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ABSTRACT. Motivated by applications in architecture, we study surfaces with a constant ratio of principal
curvatures. These surfaces are a natural generalization of minimal surfaces, and can be constructed by applying
a Christoffel-type transformation to appropriate spherical curvature line parametrizations, both in the smooth
setting and in a discretization with principal nets. We link this Christoffel-type transformation to the discrete
curvature theory for parallel meshes and characterize nets that admit these transformations. In the case of
negative curvature, we also present a discretization of asymptotic nets. This case is suitable for design and
computation, and forms the basis for a special type of architectural support structures, which can be built by
bending flat rectangular strips of inextensible material, such as sheet metal.

1. INTRODUCTION

The motivation for this research comes from architectural geometry [17], an area that deals with
geometric and computational problems related to the realization of geometric complexity in architecture.
In particular, the realization of architectural freeform structures is a big challenge. One problem in this
context, is the design of support structures that are formed by curved beams along freeform surfaces,
realizing façades and roofs. Our work is motivated by a remarkable instance of such structures, developed
by Eike Schling and Denis Hitrec at TU Munich (see Fig. 1). These structures are formed by developable
strips, which are orthogonal to a minimal surface S and aligned with a grid of asymptotic curves of S. This
implies that the asymptotic curves of S are geodesics on the developable strips, and thus, the structure
can be built from rectangular planar strips of sheet metal. Asymptotic directions on a minimal surface
are orthogonal, and thus, the structures exhibit right node angles at the intersections of strips (which are
usually within tolerance to straight line segments).

FIGURE 1. The INSIDE-OUT pavilion by Schling and Hitrec on the campus of TU Munich. (image: Felix Noe)
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We are interested in a generalization of these structures: structures formed by developable strips with a
rectangular development, orthogonal to a base surface S, and the node angles should be constant, but not
necessarily right. Hence, the base surface S must have a constant angle between asymptotic directions, and
therefore, must have negative Gaussian curvature K < 0 and a constant ratio κ1/κ2 of principal curvatures.

Another problem in architectural geometry is the coverage of a freeform surface with panels [6]. It is an
advantage if multiple curved panels can be built with the same mold. A surface with constant κ1/κ2 has
just a one-parameter family of second-order surface elements, and thus, there is the hope that one can find
a panelization which uses only a rather small number of molds. Here, also the case K > 0 is of interest.

1.1. Previous work. Despite the simple definition, there is surprisingly little known about surfaces with
constant κ1/κ2, except for κ1/κ2 =±1, i.e., the sphere and minimal surfaces.

Another known case is an ideal Mylar balloon (see e.g., [14, 15]) which is obtained by gluing two
equally sized discs of flexible, but inextensible, foil along their common border, and blowing it up. This
particular surface of revolution has a constant ratio of principal curvatures of κ1/κ2 = 2. Further surfaces
of revolution of that sort, with positive and negative ratios of principal curvatures have appeared in other
contexts, e.g., in [9, 11].

Surfaces with a relation between the principal curvatures (where the relation is independent of the
surface point) are called Weingarten surfaces (Sec 2.1). A particular subclass, commonly denoted by
‘linear’ Weingarten surfaces, consists of those surfaces with an affine linear relation between the Gauss
and mean curvatures. These type of linear Weingarten surfaces have been discretized (see, e.g., [4] and
references therein), but note that linearity in the Gauss and mean curvatures does not imply linearity in the
principal curvatures. Consequently, the surfaces we are interested in are not linear Weingarten surfaces in
that sense.

Surfaces f (u,v) with a constant angle between asymptotic lines and with the property that ‖ fu‖= ‖ fv‖,
which are called generalized Chebyshev nets, have been investigated in [18, 19, 22]. Stäckel [22] shows
that with the restriction ‖ fu‖= ‖ fv‖ surfaces with a constant ratio of principal curvatures are just surfaces
of revolution.

In architectural geometry, basic differential geometric and computational aspects of curved support
structures formed by developable strips, have been studied by Tang et al. [23].

1.2. Contributions and overview. Since there is little known about smooth surfaces with a constant
ratio of principal curvatures, we first study those in Section 2. The focus is on a novel Christoffel-type
transformation which generates these surfaces from appropriate spherical curvature-line parametrizations.

In Section 3, we present a discretization of that smooth Christoffel-type transformation in the setting of
discrete conjugate nets, and characterize those nets which admit this type of transformation. We apply
these transformations to spherical principal nets to obtain discretized nets with a constant ratio of principal
curvatures in an appropriate sense. We also show that our discrete nets fulfill the characterizing equation
for surfaces with a constant ratio of principal curvatures, in terms of a particular discrete curvature theory.

In Section 4, we turn to a discretization based on asymptotic nets which fits well into a recently proposed
optimization framework for exploring the solution space of underdetermined systems of at-most quadratic
constraints [24]. We also show how to handle the available degrees of freedom, or in other words, to
generate appropriate input for design. Finally, we provide a few illustrative examples for support structures
with a constant node angle.

2. SMOOTH SURFACES

Before we start to investigate discretizations of surfaces with a constant ratio of principal curvatures,
we analyze properties of the corresponding smooth surfaces, some of which we will discretize later.
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To make our formulas look symmetric, we introduce two real values α,β ∈ R \ {0} such that our
characterizing equation becomes

(1)
κ1

κ2
=

β

α
or ακ1 = βκ2.

2.1. Weingarten surfaces. Surfaces with curvature radii r1 = κ
−1
1 ,r2 = κ

−1
2 related by an equation of

the form
W (r1,r2) = 0

are so called Weingarten surfaces. From Equation (1), it follows immediately that surfaces with a constant
ratio of principal curvatures are Weingarten surfaces since the characterizing equation in this case would
be the linear equation W (r1,r2) = β r1−αr2 = 0. Any equation for the curvature radii which characterizes
Weingarten surfaces can be rewritten in terms of the Gaussian curvature K = κ1κ2 and mean curvature
H = 1

2 (κ1 +κ2) since the principal curvatures can be expressed in terms of Gaussian and mean curvature
as κ1 = H +

√
H2−K and κ2 = H−

√
H2−K. Consequently, Equation (1) can be rewritten as

α(H +
√

H2−K) = β (H−
√

H2−K),

and after rearranging and squaring, Equation (1) becomes

(2) 4αβH2− (α +β )2K = 0, or
H2

K
=

(α +β )2

4αβ
= const.

2.2. A Christoffel-type transformation. In this section, we would like to study a particular type of
transformation of conjugate nets f : R2→ R3 independently from the theory of surfaces with a constant
ratio of principal curvatures. In Section 2.3, we will bridge to our main topic and make a connection to the
famous Christoffel transformation [5].

First, let us recall what conjugacy means. Two tangent vectors a,b in the tangent plane Tp f are said
to be conjugate, if they are orthogonal with respect to the second fundamental form. Consequently, if
a = a1v1 + a2v2 and b = b1v1 + b2v2 are expressed as a linear combination of the principal directions
v1,v2, then conjugacy means (a1,a2)(

κ1 0
0 κ2

)(b1
b2
) = 0. The map which maps a tangent at p in the tangent

plane Tp f to its conjugate tangent is an involutive projective automorphism of the line pencil through p,
the involution of conjugate lines.

A conjugate net f : R2→ R3 is then a parametrization of a surface where, at each point, the tangents
to the parameter lines are conjugate. This is equivalent to the mixed derivative being orthogonal to the
surface normal, i.e., fu,v ⊥ n.

Let us consider two conjugate nets f , f ∗ : R2→ R3 and α,β ∈ R\{0}. The two conjugate nets are
said to be parallel or related by a Combescure transformation if, at each point, the partial derivatives are
parallel, i.e., fu ‖ f ∗u and fv ‖ f ∗v .

As such, a particular case of Combescure transformations is governed by

(3) f ∗u =
α

λ 2 fu and f ∗v =
β

λ 2 fv,

for some λ : R2→ R>0. The existence of f ∗ and λ for a given conjugate net f such that the system of
PDEs (3) is integrable is equivalent to the existence of λ fulfilling the integrability condition f ∗uv = f ∗vu.
Therefore

(4) (α−β ) fuv = 2α(logλ )v fu−2β (logλ )u fv.

Note that our assumption of f being a conjugate net would also follow from Eq. (4), i.e., from the
integrability of (3).

Consequently, assuming that f is additionally an orthogonal net, i.e., fu ⊥ fv everywhere, implies that
f is a curvature-line parametrization. Note that orthogonality would follow automatically if we would
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assume f to be spherical, because all conjugate nets on the sphere are orthogonal. Therefore, also assuming
orthogonality, we obtain from (4)

(α−β )〈 fuv, fu〉= 2α(logλ )v〈 fu, fu〉 and (α−β )〈 fuv, fv〉=−2β (logλ )u〈 fv, fv〉,

or equivalently, using (‖ fu‖2)v = 2〈 fuv, fu〉,

α−β

4α
(log‖ fu‖2)v = (logλ )v and

β −α

4β
(log‖ fv‖2)u = (logλ )u.

Consequently, by integrating the two equations, we obtain two possibilities for λ . Note that as we integrate
the first equation by v, we have to add a function which only depends on u. Analogously, integrating
the second equation by u implies adding a function only depending on v. For the sake of simplicity of
expressions that will follow, we write these functions with constant factors: β−α

2αβ
g(u) and α−β

2αβ
h(v). Now,

integration yields

logλ =
α−β

4α
log‖ fu‖2 +

β −α

2αβ
g(u) and logλ =

β −α

4β
log‖ fv‖2 +

α−β

2αβ
h(v),

which, after taking the exponential on both sides, yields

(5) λ =
(
e−g(u)‖ fu‖β

) α−β

2αβ and λ =
(
e−h(v)‖ fv‖α

) β−α

2αβ .

Finally, we arrive at two explicit expressions for λ , which both must be the same as a necessary
condition for λ to exist. The following theorem says that this necessary condition is also sufficient.

Theorem 1. Let f be a curvature-line net and α,β ∈ R \ {0}. Then there exists up to translation and
scaling, a unique curvature-line net f ∗ and a function λ : R2→ R>0 such that f and f ∗ are related by a
Combescure transformation governed by Equation (3) if and only if

(6) ‖ fu‖β · ‖ fv‖α = eg(u)+h(v),

for some functions g(u),h(v), or equivalently

∂u∂v log(‖ fu‖β · ‖ fv‖α) = 0.

The transformed net f ∗ is then of the same type except that α and β are replaced by their reciprocals, i.e.,
its characterizing equation is

(7) ∂u∂v log(‖ f ∗u ‖
1
β · ‖ f ∗v ‖

1
α ) = 0.

Proof. The considerations above imply that Equation (6) is necessary for the existence of f ∗.
On the other hand, if Equation (6) holds we can define λ in either way of the two equal representa-

tions (5). Inserting λ into Equation (4) implies that the integrability condition for f ∗ is fulfilled.
As for uniqueness (up to translation and scaling) of f ∗ for given f , α , and β , we first look at its

definition, Equation (3). Only a change in λ can elicit a change in f ∗, so we have to check how much
freedom we have for the choice of λ once we are given f , α , and β . Consequently, (5) implies that we
have to check the freedom to choose g(u) and h(v). Equation (6) implies that g(u) and h(v) can change in
such a way that eg(u)+h(v) does not change, i.e., adding to g(u) a constant c and at the same time subtracting
the same constant c from h(v), so that g(u)→ g(u)+ c and h(v)→ h(v)− c. This change makes it so that

λ is multiplied by e−c α−β

2αβ , and therefore, that f ∗ is scaled by ec αβ

α−β .
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As for Equation (7): for the lengths of the derivatives of f ∗, we have

‖ f ∗u ‖
1
β · ‖ f ∗v ‖

1
α

(3)
= ‖ α

λ 2 fu‖
1
β · ‖ β

λ 2 fv‖
1
α

(5)
=

∥∥∥∥ α fu(
e−g(u)‖ fu‖β

) α−β

αβ

∥∥∥∥ 1
β

·
∥∥∥∥ β fv(

e−h(v)‖ fv‖α
) β−α

αβ

∥∥∥∥ 1
α

=|α|
1
β |β |

1
α (eg(u) α−β

β
+h(v) β−α

α )
1

αβ

(
‖ fu‖β‖ fv‖α

) 1
αβ

(6)
= |α|

1
β |β |

1
α e

g(u)
β2 +

h(v)
α2 ,

wherein the last expression is a product of univariate functions that vanishes after ∂u∂v. �

Remark 2. In the special case where α +β = 0, Equation (6) simplifies to

‖ fu‖
‖ fv‖

= e
1
α
(g(u)+h(v)).

This means that any orthogonal parametrization f , which has that property, is a conformal parametrization
in its “wider” definition, i.e. fu ⊥ fv and log

( ‖ fu‖
‖ fv‖
)

uv = 0. Therefore, in this special case, Theorem 1
implies that f is an isothermic net and the special Combescure transformation (3) is the well-known
Christoffel transformation [5]. We therefore make the following definition.

Definition 3. We call two curvature-line nets f and f ∗ related by a Christoffel-type transformation if they
are related by Equation (3).

Remark 4. Note that, if f fulfills (6), then Theorem 1 implies the existence of f ∗, which itself fulfills (7),
implying again by Theorem 1 the existence of f ∗∗ via

(8) f ∗∗u =
1

αµ2 f ∗u and f ∗∗v =
1

β µ2 f ∗v ,

for some function µ . The uniqueness statement of Theorem 1 implies that f ∗∗ equals f up to scaling and
translation since f solves Equation (8) for µ = 1/λ .

Remark 5. Note that an appropriate reparametrization f̃ (u,v) = f (ϕ1(u),ϕ2(v)) with ϕ1(u) =
∫

e
−g(u)

β du

and ϕ2(v) =
∫

e
−h(v)

α dv simplifies the general Equation (6) to

‖ f̃u‖β · ‖ f̃v‖α = 1.

Remark 6. The Christoffel transformation, as well as the Weierstrass representation, generate minimal
surfaces from an isothermic parametrization of the unit sphere. The usual input data for the Weierstrass
representation is a holomorphic map on the Riemann sphere, which is then also the Gauss map n of the
surface. Thus, we could also express the condition that n is the Gauss map of a curvature-line net f , in
terms of the Riemann sphere: Denote by w : C→ C, the stereographic projection of n. Then, f is a net
with a constant ratio of principal curvatures if and only if w fulfills

∂u∂v log
|wu|β |wv|α

(1+ |w|2)α+β
= 0.

This can easily be verified by pushing forward the metric from the sphere onto the plane (getting the metric
of the Riemann sphere).

2.3. Surfaces from the Gauss map. E. Christoffel [5] constructs minimal surfaces by applying a trans-
formation (which is now called the Christoffel transformation) to an isothermic parametrization of the unit
sphere, which is then also the Gauss map of the minimal surface.

The Christoffel-type transformation described in Section 2.2 is a generalization of Christoffel’s original
transformation, and agrees with the Christoffel transformation in a special case (when α +β = 0).
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With the following theorem, we obtain surfaces with a constant ratio of principal curvatures by applying
this Christoffel-type transformation (3) to spherical curvature-line nets fulfilling Equation (6).

Theorem 7. Let α,β ∈ R\{0}, and let n : R2→ S2 be a spherical curvature-line parametrization with

∂u∂v log(‖nu‖β · ‖nv‖α) = 0.

Then the net f := n∗, that we obtain from n by applying the Christoffel-type transformation (3), is a surface
with a constant ratio of principal curvatures.

Proof. Rodrigues’ formula for a curvature-line parametrized surface reads

−κ1 fu = nu and −κ2 fv = nv.

Equation (3), on the other hand, implies

fu =
α

λ 2 nu and fv =
β

λ 2 nv,

and therefore, ακ1 = βκ2. �

Remark 8. In relative differential geometry (cf. e.g. [21]), the principal curvatures are not measured
with respect to the unit sphere, as their Gauss map, but rather with a different sufficiently-regular surface
instead. However, the curvature theory for surfaces in relative differential geometry is defined in such a
way that Rodrigues’ formula still holds. This implies that Theorem 7 still gives us surfaces with a constant
ratio of principal curvatures in the context of relative differential geometry, where n need not be on the
unit sphere.

2.4. In the projective model of Möbius geometry. A classical way of studying Möbius geometry in
R3∪{∞} is by lifting its points and spheres to points of a 4-dimensional real projective space. To describe
geometric properties and objects in Möbius geometry, the underlying 5-dimensional vector space R4,1 is
equipped with the Minkowski inner product of signature (++++−). An appropriate lifting map has the
following form (see e.g. [2]):

point p = (p1, p2, p3) ∈ R3 7−→
(

p1, p2, p3,
‖ f‖2−1

2 , ‖ f‖2+1
2

)
point at infinity ∞ 7−→ (0,0,0, 1

2 ,
1
2 )

sphere with center c ∈ R3, radius r 7−→
(
c1,c2,c3,

‖c‖2−r2−1
2 , ‖c‖

2−r2+1
2

)
plane 〈n,x〉= d with normal vector n ∈ S2 7−→ (n1,n2,n3,d,d).

In Proposition 9, we observe an interesting behaviour of the cross-ratio of ‘point-model representatives’
of special Möbius-geometry elements related to our surfaces. For that, we need the notion of principal
curvature spheres which are the two spheres consisting of points x satisfying the equations

‖x− ( f + 1
κi

n)‖2 = κ2
i , i = 1,2,

where f is the surface and n is the unit normal vector of f . At each point of a surface the point, the tangent
plane, and the two curvature spheres belong to the same parabolic sphere pencil, and are thus mapped to
four points on a straight line in the projective model. It therefore makes sense to compute their cross-ratio.

Proposition 9. Let f̂ , τ̂, ŝ1, ŝ2 be the lifts to the projective model of Möbius geometry of, respectively, the
surface point f , the tangent plane τ , and the two curvature spheres s1,s2. Then, at each point of a surface
with a constant ratio of principal curvatures, the cross-ratio is constant and equals

cr( f̂ , τ̂, ŝ1, ŝ2) =
α

β
.
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Proof. For the sake of brevity, we write f and n instead of their components within the 5-dimensional
vectors of the homogeneous coordinates in the projective model. As such, the lifts of f ,τ,si read

f̂ =
(

f , ‖ f‖2−1
2 , ‖ f‖2+1

2

)
, τ̂ = (n,〈n, f 〉,〈n, f 〉),

ŝi =
(

f +κ
−1
i n, ‖ f+κ

−1
i n‖2−κ

−2
i −1

2 ,
‖ f+κ

−1
i n‖2−κ

−2
i +1

2

)
.

Consequently, we can express the curvature sphere lifts as a linear combination of the lifts of the point and
the tangent plane (which also confirms that these four elements lie on a line in the projective model):

ŝi = f̂ + 1
κi

τ̂.

The cross-ratio of four collinear points in homogeneous coordinates a, b, ν1a+ν2b, µ1a+µ2b is ν1
ν2

: µ2
µ1

.
With that definition, we obtain the cross-ratio

cr( f̂ , τ̂, ŝ1, ŝ2) = cr( f̂ , τ̂, f̂ + 1
κ1

τ̂, f̂ + 1
κ2

τ̂) = κ2
κ1

(1)
= α

β
,

which is what we wanted to show. �

Note that, even though we can express the ratio of the principal curvatures in terms of the cross-ratio, it
does not imply that the ratio of the principal curvatures is Möbius invariant.

2.5. Pencils of conjugate nets. In this section, we primarily show that surfaces with a constant ratio of
principal curvatures are characterized by the existence of a particular pencil of conjugate nets. We briefly
recalled the notion of conjugate tangents and conjugate nets at the beginning of Section 2.2.

Theorem 10. Let f denote a net without umbilical and parabolic points. Then the following are equivalent:
(a) The net f has a constant ratio of principal curvatures.
(b) Let {ct} be a family of curves which intersect the curvature-lines at a constant angle, and let {dt}

be the family of curves conjugate to {ct} (which exists; see e.g. [7]). Then, the curves {dt} also
intersect the curvature-lines at a constant angle (Fig. 2, left).

(c) There is a pencil of conjugate nets (cf. [13]), such that each net has a constant intersection angle
with their parameter lines, and the parameter lines of any two nets also intersect each other at a
constant angle.

(d) There exist two conjugate nets on the surface, such that, at any two different points, the corre-
sponding all angles between the four tangents of their parameter lines are the same (see Fig. 2
right).

Proof. (a)⇒(b): Let a = a1v1 +a2v2 be a tangent vector of a curve from ct at some point and expressed in
the basis of the principal directions v1,v2. By assumption, each tangent vector forms a constant angle with
the principal directions, which implies a1 : a2 = const. Since, to each tangent line in the tangent plane,
there is a unique conjugate tangent with direction b = b1v1 +b2v2, fulfilling (a1,a2)

(
κ1 0
0 κ2

)
(b1

b2
) = 0 or

equivalently (a1,a2)
(

β 0
0 α

)
(b1

b2
) = 0, we also have b1 : b2 = const.

(b)⇒(c): For each angle ϕ ∈ [0,π), there is a family of curves {cϕ

t } on the surface which intersect one
family of principal lines at the given angle ϕ . The pencil we are looking for in (c), is formed by all such
families {cϕ

t } together with their corresponding families of conjugate curves {dϕ

t } (which are given by (b)).
The angle ϕ is the parameter of the pencil. The intersection angles between cϕ

t and dϕ

t can be decomposed
as the sum of the angles they form with the principal directions, which are constant by assumption.
(d) is just a special case of (c): take any two conjugate nets of the pencil. Then, each net has a constant
intersection angle with their parameter lines, and the parameter lines of any two nets also intersect each
other at a constant angle. Consequently, at any two different points, the ‘stars’ consisting of the four
tangents to the four parameter lines are congruent to each other.
(d)⇒(a): The involution of conjugate lines is determined by two pairs of lines and their image lines. Since
given the two pairs of conjugate tangents are the same at each point by assumption, so is the involution
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FIGURE 2. Left: A family of pairs of conjugate direc-
tions along a curvature line on a surface with a constant
ratio of principal curvatures. If the intersection angle
of one family of directions with the curvature line is
constant, then so is the other. Right: There exist two
conjugate nets on the surface, such that the angles be-
tween the four tangents to the parameter lines is the
same at each point.

of conjugate lines. Therefore, the second fundamental forms in the basis of the principal directions are
multiples of each other, and consequently, κ1 : κ2 = const everywhere. �

3. DISCRETIZATION WITH CONJUGATE NETS

In this section, we propose a discretization of smooth surfaces with a constant ratio of principal
curvatures. Our discretization idea is not to “wish” for a constant ratio of a discretization of the principal
curvatures of the mesh (which might be worthwhile studying in a suitable setting). Rather, we develop
a discrete analogue of the Christoffel-type transformation (3), for which we show properties similar to
those of the smooth case (Sec. 2.2). By doing that, we obtain a generalization of the well-known discrete
Christoffel duality (cf. [2, 3]). In Section 3.4, we will show that the characterizing Equation (2) for the
smooth case also holds for our discretization.

For the entirety of this section, the objects, i.e., the discrete surfaces, are represented by discrete
conjugate nets, which are nets with planar quadrilateral faces. Later in Section 4, we will consider a
discretization in a different setting, namely that of asymptotic nets.

3.1. A discrete Christoffel-type transformation. A discrete conjugate net M is a mesh with Z2-
combinatorics, where each face is a planar quadrilateral in R3. Two conjugate nets M and M ∗ (with
the same combinatorics) are said to be parallel or related by a discrete Combescure transformation,
if corresponding edges are parallel. In that case, a transformation of M into M ∗ is called a discrete
Combescure transformation. To study a particular Combescure transformation, we first introduce some
notions on quadrilaterals, the basic building block of our meshes.

Let m be the intersection point of the diagonals of a quadrilateral f = ( f1, f2, f3, f4). Then, the vertices
of f can be expressed as

(9) f1 = m+a1e1, f2 = m+a2e2, f3 = m+a3e1, f4 = m+a4e2,

with ai ∈ R, and e1 ‖ f1− f3, e2 ‖ f2− f4 being unit vectors along the diagonals (see Fig. 3, left).
From now on, we assume that the vertices of the quadrilateral lie on the boundary of their convex hull.

This ‘convex hull’ assumption implies positivity of the product

p := a1a2a3a4 ≥ 0.

We will frequently use the first forward difference operator, which is very commonly denoted by ∆, i.e.,
∆ fi = fi+1− fi.

Proposition 11. Let f be a quadrilateral and p = a1a2a3a4 be as before. Further, let α,β ,γ f ∈ R\{0}
and σ ∈ {±1}. Then there exists a quadrilateral f ∗, which is edgewise parallel to f , and which has the
following edge vectors (indices taken modulo 4)

(10) ∆ f ∗i = γ f ·
(

α +β
√

p
+σ

α−β

aiai+1

)
∆ fi.



DISCRETIZATIONS OF SURFACES WITH CONSTANT RATIO OF PRINCIPAL CURVATURES 9

f1
f2

f3

f4

m
e1 e2

p > 0 p < 0

p > 0

p > 0p > 0

a1 >0 a3 <0

a 2
>

0
a 4

<
0

FIGURE 3. The vertices of the quadrilateral f are expressed with their oriented distance to the intersection point m of their diagonals.
The value p = a1a2a3a4 can be positive or negative depending on whether the vertices lie on the boundary of their convex hull or not.
The vertices of circular quadrilaterals (right) always lie on the boundary of their convex hull.

Proof. To show that the vectors ∆ f ∗i are edges of an actual quadrilateral f ∗, we have to show that the four
edge vectors add up to zero. For that, we can neglect the common scaling factor γ f .

4

∑
i=1

∆ f ∗i =
α +β
√

p

4

∑
i=1

∆ fi +σ(α−β )
4

∑
i=1

∆ fi

aiai+1

(9)
= 0+σ(α−β )

(a2e2−a1e1

a1a2
+

a3e1−a2e2

a2a3
+ . . .+

a1e1−a4e2

a4a1

)
,

which after canceling, is easily seen to be a telescoping sum that sums to zero. �

Remark 12. Observe the similarity of Equation (10) to that of the smooth Christoffel-type transforma-
tion (3): the differentials are replaced by the difference, ∂u,∂v↔ ∆, and the ‘second-order terms’ in the
denominator λ 2↔ aiai+1,

√
a1a2a3a4.

Further, notice that transformation (10) in the special case that α +β = 0, assumes the form of the
well-known discrete Christoffel transformation for Koenigs nets [3] or at least for one quadrilateral:

∆ f ∗i =
1

aiai+1
∆ fi.

Recall that also, in the smooth setting, the case α +β = 0 characterizes the Christoffel transformation
(see Remark 2). Thus, the following definition is sensible.

Definition 13. We call two discrete conjugate nets M and M ∗ with the same combinatorics related
by a discrete Christoffel-type transformation if all corresponding pairs of faces ( f , f ∗) are related by
Equation (10), wherein we allow for scalings γ f of each face f .

Note that so far, we have only applied transformation (10) to one single quadrilateral, and it cannot
be expected that an entire mesh can be transformed that way. In analogy to the smooth case, where we
have an integrability condition (Equation (6)) for the existence of a transformed surface f ∗, we have to
expect a discrete integrability condition in our discrete setting as well. We will provide such a condition in
Theorem 20.

A series of transformed quadrilaterals f ∗ from f using Equation (10) for different ζ := β : α (from
ζ = 1.5 to ζ =−1.5 with step size −0.5) is, up to individual scaling, illustrated by Fig. 4.

Proposition 14. The directions d1,d2 along the diagonals of f ∗ can be computed from the (unit length)
directions e1,e2 of the diagonals of f in the following way:

(11) d1 =
α +β
√

p
e1 +σ

α−β

a1a3
e2 and d2 =

α +β
√

p
e2 +σ

α−β

a2a4
e1.
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ζ = 1.5 ζ = 1 ζ = 0.5 ζ = 0 ζ =−0.5 ζ =−1 ζ =−1.5

f

FIGURE 4. We construct a sequence of quadrilaterals f ∗ to a given quadrilateral f using Equation (10) for different ζ = β : α (from
ζ = 1.5 to ζ =−1.5 with a step size of −0.5). The quadrilaterals are scaled individually. Note that f = f ∗ for ζ = 1.

Proof. To obtain the direction of the diagonal d1 ‖ f ∗3 − f ∗1 , we add two adjacent edge vectors: f ∗3 − f ∗2 +
f ∗2 − f ∗1 = ∆ f ∗1 +∆ f ∗2 which, using Equation (10), reads

f ∗3 − f ∗1 =
(

α +β
√

p
+σ

α−β

a1a2

)
( f2− f1)+

(
α +β
√

p
+σ

α−β

a2a3

)
( f3− f2),

where we ngelected the common factor γ f since we are only interested in the direction. Making use of the
notation of (9) we collect the coefficients of e1 and e2, and get

(12) f ∗3 − f ∗1 =
[

α +β
√

p
(a3−a1)

]
e1 +σ

[
α−β

a1a3
(a3−a1)

]
e2,

which is (a3 − a1) times the claimed direction vector. The direction of the other diagonal is found
analogously. �

In analogy to Remark 4, we will also determine f ∗∗ for the discrete case in Proposition 17. To that end,
let us represent the vertices of f ∗ in the same way as f (i.e., in analogy to (9)):

f ∗1 = m∗+a∗1e∗1, f ∗2 = m∗+a∗2e∗2, f ∗3 = m∗+a∗3e∗1, f ∗4 = m∗+a∗4e∗2,

where e∗1 := d1
‖d1‖

and e∗2 := d2
‖d2‖

, since e∗1 ‖ f ∗1 − f ∗3 and e∗2 ‖ f ∗2 − f ∗4 .

Lemma 15. For the oriented distances a∗i from m∗ to f ∗i , we get

a∗1 = A∗1‖d1‖, a∗2 = A∗2‖d2‖, a∗3 = A∗3‖d1‖, a∗4 = A∗4‖d2‖,

with

A∗i :=
1

4αβ

[
ai(α +β )2 +ai+2(α−β )2 +σ

( √p
ai+1

+

√
p

ai+3

)
(α2−β

2)
]
.

Proof. We have(
α+β√

p +σ
α−β

a1a2

)
(a2e2−a1e1)

(10)
= ∆ f ∗1 = (m∗+a∗2e∗2)− (m∗+a∗1e∗1)

=A∗2‖d2‖ d2
‖d2‖
−A∗1‖d1‖ d1

‖d1‖
(11)
= A∗2

(
α+β√

p e2 +σ
α−β

a2a4
e1

)
−A∗1

(
α+β√

p e1 +σ
α−β

a1a3
e2

)
,

which leads to the system(
−α+β√

p σ
α−β

a2a4

−σ
α−β

a1a3

α+β√
p

)(
A∗1
A∗2

)
=

(
−a1(

α+β√
p +σ

α−β

a1a2
)

a2(
α+β√

p +σ
α−β

a1a2
)

)
,

whose solution gives us A∗1 and A∗2, and analogously, we obtain A∗3 and A∗4. �

Lemma 16. We have the identity
A∗1A∗3
a1a3

=
A∗2A∗4
a2a4

.
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Proof. Using p = a1a2a3a4 and σ2 = 1, we compute
A∗1A∗3
a1a3

= 1
16α2β 2

[
(α +β )4 +(α−β )4 +2(α2−β 2)2 +

( a1
a3
+ a3

a1
+ a2

a4
+ a4

a2

)
(α2−β 2)2

+2σ
√

p
( 1

a1
+ 1

a3

)( 1
a2
+ 1

a4

)
(α4−β 4)

]
.

The right hand side of this equation is symmetric under the exchange (a1,a3)↔ (a2,a4). Consequently,
the computation of A∗2A∗4

a2a4
is the same, which is what we wanted to show. �

The following proposition is the discrete analogue to Remark 4, i.e., we show that after applying the
∗-transformation twice, we obtain the original quadrilateral up to scaling and translation.

Proposition 17. f ∗∗ is similar to f , and

∆ f ∗∗i =

( 1
α
+ 1

β√
p∗

+σ

1
α
− 1

β

a∗i a∗i+1

)
∆ f ∗i ,

which corresponds to transformation (10) if we replace (α,β ) by ( 1
α
, 1

β
).

Proof. From the definition of the ∗-construction, Equation (10), we immediately get that the edges of f
and f ∗∗ are parallel. Consequently, f and f ∗∗ are similar if and only if the diagonals are parallel too. It is
sufficient to show f ∗∗3 − f ∗∗1 ‖ f3− f1 or equivalently f ∗∗3 − f ∗∗1 ‖ e1. Since we are only interested in the
direction of the diagonal and not in its length we just compute its linear span:

sp( f ∗∗3 − f ∗∗1 ) = spd∗1
(11)∗
= sp

( 1
α
+ 1

β√
p∗ e∗1 +σ

1
α
− 1

β

a∗1a∗3
e∗2
)
= sp

(
α+β√

p∗
d1
‖d1‖
−σ

α−β

a∗1a∗3
d2
‖d2‖

)
=sp

(
α+β√
p∗‖d1‖

(
α+β√

p e1 +σ
α−β

a1a3
e2

)
−σ

α−β

a∗1a∗3‖d2‖

(
α+β√

p e2 +σ
α−β

a2a4
e1

))
=sp

(
. . .e1 +

(
σ

α2−β 2
√

p∗‖d1‖a1a3
−σ

α2−β 2
√

p‖d2‖a∗1a∗3

)
e2

)
.

Consequently, f ∗∗3 − f ∗∗1 is parallel to e1 if and only if

1√
p∗‖d1‖a1a3

− 1
√

p‖d2‖a∗1a∗3
= 0,

which, using Lemma 15, is equivalent to√
A∗1‖d1‖A∗2‖d2‖A∗3‖d1‖A∗4‖d2‖‖d1‖√

a1a2a3a4
=
‖d2‖A∗1‖d1‖A∗3‖d1‖

a1a3
,

which in turn, is equivalent to √
A∗1A∗2A∗3A∗4
a1a2a3a4

=
A∗1A∗3
a1a3

.

Now, Lemma 16 implies that the last equation is true which concludes the proof. �

3.2. Characterization of nets M which allow for Christoffel-type transformations. In this section,
we discuss the conditions for a net M so that there exists a Christoffel-type transform M ∗ (see Defini-
tion 13). We know how to construct a quadrilateral f ∗ from a given quadrilateral f via Equation (10), but
we do not know if all transformed quadrilaterals will fit together and form a mesh. We allow for different
scalings of each individual transformed face f ∗, but for example, as we go around applying (10) to the
faces around a vertex, we have no guarantee that the transformed faces will close up, and consequently,
generate a net.

In the following two sections, we derive a discrete analogue of the smooth integrability condition (6).
We describe an algebraic and a geometric characterization of such nets M which allow for a discrete
Christoffel-type transformation.
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f a
1

f a
2 = f b

1

f a
3f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1f a

4 = f d
1 f b

4

f b
2

f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2f b
3 = f c

2

f c
3f d

4

f d
3 = f c

4

f c
1f d

2

q a
421 q

b
13

2

q
d

31
4 q c

243

a b

cd

ta
42

tb
13

tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24tc
24

td
31td
31td
31td
31td
31td
31td
31td
31td
31td
31td
31td
31td
31td
31td
31td
31td
31

f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1f a
4 = f d

1

f b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f
b
3f b
3

f a
1

f a
2 = f b

1

f b
2

f c
3

f d
4

f d
3 = f c

4

f ∗a1

f ∗a2 = f ∗b1

f ∗a3

f ∗a4

f ∗b2

f ∗b3
f ∗b4

f ∗c3f ∗d3 =f ∗c4
f ∗d4

FIGURE 5. Left: Four quadrilaterals around a white vertex. The values q are defined via Equation (13) on the illustrated oriented
diagonals. Center: Illustration of the geometric condition on M for the existence of a discrete Christoffel-type transform M ∗ (here
for α +2β = 0): The three lines (ta

42tb
13), (t

c
24td

31) and ( f a
4 f b

3 ) intersect at one point if and only if the Christoffel-type transform M ∗

(right) exists.

3.2.1. Algebraic characterization. In this section, we will characterize meshes M which allow for a
discrete Christoffel-type transformation (10). This condition is local, and it is defined on the four faces
around a vertex. We call the four faces a,b,c,d (see Fig. 5, left). In Eq. (9), we denoted by ai the oriented
distances from the intersection point of the diagonals to the vertices; here, we do the same but for each of
the four quadrilaterals, denoting accordingly the distances by ai, bi, ci, di.

On each of the oriented diagonals of our oriented nets, we define a real valued function q. Its value on
the oriented diagonal between i and k in the oriented face a = (i, j,k, l) is (recall p = a1a2a3a4 and also
see Fig. 5, left):

(13) qa
ik j(α,β ) :=

√
p(α+β )+σaka j(α−β )
√

p(α+β )+σaia j(α−β )
.

Consequently, the value of q for the same diagonal, but with opposite orientation, is qa
kil(α,β ) =

√
p(α+β )+σaial(α−β )√
p(α+β )+σakal(α−β ) . The relation between the two orientations is given by the following lemma.

Lemma 18. In every quadrilateral, we have

(14) qa
ik j(α,β ) =

ak

ai
qa

kil(α,−β ).

Proof. We start with the right hand side (recall σ2 = 1)

ak

ai
qa

kil(α,−β ) =
ak

ai
·
√

p(α−β )+σaial(α +β )
√

p(α−β )+σakal(α +β )
·
√

p
√

p
· σ

σ

=
ak

ai
·

σaia jakal(α−β )+
√

paial(α +β )

σaia jakal(α−β )+
√

pakal(α +β )
= qa

ik j(α,β ),

which is what we wanted to show. �

Remark 19. In the special case of Koenigs nets, the function q simplifies to the discrete multiplicative
1-form qik

qik := qa
ik j(α,−α) =

ak

ai
=

1
qa

kil(α,−α)
=

1
qki

as α +β = 0 (cf. [2] for the discrete multiplicative 1-form on Koenigs nets). Note that in contrast to
Koenigs nets, in our more-general setting, q is not a multiplicative 1-form, i.e., qa

ik j(α,β ) 6= 1/qa
kil(α,β ).

With the following theorem we show how q can be used to locally characterize nets M which can be
transformed into a mesh M ∗ via the Christoffel-type transformation (10).
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Theorem 20. There is a discrete Christoffel-type transform M ∗ of a quadrilateral net M if and only if
around each vertex of M the product of the corresponding q’s is 1 (for the notation see also Fig. 5, left):

(15) qa
421(α,β ) ·qb

132(α,β ) ·qc
243(α,β ) ·qd

314(α,β ) = 1,

or equivalently,

qa
243(α,β ) ·qb

314(α,β ) ·qc
421(α,β ) ·qd

132(α,β ) =
a4b1c2d3

a2b3c4d1
.

Proof. Let us denote by ka
i j, kb

i j, kc
i j, kd

i j the coefficient of ∆ fi in Eq. (10) without γ f , i.e., for example

kb
23 =

(
α +β
√

p
+σ

α−β

b2b3

)
,

so that ∆ f ∗2 = γbkb
23∆ f2. Recall that, for Christoffel-type transformations M →M ∗, we allow for scalings

γ f of each face f . Consequently, the four transformed quadrilaterals around a common central vertex fit
together in M ∗ if and only if there exist four scaling factors γa,γb,γc,γd ∈ R\{0} such that

γaka
23 = γbkb

14, γbkb
34 = γckc

12, γckc
14 = γdkd

23, γdkd
12 = γaka

34.

The existence of these scaling factors is equivalent to the equation

1 =
γa

γb
· γb

γc
· γc

γd
· γd

γa
=

kb
14

ka
23
·

kc
12

kb
34
·

kd
23

kc
14
·

ka
34

kd
12
.

Rearranging the last term yields

(16) 1 =
ka

34
ka

23
·

kb
14

kb
34
·

kc
12

kc
14
·

kd
23

kd
12
.

Now, for example for ‘a’, we have for these ratios:

ka
34

ka
23

=

α+β√
p +σ

α−β

a3a4

α+β√
p +σ

α−β

a2a3

=

√
p(α +β )+σa1a2(α−β )
√

p(α +β )+σa1a4(α−β )
= qa

421(α,β ),

where the last equality is gotten from (13). Consequently, using (13) and (16), we get

1 = qa
421(α,β ) ·qb

132(α,β ) ·qc
243(α,β ) ·qd

314(α,β ),

which implies the equivalence of the constructability of M ∗ from M and the claimed property of q. The
second equation of the theorem follows imediately from Equation (14). �

From Proposition 17, we know that f ∗∗ is similar to f , i.e., the transform M ∗∗ of the transform M ∗ is
similar to the original M . In particular, we obtain that M ∗ fulfills the same type of compatibility condition
as M in Theorem 20 except that (α,β ) is replaced by (1/α,1/β ):

Corollary 21. Each four quadrilaterals around a vertex in M ∗ fulfill

qa
421(α

−1,β−1) ·qb
132(α

−1,β−1) ·qc
243(α

−1,β−1) ·qd
314(α

−1,β−1) = 1.

3.2.2. Geometric characterization. In analogy to the characterization of discrete Koenigs nets in [3], the
algebraic characterization, given by Theorem 20, has a similar incidence-geometric interpretation. To see
this, consider the quadrilateral a = ( f a

1 , f a
2 , f a

3 , f a
4 ) with the value qa

ikl from (13) defined on the oriented
diagonal ik = f a

i − f a
k . The affine combination

(17) ta
ik =

1
1−qa

ikl
fi−

qa
ikl

1−qa
ikl

fk

determines a point on the diagonal. We denote again the four faces around a vertex by a,b,c,d. For an
illustration of the notation, see Fig. 5.
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Theorem 22. Let M be a planar quadrilateral net. Then the three lines (ta
42tb

13), (t
c
24td

31) and ( f a
4 f b

3 )
intersect in one point if and only if there exists a discrete Christoffel-type transform M ∗ of M (see Fig. 5,
center and right). And the analogous property holds for the three lines (ta

42td
31), (t

b
13tc

24) and ( f a
2 f d

3 ). Note,
that f a

2 = f b
1 , etc.

Proof. A generalization of Ceva’s theorem to a 4-gon [10, Prop. 2.6] states: For a (possibly non-planar)
quadrilateral B1, . . . ,B4 with points A1, . . . ,A4 on its edges, i.e., Ai ∈ (BiBi+1), we have the following
equivalence:

B1 B2

B3
B4

A1

A2

A3

A4

(A1A2),(A3A4),(B1B3) intersect in one point if and only if
4

∏
i=1

Ai−Bi

Ai−Bi+1
= 1,

where the fractions are ratios of parallel vectors. This
theorem immediately implies our theorem as the fractions
are exactly the values of q.

�

3.3. Circular nets with a constant ratio of principal curvatures. A circular net is a net where all
faces have a circumcircle, meaning that all its vertices lie on a circle. In the previous section, we were
considering M as the Gauss image of a net M ∗ with a constant ratio of principal curvatures. It is therefore
a sensible assumption for the net M to be ‘spherical’. One common way of interpreting a net being
spherical is that all its vertices lie on a sphere, which then is a circular net (since all faces are planar).
Therefore, all such spherical nets, and all their parallel nets, are circular. For these nets, the formulas for
the discrete Christoffel-type transformation (10), as well as those for the diagonals, simplify. The reason
for this simplification is the “power of a point theorem”, which implies

(18) a1a3 = a2a4

for the values ai defined by (9).

Proposition 23. Let f be a circular quadrilateral. Then, up to scalings, Equation (10) transforms the
edges like

∆ f ∗i = γ f

(
(α +β )+ εσ(α−β )

ai+3

ai

)
∆ fi,

whereas the directions of the diagonals transform like

(19) e1→ d1=(α +β )e1 + εσ(α−β )e2, and e2→ d2=(α−β )e1 + εσ(α +β )e2,

with ε = 1 if f is self-intersecting and ε =−1 otherwise (see Fig. 3, right). Note that the transformation
of the diagonals does not depend on the ai’s.

Proof. For the edges, we multiply the vector (10) by
√

p and obtain for the coefficient of σ(α−β )
√

p
aiai+1

= sgn(aiai+1)

√
a1a2a3a4√

a2
i a2

i+1

= sgn(aiai+1)

√
ai+2ai+3

aiai+1

(∗)
= sgn(aiai+1)

√
a2

i+3

a2
i

= sgn(a2
i ai+1ai+3)

ai+3

ai
,

where we use Equation (18) in the form aiai+2 = ai+1ai+3 at (∗). Observe ε = sgn(ai+1ai+3) (cf. Fig. 3
right). As for the diagonals, we multiply the first vector of Equation (11) by

√
p and obtain for the
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e1

e2

d1
d2

d1

d2

FIGURE 6. The discrete Christoffel-type
transformation in the circular case, for
α = 2,β = 3. The directions d1,d2 of the
new diagonals deviate from the old directions
e1,e2 by the same angle.

coefficient of σ(α−β )e2
√

p
a1a3

= sgn(a1a3)

√
a1a2a3a4√

a2
1a2

3

= sgn(a1a3)

√
a2a4

a1a3

((18))
= sgn(a1a3) = ε,

see also Fig. 3, right. �

Remark 24. In the case of a circular quadrilateral, f ∗ can be easily constructed from f by placing
the first edge f ∗1 − f ∗2 ‖ f1− f2 and then drawing the diagonals parallel to the vectors as described by
Proposition 23, which both form the same angle with ei (see Fig. 6, right). Then parallelly translate the
remaining edges, and intersect with the existing lines as indicated by Fig. 6, right.

3.4. Discrete Gaussian and mean curvature. In analogy to the smooth setting, we will connect the
discrete Christoffel-type transformation to discrete surfaces with a constant ratio of principal curvatures.

As mentioned before, we will obtain discrete surfaces with a constant ratio of principal curvatures not by
considering discrete principal curvatures (like e.g. from the ‘discrete Rodrigues’ formula’−κi j( f ∗i − f ∗j ) =
( fi− f j) in [1]). Instead, we obtain a discrete version of Equation (2) for nets M ∗ that are Christoffel-type
transforms of nets M , which we will consider as the Gauss map of M ∗. It turns out that the discrete
Gaussian, and mean, curvature, which are derived from Steiner’s formula for parallel meshes [1], fulfill a
discrete analogue of Equation (2), as we will see in the following.

This curvature theory [1] provides a discrete Gaussian-, and a discrete mean-, curvature notion that are
defined on the pairs of corresponding faces ( f , f ∗) of a polyhedral surface M ∗ with respect to an edgewise
parallel surface M , the Gauss map. Both meshes, M ∗ and M must have the same combinatorics.

For a pair of corresponding faces f ∗ = ( f ∗1 , . . . , f ∗n ) ∈M ∗ and f = ( f1, . . . , fn) ∈M , the curvatures are
defined as (cf. [1])

K f , f ∗ =
area( f )
area( f ∗)

, H f , f ∗ =−
area( f ∗, f )
area( f ∗)

,

where area( f ∗, f ) = 1
4 ∑

n
i=1[det( f ∗i , fi+1,N)+det( fi, f ∗i+1,N)] is the mixed area of two edgewise parallel

polygons and where N is a unit normal vector of the plane containing f ∗. Note that area( f ) = area( f , f ) is
the oriented area of the polygon f , and that area( f ∗, f ) is a symmetric bilinear form on the vector space of
parallel n-gons (cf. [1, 16]).

The characterizing property in our discretization is a discretized version of Equation (2). We obtain it
by simply replacing the smooth Gaussian, and mean, curvature by their discrete counterparts:

(20) 4αβH2
f , f ∗ − (α +β )2K f , f ∗ = 0.

Definition 25. We call a mesh or net M ∗ a net with a constant ratio of principal curvatures with respect
to its Gauss map M if each corresponding pair of faces ( f , f ∗) fulfills Equation (20). The ratio is then
defined to be α : β .

Remark 26. Note that the discrete curvature theory [1] is defined for general polyhedral meshes (not
just with quadrilateral faces). Consequently, Definition 25 for discrete surfaces with a constant ratio of
principal curvatures can be understood in this generality. However, we will restrict ourselves in the present
paper, to the quadrilateral case.
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FIGURE 7. Discrete conjugate surfaces of revolution with a constant ratio of principal curvatures. The faces are planar (even circular)
quadrilaterals. From left to right: κ1/κ2 = 4,2,−2,−4.

Notice the symmetry of Eq. (20): If a pair of edgewise parallel polygons ( f , f ∗) fulfills Eq. (20) then
the reversed pair ( f ∗, f ) also fulfills the same equation, with the same α and β . This means that M also is
a mesh with a constant ratio of principal curvatures with respect to the “Gauss map” M ∗. Observing

H f ,ν f ∗ =
1
ν

H f , f ∗ , K f ,ν f ∗ =
1

ν2 K f , f ∗ , Hµ f , f ∗ = µH f , f ∗ , Kµ f , f ∗ = µ2K f , f ∗ ,

we see that, if Eq. (20) holds for the pair ( f , f ∗), then it also holds for the pair (ν f ∗,µ f ), with ν ,µ ∈
R \ {0}. Further, Eq. (20) is invariant under independent translations of f ∗ and f . Consequently, the
property of being a mesh with a constant ratio of principal curvatures, is invariant under similarities of
the form f ∗ 7→ νR f ∗+a, with ν ∈R\{0}, R ∈O(3), a ∈R3, if the Gauss map M is rotated in the same
way, i.e., f 7→ R f .

Moreover, the oriented area and the oriented mixed area are multiplied by det(A) as we apply an affine
transformation x 7→ Ax+ a (with A ∈ GL3(R),a ∈ R3) to f ∗ and f simultaneously. Consequently, we
obtain the following proposition.

Proposition 27. Let F(x) := Ax+a with A ∈ GL3(R),a ∈ R3 and ν ∈ R\{0}.
(a) If M ∗ is a net with a constant ratio of principal curvatures with respect to its Gauss map M , then

so is νF(M ∗) with respect to F(M ).
(b) The property of being the Gauss map of a net with a constant ratio of principal curvatures is

affinely invariant.

Furthermore, applying an isometry does not change the oriented area and the oriented mixed area up
to sign, which implies that we can do computations with these ‘areas’ in the plane, and omit the normal
vector N in the formulas.

The following theorem shows that the construction from Proposition 11 yields a pair of edgewise
parallel faces ( f , f ∗) which fulfills Equation (2). It, therefore, provides a transformation of a net M into a
discrete surface M ∗ with a constant ratio of principal curvatures, assuming such a mesh M ∗ exists. The
characterization of meshes M such that M ∗ is a net with a constant ratio of principal curvatures with
respect to M , is precisely the same as for the existence of a Christoffel-type transform M ∗ (Theorems 20
and 22). This will become clear after the next theorem, which says that both M ∗’s are actually the same.

Theorem 28. Let M ∗ be a discrete Christoffel-type transform of M . Then, M ∗ is a mesh with a constant
ratio of principal curvatures with respect to M .

Proof. We will show Eq. (20) for a pair of parallel polygons ( f , f ∗) related via Eq. (10). Its ingredients
are H f , f ∗ and K f , f ∗ , which are composed of areas and mixed areas. To simplify the computation, we take
advantage of the formula for the mixed area that uses only ‘half’ as many indices in the sum (which can be
found in [16]):

2area( f ∗, f ) = ∑
i∈{1,3,...,n−1}

det( f ∗i , fi+1− fi−1).
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In our case, n = 4, so it reads

2area( f ∗, f ) = det( f ∗1 , f2− f4)+det( f ∗3 , f4− f2) = det( f ∗1 − f ∗3 , f2− f4),

and consequently,

2area( f ∗) = det( f ∗1 − f ∗3 , f ∗2 − f ∗4 ), and 2area( f ) = det( f1− f3, f2− f4).

Inserting expressions in terms of the basis e1,e2, i.e., Equations (9) and (12), yields

2area( f ∗, f ) = det
(
(a1−a3)

(
α +β
√

p
e1 +σ

α−β

a1a3
e2

)
,a2e2−a4e2

)
= (a1−a3)(a2−a4)

α +β
√

p
det(e1,e2),

and recalling p = a1a2a3a4 and σ2 = 1,

2area( f ∗) = (a1−a3)(a2−a4)det
(

α +β
√

p
e1 +σ

α−β

a1a3
e2,

α +β
√

p
e2 +σ

α−β

a1a3
e1

)
= (a1−a3)(a2−a4)

( (α +β )2

p
− σ2(α−β )2

p

)
det(e1,e2),

=
4αβ

p
(a1−a3)(a2−a4)det(e1,e2),(21)

and
2area( f ) = det(a1e1−a3e1,a2e2−a4e2) = (a1−a3)(a2−a4)det(e1,e2).

Finally, we show our main equation

4αβH2
f , f ∗ − (α +β )2K f , f ∗ = 0,

which is equivalent to
4αβ area( f ∗, f )2− (α +β )2 area( f ∗)area( f ) = 0,

by simply inserting our just-prepared expressions. �

So the discrete Christoffel-type transformation, transforms a spherical net M , which fulfills the discrete
integrability condition (15) around each face, into a mesh M ∗ with a constant ratio of principal curvatures
(in analogy to Theorem 7).

3.5. Special cases α−β = 0, α +β = 0, αβ = 0. We consider three different special cases where the
ratio of the principal curvatures, expressed in α and β , takes on three special values.

α−β = 0: This case is equivalent to the condition H2
f , f ∗−K f , f ∗ = 0 and corresponds, for smooth surfaces,

to κ1 = κ2, i.e., every point is an umbilic, which is to say that it must be a plane or a sphere. This is

reflected in the discrete setting by the trivial transformation ∆ fi
α=β7−→ ∆ f ∗i = 2α√

p ∆ fi (cf. Equation (10)),
which is a similarity. Consequently, if M is a ‘spherical’ mesh, then so is the transformed mesh M ∗. The
corresponding diagonals of f ∗ and f are parallel (see Equation (11)).

α +β = 0: This case is very well studied, and we have considered this case as a special case several
times before. It is equivalent to H f , f ∗ = 0, and the pair ( f , f ∗) is related by the well-known discrete
Koenigs duality [3]. If M is a ‘spherical’ Koenigs net, then the transformed mesh M ∗, the dual, exists
and is a discrete minimal surface. Non-corresponding diagonals are parallel, i.e., f ∗3 − f ∗1 ‖ f4− f2 and
f ∗4 − f ∗2 ‖ f3− f1.

αβ = 0: Even though we have excluded case where α or β takes the value 0, we can still interpret how
Equation (10) transforms a quadrilateral. In this case, each quadrilateral f of M is transformed into a
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FIGURE 8. Schematic image of a discrete Cauchy problem: Two given ‘orthogonally’ intersecting strips of circular quadrilaterals
(left), can be extended to a mesh M fulfilling the integrability condition (15), in the case of αβ < 0, i.e., M is the Gauss map of a
net M ∗ with a negative constant ratio of principal curvatures.

quadrilateral f ∗ of M ∗ with parallel diagonals, since inserting α = 0 (or analogously β = 0) into (11)
yields, for the directions of the two diagonals, (recall σ2 = 1)

d1 = β

( e1√
p
−σ

e2

a1a3

)
and d2 = β

( e2√
p
−σ

e1

a2a4

)
=−

σβ
√

p
a2a4

( e1√
p
−σ

e2

a1a3

)
,

and thus, parallelity. Planar-quadrilateral nets with that property are called T-nets or Moutard-nets, and
play an important role in discrete differential geometry. It turns out that these special T-nets have vanishing
oriented area (i.e., area( f ∗) = 0), which can easily be verified by inserting αβ = 0 into Equation (21).

3.6. The Gauss map as discrete Cauchy problem. In this section, we investigate the problem of finding
a net M that is a Gauss map of a net M ∗ with a constant ratio of principal curvatures, but without knowing
M ∗. And in particular, we are interested in how many degrees of freedom we have, or how much data for
the appropriate initial value problem we can prescribe. We will have to consider different settings: general
and circular nets, as well as positive and negative ratios α : β .

Interestingly, it appears that it is easier to show the existence of a solution to the Cauchy problem in the
more-restrictive case of circular nets, than for the more general case of non-circular nets. This is due to the
fact that our formulas for the transformation simplify, see Proposition 23.

Theorem 29. Suppose we are given two ‘orthogonally intersecting’ strips of circular quadrilaterals (see
Fig. 8, left). Then, these two strips can be extended to a rectangular patch with Z2 combinatorics such that
M is the Gauss map of a net M ∗ with a negative constant ratio of principal curvatures.

Proof. Consider the three faces f b, f c, f d of M around the vertex where the two given strips meet (see
Fig. 8). These faces can always be transformed (via Equation (10) plus appropriate scaling) into three faces
f ∗b, f ∗c, f ∗d of a mesh M ∗, which we are looking for. What remains to show, is that we can construct
the missing face f a around the same vertex to fill in the gap in such a way, that a corresponding face f ∗a

would exist on a potential transformed mesh M ∗ (i.e., without leaving any gaps or overlaps).
From the three faces f b, f c, f d , we can read off the direction ea

2 that f a would have (see Fig. 9, left),
and similarly, from the three faces f ∗b, f ∗c, f ∗d , we can read off the direction da

2 of the diagonal that f ∗a

would have. And since we are in the ‘circular’ case (Proposition (23)), the direction da
2 has then to be

composed of the diagonals of fa, via Equation (19):

ρda
2 = (α−β )ea

1 + εσ(α +β )ea
2,

for some ρ ∈ R. Recall that ea
1,e

a
2 are unit vectors. So the entire existence question reduces to the question

of whether such a vector ea
1 exists so that the above equation is fulfilled. For that, it is best to look at Fig. 9

(right): the normalized vector ea
1 exists if the circle centered at the base of ea

2 with radius |α−β | intersects
the line that has direction da

2 .
Now, the negativity of the ratio of the principal curvatures is important. It implies α < 0 < β or

α > 0 > β . In both cases, we have |α +β | ≤
∣∣|α|+ |β |∣∣= |α−β |. Consequently, the aforementioned

circle intersects the line that has direction da
2 , giving us two possibilities to choose for ea

1. �
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da
2ea

2
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f b

f c f d
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FIGURE 9. Left two: Schematic image showing the addition of a remaining face f a around a vertex (left) s.t. the resulting net
contains this 2×2 faces as part of a Gauss map M of a net M ∗ (right) with a negative constant ratio of principal curvatures. Right:
This image illustrates the simple geometric fact that, for given d2,e2,α,β with ‖e2‖= 1, there always exists e1 with ‖e1‖= 1 such
that (α−β )e1± (α +β )e2 = ρd2 if |α−β | ≥ |α +β |.

In the case of non-circular nets, we have even more degrees of freedom in the Cauchy problem
considered in Theorem 29.

4. DISCRETIZATION WITH ASYMPTOTIC NETS (A-NETS)

In this section, we study a discretization of asymptotic nets on surfaces with a constant ratio of principal
curvatures. As asymptotic lines exist only through hyperbolic points, we assume all surfaces here to
have negative Gaussian curvature (K < 0) outside, perhaps, finitely-many points. Therewith, there are
two asymptotic lines passing through each point, forming an asymptotic net or A-net. In the case of
a constant ratio of principal curvatures, these asymptotic lines intersect each other at a constant angle

ϕ = 2arctan
√
−κ1/κ2

(1)
= 2arctan

√
−β/α . Our goal is therefore to discretize a smooth A-net with

constant intersection angles between its parameter lines.
First, we will fix some notation, wherein the difference with Section 3 is that the characterization is

based on the vertices instead of the faces. We consider nets in R3 with Z2-combinatorics, i.e., of the form
f : Z2 → R3. Since we focus on local properties of nets, we will omit, where possible, the parameter
values u ∈ Z2, and use the common abbreviations: f = f (u1,u2), f1 = f (u1 +1,u2), f2 = f (u1,u2 +1),
f12 = f (u1+1,u2+1), f1̄ = f (u1−1,u2), etc. Along with that, for each of j ∈ {1, 1̄,2, 2̄}, the edge vector
( f j− f ) will be denoted by ∆ j f . The following discretization of A-nets appears several times in discrete
differential geometry (cf. [2, 12, 20]).

Definition 30. A discrete asymptotic net or discrete A-net is a map f : Z2→R3, wherein each vertex star
is planar, i.e., the five points f , f1, f2, f1̄, f2̄ lie in a plane, as depicted in Fig. 10, left.

This definition is formulated in such a way that the discrete parameter lines { f (k,u2)}k∈Z, and { f (u1,k)}k∈Z,
are discrete asymptotic lines (cf. [2, 20]).

f12f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2f1̄2 f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2

f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄f1̄

f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1ffffffffffffffffff1̄2̄

f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄f2̄

f12̄

θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2θ1̄2
θ12θ12θ12θ12θ12θ12θ12θ12θ12θ12θ12θ12θ12θ12θ12θ12θ12

θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄θ1̄2̄
θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄θ12̄

FIGURE 10. Left: Labelling of a vertex’s one-ring neighbors. Right: Labelling of the angles around a regular vertex.
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4.1. Formulation. Here we will formulate the conditions on a net f : Z2→ R3 so that it is a discrete
A-net emulating a surface that has a constant ratio of principal curvatures.

Let 0≤ θ jk < π be the angle between the edges ∆ j f and ∆k f , as shown in Fig. 10, right. Consider now
the regular interior vertices f of the net. Recall that a constant ratio of principal curvatures is equivalent to
the asymptotic lines having a constant angle ϕ = 2arctan

√
−κ1/κ2 between them. We discretize this by

requiring that the sum of opposite angles at each vertex star is either 2ϕ or 2(π−ϕ). In particular, we
require that the following condition on the averages of the angles holds

θ12 +θ1̄2̄ = 2ϕ and θ21̄ +θ2̄1 = 2(π−ϕ)

or

θ12 +θ1̄2̄ = 2(π−ϕ) and θ21̄ +θ2̄1 = 2ϕ,

since the vertex star is necessarily planar, wherefore the angles sum to 2π . In order to consolidate this
or-statement into a single constraint at each such vertex star, we use the periodicity of cosine to obtain

(22) cos(θ12 +θ1̄2̄) = cos2ϕ = cos2(π−ϕ) = cos(θ21̄ +θ2̄1),

which is to say that the cosines of the sums of opposite angles are equal, having a value of cos2ϕ .
A special case of our discretization turns up as the reciprocal parallel net of a circular net in [12]. There,

discrete minimal surfaces appear as A-nets with an opposite angle sum of π , as expected for minimal
surfaces.

Remark 31. Although consolidated, there is still an ambiguity in this when it comes to optimization:
either average could be optimized to the target of φ , but there is no guarantee that adjacent vertex stars
are consistent. Without that consistency, the mesh loses cohesiveness, as shown by the comparison in
Fig. 11. As a result, care should be taken that this consistency is maintained so that the result does not
have degenerate patches.

FIGURE 11. The marked angles are those that attain the target angle φ . The images to the left depict an inconsistency overall in the
arrangement of the angles that attain φ , while the ones to the right depict consistency.

4.2. Formulation as zeros of at-most-quadratic functions. The chosen method for optimization was
taken from Tang et al. [24], which requires that the constraints are at-most-quadratic. To ensure that
the constraints here are at-most-quadratic and that there are no degenerate solutions, auxiliary variables
are used. In this section, we will outline such constraints for A-nets that meet the angle condition,
Equation (22).

For the net to be an A-net, it must, by definition, have planar vertex stars. To facilitate this, a vertex
normal n f is used, so that the planarity at f can be written as

(23) n f ·∆ j f = 0,
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for each of j ∈ {1, 1̄,2, 2̄}. For the constraint of planar vertex stars, Equation (23), it must be that n f
is non-zero; to ensure this, we assert that n f is a unit vector. For the quadratic expression of the angle
condition (22), as in Eq. (25) below, we introduce unit vectors Fj that represent the direction of the
edges outgoing from f . This turns Equation (23) into the following group of equations: for each of
j ∈ {1, 1̄,2, 2̄},

(24)

n f ·n f = 1
Fj ·Fj = 1

∆ j f ·∆ j f = l2
∆ j f auxiliary variable l∆ j f for the edge length

l∆ j f Fj = ∆ j f to connect the unit edge with the edge

l∆ j f = d2
∆ j f auxiliary variable d∆ j f to ensure l∆ j f ≥ 0

n f ·Fj = 0.

To translate Eq. (22) for regular interior vertices so that they are at-most-quadratic, we first use the
angle-sum identity for the cosine,

cos(α +β ) = cosα cosβ − sinα sinβ .

Therewith, Equation (22) turns into the following: using the auxiliary variables c jk and s jk to stand in for
cosθ jk and sinθ jk, respectively,

(25)

c jk = Fj ·Fk

s2
jk = 1− c2

jk

c12c1̄2̄− s12s1̄2̄ = cos2ϕ

c21̄c2̄1− s21̄s2̄1 = cos2ϕ,

for jk ∈ {12, 1̄2̄,21̄, 2̄1}. Consequently, we obtain the following proposition.

Proposition 32. The zeros of the system of quadratic equations from (24) and (25) are in one-to-one
correspondence with discrete A-nets that have a constant ratio of principal curvatures.

4.3. Method of optimization, propagating these A-nets from a strip. In this section, we will give an
overview of how we obtained examples of these A-nets that have a constant ratio of principle curvatures. For
the optimization, the methodology from Tang et al. [24] was used with the at-most-quadratic formulation
discussed in the previous section. And to facilitate the formation of these surfaces, we have devised a
means to propagate these surfaces from a strip of quads, as detailed below. Together, the optimization and
the propagation are used in repeated succession, until a surface of desirable size, and accuracy, is achieved.

Given a smooth curve γ : [t0, tN ]→ R3, that is parametrized by arc length, with a partition t0 < t1 <
.. . < tN , and an initial orthonormal frame at t0, we devised a method for generating quads along γ , with the
aim that it be reasonably close to a strip with planar vertex star and fulfilling the angle condition. To do this,
first, frames at all points t j of the partition are constructed in a rotation-minimizing way, using the method
of approximation outlined in [8, §II.B]; this is done so as to obtain a strip more-stably defined along the
curve, that twists minimally around the curve. Here, the initial frame comprises the unit tangent vector
γ ′(t0), a chosen unit vector n(t0) orthogonal to γ ′(t0), and the mutually-orthogonal vector n(t0)× γ ′(t0),
as depicted in Fig. 12, left. Then, the frame at t j+1 is gotten from the one at t j by rotating it about the
vector γ ′(t j)× γ ′(t j+1) by the angle arccosγ ′(t j) · γ ′(t j+1); let this rotation be denoted by Tj, so that
Tjγ
′(t j) = γ ′(t j+1), and so on. Thusly, a frame is obtained at each point t j, for 0≤ j ≤ N.

With these frames, vertices are then added, allowing for the addition of faces between each of the pairs
of points γ(t j) and γ(t j+1). To facilitate this, through each γ(t j), there is a plane Pt j normal to n(t j), which
is spanned by

{
γ ′(t j), n(t j)× γ ′(t j)

}
. Let 0 < ϕ < π

2 to be the target angle. Using this angle, let `−t j be
the line through γ(t j) in Pt j that forms an angle of ϕ

2 with γ ′(t j), and let `+t j+1
be the line through γ(t j+1) in
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n(t0)× γ ′(t0) γ(t1)
γ(t0)

γ ′(t0)n(t0)

Pt j+1

Pt j

`−t j `+t j+1

γ(t j+1)γ(t j)
n(t j+1)

n(t j)

FIGURE 12. Left: A given smooth curve with a partition t0 < t1 < .. . < tN , and an initial orthonormal frame at t0. Right: Planes
at both γ(t j) and γ(t j+1), which are perpendicular to n(t j), and n(t j+1), respectively, and which contain the lines `−t j , and `+t j+1

,
respectively.

Pt j+1 that forms an angle of −ϕ

2 with −γ ′(t j+1); see Fig. 12, right, for an illustration. Then, we rotate the
line `+t j+1

at t j+1 by the rotation Tj, to obtain the line

˘̀+
t j+1

:= T−1
j (`t j+1 − γ(t j+1))+ γ(t j+1)

at t j+1, which lies in the plane

P̆t j+1 := T−1
j (Pt j+1 − γ(t j+1))+ γ(t j+1),

parallel to Pt j by the construction of Tj. Therewith, a new “upper” vertex f u is added as the point which
is closest to both `−t j and ˘̀+

t j+1
. This process is then repeated, using the lines `+t j and ˘̀−

t j+1
, to obtain a

new “lower” vertex f l as the point which is closest to them both. The new face is then given by the
vertices

{
γ(t j), f l , γ(t j+1), f u

}
; see Fig. 13, left, for an illustration. In this way, we obtain a strip that is

a reasonable initial guess, which can then be optimized and propagated.

vu
j

γ(t j+1)
γ(t j)

v l
j

g2 f12 g1

f2 f1

f1̄2 f12̄

f

f1̄ f2̄

FIGURE 13. Left: Face added along the curve. Right: Propagation of faces.

In order to obtain more of a surface from this, a method of propagating such strips by adding faces was
developed, with the aim optimizing the result for the constraints of A-nets of this kind. Let us consider
two successive quadrilaterals of the strip: f , f1, f12̄, f2̄ and f , f2, f1̄2, f1̄, see Fig. 13, right. We will now
complete one of the two adjacent faces by constructing a reasonable guess for f12.

Two suggestions for the new vertex f12 to complete the new face, are obtained by guessing new edge
vectors g1 and g2, which are to “evenly” extend the vertex star, namely, g1 = 2( f1− f )− ( f12̄− f2̄) and
g2 = 2( f2− f )− ( f1̄2− f1̄). Lastly, f12 is taken to be the average of f1 +g2 and f2 +g1, to complete the
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r( f ) n( f )

t( f )

r( f1) n( f1)

t( f1)

fffffffffffffffff
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FIGURE 14. Left: One of the developables through f , including the vertex normals, tangent vectors, and ruling vectors. Right: Both
developables through f , including the vertex normal and both ruling vectors at f ; note that the intersection curve of the two strips
does not necessarily contain the normal, nor does it even need to be a line, and that the rulings of the strips are not the same in
general.

face { f , f1, f12, f2}. With these new faces added, we then optimize; alternating between propagation and
optimization is then repeated, as wanted.

4.4. Support structure generation. As mentioned in the introduction, to surfaces with a negative con-
stant ratio of principal curvatures, we can orthogonally attach strips along the asymptotic lines that have
straight development. In an architectural context, these strips can then be used as curved support structures.
In this section, we will describe how these support structures are generated, cf. [23]. It is shown there
that, along each polyline, there is a discrete developable surface, with straight development. In order to
construct them, it is sufficient to find their rulings at each vertex, i.e., the folds along them. To that end, we
calculate these rulings for each of the two polylines passing through each vertex, which is sufficiently far
from the edge of the mesh.

Our notation, shown in Fig. 14 and Fig. 10, is the following: there is the unit vector t( f ) at the vertex f ,
that is perpendicular to the ruled surface, computed as

t( f ) :=
( f1− f )×n( f )
|( f1− f )×n( f )|

,

where n( f ) is the vertex normal at f ; this vector is normal to the plane spanned by the tangent vector
( f1− f ) and the normal n( f ). Therewith, the ruling vector r( f ) at the vertex f , is computed by

r( f ) := s ·
(
t( f1̄)× (t( f )+ t( f1))

)
,

where s is a sign determined as to keep r( f ) on a consistent side of the surface; this vector measures the
rotational change of the tangent vector t( f1̄) with respect to the average (t( f )+ t( f1)). As one can see
from using neighboring vertices, these computations require that the vertex f is sufficiently far from the
boundary of the mesh, for the support structure to be defined. To obtain the support structure, these ruling
vectors are used along with the vertices of the original mesh, to extrude the discrete developable surfaces
of the support structure.

Remark 33. Note that as the polylines become straighter, the rulings become closer to being tangent to
the surface, making strips appear narrower there. To alleviate this, it is possible to add in some of the
surface normal to the rulings there, but this then distorts the strip’s straight development in the plane.
Refer to the Fig. 15 and Fig. 16 in the following section for examples of this.
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FIGURE 15. An A-net with an angle of π/3 propagated, and optimized, in succession from a strip, shown in red, and its accompanying
support structure on a smaller patch. The strip was fixed with soft constaints, so that it could move slightly to accommodate the
optimization. Note the narrowing of the strips in the support structure towards the bottom, as an example of Remark 33.

4.5. Examples. This section will serve as an overview of how we obtained examples. The most readily-
available examples are surfaces of revolution, which can be obtained from an integral [11, §3.27]. Other
examples were obtained in a more-involved way: the main obstruction to the optimization comes from the
ambiguity at each vertex star of which angle goes to the target angle from the angle condition, as discussed
in Remark 31.

Following the method in §4.2, we picked a curve and starting vector, to generate a strip of quads. Then,
using the method in §4.3, we propagated faces along that strip, and optimized the result, fixing the starting
strip with soft constraints; this was done in succession until the desired size was reached. Steps from this
process are shown in Fig. 15.

Another means of generating examples, which we used, is starting off with quad meshes of minimal
surfaces. To do this, we first constructed meshes with a chosen topology, and optimized them for an angle
of π

2 , so that it approaches a minimal surface; then, this mesh was optimized for another angle. The step
of optimizing for a minimal surface first reduces the amount of “bias” at each vertex for the angles to
optimize in a particular direction. In certain cases, to facilitate the “alignment” of the angles across the
mesh in a consistent manner, soft constraints, which encouraged a consistent bias across the mesh, were
used in the starting iterations of the optimization. Some results of this are shown in Fig. 16.

Remark 34. Note that a quad mesh of arbitrary combinatorics may not be compatible with the angle
constraint consistently across the mesh; this is similar to what was discussed earlier in this section and in
Remark 31, but there the fault lied in a consistent choice, rather than a choice existing that is consistent.
In particular, the mesh should not include vertices of odd valence: see Fig. 17.
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FIGURE 16. Three examples of A-nets with an angle of π/3, where the top right is the support structure of the top left, and the top
middle shows the development of the red strips in the plane. The strips are nearly-rectangular, in part because some of the surface
normal was added to ensure the strips maintain more of an even width, as an example of Remark 33.
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[9] Heinz Hopf. Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Math. Nachr., 4:232–249, 1951.
[10] Oleg N. Karpenkov. On the flexibility of Kokotsakis meshes. Geometriae Dedicata, 147(1):15–28, 2010.
[11] Wolfgang Kühnel. Differentialgeometrie. Aufbaukurs Mathematik. Springer Spektrum, Wiesbaden, updated edition, 2013.
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