. Since one of the involutes of an astroid is again an astroid, our profile is also an offset of that
astroid.
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Figure 6: A well-known construction of the curvature centers f2 of a parabola (left) from the intersection points f1 of its normals with the directrix A
shows that the surface obtained by rotating a parabola about its directrix A has a constant negative ratio of principal curvatures κ1/κ2 =−2. We also
show the evolute of the parabola, which generates the nontrivial part of the focal surface of the CRPC surface.

RRRRRRRRRRRRRRRRR
3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R

f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1

f2

Figure 7: The evolute of the profile of a rotational CRPC surface to a = 3 is an astroid. The CRPC surface is algebraic of order 6 and has two
singular points on the rotational axis. We find this behavior at points of the rotational axis (umbilic with curvature radius 0) for all rotational CRPC
surfaces with a > 1.

For more examples, in particular higher order algebraic ones, we refer to recent work by M. Jimenez [28].200

3. Discrete CRPC surfaces

In this section, we study discrete CRPC surfaces based on their characteristic nets. The simple discrete models
enable an efficient computation and the development of computational tools to explore the shape space of CRPC
surfaces.

Our discretization largely follows prior work on special discrete parameterizations (nets). These are the very well205

studied asymptotic nets (A-nets) and conjugate nets (Q-nets) [10] and the recently introduced principal symmetric
nets [2]. We describe three different discretizations of the constant angle and also present a simple way to compute
discrete surfaces which are invariant under uniform motions in the group of similarities (rotational, helical and spiral
surfaces). A comparison of discrete rotational CRPC surfaces with their smooth counterparts reveals the high quality of
the discrete models. Moreover, these special CRPC surfaces as well as discrete minimal surfaces are suitable starting210

nets for exploring possible shapes of CRPC surfaces.
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Figure 8: Left: In an S-net, any central vertex s and its four neighbors s1,s2,s1̄,s2̄ lie on a common sphere. Right: Discrete osculating circles of the
two discrete parameter lines through a vertex. The bisecting vectors e1,e2 of their tangent vectors t1, t2 are the discrete principal directions (images
from [2]).

3.1. Discrete C-nets

Characteristic nets are regular away from umbilics (including those with curvature 0 and ∞). They are discretized
as quad meshes which have regular combinatorics (inner vertices of valence 4), apart from isolated combinatorial
singularities (inner vertices with valence 6= 4).215

In the following, we restrict to regular discrete nets defined by a map s : Z2→ R3. The discrete parameter lines
through (u,v) ∈ Z2 are polylines s(Z,v) and s(u,Z) which we call u-lines and v-lines like in the smooth case.

When considering local properties of a net around s(u,v), we use the shift notation as in [10] (Fig. 8, left):

s = s(u,v), s1 = s(u+1,v), s2 = s(u,v+1),
s1̄ = s(u−1,v), s2̄ = s(u,v−1), s12 = s(u+1,v+1).

Asymptotic nets. In the negatively curved case, characteristic nets (C-nets) are asymptotic nets (A-nets). These are
quad nets in which all regular vertices have planar vertex stars. This means that the five points s,s1,s2,s1̄,s2̄ lie in a
plane. This plane is identical with the discrete osculating planes (s1̄ss1) and (s2̄ss2) of the two discrete parameter lines220

passing through a vertex s and it is also the discrete tangent plane at s. This expresses the asymptotic property, since an
asymptotic curve of a smooth surface is one whose osculating planes are tangent to the surface.

Conjugate and principal symmetric nets. In the positively curved case, a C-net is conjugate and principal symmetric.
Conjugate nets (Q-nets) are characterized by planar faces (ss1s2s12) [10]. Principal symmetry can be expressed in
two ways [2]: one approach (S-nets) is vertex-based and a concept of Möbius sphere geometry and the other one is225

face-based (S∗-nets) and a concept of Laguerre sphere geometry.

S-nets. Here, each vertex star is spherical, i.e., a regular vertex and its 4 connected neighbors s,s1,s2,s1̄,s2̄ lie on a
common sphere (Fig. 8, left). This sphere expresses principal symmetry of the parameter lines for the following reason:
The discrete osculating circles of the parameter lines pass through s1̄ss1 and s2̄ss2, respectively (Fig. 8, right) and lie on
the sphere associated to the vertex. As a sphere tangent to the discrete surface at s and containing the osculating circles,230

it is the common discrete Meusnier sphere of the two parameter lines. Hence, the two parameter lines have the same
discrete normal curvature κn = 1/r, with r as radius of the sphere. Thus, the discrete tangents t1, t2 of the parameter
lines at s (tangents of the circles) are symmetric to the discrete principal directions e1,e2. Those arise now naturally as
the bisectors of t1, t2.

Note that A-nets are principal symmetric as well and appear now as limits of S-nets in which the vertex spheres have235

radius ∞, i.e. are planes. We obtain normal curvature κn = 0 for the parameter lines which are therefore asymptotic
curves.
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Figure 9: Left: If the vertices of a face in a quad mesh are viewed as image of a square in the parameter plane under a smooth map φ , central
parallelograms (yellow) define an affine map, which approximates the derivative of φ at the center mP with order O(h2). This results in two simple
ways of measuring angles between discrete parameter lines in quad meshes. Angle measurement (A1): Given a quad mesh (black), called control
mesh, its face diagonals can be arranged in two quad meshes (red, blue). Angles between parameter lines in these diagonal meshes are defined as
angles between the two diagonals in each quad of the control mesh. Angle measurement (A2): Intersection angles between parameter lines in a quad
net can also be measured between the central lines in each face of the net.

3.2. Discrete CRPC surfaces as discrete isogonal C-nets

Having a simple discretization of C-nets at our disposal, we arrive at discrete CRPC surfaces by expressing a
constant angle 2γ between parameter lines. The targeted constant principal curvature ratio is taken from the smooth240

case as γ = arctan
√
|κ1/κ2|.

The definition of discrete angles can happen in various ways which we would like to describe now.

Angles between osculating circles. As illustrated in Fig. 8, right, we can define the angle 2γ as the angle between
tangents t1, t2 to the discrete osculating circles at a vertex s. This method also works for A-nets and has been applied
in [2], where one finds the details for formulating the angle constraint. It has the advantage of being invariant under245

Möbius transformations. Note that Möbius transformations map S-nets to S-nets, circles to circles, and they preserve
angles between curves. Hence, this method is attractive when studying isogonal S-nets. However, our focus is on
isogonal C-nets which are not invariant under Möbius transformations. Moreover, there are computationally simpler
ways for angle measurement in discrete nets, which we will now describe (see Fig. 9) and which are used in our results.

These methods are based on the following fact (Fig. 9): We view vertices of a quad mesh as images of the
standard lattice hZ2 with stepsize h under a smooth mapping φ to R3. Then, a face F = (v0, . . . ,v3) of the quad mesh
corresponds to a square P in the (u,v) parameter plane. The edge midpoints of F form a parallelogram Fm whose edges
are parallel to the diagonals of the quad. This is an immediate consequence of the intercept theorem and sometimes
called Varignon’s theorem. Edge midpoints of the corresponding square in the parameter plane form a square Pm. The
unique affine map Pm → Fm is an approximation of the derivative map of φ , evaluated at the center mP of P, with
approximation error O(h2). This follows from a Taylor expansion of φ at mP [29]. Hence, the partial derivatives of φ

are approximated via the central lines of F (diagonals of Fm), as

φu(mP) =
1

2h
(v1 +v2−v0−v3)+O(h2), φv(mP) =

1
2h

(v2 +v3−v0−v1)+O(h2).

Likewise, the edge vectors of Fm (diagonal vectors of F) approximate derivatives of φ in diagonal direction, which has250

been used in recent work [6, 30, 29] and leads to our first approach:

Angles via diagonal meshes (Fig. 9, A1). One starts with a quad mesh, called control net that needs not fulfill the
constraints of the specific discretization one has in mind. The actual targeted nets are the two diagonal nets of the
control net and the constraints (in our case of a C-net) are applied to both of them. The angle between parameter lines
is measured in each face of the control mesh as the angle between diagonals. Expressing a constant angle and having255

both diagonal nets as C-nets yields discrete CRPC surfaces.

Angles via central lines in quad faces (Fig. 9, A2). The diagonal mesh approach has the slight disadvantage that one
designs a pair of meshes (diagonal meshes) which are subject to the same constraints, but only one mesh may be
needed. In the following, we think of a single quad mesh which is our targeted net to which the constraints are applied.
Angles between parameter lines are now measured between the central lines in a face.260
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Figure 10: All three types of angle measurement (1,2,3) lead to very similar results when optimization for a CRPC surface is applied on an initial
shape (0), here represented by two diagonal meshes of a control mesh. Angles between discrete osculating circles are enforced on both diagonal
meshes (1), angles between diagonals in faces of the control mesh are applied in (2) and the blue diagonal mesh is optimized with angles between
central lines in faces (3). Top row: Starting from a sphere, we optimize for a rotational CRPC surface with a = 3. Bottom row: An initial mesh, not
representing a CRPC surface, is optimized for a CRPC surface with a = 0.45.

Remark. The latter type of angle measurement for discrete nets has not yet been explored in discrete differential
geometry, and it is not clear where it provides benefits in the discrete theory. So far, discrete orthogonal nets have
been studied mostly for Q-nets, which leads to principal nets [10]. Discrete orthogonality away from principal
parameterizations has been addressed at a few places, e.g. for discrete orthogonal geodesic nets (representing discrete
developable surfaces) [31], or their generalizations to discrete geodesic parallel coordinates [32]. Note that right265

angles between central lines of a quad are equivalent to diagonals of equal length in that quad, since edge midpoints
form the vertices of a rhombus whose edges have half the length of the diagonals in the quad.

A comparison of the three types of angle measurement is provided in Fig. 10.

3.3. Constraint formulation and numerical optimization

The proposed discrete CRPC surfaces are constrained quad meshes and thus can be computed by known efficient270

numerical optimization algorithms. We follow the approach of Tang et al. [33]. There, one tries to get along with
constraints that are at most quadratic, even if one has to use auxiliary variables. Constraint solving is based on a
nonlinear least squares formulation, and optimization is performed with a Levenberg-Marquardt algorithm.

We now show how the various constraints are formulated and point out that in the diagonal net approach the relevant
constraints have to be applied to both diagonal nets.275

A-nets. Planar regular vertex stars are achieved by introduction of unit vertex normals n as additional variables and
expressing orthogonality to the 4 emanating edges,

n2 = 1, n · (s j− s) = 0, j ∈ {1, 1̄,2, 2̄}. (14)

S-nets. Spherical regular vertex stars are obtained by adding a sphere center c as an additional variable at each vertex s,
and expressing equal distance of c to the 5 vertices of a vertex star. This means ‖s− c‖2 = ‖s j− c‖2, or

s2− s2
j +2(s j− s) · c = 0 j ∈ {1, 1̄,2, 2̄}. (15)
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In general it is good to prepare for cases where sphere centers of an S-net can tend to infinity (see [2]). However, we
are only dealing with S-nets that are also Q-nets. Those cannot be close to A-nets in some regions, because A-nets
are not conjugate (asymptotic directions are self-conjugate). The only places in which the spheres may get an infinite
radius are at discrete flat points which are combinatorial singularities of the net and not subject to the constraints above.

Q-nets. Planarity of a face (ss1s12s2) is expressed with help of an additional face normal vector n f via orthogonality to
each edge of the face,

n2
f = 1, n f · (s1− s) = 0,n f · (s12− s1) = 0,n f · (s2− s12) = 0,n f · (s2− s) = 0. (16)

While three orthogonality constraints would be sufficient, the use of four is more symmetric and easier to implement.280

Dependent constraints pose no problems to our numerical solver.

Constant angle. If vavbvcvd is a quad face of the control mesh, the angle constraint based on the use of two diagonal
meshes is

vc−va

‖vc−va‖
· vd−vb

‖vd−vb‖
= cos2γ. (17)

The diagonal lengths l1 = ‖vc−va‖ and l2 = ‖vd−vb‖ can be separate variables, constrained via additional variables
g1,g2 and dummy variables δi (to achieve li > 0) through the quadratic constraints

vc−va = l1g1, vd−vb = l2g2, g2
i = 1, li = δ

2
i , i = 1,2.

Then the angle constraint (vc− va) · (vd − vb) = l1l2 cos2γ is quadratic. Since we use an iterative algorithm, it is
sufficient to take li from the previous iteration and avoid these complications.

If we use central lines in the quads of a net for angle discretization, we apply equation (17) to the faces (ss1s2s12)
and take the points v as edge midpoints,

2va = s+ s1, 2vb = s1 + s12,2vc = s12 + s2,2vd = s2 + s.

To achieve an angle 2γ 6= π/2 between two straight lines, we have to say where we should have 2γ and where π−2γ .
For that, we select one direction (diagonal vector or central vector) in each face consistently over the mesh in a fair285

manner and measure angles in a consistent orientation to the other diagonal or central vector. This requires an even
valence for all inner vertices, which occurs naturally since the singularities arise from underlying principal nets. For
details we refer to [6, 11].

Summary of constraints. CRPC surfaces with negative curvature a < 0 are subject to the A-net constraints (14) and the
chosen angle constraint, while for a > 0 they are subject to S-net constraints (15), Q-net constraints (16) and angle290

constraints. Angles via osculating circles or central lines in quad faces work without additional structure. Angles via
diagonal meshes require as additional structure a control mesh (to which none of the constraints is applied) and the two
diagonal meshes, to which constraints are applied; angles are measured between the two diagonals in each face of the
control mesh. We will later add constraints that yield helical or spiral CRPC surfaces and constraints in connection
with user editing as a tool for design space exploration.295

Fairness. Having formulated all constraints, we are not yet ready to set up the objective function of optimization, since
we have to make sure that we have a discrete model of a smooth surface. This is done by a fairness energy applied to
the discrete parameter lines of the nets under consideration. For any three consecutive vertices vi,v j,vk of a polyline
that should be fair (typically s1̄,s,s1 and s2̄,s,s2, but also consecutive vertices of a parameter line in the control mesh
of the diagonal mesh approach), the term (vi−2v j +vk)

2 is added to the regularizing part of the objective function.300

Hence, the regularizing part Ereg is just this sum of squared second differences.

Final objective function. The objective function for discrete CRPC surfaces is composed as follows. We consider a
vector X ∈ Rd that contains all d variables, including the auxiliary ones. Then, each constraint is written in the form
Ci(X) = 0 and the objective function reads

F(X) = ∑Ci(X)2 +µEreg(X)+ ε(X−Xc)2, (18)
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where Xc is the current value of X in the iterative procedure. This nonlinear least squares problem is solved with the
Gauss-Newton method, which due to the regularizing third part is a Levenberg-Marquardt algorithm. However, the
small weight µ of the fairness part fades away in later iterations. The main reason is that this is the only part which
does not have a zero residual for the final mesh and its presence may act against a better accuracy for the other essential305

constraints. Moreover, Gauss-Newton algorithms have local quadratic convergence for zero residual problems, which
one does not want to destroy. The small weight ε of the other regularizer does not fade away and ensures a regular linear
system even in presence of conflicting constraints or an insufficient number of them, which means design freedom in
applications. Details on the choice of weights and on the performance of optimization are provided in subsection 4.2.

Initialization. Since we have here a nonlinear non-convex optimization problem, the success of numerical optimization310

also depends on a reasonable initialization. For that, we already have some good options: We can start with the
parameterization (10) of a rotational CRPC surface, and extract a discrete characteristic net by sampling the parameter
plane at an axis-aligned square grid and taking a diagonal net of that grid (then aligned with lines u±v =C). Using the
diagonal mesh approach for angle measurement, sampling at an axis-aligned grid yields a great choice of the control
mesh, since then the diagonal meshes will follow characteristic lines. We will see later that this sampling of the smooth315

solution fulfills our constraints on discrete CRPC nets really well. Starting from rotational shapes, we may cut them
open and then gradually move away from rotational shapes. In the following subsection, we show how to obtain helical
and spiral CRPC surfaces, and from those we can apply more general editing operations to explore the space of possible
shapes (see section 4.3).

During optimization, we may also change the parameter a gradually (not crossing a = 0). This leads to a way for320

constructing negatively curved CRPC surfaces from known orthogonal A-nets representing minimal surfaces (a =−1)
and positively curved CRPC surfaces from orthogonal spherical nets (a = 1). However, in the latter case combinatorial
singularities are likely to pose problems. More details are provided in section 4.3.

3.4. Discrete rotational, helical and spiral surfaces

CRPC surfaces are objects of Euclidean similarity geometry. Here a similarity is defined as composition of a rigid325

body motion and uniform scaling with factor σ 6= 0; it is represented by x 7→ σA ·x+a with an orthogonal matrix
A. Thus it is natural to look at those CRPC surfaces which are invariant under a one-parameter group of Euclidean
similarities. Minimal surfaces of that type have been studied (see e.g. [34, 35]), but for CRPC surfaces we so far only
know rotational surfaces. Results on helical and spiral CRPC surfaces are missing. Hence, we will now show how
to compute discrete models of those and we will use them later as initial shapes for the computation of more general330

CRPC surfaces.
Discrete CRPC surfaces are constrained meshes, for which we now have to add the constraint of being a discrete

helical or spiral surface. Hence, we take an arbitrary quad net and derive constraints which make them discrete helical
or spiral nets. It is easy to get discrete models by including the helical and spiral paths in the representation, but this is
not helpful here, since we require characteristic parameterizations to express the CRPC property.335

We use an approach which has been successful in the reconstruction of rotational, helical and spiral surfaces from
point clouds [36, 37]. There one estimates surface normals and characterizes these special surfaces through velocity
vector fields of the motions under consideration which are orthogonal to the normals, i.e., tangential to the surface.
Equivalently, this requires the normals to lie in a so-called linear complex of straight lines (helical surface) or line
elements (spiral surfaces). Adapting this approach in the present setting is natural since we have well-defined discrete340

surface normals at vertices of C-nets (normal to the sphere or plane passing through a vertex star).

3.4.1. Discrete rotational CRPC surfaces in force equilibrium
Before moving to helical and spiral surfaces, let us briefly address discrete rotational CRPC surfaces. This illustrates

the previous general discretizations and provides a completely elementary approach to Theorem 2.
Let us recall a basic concept of graphic statics. We consider a mesh and want to assign forces to edges so that345

we obtain a system in equilibrium (see Fig. 11). Each edge with endpoints vi,v j is assigned a scalar wi j, with the
understanding that force wi j(vi−v j) is exerted on vi and the opposite force wi j(v j−vi) is exerted on v j. Equilibrium
requires that in the entire mesh the forces acting at each vertex sum to zero. Hence, the forces exerted at a vertex (e.g.
the yellow one in Fig. 11, left) are also the edge vectors of a closed polygon (yellow in Fig. 11, right). Those closed
polygons form the so-called reciprocal force diagram. Geometrically, the original mesh, called form diagram, and the350
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Figure 11: Radially symmetric nets as reciprocal force diagrams.

reciprocal force diagram are two combinatorially dual meshes where corresponding edges are parallel. One speaks of
reciprocal parallel meshes [24]. The relation between the two diagrams is symmetric: one is a force diagram for the
other.

To apply this to our problem, we first consider a planar rotational symmetric net as in Fig. 11, left, and show
that there is a rotational symmetric reciprocal force diagram as in Fig. 11, right. We start with a single vertex and355

assign forces to the emanating edges 1,2,3,4 with help of a quad 1̄, 2̄, 3̄, 4̄ whose edges are parallel to 1,2,3,4. Up
to irrelevant translations, this leaves us with two degrees of freedom. We use them to choose the quad 1̄, 2̄, 3̄, 4̄ in a
symmetric way, so that its edges are seen from a center under the same angle θ as in the original radial arrangement
(Fig. 11, right). In this way, we can continue and draw a radially arranged reciprocal diagram.

This yields a simple relation between the lengths of corresponding edges and their radial distances. Let us define
the radial edge distance as the distance of the edge midpoint to the rotation center. Then, as illustrated for the edge pair
66̄ in Fig. 11, corresponding edge vectors ei, ēi and radial distances ri, r̄i are related due to similar triangles by

ēi =
r̄i

ri
ei. (19)

This is essentially already the discrete version of equation (13). We just have to move into 3-space, take a radially360

arranged A-net s and construct the reciprocal net s̄ via parallel edges as in the 2D case. Note that vertex stars in the
A-net s are planar and thus faces in the reciprocal net s̄ are planar. In the projection into a plane orthogonal to the
rotational axis (top view), we have the 2D situation of Fig. 11. Due to the radial symmetry both nets are principal
symmetric. They are also S-nets: the sphere center associated with vertex v lies in the plane connecting v with the
rotation axis. If s is isogonal in any discrete angle measurement, also the parallel net s̄ is to be seen as isogonal, although365

the definition of discrete angle is not exactly the same. A face-based angle measurement in s yields a vertex-based
angle measurement for s̄. We have found: If s is a discrete rotational CRPC surface with characteristic angle 2γ , then
the reciprocal surface is a discrete rotational CRPC surface of positive curvature with the same characteristic angle 2γ .
Equation (19) is also valid in space, since corresponding edges are parallel. Hence, their length ratio is also seen in the
top view and radial distances appear there without distortion. Fig. 11 shows that one of the two families of discrete370

parameter lines is in tension and the other in compression. This and the force relation (19) are well seen in Fig. 4.

3.4.2. Discrete helical surfaces
A one-parameter rigid body motion maps points x0 ∈ R3 according to x(t) = a(t)+A(t) ·x0, with a rotation matrix

A(t). The velocity vectors v(x) = ẋ(t) attached to the points x form a linear vector field of the form

v(x) = c̄+ c×x.

We are interested in uniform motions. They have a time-independent velocity field, i.e. the angular velocity vector c
and the origin’s velocity c̄ are constant. For c = 0 one has a pure translation. For c 6= 0, we obtain a rotation about an
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Figure 12: Two sequences of helical CRPC surfaces, computed from a discrete rotational CRCP surface by gradually increasing the pitch p. In each
sequence a is constant, left: a =−3, right: a = 3.

axis if c · c̄ = 0 or otherwise a helical motion with pitch p = (c · c̄)/c2. It is composed of a rotation about an axis A375

(direction vector c, momentum vector c̄− pc) and a translation parallel to A, where a rotational angle φ corresponds to
a translation distance pφ (see e.g. [36]).

A helical surface is swept by a profile curve cp undergoing a helical motion. It contains the paths of all points of cp.
As velocity vectors are tangent to the paths, they are also tangential to the surface. Hence, a helical surface s(u,v) with
normals n(u,v) fulfills the constraint

(c̄+ c× s) ·n = 0.

With Plücker coordinates (n, n̄) = (n,s×n) of the normal line at s, one can rewrite this as

c̄ ·n+ c · n̄ = 0, (20)

expressing the known characterizing property of a helical surface, namely that its normals lie in a linear line complex.
For p = c · c̄ = 0, we obtain a rotational surface. There, (20) expresses that the surface normals intersect the axis of
rotation or are parallel to it (see e.g. [36]). Constraint (20) can directly be applied to any discrete net with vertices s380

and normals n at vertices, in particular to C-nets.
For our application, we can adapt the coordinate system by choosing the helical axis as the third coordinate axis.

Moreover, we may use an angular velocity ω = ‖c‖= 1, so that c = (0,0,1) and c̄ = (0,0, p). With n = (n1,n2,n3)
and s = (s1,s2,s3), this yields the very simple constraint

pn3 + s1n2− s2n1 = 0. (21)

Fig. 12 shows two examples, where we start from a discrete rotational CRPC surface, cut it open and gradually increase
the pitch p in our optimization to obtain discrete helical CRPC surfaces. Fig.s 13, 14 and 15, left, show discrete
helical surfaces with their C-nets and also a family of helical paths on these surfaces. They are not directly used in the
computation and visualize that one obtains helical surfaces with high precision.385

3.4.3. Discrete spiral surfaces
Now we generalize rigid body motions to equiform motions, where uniform scaling is added to the moving system.

With a scaling factor α(t) and rotation matrix A(t), points are now moved via x(t) = a(t)+α(t)A(t) · x0 and the
velocity field becomes

v(x) = c̄+ c×x+gx.
Among the uniform equiform motions, characterized by a time-independent velocity field, we are interested in the most
general ones, known as spiral motions [38]. A spiral motion fixes a point f (i.e. v(f) = 0), called center, and moves
points of a line A, called spiral axis, along A. Center and Plücker coordinates (a, ā) of the axis are computed as

f =
1

g(c2 +g2)
(gc× c̄−g2c̄− (c · c̄) · c),

(a, ā) = (c,
1

c2 +g2 (c
2c̄− (c · c̄)c+gc× c̄)).
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Figure 13: Discrete helical and spiral CRPC surfaces with a =−1,−2,−1, their isogonal A-nets (blue) and selected motion trajectories (red). The
spiral surface in the middle is symmetric to the invariant plane (through spiral center and normal to the spiral axis), while the spiral minimal surface
on the right hand side is of a general type.
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Figure 14: Discrete helical CRPC surfaces with a =−3 and decreased pitch p = 0.3,0.2,0.1,0.05. The boundary curves of the surfaces arise from
the used control net and are diagonal to the net of characteristic curves.
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Figure 15: Discrete helical CRPC surfaces (left two) and spiral CRPC surfaces (right two), with isogonal C-nets and motion trajectories (red).
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Figure 16: Agreement of smooth (black) and discrete (white) rotational CRPC surfaces. (a),(c): Initial control meshes (for the diagonal mesh
approach to discrete angle measurement) are extracted from the smooth surfaces by sampling the parameter plane at an axis-aligned square grid.
(b),(d): Optimization towards exact fulfillment of our discrete CRPC surface constraints leads to tiny changes only. The Hausdorff distances of
vertices in the optimized mesh to the smooth surfaces are 6.8e-5 and 1.8e-4, respectively (where diagonals of surface bounding boxes have length 1).

For g = 0, f is at infinity and the spiral motion turns into a helical motion. If we choose c = (0,0,1), c̄ = (0,0, p), then
A is the x3-axis, f = (0,0,−p/g), and the spiral motion reads

x(t) = egt

cos t −sin t 0
sin t cos t 0

0 0 1

 · (x0− f)+ f. (22)

A curve undergoing a spiral motion generates a spiral surface. The complete spiral surface is moved in itself under the
generating equiform motion and is in this sense an invariant surface. Spiral surfaces appear in nature due to exponential
growth, for example in the form of certain shells [37].

A characterization of a spiral surface follows the same principle as used for helical surfaces. Velocities are
orthogonal to surface normals,

(c̄+ c× s+gs) ·n = 0.

With extended Plücker coordinates (n, n̄,ν) = (n,s×n,s ·n) of the normal line element at s (normal line plus the point
s on it), one can rewrite this as

c̄ ·n+ c · n̄+gν = 0, (23)

expressing that the normal line elements belong to a linear complex of line elements. For a treatment of line element390

geometry, we refer to [39].
In our computations, we always used c = (0,0,1), c̄ = (0,0, p). One way to generate spiral CRPC surfaces is to

start from helical CRPC surfaces, fix p and gradually change the value of g from 0 in small steps to a certain value g∗.
In this way the spiral center f moves from the ideal point of the x3-axis A to a targeted point f = (0,0,−p/g∗) on the
spiral axis A. The plane-symmetric types of negatively curved spiral CRPC surfaces (Fig. 13, middle) can be generated395

from rotational CRPC surfaces which are symmetric with respect to x3 = 0. The origin takes the role of the spiral
center f. We set p = 0 and then gradually increase the spiral parameter g.

4. Results and discussion

4.1. Checking the quality of discrete models
The explicit results on smooth rotational CRPC surfaces provide a test scenario for the quality of our geometric400

discretization. Fig. 16 compares smooth rotational CRPC surfaces with their discrete counterparts, revealing an
excellent agreement.

Fig. 17 checks the quality of the presented discrete CRPC surfaces with the fact that on a Weingarten surface (to any
relation f (κ1,κ2) = 0), the isolines of κ1 agree with those of κ2. Also, we demonstrate that the relation is the correct
one, since points (κ1,κ2) nicely arrange along straight lines κ1 = aκ2 in the plane. Curvatures have been estimated via405

normal cycles [40].
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Figure 17: Alignment of isolines of principal curvatures κ1 and κ2, respectively (blue,red) on two discrete CRPC surfaces. The estimated principal
curvature values yield points on the correct straight lines in the (k2,k1)-plane.

2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦2γ = 90◦ 2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦2γ = 75◦ 2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦2γ = 60◦ 2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦2γ = 45◦

Figure 18: Discrete negatively curved CRPC surfaces with selected curvature isolines, obtained from a discrete minimal surface (A-net with
2γ = 90◦) by keeping the mesh combinatorics and optimizing for other angles in the A-net.

4.2. Implementation details and parameters
The algorithms have been implemented in Python and tested on an Intel Xeon E5-2687W 3.0 GHz processor.

Typically around 10-15 iterations have been necessary to achieve convergence, depending on the quality of the
initialization. In all examples, we set ε = 0.001. The fairness weight µ is set to 0.005 during the first 5-10 iterations410

and we use µ = 0 in the last 5 iterations. For all meshes, the length of the bounding box diagonals equals 1. Further
details are provided in Table 1.

Fig. |vertices| |variables| T/iter err=F(Xmin)
13-left 6231 101320 4.71s 7.1e-8
15-right 2856 76625 2.99s 6.8e-9
17-left 6330 85963 4.83s 1.4e-12
17-right 6755 160732 8.12s 2.1e-11
19-top left 1520 20161 5.83s 3.7e-14
20-right 4244 55481 2.77s 3.9e-10
18-3rd 6231 101320 4.21s 1.5e-11
21-2nd row-right 2085 26836 0.83s 1.5e-12
21-3rd row-left 6330 85963 4.88s 1.4e-12
21-4th row-right 3254 42907 1.60s 2.1e-15
22-top left 3010 40383 1.60s 2.9e-12

Table 1: Optimization statistics to selected Figures of different complexity.

4.3. Exploring the shape space of general CRPC surfaces
Let us now play a bit with the available tools to get some initial ideas about the shape variety in the space of all

CRPC surfaces.415

20



Figure 19: Modeling CRPC surfaces through mesh editing. We start from meshes representing rotational CRPC surfaces (top left: γ = 38.5◦, bottom
left: a = 2) and drag some vertices to new locations. The curvature ratio a is fixed and the shown meshes are the control meshes for the diagonal
mesh approach.
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Figure 20: Discrete CRPC surfaces, optimized after joining copies of smaller CRPC meshes. Left: a = 0.45, initial piece from Fig. 1. Center:
a = 1/3, initial shape from Fig. 17, right. Right: Input mesh obtained from Fig. 18 with 2γ = 60◦ by cutting it, joining four copies and editing the
whole shape.

Computational design of CRPC surfaces with a freeform appearance can start from the special ones discussed
above. This is illustrated in Fig 19 with a design tool that allows the user to select some mesh vertices and move them to
new locations. These may be conflicting with the CRPC constraints and are therefore implemented as soft constraints.
We simply add the squared distance of original and target location, multiplied with a small weight, to the objective
function and let the weight fade away in later iterations.420

Another way to get a larger shape is by joining pieces of CRPC surfaces and optimizing the resulting mesh so that
initial defects along the joints disappear (see Fig. 20).

An interesting question concerns the shape space of minimal surfaces within the larger space of CRPC surfaces.
Can one start with an orthogonal A-net (a =−1) and continuously walk away from that shape by changing the value of
a? The main question is whether one can keep the combinatorics of the net. Our experiments have been successful425

(see Figures 18 and 21), even with high numerical accuracy (Table 1). The A-nets in Fig. 21 have been obtained by
taking S-conical minimal surfaces [41] as initial control nets. It remains open whether or under which conditions a
minimal surface of given combinatorics of its A-net (principal net) can be turned into a CRPC surface of the same
combinatorics by gradually changing the principal curvature ratio a.
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Figure 21: Discrete CRPC surfaces obtained from selected classical minimal surfaces (center) by changing the angle γ in the A-net.
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4.4. Singularities430

Looking at our parts of helical CRCP surfaces with a > 0 (Fig. 12 and Fig. 15), one might ask how these surfaces
can be extended towards the helical axis. The answer is that they develop singular curves, which are of course helices.
We cannot show them in our discrete approach, since extension towards and beyond a singular curve is prevented by
the fairness term. However, in our ongoing research we obtained a parameterization of helical CRPC surfaces from
which we can derive the existence of singular curves. Most likely, these are also present in more general positively435

curved CRPC surfaces.
Another type of singularities to be discussed are those of the C-nets. In the smooth setting, they correspond

to umbilics. For surfaces different from the sphere (a 6= 1), they can only be flat points (κ1 = κ2 = 0) or isolated
singular points (κ1 = κ2 = ∞). The behavior of Weingarten surfaces, in particular CRPC surfaces, at umbilics has
been studied by H. Hopf [12] under the additional assumption that the surfaces are analytic. There, he found that440

a closed CRPC surface can only have topological genus 0 and – if different from a sphere – it has exactly two flat
points and a = (2n+1)±1, n ∈ N. The only known surfaces of that type are rotational. We used our discrete model
for a simple experiment with the goal to obtain discrete closed non-rotational CRPC surfaces. Initializing from a
discrete rotational CRPC surface with a = 1/3 and editing it by relocating some mesh vertices (but keeping the surface
closed) the algorithm always converged to a rotational shape, even when removing a small cap around the two mesh445

singularities. Maybe closed CRPC surfaces are always rotational?
In the discrete setting, the singularities of the net correspond to extraordinary vertices (valence 6= 4). As for

principal meshes, their valence has to be even if all faces around them are quads. We do not apply constraints there. We
also do not use fairness terms to three consecutive points where the middle one is an extraordinary vertex.

Figure 22: Asymptotic gridshells, formed by developable surface strips with a straight development, that are attached orthogonally to negatively
curved CRPC surfaces along selected asymptotic curves. Top: Gridshells from minimal surfaces, a =−1. Bottom: Gridshell with node angle π/3,
a =−3. Even in this coarse discrete model for the strips, their development is nearly straight.
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4.5. Applications in architecture and design450

A straight strip of flat material which can be bent but not stretched can be attached orthogonally to a surface only
along an asymptotic curve. This has already been pointed out by S. Finsterwalder [42] and forms a basic ingredient
to the asymptotic gridshells of E. Schling [8]. Since negatively curved CRPC surfaces are isogonal A-nets, they are
appropriate reference surfaces for asymptotic gridshells with a constant node angle (see also [6]). Fig. 22 shows
examples computed with our design tool. The one on the upper right is not meant as an architectural structure, but an455

artistic design.
Discrete C-nets for positively curved CRPC surfaces are quad meshes with planar faces that can form the basis

of architectural skins. Due to the constant angle and principal symmetry they have an appealing and well-balanced
visual appearance (Fig. 1) that may be preferred over structures from principal meshes. An example of a built structure
with a principal symmetric arrangement of flat quad panels on a rotational surface is provided by the Osaka Maritime460

Museum.

4.6. Conclusion and future research
We showed that characteristic nets are well suited for studying and computing CRPC surfaces, since these are

characterized through isogonal C-nets. In the smooth setting, this led to a few additional insights on the known rotational
CRPC surfaces. We then focused on discrete CRPC surfaces and introduced an approach for their computational465

design.
There is a simple extension of CRPC surfaces which we did not mention so far. It concerns the offsets of CRPC

surfaces. Since a surface and all its offsets share their principal curvature centers at corresponding points, the offsets of
CRPC surfaces are Weingarten surfaces with a linear relation aρ1 +bρ2 = c between their principal curvature radii
ρi = 1/κi. Discrete models are most easily obtained by offsetting discrete CRPC surfaces via their discrete normals470

(through sphere centers). The offsets of C-nets are however no longer C-nets.
Since CRPC surfaces did not yet receive much interest, there are many directions for future research, including the

following ones.

(1) So far, the only known explicit representations of CRPC surfaces concern rotational ones. Recently, we could
also solve the ordinary differential equation for helical CRPC surfaces, not using a characteristic parameterization.475

Maybe one can even handle the more involved case of spiral CRPC surfaces, but there is nothing beyond these
special surfaces.

(2) We hope that our tools will help to get a better understanding of the possible shapes of CRPC surfaces and will
lead to conjectures for deeper mathematical studies. We raised the questions of closed CRPC surfaces, where we
failed to get discrete ones beyond rotational shapes. We also pointed to the probably always present singular480

curves in more general CRPC surfaces of positive curvature.

(3) Another question concerns the shape space of negatively curved CRPC surfaces which contains the minimal
surfaces. Can we move away from a minimal surface by changing to a 6=−1, and can we keep the combinatorics
of the C-net, as it worked numerically in Fig.s 18 and 21?

(4) Again looking at the special case of minimal surfaces, can CRPC surfaces be generated from a given boundary?485

A computational approach to this problem would benefit from a discrete model that is not relying on a special
geometric parameterization like ours.

(5) While there is a wealth of results on the discrete theory of A-nets [10], we are not aware of similar studies for
S-nets, or at least for C-nets in the case of positive curvature (Q-nets + S-nets).

(6) For architectural applications one also needed to study force equilibrium under the influence of gravity and the490

geometry of the supporting structure, especially for realizations as in Fig. 1.
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