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This paper provides computational tools for the modeling and design of quad

mesh mechanisms, which are meshes allowing continuous flexions under

the assumption of rigid faces and hinges in the edges. We combine methods

and results from different areas, namely differential geometry of surfaces,

rigidity and flexibility of bar and joint frameworks, algebraic geometry, and

optimization. The basic idea to achieve a time-continuous flexion is time-

discretization justified by an algebraic degree argument. We are able to prove

computationally feasible bounds on the number of required time instances

we need to incorporate in our optimization. For optimization to succeed, an

informed initialization is crucial. We present two computational pipelines to

achieve that: one based on remeshing isometric surface pairs, another one

based on iterative refinement. A third manner of initialization proved very

effective: We interactively design meshes which are close to a narrow known

class of flexible meshes, but not contained in it. Having enjoyed sufficiently

many degrees of freedom during design, we afterwards optimize towards

flexibility.
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1 INTRODUCTION
Our work on flexible meshes is motivated by several factors. Firstly,

rigidity and flexibility is a highly interesting topic with a long list

of beautiful and surprising results. Secondly, the field is known for

resisting systematic modeling and computational design. Finally,

flexible structures have many applications, from mechanical engi-

neering to origami, and to the recent trend of transformable designs
in art and architecture. This paper focuses on meshes, particularly
quad meshes, whose faces move as rigid bodies while being con-

nected with hinges. An example of this is given by Fig. 2, where

flexible “Voss type” quad meshes have been realized as an artistic

object [Baldwin 2018; Mitchell et al. 2018]. Mechanisms of this kind

are not easy to design – in fact, transformable designs often have to
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Fig. 1. A quad mesh mechanism as an architectural transformable design.
It has been initialized by interactive design, using the ‘optimization-driven
exploration’ method we present below. Besides flexibility, it fulfills other
side-conditions important to this particular application: The highlighted
horizontal boundary remains in the base plane during deployment. This has
been achieved by keeping𝑧 coordinates of vertices fixed during optimization.

employ bendable elements to achieve flexibility. It is precisely this

design problem which is addressed in the present paper.

Specifically, we treat the following old and so far largely unsolved

problem: Compute quad mesh mechanisms, i.e., quad meshes which

are flexible under the assumption that faces are rigid and edges act as

hinges between them. Our method uses optimization, an important

part of which is the proper initialization. For that, we use results

on discrete isometries and on infinitesimal isometries, in particular

the work by Sauer [1970]. In this way, we are able to address the

problem in greater generality and go beyond prior work which is

based on the analysis of special cases.

1.1 Contributions and Overview
After a recap of isometries, flexions and infinitesimal flexions of

meshes in § 2 we present algorithms for basic tasks used in the

design of flexible meshes. § 3.1 shows how to optimize two meshes

to become isometric to each other and in addition to become in-

finitesimally flexible. § 3.2 discusses quad-meshing a pair of surfaces

such that the resulting meshes enjoy planar faces and are isometric.

§ 3.3 does the same without the planar faces requirement. In § 3.4

we use algebraic considerations to reduce the problem of finding

time-continuous flexions to a time-discrete sequence of isometric

meshes. § 3.5 gives tools to create a dense sequence of meshes ap-

proximating a continuous flexion. Finally, § 4 combines the tasks

listed above and presents computational pipelines for the design of

quad mesh mechanism: one is based on remeshing, and another one

on iterative refinement. A third approach is based on exploring the

configuration space, which is discussed by § 4.3: We design meshes

which enjoy some, but not all properties of known classes of flexible
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Fig. 2. Kinematic Sculpture by Skidmore, Owings & Merrill, an installation
for the 2018 Chicago Design week (© SOM).

meshes, such that there is still enough design freedom. Optimiza-

tion towards flexibility of such results is surprisingly effective. § 5

concludes the paper with a discussion of results, implementation

details, physical models, limitations and pointers to future work.

The main result of the present paper is the interplay between

algebraic and numerical results: A degree bound allows us to convert

the search for a continuous flexion to the computation of a finite
number of isometric meshes.

1.2 Previous Work
Here we work with mechanisms, with the rigidity and flexibility of

bar and joint frameworks, and also the isometric bending of surfaces.

There is extensive prior work on each of these subjects.

Flexions of Quad Meshes with Planar Faces. Flexible quad meshes

with planar rigid faces have been studied by [Kokotsakis 1933] and

follow-up work, e.g. [Stachel 2010, 2011], in particular with a focus

on origami [Tachi 2009, 2013; Tachi and Epps 2011]. For regular

quad meshes with planar faces, Schief et al. [2008] pointed out that

it is essentially sufficient to consider meshes of size 3 × 3. The full

classification of all flexible types was obtained by Izmestiev [2017].

The design of flexible quad meshes has been treated in special cases

only: He and Guest [2020] discuss several elementary operations on

meshes which preserve flexibility, including the stitching together

of smaller meshes.

Flexions of Quad Meshes with Non-Planar Faces. We are aware of

only two contributions, studying “small” examples with non-planar

quads, namely by Nawratil [2023] and by Aikyn et al. [2024]. The

latter contains a generalization of the so-called Bricard equations

to the case of nonplanar faces. This result is directly used in the

present paper.

Flexions of Meshes Analogous to Bending of Surfaces. Isometric

bending of surfaces has been extensively surveyed, see e.g. [Sabitov

1992]. It is important to appreciate that even if a discrete surface

approximates a smooth one, the flexions of the discrete surface do

not usually approximate the bendings which the smooth surface

is capable of. This happens only in special cases. One example is

provided by Voss surfaces, defined by the existence of a geodesic

conjugate curve network [Voss 1888]. Discrete Voss surfaces are

defined via vertex angles and occur as reciprocals of discrete K-

surfaces [Sauer 1970; Wunderlich 1951]. They have recently been

employed for grid shell applications [Montagne et al. 2020], and they

include the well-known unfolding solar panels of Miuro-Ori type as

a special case [Miura 1980]. Another class is so-called profile-affine

surfaces (which include rotational surfaces). Their discrete analogs

are characterized by trapezoidal faces [Sauer 1970]. The design of

such T-net mechanisms has been proposed by [Sharifmoghaddam

et al. 2021], and their flexions have in more detail been studied by

[Izmestiev et al. 2023]. In the special case of surfaces projectively

equivalent to profile-affine surfaces, Nawratil [2024] succeeded in

classifying all flexible cases.

Flexions Which Include a Flat State. Flexible quad meshes relevant

for paper-folding (origami) have a special property, namely existence

of an overall flat state. They are well studied, see e.g. [Dudte et al.

2016; Tachi 2009, 2010a,b, 2013; Tachi and Epps 2011]; we also refer

to the monograph [Demaine and O’Rourke 2007]. A topic related to

both origami and mechanisms is origami with thick panels [Chen

et al. 2015]. More recently, there have been contributions to design,

based on local analysis [Evans et al. 2015a,b; Feng et al. 2020] or

special geometries [Song et al. 2017]. Design of flat-foldable meshes

of general shape based on a marching algorithm acting on boundary

values has been proposed by [Dang et al. 2022].

Infinitesimal Rigidity and Flexibility. Infinitesimal flexibility of a

mechanism has mostly been studied in the general context of bar

and joint frameworks; our setting also fits this general description.

We refer to [Connelly 1987] for a textbook introduction, and to

[Sauer 1970; Schief et al. 2008] for the specific case of quad meshes,

which is treated from the viewpoint of discrete differential geome-

try. The relations between finite flexibility, infinitesimal (1st order)

flexibility and higher order flexibility are geometrically interesting,

and sometimes not at all obvious [Connelly and Servatius 1994].

Applications and Computing. So far quad mesh mechanisms in

our sense have hardly been explored from the viewpoint of geom-

etry processing. The prior work closest to our paper is by Jiang

et al. [2021]. They propose a simplified version of the remeshing

procedure of § 3.2, in order to find the edges of a quad mesh mech-

anism which approximates certain isometric mappings between

surfaces. On the other hand the isometric mapping of surfaces has

been treated successfully, and in different ways, most recently by

[Chern et al. 2018; Jiang et al. 2020, 2021]. As to mechanisms, an im-

portant application of mechanisms based on meshes is mechanical
metamaterials. Their deployment typically approximates surface de-

formations with local scaling factors ≥ 1, not necessarily isometric

mappings. We refer to survey articles [Callens and Zadpoor 2018;

Zhai et al. 2021]. Mechanical metamaterials might be based on a wa-

tertight quad mesh mechanism in our sense, but in this case do not

exhibit fairness (see e.g. [Jiang et al. 2019; Miura 1980]). They might

be based on meshes where the connectivity is enforced only for part

of the edges, or even only in vertices [Dudte et al. 2016; Konaković

et al. 2016; Konaković-Luković et al. 2018]. Recently, focus has been

on modular and multi-DOF metamaterials [Jamalimehr et al. 2022;

Xiao et al. 2022].

One motivation for our work is transformable designs, see e.g.

[Hoberman 2006]. These are not restricted to rigid parts, and one

sometimes finds blueprints for technical solutions in nature [Lien-

hard et al. 2011; Masselter et al. 2012]. Contributions to computation

are diverse: There are shells which emerge by the deployment of
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elastic beams [Panetta et al. 2019; Pillwein et al. 2020a,b; Soriano

et al. 2019], structures which constitute a mixture of rigid and flexi-

ble parts [Guseinov et al. 2017; Malomo et al. 2018], and fully flexible

structures where rigidity is imposed by folding [Kilian et al. 2017].

2 BASIC CONCEPTS
In § 2 we recall some basic facts on isometric bending of surfaces, as

well as on infinitesimal isometries. The latter are going to be used in

the initialization of our optimization algorithms. Figure 3 provides

an overview of the contents of this section. In our exposition we

go into greater detail than strictly necessary, since certain parts of

the material are only available in the German text by Sauer [1970].

Other recent work addressing isometric mappings between surfaces

and providing a short introduction is [Jiang et al. 2021]. We further

discuss the relation between two different isometric positions of

surfaces in both the discrete and continuous cases.

2.1 Isometries of smooth surfaces
2.1.1 Bending of a Surface and the Associated Velocity Diagram and
Rotation Diagram. We consider a continuous isometric deformation

of a smooth surface 𝑥 (𝑢, 𝑣) over time 𝑡 . “Isometric” means that the

inner products of partial derivatives 𝑥𝑢 , 𝑥𝑣 do not depend on time

𝑡 . These inner products are stored in the coefficients of the first

fundamental form, namely 𝐸 = ⟨𝑥𝑢 , 𝑥𝑢⟩, 𝐹 = ⟨𝑥𝑢 , 𝑥𝑣⟩, 𝐺 = ⟨𝑥𝑣, 𝑥𝑣⟩.
The conditions ¤𝐸 = ¤𝐹 = ¤𝐺 = 0 expand to

⟨𝑥𝑢 , ¤𝑥𝑢⟩ = 0, ⟨𝑥𝑢 , ¤𝑥𝑣⟩ + ⟨𝑥𝑣, ¤𝑥𝑢⟩ = 0, ⟨𝑥𝑣, ¤𝑥𝑣⟩ = 0. (1)

The dot indicates the derivative with respect to time 𝑡 . Following

[Sauer 1970], we consider the velocity diagram ¤𝑥 (𝑢, 𝑣) of the surface.
It is not difficult to see that Equ. (1) has a geometric implication: A

curve 𝑥 (𝑢 (𝑠), 𝑣 (𝑠)) on the surface is orthogonal to its corresponding

curve ¤𝑥 (𝑢 (𝑠), 𝑣 (𝑠)) in the velocity diagram. This relation will also

be observed in the case of discrete surfaces.

For any fixed choice (𝑢, 𝑣), the tangent vectors 𝑥𝑢 , 𝑥𝑣 attached
to 𝑥 (𝑢, 𝑣) move rigidly, thanks to Equ. (1). It is well known that

then there is a vector of angular veclocity 𝑐 (𝑢, 𝑣) and a translational
veclocity component 𝑐 (𝑢, 𝑣) such that the motion of the point 𝑥 (𝑢, 𝑣)
and of tangent vectors 𝑥𝑢 , 𝑥𝑣 is expressed as

¤𝑥 = 𝑐 + 𝑐 × 𝑥 . (2)

¤𝑥𝑢 = 𝑐 × 𝑥𝑢 , ¤𝑥𝑣 = 𝑐 × 𝑥𝑣 . (3)

Sauer [1970] calls the surfaces 𝑐 (𝑢, 𝑣) resp 𝑐 (𝑢, 𝑣) the rotation dia-
gram resp. translation diagram.

As to derivatives of the surface 𝑐 (𝑢, 𝑣) observe that ( ¤𝑥 − 𝑐)𝑢 =

(𝑐 ×𝑥)𝑢 = 𝑐𝑢 ×𝑥 +𝑐 ×𝑥𝑢 = 𝑐𝑢 ×𝑥 − ¤𝑥𝑢 , where the last equality used
(3). Together with the analogous computation for 𝑣 this shows that

𝑐𝑢 = 𝑥 × 𝑐𝑢 , 𝑐𝑣 = 𝑥 × 𝑐𝑣 .

This establishes the remarkable symmetry between pairs 𝑥, ¤𝑥 on

the one hand and 𝑐, 𝑐 on the other hand: Each pair can be seen as

rotation diagram plus translation diagram of the other pair.

Differentiating (3) and imposing the condition ¤𝑥𝑢𝑣 = ¤𝑥𝑣𝑢 yields

𝑐𝑣 × 𝑥𝑢 = 𝑐𝑢 × 𝑥𝑣 . (4)
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Fig. 3. This diagram lists the notions introduced in § 2 and their relations,
with an arrow indicating that one object is determined by another. If all
arrows were reversible, the problem of computing quad mesh mechanisms
would be easier. Derived concepts like the rotation diagrams are relevant
because they can be used to recognize unsolvable cases.

This shows that all four involved vectors 𝑐𝑢 , 𝑐𝑣, 𝑥𝑢 , 𝑥𝑣 are co-planar,

and thus corresponding tangent planes of surfaces 𝑥 (𝑢, 𝑣) and 𝑐 (𝑢, 𝑣)
are parallel to each other.

2.1.2 Approximating the Bending of Surfaces by Flexion of Meshes.
It would be very helpful if continuous bending of surfaces could

be approximated by flexions of quad meshes whose edges follow

the surface’s parameter lines and whose faces move rigidly. Un-

fortunately this works only in special cases. The reason for this

basically is the fact that isometric bending is concerned with 1st

derivatives only, but a face of a quad mesh encodes both 1st and

2nd order discrete derivatives. Consider a quad mesh approximating

a smooth parametric surface, and a face that is sampled from the

parametrization. It has vertices

𝑣0 = 𝑥 (𝑢, 𝑣), 𝑣1 = 𝑥 (𝑢 + ℎ, 𝑣), 𝑣2 = 𝑥 (𝑢 + ℎ, 𝑣 + 𝑘), 𝑣3 = 𝑥 (𝑢, 𝑣 + 𝑘) .

Then mixed derivatives and a normal vector can be expressed in

terms of these vertices:

𝑥𝑢𝑣 (𝑢, 𝑣) ≈
𝑣0 − 𝑣1 + 𝑣2 − 𝑣3

ℎ𝑘
, 𝑛(𝑢, 𝑣) ≈ (𝑣1 − 𝑣3) × (𝑣0 − 𝑣2)

∥(𝑣1 − 𝑣3) × (𝑣0 − 𝑣2)∥
.

Rigid motions preserve inner products. Thus, only bendings where

𝑀 (𝑢, 𝑣) := ⟨𝑛, 𝑥𝑢𝑣⟩ is constant over time (5)

can possibly be approximated by an isometric flexion of the mesh.

The case𝑀 (𝑢, 𝑣) = 0 is well known; these are the conjugate sur-

faces which correspond to quad meshes with planar faces. In this

case there is previous work on flexibility. E.g. a 2nd order infinitesi-

mal isometry of a smooth surface implies existence of a continuous

bending of that surface [Schief et al. 2008]. Special cases of flexible

meshes such as Voss nets and T-nets have already been discussed

by Sauer [1970]. However, flexible quad meshes with non-planar

faces are almost unexplored, apart from a result by Sauer [1970]

concerning first order flexibility:
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Proposition 2.1. [Sauer 1970] In case 𝑀 = const., the surface
𝑥 (𝑢, 𝑣) and the rotation diagram 𝑐 (𝑢, 𝑣) are reciprocal-parallel, mean-
ing there are functions 𝜌 (𝑢, 𝑣), 𝜏 (𝑢, 𝑣) with

𝑐𝑢 = 𝜌𝑥𝑣, 𝑐𝑣 = 𝜏𝑥𝑢 . (6)

Further, the velocity diagram ¤𝑥 (𝑢, 𝑣) is a conjugate surface, i.e.,

det( ¤𝑥𝑢 , ¤𝑥𝑣, ¤𝑥𝑢𝑣) = 0. (7)

Proof. The unit normal vector field is expressed as 𝑛 = (𝑥𝑢 ×
𝑥𝑣)/𝜆 with 𝜆 = ∥𝑥𝑢 × 𝑥𝑣 ∥. Since 𝜆 =

√
𝐸𝐺 − 𝐹 2

and (1) implies ¤𝐸 =

¤𝐹 = ¤𝐺 = 0, we also have
¤𝜆 = 0. Thus ¤𝑀 = 𝑑

𝑑𝑡
⟨ 1

𝜆
(𝑥𝑢 × 𝑥𝑣), 𝑥𝑢𝑣⟩ = 0

is equivalent to
𝑑
𝑑𝑡

⟨𝑥𝑢 × 𝑥𝑣, 𝑥𝑢𝑣⟩ = 0. Expanding this condition

yields det( ¤𝑥𝑢 , 𝑥𝑣, 𝑥𝑢𝑣) +det(𝑥𝑢 , ¤𝑥𝑣, 𝑥𝑢𝑣) +det(𝑥𝑢 , 𝑥𝑣, ¤𝑥𝑢𝑣) = 0. Some

manipulations using (3) and (4) yield det(𝑐𝑣 ×𝑥𝑢 , 𝑥𝑢 , 𝑥𝑣) = det(𝑐𝑢 ×
𝑥𝑣, 𝑥𝑢 , 𝑥𝑣) = 0. This is possible only if (6) holds. Equ. (7) follows by

some more elementary manipulations. □

Later we are going to approximate the bending of a surface by the

flexion of a quad mesh. We will make use of the conjugacy expressed

by Prop. 2.1 – it is known that conjugate surfaces are discretized by

quad meshes with planar faces [Sauer 1970].

2.2 Isometries of discrete surfaces
In our pursuit of quad mesh mechanisms we need to model isome-

tries between surfaces, where those surfaces are represented by

quad meshes. For that we employ the “checkerboard” approach

proposed by Jiang et al. [2020; 2021] and described by § 2.2.1 below.

For a quad mesh mechanism, different positions of this mecha-

nism should also be called “isometric”. This however is a different

kind of isometry because here we require that faces moving rigidly.

Such isometries with rigid faces are discussed by § 2.2.2. They are

much harder to achieve than checkerboard isometries.

2.2.1 Isometric Correspondence and Isometric Bending of Meshes.
Following [Jiang et al. 2020], two combinatorially equivalent quad

meshes𝑀,𝑀 ′
are checkerboard-isometric, if for corresponding faces

𝑣0, . . . , 𝑣3 and 𝑣 ′
0
, . . . , 𝑣 ′

3
, the conditions

∥𝑣0 − 𝑣2∥2 = ∥𝑣 ′
0
− 𝑣 ′

2
∥2, ∥𝑣1 − 𝑣3∥2 = ∥𝑣 ′

1
− 𝑣 ′

3
∥2

(8)

⟨𝑣0 − 𝑣2, 𝑣1 − 𝑣3⟩ = ⟨𝑣 ′
0
− 𝑣 ′

2
, 𝑣 ′

1
− 𝑣 ′

3
⟩,

hold. These equations have a geometric meaning expressed in terms

of the parallelogram formed by edge midpoints𝑚01,𝑚12,𝑚23,𝑚30,

where𝑚𝑖 𝑗 =
1

2
(𝑣𝑖 + 𝑣 𝑗 ). (8) means that this parallelogram is con-

gruent to the corresponding parallelogram𝑚′
01
, . . . ,𝑚′

30
, Jiang et

al. [2020; 2021] demonstrate that checkerboard-isometric meshes

discretize an isometric mapping between surfaces.

The continuous bending of a continuous surface is approximated

by a time-dependent quad mesh (𝑉 , 𝐸, 𝐹 ) evolving such that it re-

mains in checkerboard-isometric correspondence to a fixed mesh.

Then parallelograms inscribed in faces move rigidly, and for each

face 𝑓 ∈ 𝐹 there are 𝑐 𝑓 , 𝑐 𝑓 such that parallelogram vertices ¤𝑚𝑖 𝑗
move according to

¤𝑚𝑖 𝑗 = 𝑐 𝑓 ×𝑚𝑖 𝑗 + 𝑐 𝑓 .

𝑣0

𝑣1

𝑣2

𝑣3

𝑣 ′
0

𝑣 ′
1

𝑣 ′
2

Fig. 4. Quads with the
same edge lengths and
diagonal lengths, but op-
posite orientation.

It is not difficult to see that these equations, if seen as a linear system

for the variables 𝑐 𝑓 , 𝑐 𝑓 , has the explicit solution

𝑐 𝑓 = − ( ¤𝑚12 − ¤𝑚01) × ( ¤𝑚23 − ¤𝑚01)
⟨𝑚12 −𝑚01, ¤𝑚23 − ¤𝑚01⟩

, 𝑐 𝑓 = ¤𝑚01 − 𝑐 𝑓 ×𝑚01 . (9)

The 𝑐 𝑓 ’s constitute the vertices of a mesh which is a combinatorial

dual of the givenmesh. It serves as discrete equivalent of the rotation

diagram. Similarly, the 𝑐 𝑓 ’s serve as a discrete translation diagram.

2.2.2 Mesh Isometry with Rigid Faces. Two combinatorially equiva-

lent quad meshes (𝑉 , 𝐸, 𝐹 ) and (𝑉 ′, 𝐸 ′, 𝐹 ′) are isometric with rigid
faces, if for every face 𝑓 and its corresponding face 𝑓 ′ there is a rigid
body motion transforming 𝑓 onto 𝑓 ′. This relation between meshes

is much more constrained than the checkerboard-isometric relation

defined by § 2.2.1. It is the main focus of this paper.

The ‘isometry with rigid faces’ constraint implies that within

each face, distances between corresponding vertices are the same:

𝑐
𝑖 𝑗

len
= ∥𝑣𝑖 − 𝑣 𝑗 ∥2 − ∥𝑣 ′𝑖 − 𝑣 ′𝑗 ∥

2 = 0, for 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑓 . (10)

Rigid body motions are orientation-preserving (see Fig. 4), so we

require that for 𝑓 = 𝑣0𝑣1𝑣2𝑣3, also 𝑐vol,𝑓 = 0, where

𝑐
vol,𝑓 = det(𝑣1 − 𝑣0, 𝑣2 − 𝑣0, 𝑣3 − 𝑣0) − det(𝑣 ′

1
− 𝑣 ′

0
, 𝑣 ′

2
− 𝑣 ′

0
, 𝑣 ′

3
− 𝑣 ′

0
) .

(11)

2.2.3 Flexion of Quad Meshes —Quad Mesh Mechanisms. A flexion

is a deformation of a time-dependent mesh (𝑉 ′, 𝐸 ′, 𝐹 ′) which stays

isometric, with rigid faces, to a fixed mesh (𝑉 , 𝐸, 𝐹 ), see Fig. 5. Rigid
body motions are flexions, they are called trivial. A mesh is flexible

if a nontrivial flexion exists. We also say the mesh is a mechanism
then – see Fig. 5. The key to reducing the complexity of the quad

mesh flexibility problem is the following:

Proposition 2.2. A regular quad mesh is flexible if and only if all
its 3 × 3 submeshes are.

Schief et al. [2008] proved this in the setting of quad meshes with

planar faces, but their proof does not depend on planarity.

For a smooth flexion, each face 𝑓 is endowed with vectors 𝑐 𝑓 , 𝑐 𝑓
such that

¤𝑣𝑖 = 𝑐 𝑓 × 𝑣𝑖 + 𝑐 𝑓 , for all 𝑣𝑖 ∈ 𝑓 . (12)

They can be computed in a way analogous to (9), namely as

𝑓 = (𝑣0𝑣1𝑣2𝑣3) =⇒ 𝑐 𝑓 = − ( ¤𝑣1 − ¤𝑣0) × ( ¤𝑣2 − ¤𝑣0)
⟨𝑣1 − 𝑣0, ¤𝑣2 − ¤𝑣0⟩

,

Fig. 5. Flexion of a quad
mesh mechanism. The rigid
faces are represented by
bulky solids to emphasize
that they are not planar.
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and 𝑐 𝑓 = ¤𝑣0 − 𝑐 𝑓 × 𝑣0.

A combinatorial dual of the mesh with the 𝑐 𝑓 ’s as vertices serves

as discrete rotation diagram. Similarly, vectors 𝑐 𝑓 form a translation

diagram. The mesh with vertices ¤𝑣𝑖 and combinatorially equivalent

to the given mesh, is called a velocity diagram. Properties of these

auxiliarymeshes are nicely similar to certain bendings of continuous

surfaces. They are summarized below and are illustrated by Fig. 6.

Proposition 2.3. ([Sauer 1970]; mesh analogue of Prop. 2.1) .
For a smooth flexion of a quad mesh, the associated rotation diagram
is reciprocal-parallel to the mesh. Further, the velocity diagram is
a discrete-conjugate surface, i.e., its faces are planar. Its edges are
orthogonal to the corresponding edges of the original mesh:

⟨𝑣𝑖 − 𝑣 𝑗 , ¤𝑣𝑖 − ¤𝑣 𝑗 ⟩ = 0, whenever 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑓 , 𝑓 ∈ 𝐹 . (13)

Proof. Consider a face 𝑓 and vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑓 . Equ. (13) follows

by differentiating ∥𝑣𝑖 − 𝑣 𝑗 ∥2 = const. By Equ. (12),

𝑣𝑖 , 𝑣 𝑗 ∈ 𝑓 =⇒ ¤𝑣𝑖 − ¤𝑣 𝑗 = 𝑐 𝑓 × (𝑣𝑖 − 𝑣 𝑗 ). (14)

Thus 𝑐 𝑓 is a normal vector of the face of the velocity diagram cor-

responding to 𝑓 . As to the rotation diagram, assume that an edge

𝑣0𝑣1 is the intersection of faces 𝑓 , 𝑓 ′. We invoke (14) for both 𝑓 , 𝑓 ′:

¤𝑣0 − ¤𝑣1 = 𝑐 𝑓 × (𝑣0 − 𝑣1) = 𝑐 𝑓 ′ × (𝑣0 − 𝑣1)
=⇒ (𝑐 𝑓 − 𝑐 𝑓 ′) × (𝑣0 − 𝑣1) = 0.

This means that the edge 𝑣0𝑣1 of the original mesh, and the corre-

sponding edge 𝑐 𝑓 𝑐 𝑓 ′ in the dual rotation diagram are parallel. □

2.3 Infinitesimal Isometries
An infinitesimal bending of a surface is a snapshot of a smooth

bending, capturing positions and velocities at a single time instant of

interest, allowing the construction of rotation diagrams and similar,

without the need for establishing a full time-continuous bending.

Similarly an infinitesimal flexion of a mesh is defined. These notions

will be important for our algorithmic approach.

Formally, an infinitesimal bending of a smooth surface 𝑥 (𝑢, 𝑣) is
a velocity vector field ¤𝑥 (𝑢, 𝑣), such that (1) holds. The constructions

performed in § 2.1.1 still work for infinitesimal isometries, since

they depend on ¤𝑥 (𝑢, 𝑣) only. There is a rotation diagram 𝑐 (𝑢, 𝑣) and
translation diagram 𝑐 (𝑢, 𝑣) obeying (2)–(4). Prop. 2.1 is still valid –

actually, we could have formulated Prop. 2.1 as a statement about

infinitesimal bendings.

Rigid body motions are called trivial bendings, and any infinites-

imal bending ¤𝑥 (𝑢, 𝑣) which matches a rigid body motion is called

trivial. For discrete surfaces, there is a similar concept:

Definition 2.4. An infinitesimal flexion of a mesh (𝑉 , 𝐸, 𝐹 ) is an
assignment of velocity vectors ¤𝑣𝑖 to vertices 𝑣𝑖 , such that (13) holds,
i.e., ⟨𝑣𝑖 − 𝑣 𝑗 , ¤𝑣𝑖 − ¤𝑣 𝑗 ⟩ = 0 whenever 𝑣𝑖 , 𝑣 𝑗 belong to the same face.

The expressions we require to vanish come from the time deriva-

tives of squared lengths ∥𝑣𝑖 − 𝑣 𝑗 ∥2
such as occur in the constraints

(10). This definition expresses our interpretation as a snapshot of a

smooth flexion, capturing positions and first derivatives.

Every mesh has infinitesimal flexions, name the trivial ones orig-

inating from a rigid body motion of the whole mesh. They have the

form ¤𝑣𝑖 = 𝑐 × 𝑣𝑖 + 𝑐 , for certain fixed 𝑐, 𝑐 ∈ R3
. An infinitesimally

flexible mesh is one which has nontrivial infinitesimal flexions.

𝑣𝑖

𝑣 𝑗

¤𝑣 𝑗

¤𝑣𝑖

𝑐 𝑓

𝑐 𝑓

𝑐 𝑓 ′ 𝑐 𝑓
𝑐 𝑓 ′

¤𝑣 𝑗

Fig. 6. Center: A flexing quad mesh with vertices 𝑣𝑖 and angular velocities
𝑐 𝑓 of faces. Left: Velocity diagram with vertices ¤𝑣𝑖 and normal vectors 𝑐 𝑓 of
faces. Corresponding edge vectors ¤𝑣𝑖 − ¤𝑣𝑗 and 𝑣𝑖 − 𝑣𝑗 are orthogonal. Right:
The rotation diagram has vertices 𝑐 𝑓 , for each face 𝑓 . It is dual to the mesh,
with corresponding edges 𝑓 ∩ 𝑓 ′ and 𝑐 𝑓 , 𝑐 𝑓 ′ being parallel.

The constructions of § 2.2.3, namely of a velocity diagram, rotation

diagram and translation diagram work, for infinitesimal flexions

directly, because they need only first order derivatives. Prop. 2.3 is

still valid. We state it again, with an extension:

Proposition 2.5. [Sauer 1970]. For an infinitesimal flexion of
a mesh, the associated velocity diagram has planar faces, and the
associated rotation diagram is reciprocal-parallel to the mesh. Con-
versely, existence of a nondegenerate reciprocal-parallel mesh implies
infinitesimal flexibility.

Proof. For the converse, assume existence of vectors 𝑐 𝑓 and

define velocities ¤𝑣𝑖 by (12). It is easy to see that the infinitesimal

flexibility condition follows from the reciprocal-parallel property.

The word ‘nondegenerate’ means that the rotation diagram contains

at least two different points. Then rotations associated with faces

are not all the same, implying infinitesimal flexibility. □

2nd order flexibility. We also consider higher order infinitesimal

flexions. Consider trajectories 𝑣𝑖 (𝑡) and 𝑣 𝑗 (𝑡) of vertices belonging
to the same face. In a smooth flexion, their distance remains constant

for all times 𝑡 , so all derivatives of ∥𝑣𝑖 (𝑡) − 𝑣 𝑗 (𝑡))∥2
w.r.t. 𝑡 vanish:

𝑐
fl,1,𝑖 𝑗 = ⟨𝑣𝑖 − 𝑣 𝑗 , ¤𝑣𝑖 − ¤𝑣 𝑗 ⟩ = 0, (15)

𝑐
fl,2,𝑖 𝑗 = ⟨𝑣𝑖 − 𝑣 𝑗 , ¥𝑣𝑖 − ¥𝑣 𝑗 ⟩ + ⟨¤𝑣𝑖 − ¤𝑣 𝑗 , ¤𝑣𝑖 − ¤𝑣 𝑗 ⟩ = 0,

and so on. In this paper we do not need order higher than 2. We

define a mesh to be 2nd order flexible, if we can assign derivatives

¤𝑣𝑖 , ¥𝑣𝑖 to each vertex 𝑣𝑖 , such that (15) holds whenever 𝑣𝑖 , 𝑣 𝑗 belong

to the same face. We further require that the 1st order derivatives

¤𝑣𝑖 are not those of a rigid motion of the entire mesh.

There is debate in the rigidity community if our definition is the

“right” one, but it serves for our purposes [Connelly and Servatius

1994]. Note that infinitesimal flexibility does not imply continuous

flexibility.

Remark 2.6. In the special case of planar quad meshes, 2nd order

flexibility has been nicely elaborated by Schief et al. [2008]. E.g. they

show that then the above-mentioned rotation diagrams are discrete

Bianchi surfaces with constrained Lelieuvre normal vectors. We do

not use their work for our optimization tasks, but directly work

with the simpler quadratic constraints of (15).
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𝑥1 (𝑢, 𝑣) 𝑥2 (𝑢, 𝑣) 𝑐 (𝑢, 𝑣)

Fig. 7. Illustration of isometric surfaces 𝑥1 (𝑢, 𝑣) (left hand column) and
𝑥2 (𝑢, 𝑣) (center) and the associated rotation surface 𝑐 (𝑢, 𝑣) at right. If 𝑥1, 𝑥2

are samples of a smooth bending to be approximated with a flexing quad
mesh, 𝑐 (𝑢, 𝑣) must obey further conditions. Thus we visualize Gaussian
curvature by color coding (blue for 𝐾 < 0 and red for 𝐾 > 0).

2.4 Time-Discrete Bendings and Flexions
Above we considered either continuous isometries or infinitesimal

isometries. It is equally important to consider sequences of surfaces

or meshes which are isometric to each other. Any sample of a con-

tinuous bending, or a continuous flexion, yields such a sequence. We

start our discussion with two meshes (𝑉 1, 𝐸1, 𝐹 1) and (𝑉 2, 𝐸2, 𝐹 2)
which are isometric in the sense of rigid faces, thus being candidates

for being part of a smooth flexion.

To study such mesh pairs, we introduce the vertices 𝑣
avg

𝑖
of the

so-called middle mesh and Δ𝑣𝑖 of the difference mesh:

𝑣
avg

𝑖
=

1

2

(𝑣1

𝑖 + 𝑣2

𝑖 ), Δ𝑣𝑖 = 𝑣2

𝑖 − 𝑣1

𝑖 .

Distances of corresponding vertices are equal, if they are contained

in the same face. Thus we immediately get

𝑣𝑖 , 𝑣 𝑗 ∈ 𝑓 =⇒ ⟨𝑣avg
𝑖

− 𝑣
avg

𝑗
,Δ𝑣𝑖 − Δ𝑣 𝑗 ⟩ = 0.

This so-called orthogonality relation is a discrete version of Equ. (13),

difference vectors assuming the role of derivatives. It holds because

the left hand expression expands to
1

2

(
∥𝑣1

𝑖
− 𝑣1

𝑗
∥2 − ∥𝑣2

𝑖
− 𝑣2

𝑗
∥2
)
. It

directly follows that also an analogy of (12) holds: for each face 𝑓

there are vectors 𝑐 𝑓 , 𝑐 𝑓 ∈ R3
such that

Δ𝑣𝑖 = 𝑐 𝑓 + 𝑐 𝑓 × 𝑣
avg

𝑖
. (16)

This equation looks as if 𝑐 𝑓 is a vector of angular velocity, and in

fact, if the meshes under consideration come from a dense sampling

of a smooth flexion, then 𝑐 𝑓 approximates the angular velocities

which occur in that flexion (up to scaling).

The analogy to the smooth case continues: the mesh with vertices

Δ𝑣𝑖 (the difference diagram) plays the role of the velocity diagram.

Further there is a rotation diagram which is a combinatorial dual,

having vertices 𝑐 𝑓 . Since (16) is formally equivalent to (12), the same

conclusions hold, in particular the following time-discrete analogue

of Prop. 2.3:

Proposition 2.7. For a pair of quad meshes which are isometric
in the rigid-faces sense, consider the middle mesh with vertices 𝑣avg

𝑖
,

the difference diagram with vertices Δ𝑣𝑖 , and the associated rotation

diagram with vertices 𝑐 𝑓 . Then middle mesh and rotation diagram are
reciprocal-parallel, and the difference diagram has planar faces.

A similar construction is possible for two smooth surfaces𝑥1 (𝑢, 𝑣),
𝑥2 (𝑢, 𝑣) which are in isometric correspondence. Middle surface and

difference surface are defined as 𝑥avg = 1

2
(𝑥1+𝑥2) and Δ𝑥 = 𝑥2−𝑥1

.

We have orthogonality between corresponding curves on 𝑥avg (𝑢, 𝑣)
and Δ𝑥 (𝑢, 𝑣). There is a rotation surface 𝑐 (𝑢, 𝑣) and a translation

surface 𝑐 (𝑢, 𝑣) which fulfill relations analogous to (2) and (3), namely

Δ𝑥 (𝑢, 𝑣) = 𝑐 (𝑢, 𝑣) +𝑐 (𝑢, 𝑣) ×𝑥avg (𝑢, 𝑣). In this work (e.g. in Figure 7),

an isometric surface pair for computational purposes is represented

by a mesh pair enjoying the checkerboard-isometry relation where

inscribed parallelograms move rigidly (see § 2.2.1). Also here the

mesh pair defines an average mesh and a difference mesh, together

with an associated rotation diagram.

The similarity between continuous surfaces and discrete surfaces

is relevant for later optimization tasks. E.g. when we are given two

isometric surfaces 𝑥1
and 𝑥2

we may compute Δ𝑥 (𝑢, 𝑣) and remesh

it with planar faces, thus initializing an actual flexion of a quad mesh

(see § 3.3). Figure 7 shows examples of rotation surfaces 𝑐 (𝑢, 𝑣).
Since optimization for flexibility is a difficult task, we are inter-

ested in ways to identify promising initial values, and to point out

situations where we cannot hope optimization to succeed. We use

known properties of flexing meshes to do that. An example of this

strategy is based on the following property:

Proposition 2.8. Continuing Prop. 2.7, if the pair of isometric
meshes has planar faces, then so does the middle mesh. The rotation
diagram has negative curvature, in fact it even has planar vertex stars.

Proof. For each face 𝑓 1
, there is a rigid body motion 𝑣1

𝑖
↦→ 𝑣2

𝑖
=

𝐴𝑓 𝑣
1

𝑖
+𝑢𝑓 , mapping 𝑓 1

to the corresponding face 𝑓 2
of the 2nd mesh.

The corresponding face of the middle mesh is the image under the

affine mapping 𝑣
avg

𝑖
= 1

2
(𝐼 +𝐴𝑓 )𝑣1

𝑖
+ 1

2
𝑢𝑓 , showing planarity. Planar

vertex stars follow directly from the reciprocal-parallel property. □

Figure 7 shows how to use Prop. 2.8. When attempting to use iso-

metric surfaces 𝑥1, 𝑥2
to compute flexing meshes, we can disregard

cases where the rotation diagram features positive curvature.

3 BASIC ALGORITHMS
Computing flexing quad meshes is a multi-step process, cf. Fig. 8.

Flexibility is eventually established by optimization, but this requires

an informed initialization. The preparations for the final step can

be rather involved, which is why we dedicate an entire section to

them.

In § 3.1 we find meshes which are isometric to each other and in

addition are infinitesimally flexible. Such meshes are thought to be

good candidates for a time-discrete isometric flexion. A special case

(if only 1 mesh is involved) is to minimally deform a mesh such that

it becomes infinitesimally flexible.

§ 3.2 deals with a given isometric correspondence between sur-

faces and converts them into quad meshes with planar faces, which

are isometric to each other. These twomeshesmust follow a uniquely

determined frame field and later serve to initialize the computation

of a quad mesh mechanism.

§ 3.3 studies the same problem without the additional constraint

of planar faces. Here we have more degrees of freedom, so we are
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Surface Pair

Mesh pair

Continuously
Flexing Mechanism

Small Mesh

Infinitesimally
Flexible Mesh

Mesh sequence

Isometric Mesh
Sequence

Th. 3.2

§ 3.4

initialize

remesh § 3.2, § 3.3

interpolate § 3.5

design

optimize §,3.1

§ 3.5extrapolate

optimize §,3.1 subdiv.§ 4.2

Almost-
Flexible Mesh

design & explore § 4.3

optimize §,3.1

Fig. 8. In § 4 we describe three computational pipelines for producing quad
mesh mechanisms. Their individual building blocks are the topic of §3. All
pipelines end with an optimization making meshes both infinitesimally
flexible individually and isometric to each other. From Theorem 3.2 we infer
that we have created a mechanism.

able to find orthogonal cross fields on the given surfaces which

determine a pair of isometric meshes. Likewise, they later serve to

initialize the computation of a quad mesh mechanism.

§ 3.4 discusses algebraic properties of the configuration space

and justifies our basic approach to computing a continuous flexion

which is described by § 3.5. We actually compute a time-discrete

flexion, which is a dense sequence of mutually isometric meshes

which in addition are infinitesimally flexible.

3.1 Achieving Isometry Plus Infinitesimal Flexibility
Infinitesimal flexibility is a necessary condition for flexibility. Ac-

tually we are only interested in flexions that depend smoothly on

time, with nonzero velocity, so we even consider 2nd order infinites-

imal flexibility as necessary conditions. For this reason, we consider

achieving infinitesimal flexibility as an essential preparation to ini-

tialize optimization towards flexibility. We here show how to solve

this preparatory task.

Given a mesh (𝑉 , 𝐸, 𝐹 ) with vertices 𝑣𝑖 , an infinitesimal flexion of

order 𝑘 means assigning derivatives ¤𝑣𝑖 , ¥𝑣𝑖 , . . . up to order 𝑘 which ful-

fill Equations (15). They represent a quadratic system of constraints.

To avoid zero solutions, we require that

𝑐
fl,norm

=
1

|𝑉 |
∑︁

𝑖∈𝑉 ∥ ¤𝑣𝑖 ∥2 − 1 = 0. (17)

To find a nontrivial infinitesimal flexion which does not correspond

to a mere Euclidean motion, we fix a selected face 𝑓0 by setting all

derivatives to zero:

𝑣𝑖 ∈ 𝑓0 =⇒ 𝑐1

fix,𝑖
= ¤𝑣𝑖 = 0, 𝑐2

fix,𝑖
= ¥𝑣𝑖 = 0, (18)

up to order 𝑘 . When modifying the given mesh such that it becomes

infinitesimally flexible, a typical scenario is that we allow vertices

to glide along a given shape Φ (which may be the initial mesh itself).

To maintain closeness we need to be able to perform closest point

projection onto Φ. We use the constraint

𝑐
close

=
∑︁

𝑣𝑖 ∈𝑉
⟨𝑣𝑖 − 𝑣∗𝑖 , 𝑛

∗
𝑖 ⟩

2 = 0, (19)

𝑀 𝑀 ′ Fig. 9. Isometric positions
of a mesh are not always
connected by a continu-
ous flexion, e.g in this case
where part of𝑀 snaps up-
wards to form𝑀′.

where 𝑣∗
𝑖
∈ Φ is the point closest to 𝑣𝑖 , and 𝑛

∗
𝑖
=

𝑣𝑖−𝑣∗𝑖
∥𝑣𝑖−𝑣∗𝑖 ∥

is a unit

normal vector of Φ in that point. We do not treat 𝑣∗
𝑖
, 𝑛∗
𝑖
as variables

in the optimization, but recompute them in each round of iteration

(see e.g. [Tang et al. 2014]). If planarity of faces is to be maintained

(this depends on the application) we introduce normal vectors 𝑛𝑓
of faces and use the constraints

𝑐
𝑓

planar
=

∑︁
𝑣𝑖 ,𝑣𝑖 ∈𝑓

⟨𝑣𝑖 − 𝑣 𝑗 , 𝑛𝑓 ⟩ = 0, 𝑐
𝑓
norm

= ∥𝑛𝑓 ∥2 − 1 = 0. (20)

The objective function for optimization is a sum of squares of con-

straints, namely 𝑐
len

, 𝑐
vol

, 𝑐
fl,𝑚 , 𝑐

fl,norm
, 𝑐

close
, 𝑐

planar
, and 𝑐norm.

They are defined by Equations (10), (11) , (15), (17), (19), and (20),

respectively. These constraints do not only involve derivatives, but

also distances which express isometry of meshes. We therefore use

the following general setup of energies.

𝐸iso (𝑀,𝑀 ′) = 𝜆
len

∑︁
𝑓 ∈𝐹

∑︁
𝑣𝑖 ,𝑣𝑗 ∈𝑓

(𝑐𝑖 𝑗
len

)2 + 𝜆
vol

∑︁
𝑓 ∈𝐹 𝑐

2

vol,𝑓

𝐸geom (𝑀) = 𝜆
pl

∑︁
𝑓
𝑐2

planar,𝑓
+ 𝜆

n,1

∑︁
𝑓
𝑐2

norm,𝑓
+ 𝜆

cl
𝑐2

close

𝐸
flex,𝑘 (𝑀) =

∑︁𝑘

𝑚=1

𝜆
fl,𝑚

∑︁
𝑓 ∈𝐹

∑︁
𝑣𝑖 ,𝑣𝑗 ∈𝑓

𝑐2

fl,𝑚,𝑖 𝑗

+ 𝜆
fix

∑︁𝑘

𝑚=1

∑︁
𝑣𝑖 ∈𝑓0

(𝑐𝑚
fix,𝑖

)2 + 𝜆
n,2

𝑐2

fl,norm
. (21)

𝐸iso (𝑀,𝑀 ′) is zero exactly if𝑀,𝑀 ′
are isometric to each other. The

energy 𝐸geom (𝑀) expresses planarity of faces of𝑀 , if required, and

also proximity to a reference surface (for the proximity term we

cannot expect zero residual). The energy 𝐸
flex,𝑘 (𝑀) expresses that

𝑀 is infinitesimally flexible of order 𝑘 . Depending on the applica-

tion, a certain linear combination of energies is minimized, using a

Levenberg-Marquardt method. The following are typical application

scenarios:

Initialize derivatives for a fixed mesh. Here we are given a mesh

whose vertices 𝑣𝑖 are considered fixed. We wish to find derivative

vectors ¤𝑣𝑖 , ¥𝑣𝑖 , . . . up to order 𝑘 such that infinitesimal flexibility

constraints are fulfilled in the least-squares sense. If 𝑘 = 1, these

constraints are even linear and the optimization task is simple. Oth-

erwise we minimize the energy 𝐸
flex,𝑘 . It turns out that for this

optimization, initial values have little influence. We use vertex nor-

mal vectors to initialize derivatives.

Optimization of one or more meshes. A task we need later is

to optimize a mesh to become infinitesimally flexible, minimiz-

ing 𝐸geom (𝑀) + 𝐸
flex,𝑘 (𝑀), typically for 𝑘 = 1 or 𝑘 = 2. An-

other particular application is the simultaneous optimization of

a pair of meshes 𝑀,𝑀 ′
such that these two are both infinitesi-

mally flexible and isometric to each other. We do this by minimizing

𝐸iso (𝑀,𝑀 ′) + 𝐸geom (𝑀) + 𝐸
flex,𝑘 (𝑀) + 𝐸

flex,𝑘 (𝑀 ′). Figure 9 shows
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a result. It turns out that in this case𝑀 is not able to continuously

flex to reach𝑀 ′
. Only by using force, it snaps to the configuration

𝑀 ′
. Such bistable pairs 𝑀,𝑀 ′

might be useful for applications in

their own right, but they are not a focus of the present paper.

3.2 Flexibility Remeshing: Planar Quad Case
Here we aim at solving the following problem: Given are two geo-

metric shapes Φ, Φ′
which are connected by an isometry 𝑓 : Φ → Φ′

.

Approximate both of them by quad meshes with planar faces which

are isometric in the strict sense of rigid faces. This procedure, which

is a first step in computing a continuous flexion from Φ into Φ′
, en-

tails remeshing combined with shape optimization. The remeshing

part was already proposed by [Jiang et al. 2021].

In order to better understand the nature of the isometry con-

straints, we look at a continuous analogy: Assuming fairness, a

quad mesh with planar faces is a discrete version of a conjugate

curve network on a surface. Equivalently, the edges of a quad mesh

with planar faces represent a conjugate frame field on a surface: If

vectors 𝑡 (𝑝), 𝑡 (𝑝) attached to a point 𝑝 ∈ Φ locally represent this

frame field, the conjugacy condition is

II𝑝 (𝑡, 𝑡) = 0,

where II𝑝 is the symbol for the 2nd fundamental form of the surface

Φ. The required pair of quad meshes then is a discrete analogy of

two conjugate cross fields in Φ resp. Φ′
which are mapped onto each

other by the given isometry 𝑓 .

For purposes of computation, isometric surfaces Φ,Φ′
are repre-

sented by checkerboard-isometric quad meshes according to § 2.2.1.

A 2nd fundamental form for this specific setting has been proposed

by Ceballos Inza et al. [2023].

3.2.1 A Checkerboard Second Fundamental Form. Fig. 10 shows two
corresponding faces 𝑓 = 𝑣0𝑣1𝑣2𝑣3 and 𝑓 ′ = 𝑣 ′
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Fig. 10. Basis vectors 𝑏1, 𝑏2 associated with a face 𝑓 and corresponding
basis vectors 𝑏′

1
, 𝑏′

2
associated with the corresponding face 𝑓 ′. They are

diagonals in the respective inscribed parallelograms. If 𝑓 , 𝑓 ′ are related via
a checkerboard isometry, there is a rigid body motion mapping basis vectors
𝑏1, 𝑏2 onto 𝑏′

1
, 𝑏′

2
.
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Fig. 11. Setting up
the definition of the
2nd fundamental
form by Equ. (22) to
(25).

two basis vectors, namely

𝑏1 =
1

2

(
(𝑣2 − 𝑣3) + (𝑣1 − 𝑣0)

)
, 𝑏2 =

1

2

(
(𝑣3 − 𝑣0) + (𝑣2 − 𝑣1)

)
(22)

in 𝑓 and analogous for 𝑓 ′. The basis vectors indicate diagonals in the
inscribed parallelogram. The neighbouring face in the direction of

𝑏1 is temporarily labelled 𝑓1; the opposite neighbour is 𝑓−1. Similarly

we have faces 𝑓2 and 𝑓−2, see Fig. 11. These faces just mentioned

have unit normal vectors 𝑛, 𝑛1, 𝑛−1, 𝑛2, 𝑛−2, respectively.

The 2nd fundamental form proposed by Ceballos Inza et al. [2023]

is constructed from normal vectors. They argue why 𝑏1 is conjugate

to 𝑟1 and 𝑏2 is conjugate to 𝑟2, where

𝑟1 = 𝑛 × (𝑛1 − 𝑛−1), 𝑟2 = 𝑛 × (𝑛2 − 𝑛−2) . (23)

Vectors 𝑟1, 𝑟2 can be expressed in the basis {𝑏1, 𝑏2} as
𝑟1 = 𝛼1𝑏1 + 𝛼2𝑏2, 𝑟2 = 𝛽1𝑏1 + 𝛽2𝑏2 . (24)

Evaluation of the 2nd fundamental form is now defined in terms of

coordinates w.r.t. the basis {𝑏1, 𝑏2} as

II𝑓 (𝑎, 𝑏) = 𝑎𝑇 · Λ𝑓 · 𝑏, where Λ𝑓 = 𝜆

[
𝛼2𝛽2 −𝛼1𝛽2

−𝛼1𝛽2 𝛼1𝛽1

]
. (25)

We see that indeed II𝑓 (𝑏1, 𝑟1) = II𝑓 (𝑏2, 𝑟2) = 0. The factor 𝜆 is not

relevant, since we only ever employ II𝑓 to check if it evaluates to

zero or not.

3.2.2 Remeshing Guided By Isometric Conjugate Nets. Consider two
quad meshes Φ,Φ′

related by a checkerboard isometry. For each

corresponding pair 𝑓 , 𝑓 ′ of faces, compute basis vectors, matrices

Λ𝑓 ,Λ
′
𝑓
and the second fundamental forms II𝑓 , II

′
𝑓
according to the

previous paragraph. The basis (22) associated with 𝑓 and the one

associated with 𝑓 ′ are connected by a rigid body motion, which

follows directly from our definition of checkerboard isometry. In

this way, any tangent vector 𝑡𝑓 associated with 𝑓 can canonically

be moved to a corresponding tangent vector 𝑡 ′
𝑓
associated with 𝑓 ′.

We now look for a cross field, defined by conjugate tangent vectors
𝑡𝑓 , 𝑡𝑓 , such that also its corresponding cross field is conjugate, i.e.,

II𝑓 (𝑡𝑓 , 𝑡𝑓 ) = 0, II
′
𝑓
(𝑡 ′
𝑓
, 𝑡 ′
𝑓
) = 0. (26)

This is a generalized eigenvalue problem: We first solve for coeffi-

cients 𝜆, 𝜇 such that det(𝜆Λ𝑓 + 𝜇Λ′
𝑓
) = 0 and find vectors 𝑡𝑓 , 𝑡𝑓 in

the kernel of this matrix. In case of positive curvature (detΛ𝑓 > 0)

we always have a solution, but in case of negative curvature this is

not guaranteed. For this reason we re-formulate our task as an opti-

mization problem where also the vertices are variables. We employ

the following variables:

— The vertices of two combinatorially equivalent quad meshes 𝑆, 𝑆 ′

which are going to be isometric in the checkerboard way.

— Unit normal vectors 𝑛𝑓 , 𝑛
′
𝑓
in corresponding faces 𝑓 , 𝑓 ′.

— For each face 𝑓 , tangent vectors 𝑟1, 𝑟2, stored via their local coor-

dinates according to § 3.2.1. Analogously, tangent vectors 𝑟 ′
1
, 𝑟 ′

2

in the corresponding face 𝑓 ′.
— For each pair of corresponding faces 𝑓 , 𝑓 ′, the matrices Λ𝑓 , Λ

′
𝑓

of the respective 2nd fundamental forms.

— For each face, tangent vectors 𝑡𝑓 , 𝑡𝑓 , are likewise stored via their

local coordinates.

We impose the following constraints:
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𝑀 Φ Φ′ 𝑀 ′

𝑀0 𝑀1 𝑀2 𝑀3 𝑀4

Fig. 12. Computation pipeline for quad mesh mechanisms with planar faces. A given isometry between surfaces Φ,Φ′ is the basis for the computation of cross
fields on these surfaces which guide quad meshes𝑀,𝑀′ approximating Φ,Φ′ (top row). A second round of optimization establishes a sequence of meshes
𝑀0, 𝑀1, 𝑀2, . . . , 𝑀𝑛 which are isometric to each other in the sense of rigid planar faces. The sequence {𝑀𝑗 } approximates a continuous bending of Φ.

— For each face, Equ. (8), expressing a checkerboard isometry.

— Basis vectors𝑏1, 𝑏2 per face are introduced by (22). Equ. (22) serves

as constraint. Similar for corresponding vectors𝑏 ′
1
, 𝑏 ′

2
. Constraints

(8) are equivalent to the statement that there is a rigid bodymotion

mapping the basis 𝑏1, 𝑏2 to 𝑏 ′
1
, 𝑏 ′

2
.

— Normal vectors 𝑛𝑓 are initialized by the basis vectors of (22) as

their normalized cross product. In the course of optimization we

maintain constraints ⟨𝑛𝑓 , 𝑏1⟩ = ⟨𝑛𝑓 , 𝑏2⟩ = 0, ∥𝑛𝑓 ∥2 = 1.

— For each face 𝑓 , vectors 𝑟1, 𝑟2 obey (23). For this purpose, we

express 𝑟1, 𝑟2 as a linear combination of basis vectors, using (24)

as constraint. Vectors 𝑟 ′
1
, 𝑟 ′

2
associated with the corresponding

face 𝑓 ′ fulfill analogous constraints.
— The matrices related to 2nd fundamental forms are defined by

the constraint (25); the conjugacy constraint (26) applies.

— Normalization constraints ∥𝑡𝑓 ∥2 = ∥𝑡𝑓 ∥ = 1 prevent vectors

𝑡𝑓 , 𝑡𝑓 from fulfilling (26) by simply converging to zero.

Having computed the cross field {𝑡𝑓 , 𝑡𝑓 }, we extract a quad mesh𝑀

whose edges follow the cross field by themethod of [Ebke et al. 2013].

The given isometry transfers it to a quad mesh𝑀 ′
approximating Φ′

.

Meshes𝑀,𝑀 ′
are now candidates for being isometric in the sense

of rigid planar faces. They serve as input for further optimization.

An example is shown by Fig. 12.

3.3 Flexibility Remeshing: Skew Case
Similar to § 3.2, we are given an isometry between surfaces Φ1,Φ2

and want to find quad meshes 𝑀1, 𝑀2 which approximate Φ1,Φ2

and which are isometric with rigid faces in the sense of § 2.2.2. The

difference to § 3.2 is that we do not require the faces to be planar. The

computational setup is similar: Surfaces Φ1,Φ2 are given as quad

meshes connected by a checkerboard isometry. Further we assume

that faces are equipped with a 2nd fundamental form according to

§ 3.2.1, so we can check if vectors attached to a face are conjugate.

Our method is based on Prop. 2.7. The quad meshes we look for

are guided by cross fields on Φ1,Φ2 which correspond in the given

isometry. The cross field on Φ1 is represented by two vectors 𝑡𝑓 , 𝑡𝑓
per face 𝑓 . Prop. 2.7 involves the difference surfaceΦ′ = Φ2−Φ1. This

difference is computed vertex-wise. We use (22) to associate basis

vectors 𝑏1, 𝑏2 to each face of Φ1 and corresponding basis vectors

𝑏 ′
1
, 𝑏 ′

2
to the corresponding face ofΦ′

, thus defining a linear mapping

between corresponding faces 𝑓 , 𝑓 ′. Prop. 2.7 states that vector fields
𝑡𝑓 , 𝑡𝑓 in Φ1 can guide the mesh𝑀1 only if the corresponding vector

fields 𝑡 ′
𝑓
, 𝑡 ′
𝑓
in Φ′

are conjugate. We thus require that

⟨𝑡𝑓 , 𝑡𝑓 ⟩ = 0, II
′
𝑓
(𝑡 ′
𝑓
, 𝑡 ′
𝑓
) = 0. (27)

Similar to (26), this leads to an eigenvalue problem, which here is

always solvable because the matrix of the inner product is positive

definite.

The requirement that 𝑡𝑓 , 𝑡𝑓 are orthogonal expresses our wish

that the edges of 𝑀1 intersect nicely at right angles. We compute

𝑡𝑓 , 𝑡𝑓 by optimization in the same way as we computed vector fields

in § 3.2.2, only the conjugacy constraint (26) is replaced by (27).

Similar to § 3.2, we extract a quad mesh𝑀1 from the cross field

{𝑡𝑓 , 𝑡𝑓 }. The given isometry transfers this to 𝑀2. Quad meshes

𝑀1, 𝑀2 are now candidates for being isometric in the sense of rigid

faces and can serve as input for further optimization. An example

is shown by Fig. 13.

We argue that this procedure yields sensible initial data for sub-

sequent optimization, despite the face that Prop. 2.7 does not give a

sufficient condition for isometry, only a necessary one: If surfaces

Φ1,Φ2 are close, the difference diagram is a scaled version of a ve-

locity diagram. In that case, Prop. 2.5 applies and reveals Φ1 to be

infinitesimally flexible. We therefore have good reason to believe

that 𝑀1, 𝑀2 are indeed good initial data for a continuous flexion.

Numerical experiments confirm this.

3.4 The Configuration Space of Flexible Meshes
3.4.1 The Configuration Space of Flexible 3 × 3 Meshes With Planar
Faces. Izmestiev [2017] gave a complete classification of the flexible

3×3 quad meshes with planar faces. The knowledge of these 8 types

(and their subcases) is relevant for various reasons. Specifically, in

our design pipeline, we use 3 × 3 meshes to initialize the coarse-to-

fine method of § 4.2.

All flexible cases are described by constraints imposed on the

16 angles 𝑎𝑖 , . . . , 𝑑𝑖 , 𝑖 = 1, 2, 3, 4 which occur between the edges
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Φ1 Φ2Φ′ = Φ2 − Φ1

𝑡 ′
𝑓
, 𝑡 ′
𝑓

𝑀0 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

Fig. 13. Computation pipeline for a quad mesh mechanism in the general case (skew faces). Given are two isometric surfaces Φ1,Φ2, where the isometry is
encoded as a checkerboard isometry (the figure illustrates the isometric inscribed parallelograms which occur in this situation). We compute the difference
surface Φ′ = Φ2 − Φ1 and compute appropriate cross fields on Φ1,Φ2,Φ

′ according to § 3.3 (top row). These cross fields are the basis of remeshing; the resulting
meshes undergo a round of optimization to produce a sequence𝑀0, . . . , 𝑀𝑛 of meshes which are isometric with rigid faces. The sequence {𝑀𝑘 } approximates
a continuous flexion which approximately connects the given surfaces Φ1,Φ2.

incident with the central face, see Fig. 15, left. Apart from the well-

known cases of T-nets and V-nets (types 1 and 2), finding a specific

instance of a case typically requires the solution of a certain nonlin-

ear system of equations in those 16 variables. This is harder than it

looks because the solution varieties have different dimensions. For

some of the cases, the solutions might not be suitable for practical

applications (e.g. a certain sub-type of type 7, “chimeras”, essentially

behave like a 2× 2 mesh, exhibiting an almost rigid 2× 2 sub-mesh).

It turned out that certain subtypes (e.g., type 3, “equimodular ellip-

tic”) are not straightforward to find numerically. Most of the results

obtained by optimization exhibit type 5 (“linear compound” type).

We mention that Erofeev and Ivanov [2020] explicitly construct

special cases of type 3.

Remark 3.1. A way to test flexibility of an 𝑛 ×𝑚 quad mesh is based

on Prop. 2.2: One needs to check if all (𝑛 − 2) (𝑚 − 2) submeshes of

size 3 × 3 are flexible. In the case of planar faces, we could use the

classification of Izmestiev [2017] for that purpose. However, in our

experience, for numerical reasons, this does not work if𝑛,𝑚 exceeds,

say, 7. Such a check is particularly hard if the mesh approximates

a smooth surface in a fair way, because dihedral angles tend to be

small, and opposite angles in vertex stars tend to be equal. We were

able to benefit from the existing classification results only for small

meshes. see § 4.3.1.

3.4.2 The Algebraic Problem of Flexibility. All our computational

pipelines to obtain flexible quad meshes are based on the com-

putation of a sequence 𝑀0, 𝑀1, . . . , 𝑀𝑛 of quad meshes which are

isometric in the sense of rigid faces. We look only for flexions of

meshes which approximate the isometric bending of a continuous

surface. This has two reasons: Firstly the applications we have in

mind demand fairness of the mesh, and secondly we want to use

methods of differential geometry. To emphasize the analogy even

more, we require that each mesh 𝑀𝑖 is infinitesimally flexible of

degree 2 – we imagine that a 2nd order infinitesimal flexion directly

corresponds to the 1st and 2nd derivative vectors experienced by

points in the surface while bending.

The question if a certain mesh allows a continuous flexion is

algebraic in nature, since distance constraints are quadratic. There

is hope that its degree is independent of the mesh size since Prop. 2.2

reduces the question to flexibility of every 3 × 3 submesh. Indeed,

we are able to prove:

Theorem 3.2. Assume that a quad mesh is given in 𝑁 mutually
isometric positions which enjoy property (A) as specified by Def. A.2.
If 𝑁 is large enough we can infer that the mesh is flexible.

If the mesh is of generic dimensions and we have generic positions,
𝑁 = 33 is sufficient. This number reduces to 𝑁 = 17 in case of planar
faces, and further to 𝑁 = 9 and even 𝑁 = 6 if the given positions are
infinitesimally flexible of 1st order or even 2nd order.

This result is immediately relevant. It justifies our method of

computing a flexion via a sequence of isometric meshes, it also says

how long that sequence has to be. In practice we used 𝑁 = 20 unless

the theorem requires a higher number. The proof in the appendix

uses an algebraic formulation of flexibility involving dihedral angles,

which has recently been generalized to quad meshes with skew faces

ACM Trans. Graph., Vol. 43, No. 6, Article 243. Publication date: December 2024.



Quad mesh mechanisms • 243:11

𝑀1

𝑀0

𝑀𝑛

Fig. 14. Here the handle-driven
method of § 3.5.2 is used to find
further positions𝑀1, . . . , 𝑀𝑛 of
a 3 × 3 mesh𝑀0 already known
to be flexible from the classifi-
cation of [Izmestiev 2017].

by Aikyn et al. [2024]. If generic positions are not assumed, 𝑁 is

larger, see Prop. A.3–A.5.

3.4.3 Numerically computing flexions. Our method to find flexions

of a mesh rests on the computation of a sequence𝑀𝑘 of mutually

isometricmeshes. Theorem 3.2 says that a flexion exists if sufficiently

many meshes𝑀𝑘 are found. We think of those meshes as discrete

samples of a continuous flexion𝑀 (𝑡).
A quad mesh mechanism has 1 degree of freedom in its flexion.

It represents an algebraic curve in the configuration space. More

degrees of freedom are only possible for trivial examples. Algebraic

curves may have different branches. Likewise, a quad mesh mecha-

nism might experience different flexions which branch off from a

singular position, but we do not know if such examples exist (except

for trivial cases). Ourmethod of computing a sequence of meshes𝑀𝑘
certainly favors the case where all𝑀𝑘 are samples of a single smooth

flexion. This is because we involved 1st and 2nd order derivatives

in our algorithm. We therefore expected that standard numerical

interpolation methods applied to𝑀𝑘 plus derivatives indeed yield a

good approximation of𝑀 (𝑡). Our numerical experiments confirm

this. In fact we saw that we basically get the same result whether

or not we include the information on infinitesimal flexions. This is

evidence for interpolation to yield good results.

3.5 Time-Discrete Flexions
Motivated by § 3.4, our approach to finding a continuous flexion is to

establish a time-discrete flexion, i.e., a dense sequence𝑀0, 𝑀1, . . . of

meshes which are mutually isometric to each other and which them-

selves are infinitesimally flexible. Below, we list several methods

for creating such sequences. In particular, we discuss interpolation

and an iterative extrapolation method, which uses infinitesimally

flexible meshes.

3.5.1 Extrapolation Based on Infinitesimal Flexibility. We start with

a mesh 𝑀0 = (𝑉 , 𝐸, 𝐹 ) which is 2nd order flexible (e.g. computed

by the method of § 3.1). For each vertex 𝑣𝑖 ∈ 𝑉 , 1st and 2nd order

derivatives ¤𝑣𝑖 , ¥𝑣𝑖 are given. Then, the new mesh𝑀 (𝑡) with vertices

𝑣𝑖 (𝑡) = 𝑣𝑖 + 𝑡 ¤𝑣𝑖 + 𝑡2

2
¥𝑣𝑖 is almost isometric to 𝑀0 in the sense that

distances ∥𝑣𝑖 (𝑡) − 𝑣 𝑗 (𝑡)∥ of vertices are not exactly constant, but

their 1st and 2nd derivatives vanish. We now choose discrete time

instances 𝑡1, 𝑡2, . . . , define meshes 𝑀𝑖 = 𝑀 (𝑡𝑖 ) and perform a 2nd

round of optimization such that all 𝑀𝑖 are isometric to 𝑀0, using

the procedure of § 3.1.

3.5.2 Handle-Driven Flexion. A method suitable to compute the

flexion of a small mesh is to select vertices 𝑣𝑖 , 𝑣 𝑗 , not in the same

face, and force their distance to change. We use the optimization

procedure of § 3.1, augmented by the additional constraint ∥𝑣𝑖 −
𝑣 𝑗 ∥2 = 𝑑2

𝑖 𝑗
, for different values of 𝑑𝑖 𝑗 . In this way, we simultaneously

compute two or more meshes which are mutually isometric, but

which are not related by a Euclidean motion — see Fig. 14.

3.5.3 Interpolation. A third method is based on two initial positions

𝑀,𝑀 ′
which have been optimized for isometry. Linear interpola-

tion of vertices yields a sequence of intermediate positions 𝑀0 =

𝑀,𝑀1, 𝑀2, . . . , 𝑀𝑛 = 𝑀 ′
which are being simultaneously optimized

for being isometric, using energies 𝐸iso (𝑀0, 𝑀1) +· · ·+𝐸iso (𝑀0, 𝑀𝑛).
Optimization is applied to all involved meshes simultaneously. We

cannot keep the initial meshes fixed here, because then we would

already assume that the given mesh𝑀 is a mechanism.

4 DESIGN PIPELINES FOR QUAD MESH MECHANISMS

4.1 The Remeshing Pipeline
This pipeline starts with finding an isometric correspondence be-

tween surfaces Φ,Φ′
which for computational purposes is repre-

sented in the way described by § 2.2.1. It has three steps in total:

1. Find isometric surfaces Φ,Φ′
, e.g., using the method of [Jiang

et al. 2020].

2. Remeshing (§§ 3.2, 3.3) creates isometric meshes𝑀,𝑀 ′

3. Interpolation followed by optimization (§ 3.5) yields a time-

discrete flexion

Examples are shown by Fig. 12 (which has planar faces) and Fig. 13

(skew faces). However, this pipeline is not always successful. Its

limitations are the following. Firstly, remeshing for quad meshes

does not always work. One has to check if the condition of Prop. 2.8

(see Fig. 7) is fulfilled. Otherwise, the remeshing procedure will not

be able to find the necessary frame field (a certain quadratic equation

will have only complex solutions). Secondly, we might not be able to

find a time-discrete flexion from meshes𝑀,𝑀 ′
: The simultaneous

optimization of an interpolating sequence𝑀𝑘 might not work at all

or create meshes too far away from the initial surfaces Φ,Φ′
. The

fact of a smaller than 100% success rate is actually to be expected

since quad mesh mechanisms are rare. It is certainly not the case

that any isometric pair Φ,Φ′
is close to a mechanism. The pipeline

above is based on necessary conditions that might, or might not, let

the final round of optimization succeed.

𝑎1𝑎2

𝑎3 𝑎4

𝑑1𝑑2

𝑑3 𝑑4

𝑏1𝑏2

𝑏3 𝑏4

𝑐1𝑐2

𝑐3 𝑐4

Fig. 15. This image shows a user interface of our design tool for flexible 3
by 3 quad meshes with planar faces. The parameters shown on the sliders
are the 16 angles incident with the central face – see figure at left. The 17th
parameter shown is a dihedral angle and can be used to drive the flexion.
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(a) (b)

Fig. 16. A quad mesh of size 2 × 𝑛 is naturally flexible. We start with 6 discrete samples of a continuous flexion (a) and apply two rounds of subdivision plus
optimization. This yields a sequence of isometric positions of a quad mesh, indicating the existence of a continuous flexion (b).

Fig. 17. Isometric positions of meshes generated by refinement plus opti-
mization. The top row shows four isometric positions of a 3 × 3 quad mesh
with nonplanar faces generated by interpolation (see § 3.5.3). We then apply
Catmull-Clark subdivision followed by optimization to create further rows.

4.2 The Coarse-To-Fine Pipeline
The general idea behind this approach is that optimization of meshes

towards specific properties is generally easier for small meshes. A

refinement operation produces a denser mesh and generally de-

stroys this property. It is subsequently restored by another round

of optimization, and this procedure can be iterated. Examples are

shown by Figures 16 and 17, where a sequence of mutually isomet-

ric small meshes undergoes Catmull-Clark subdivision and is again

optimized for being isometric. After two rounds, we get a sequence

of finer meshes. In Fig. 16 we started frommeshes of size 2×𝑛 which

are always flexible and used the method of § 3.5.2 to find additional

positions. The starting sequence of Fig. 17 has been generated by

applying the optimization procedure of § 3.1.

4.3 Exploring the Configuration Space of Flexible Meshes
Flexible meshes with planar faces have been the object of study for

some time, being also embedded into the framework of Discrete

Differential Geometry.

4.3.1 Flexible 3×3MeshesWith Planar Faces. In § 3.4.1 we described
the classification of flexible meshes with planar faces by Izmestiev

[2017].

Fig. 15 shows examples of type 6, sub-type 1 (“linear conjugate,

antideltoid”). The corresponding system of constraints is shown

in Appendix B. Such a system, written as 𝐹 (𝑋 ) = 0, is solved by

a regularized Newton method, moving an initial guess 𝑋0 close to

the solution variety in an iterative way. Linearization 𝐹 (𝑋0 + ℎ) ≈
𝐹 (𝑋0) + 𝜕𝐹

𝜕𝑋
· ℎ, where 𝜕𝐹

𝜕𝑋
is the Jacobi matrix of 𝐹 , leads to the

Fig. 18. A quad mesh mechanism created by our coarse-to-fine computa-
tional pipeline applied to a flexible 3 × 3 quad mesh with planar faces (left
column). Both planarity and flexibility are lost when subdivision is applied;
flexibility is restored by optimization (middle and right hand columns). The
initial 3 × 3 mesh has been found with an interactive design tool based on
the known classification of flexible 3 × 3 meshes with planar faces.

linear system
𝜕𝐹
𝜕𝑋

ℎ = −𝐹 (𝑋0). In this particular case, it represents

11 linear equations in 16 variables. We regularize by solving for

∥ℎ∥ → min, which amounts to solving the system by applying the

Moore-Penrose pseudoinverse of
𝜕𝐹
𝜕𝑋

to the right-hand side.

The design tool visualized by Fig. 15 allows the user to specify

the 16 angle variables and to optimize towards a certain type of

flexible mesh. The result can serve as input for the coarse-to-fine

design pipeline. Fig. 18 shows an example.

4.3.2 Elementary Manipulations of Meshes with Planar Faces. For
meshes with planar faces, flexibility only depends on the angles in

vertices, which for a 3 × 3 mesh are labeled in Fig. 15. It follows

that such a mesh is flexible if and only if all its parallel meshes

(Combescure transforms) are [Schief et al. 2008, Th. 3.1]. This prop-

erty is proved by reduction to the 3 × 3 case via Prop. 2.2, and some

elementary geometry. It yields quite some design freedom: One can

select two transverse mesh polylines and arbitrarily scale the edge

vectors on them. Fig. 21 shows an example of this.

4.3.3 Optimization-driven Exploration. The explicitly known classes
of flexible meshes are too unwieldy and too restricted to be directly

useful for interactive design, e.g. for a freeform architecture applica-

tion one does not want to work with T-meshes and their trapezoidal

faces only. On the other hand, flexibility is a very strong condition,
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Fig. 19. Quad mesh mechanism created with the method of § 4.3.3. A mesh
has been designed such that faces are planar and one family of mesh poly-
lines lies in vertical planes. This is about half of the conditions needed for a
T-net, so we cannot expect flexibility. With the method of § 3.5.2, we created
a sequence of meshes which was successfully optimized simultaneously.
The result is a flexible quad mesh which is not a T-net. It apparently devel-
ops a crease during its flexion, similar to the behaviour of some T-nets, cf.
[Izmestiev et al. 2023, Fig. 18].

and can usually not be achieved by optimization of general meshes.

For this reason we experimented with the idea of designing meshes

which fulfill some, but not all of the constraints that define a flexible

mesh class. In the configuration space of all meshes we have thus

moved away from the sub-variety of flexible meshes, but not too

much. Flexibility can be restored by optimization. We found this

procedure to work much better than initially expected. Figures 1 and

19 show examples. Also the small example of Figures 5 and 23 has

been created by the same idea: Stachel [2011] found flexible meshes

inscribed in a cylinder of revolution. Applying a gentle nonlinear

transformation (in this case, a Möbius transform) destroys flexibility,

which is subsequently restored by optimization.

5 DISCUSSION
The previous sections already showed results obtained by the com-

putational pipelines described above. To verify our results, we built

physical models of quadmeshes we computed and checked their flex-

ibility experimentally, see Figures 22 and 23. We also demonstrated

that our methods work on meshes with combinatorial singularities,

see Fig. 20.

Experimental evidence shows clearly that the results we obtained

do not fall into the “easy” cases of Voss nets and T-nets, see Fig. 21.

Implementation Details. For optimization, we employ a Levenberg-

Marquardt method according to [Madsen et al. 2004, §3.2], using

a damping parameter of 10
−6
. Our implementation in C++ uses

the data structures of OpenMesh [Botsch et al. 2002] and the Taucs

library for sparse linear solvers [Toledo 2003]. Table 1 gives statistics

on the number of variables, parameters used in the optimization,

the quality of results, and computation times. The latter refers to

an Intel Xeon W-2225 4.1GHz processor with 32G RAM, without

parallel processing or other acceleration techniques.

In our experience, our optimization is not very sensitive to the

choice of parameters 𝜆
len

, . . . , as long as the terms in the target

functional which correspond to individual constraints are of the

same order or magnitude. Evidence of this is that we could use the

same values in all examples. Some constraints, like those related

to planarity of faces, do not apply to all examples, in which case

the respective parameters are set to zero. Proximity to a reference

Fig. 20. A quad mesh mechanism with a combinatorial singularity. The first
row shows samples of a continuous flexion of a single vertex star consisting
of 6 quadrilateral faces (which is always flexible). We apply two rounds
of Catmull-Clark subdivision plus optimization for isometry. This yields
a dense sequence of isometric positions of a quad mesh, indicating the
existence of a continuous flexion.

Fig. 21. Left: A flexing quad mesh with planar faces generated using the
remeshing pipeline of § 4.1.Center, Right: Interactivemodification via parallel
meshes (Combescure transforms). The image at left also displays that mesh
polylines are not contained in planes (both the orange and blue planes are
spanned by 3 successive vertices). This shows the mesh is no T-net, which is
one of the easily generated flexible types.

geometry is a soft constraint, and consequently the parameter 𝜆
cl
is

smaller by 2 orders of magnitude than the others.

Ablation Study. We used the example of Fig. 12 to investigate the

effects of weights in the combined optimization energy proposed

in § 3.1. By setting certain weights to zero we obtain a less than

optimal result. E.g. letting 𝜆
cl

= 0 yields a result which is not as

close to the reference surface as otherwise, and similar for other

changes which have an effect on the planarity of faces, and the

isometric correspondence between meshes. The details and statistics

are displayed in Table 2.

Limitations. A main limitation of our methods is that we have

only a posteriori numerical evidence that they work in each single

instance. This is particularly the case for the remeshing pipeline,

which is based only on necessary conditions for flexibility, not on

sufficient ones. Its limitations are in detail described at the end of

§ 4.1. The coarse-to-fine pipeline in our experience is more reliable.

The limitations are that in some cases indeed it does not work (i.e.,

the optimization does not succeed), and in other cases, the result

may be significantly different from the input data. Apart from these

fundamental limitations, which lie in the difficulty of the problem

itself, there are also limitations of our implementation. E.g. we did

not implement collision detection.

Failure cases. The problem of computing quad mesh mechanism

is difficult because there is no theoretical result on shapes that

are realizable as mechanisms (such a result would be a significant
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Table 1. Statistics on the number of vertices and faces, the weights used in
optimization, the number of iterations, the total time𝑇 in seconds, and the
quality of the results. We measure isometry between two meshes𝑀,𝑀′ by
means of distances 𝑙𝑖 𝑗 = ∥𝑣𝑖 − 𝑣𝑗 ∥ of vertices which belong to the same face.
Lengths pertaining to𝑀 resp.𝑀′ are stored in vectors 𝐿, 𝐿′. We consider
the relative ℓ2 error 𝐸2 = ∥𝐿 − 𝐿′ ∥2/∥𝐿 ∥2 and also the maximum 𝐸max of
|𝑙𝑖 𝑗 − 𝑙′𝑖 𝑗 |/𝑙𝑖 𝑗 . In figures with multiple instances 𝑀0, . . . , 𝑀𝑛 of a flexing
mesh, we compare𝑀0 to𝑀1, . . . , 𝑀𝑛 .

Fig |𝑉 | |𝐹 | 𝜆
len
𝜆
vol
𝜆
pl
𝜆
n,1
𝜆
cl
𝜆
fl,1
𝜆
fl,2
𝜆
fix

#it𝑇 [s] 𝐸max 𝐸2

18a 16 9 2.4·10
−07

5.8·10
−08

18b 49 36 1 1 0 0 0 1 1 1 10 0.12 4.4·10
−05

1.2·10
−05

18c 169 144 1 1 0 0 0 1 1 1 10 0.80 1.1·10
−04

1.3·10
−05

9 496 450 1.5·10
−06

2.8·10
−07

12 1048 962 1 1 1 1 .01 1 1 1 10 25.6 6.0·10
−05

5.2·10
−06

13 745 657 1 1 0 0 .01 1 1 1 10 10.4 1.8·10
−05

2.1·10
−06

16a 51 32 6.0·10
−07

2.8·10
−07

16b 585 512 1 1 0 0 0 1 1 1 10 4.47 7.0·10
−05

1.0·10
−05

16c 51 32 6.5·10
−07

3.2·10
−07

16d 165 128 1 1 1 1 0 1 1 1 10 0.51 4.9·10
−05

2.5·10
−05

17a 16 9 1 1 0 0 0 1 1 1 10 0.04 8.2·10
−07

4.5·10
−07

17b 49 36 1 1 0 0 0 1 1 1 10 0.11 4.5·10
−05

1.3·10
−05

17c 169 144 1 1 0 0 0 1 1 1 10 0.78 6.2·10
−05

8.7·10
−06

20a 13 6 1.6·10
−05

8.6·10
−08

20b 121 96 1 1 0 0 0 1 1 1 10 0.37 1.2·10
−04

2.4·10
−05

22 16 9 1 1 0 0 0 1 1 1 10 0.04 1.7·10
−05

4.2·10
−06

5,23l 36 25 1 1 0 0 0 1 1 1 10 0.18 6.4·10
−05

1.8e·10
−06

23r 441 400 1 1 0 0 0 1 1 1 10 3.82 1.3·10
−04

2.8·10
−05

Table 2. Data for an ablation study based on the example of Fig. 12. We
measure how properties of computed meshes𝑀1, 𝑀2, . . . deteriorate when
setting corresponding weights to zero. Isometry is measured as described
in in Table 1. Planarity of meshes is measured by the distance of diagonals
in faces, normalized by average diagonal length. Closeness to a reference
surface Φ is measured by distances of vertices to Φ, normalized by bounding
box diagonal. The table below gives the ℓ2 average and also the maximum
values. Data for closeness and planarity are visualized by color-coding below.

weight change effect ℓ2
average maximum values

𝜆
len
, 𝜆

vol
→ 0 isometry 5.2 ·10

−6 → 7.8 ·10
−3

6.0 ·10
−5 → 2.5 ·10

−2

𝜆
pl
, 𝜆

n,1
→ 0 planarity 9.2 ·10

−6 → 6.3 ·10
−3

4.9 ·10
−5 → 2.8 ·10

−2

𝜆
cl
→ 0 closeness 7.2 ·10

−4 → 2.2 ·10
−3

2.6 ·10
−3 → 6.6 ·10

−3

𝜆
fl,𝑖
, 𝜆

fix
→ 0 isometry 5.2 ·10

−6 → 7.3 ·10
−4

6.0 ·10
−5 → 3.5 ·10

−3

𝜆
cl
→0

−−−−→
𝜆
pl
,𝜆
n,1

→0

−−−−−−−→

breakthrough). In our experiments we worked with surfaces of disk

topology which have no or only a few simple features, such as the

architectural example of Fig. 1. Mechanisms tend to possess hinges

in direction of feature curves, ruling out complex arrangements of

those. Likewise, several bump-like features are problematic as well.

With too complex reference surfaces, optimization will either not

succeed at all or converge to a different, simpler, shape. Our different

ways of initialization have the purpose of finding good input meshes,

and the presented optimization is well suited for shape exploration

by moving away from known classes of quad mesh mechanisms

(see § 4.3.3).

Future Research. Our numerical results point to interesting theo-

retical questions of real algebraic geometry. For the case of planar

faces, an unsolved question is how to build larger meshes from 3× 3

building blocks, where partial results have been achieved by He

and Guest [2020]. Generally, the topic of computational design of

flexible structures is by no means exhausted. Even if we feel we

have made a significant contribution, the question of approximabil-

ity of given shapes by flexible quad meshes is still unsolved. The

generalization to other kinds of flexible structures is wide open.

The mesh mechanism problem is easier in the degenerate metric

of isotropic geometry, and the classification of isotropic-flexible

meshes is a topic of a forthcoming publication. Apparently they

can be efficiently used to initialize the computation of quad mesh

mechanisms.

Conclusion. In this work we combine algebraic and numerical

methods to compute quad meshes which exhibit a continuous iso-

metric flexion where faces stay rigid and edges act as hinges. A

novel degree bound is the basis for time-discretization, reducing the

problem to computing a feasible finite number of isometric meshes.

On the other hand, we use insights from numerical computations

as pointers to interesting cases and to future research.
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A APPENDIX: ALGEBRAIC POSITION THEORY
Our aim is to establish a degree bound on the algebraic problem

of flexibility of quad meshes with regular combinatorics. The key

to a bound that is independent of the mesh size is Proposition 2.2,

stating the mesh is flexible if and only all 3 by 3 submeshes are.

The case of planar faces.

𝜓1

𝜓2

𝜓3

𝜓4

Consider a

3×3 quadmesh with planar faces con-

sisting of the 1-ring neighbourhood

of a central face. The four edges of

this face have dihedral angles𝜓 𝑗 . We

introduce variables𝑤 = tan(𝜓1/2), 𝑧 = tan(𝜓2/2), 𝑣 = tan(𝜓3/2), 𝑢
= tan(𝜓4/2). The configuration space of 3×3 meshes is now defined

by 1 constraint per vertex which involves the two dihedral angles

adjacent to this vertex [Izmestiev 2017, Lemma 4.3, p. 748]:

𝑇1 (𝑧,𝑤) :=𝐴22𝑧
2𝑤2 + 𝐴20𝑧

2 +𝐴02𝑤
2 + 2𝑧𝑤 +𝐴00 = 0,

𝑇2 (𝑣, 𝑧) := 𝐵22𝑣
2𝑧2 + 𝐵20𝑣

2 + 𝐵02𝑧
2 + 2𝑣𝑧 + 𝐵00 = 0,

𝑇3 (𝑢, 𝑣) := 𝐶22𝑢
2𝑣2 + 𝐶20𝑢

2 + 𝐶02𝑣
2 + 2𝑢𝑣 +𝐶00 = 0,

𝑇4 (𝑤,𝑢) :=𝐷22𝑤
2𝑢2 +𝐷20𝑤

2 + 𝐷02𝑢
2 + 2𝑢𝑤 +𝐷00 = 0.

(28)

The coefficients 𝐴𝑖 𝑗 , . . . depend on the shape of the faces involved.

The coefficients of the mixed terms are nonzero, so without loss of

generality they equal 2. Generically, leading coefficients are nonzero:

𝐴22 ≠ 0, 𝐵22 ≠ 0, 𝐶22 ≠ 0, 𝐷22 ≠ 0. (29)

To eliminate the variable 𝑧 from the equations𝑇1 = 𝑇2 = 0, we use a

standard tool: Consider𝑇1,𝑇2 as polynomials in the indeterminate 𝑧

and observe that by (29), leading coefficients do not vanish:

𝐴22𝑤
2 +𝐴20 ≠ 0, 𝐵22𝑣

2 + 𝐵02 ≠ 0. (30)

We then compute the resultant of 𝑇1,𝑇2. It has the form

𝐹 (𝑤, 𝑣) = 𝐶4 (𝑣)𝑤4 + · · · +𝐶1 (𝑣)𝑤 +𝐶0 (𝑣) = 0 (31)

where𝐶4 (𝑣) = (𝐴2

02
𝐵2

22
−2𝐴02𝐴22𝐵02𝐵22+𝐴2

22
𝐵2

02
)𝑣4 + (2𝐴2

02
𝐵20𝐵22

− 2𝐴02𝐴22𝐵00𝐵22 − 2𝐴02𝐴22𝐵02𝐵20 + 2𝐴2

22
𝐵00𝐵02 + 4𝐴02𝐴22)𝑣2 +

(𝐴2

02
𝐵2

20
− 2𝐴02𝐴22𝐵00𝐵20 +𝐴2

22
𝐵2

00
).

Lemma A.1. The coefficient 𝐶4 (𝑣) does not vanish if

𝐵20 ≠ 0, 𝐵00 ≠ 0, 𝐴02 ≠ 0. (32)

Proof. We employ methods of Symbolic Computation. The equa-

tions “𝐶4 = 0” are polynomial in the indeterminates 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 . We

compute a Thomas decomposition of this system [Bächler et al. 2012]

and arrive at 𝐴02 = 𝐵00 = 𝐵20 = 0. By (32) there is no solution. □

In view of this lemma, we make another genericity assumption,

namely (32). It is our aim to show that a quad mesh is flexible if it has

a sufficient number of individual positions which are all isometric

(in the sense of rigid faces). Having computed a dense sequence

of isometric meshes, we want to be sure that there is actually a

continuous flexion connecting them. We therefore typically apply

the result in a situationwhere the dihedral angles𝜓𝑖 are not arbitrary.

It is thus reasonable to restrict to the following situation:

Definition A.2. A set of 𝑁 isometric configurations of a quad
mesh is said to satisfy property (A) if all dihedral angles 𝜓1, . . . ,𝜓4

assume 𝑁 different values, and if each angle assumes values either in
the interval (0, 180

◦) or in the interval (−180
◦, 0).

We proceed in our task and eliminate the variable 𝑢 from equa-

tions 𝑇3 = 𝑇4 = 0 by computing the resultant, analogous to above:

𝐺 (𝑤, 𝑣) = 𝐷4 (𝑣)𝑤4 + 𝐷3 (𝑣)𝑤3 + 𝐷2 (𝑣)𝑤2 + 𝐷1 (𝑣)𝑤 + 𝐷0 (𝑣) .

We interpret both 𝑇3 and 𝑇4 as polynomials in 𝑢 and observe that

by (29), the leading coefficients do not vanish:

𝐶22𝑣
2 +𝐶20 ≠ 0, 𝐷22𝑤

2 + 𝐷02 ≠ 0. (33)

Existence of a one-parameter solution of the system 𝑇1 = 𝑇2 = 𝑇3 =

𝑇4 = 0 is now connected to the resultant of 𝐹 (𝑤, 𝑣) and𝐺 (𝑤, 𝑣) with
respect to the variable𝑤 . Our genericity assumptions ensure that

the leading coefficients of 𝐹,𝐺 are nonzero,

𝐶4 (𝑣) ≠ 0, 𝐷4 (𝑣) ≠ 0. (34)

cf. Lemma A.1 and the analogous statement for 𝐷4 (𝑣). Elimination

of𝑤 leads to the resultant 𝐻 (𝑣) which is a polynomial of degree at

most 32 involving only even orders. Actually already the original

system 𝑇1 = 𝑇2 = 𝑇3 = 𝑇4 = 0 is obviously symmetric w.r.t. to the

substitution (𝑢, 𝑣, 𝑧,𝑤) ↦→ (−𝑢,−𝑣,−𝑧,−𝑤). We conclude:

𝐻 has 17 pos. zeros (counting multiplicities) =⇒ 𝐻 = 0. (35)

After these preparations, we are ready to state:

PropositionA.3. Assume a quadmeshwith planar faces of generic
shape, such that (29) and (32) are fulfilled. Assume further that we
have 𝑁 = 25 mutually isometric positions of this mesh which fulfill
property (A) as stated by Def. A.2. Then this mesh exhibits a continuous
nontrivial isometric flexion.
If we assume the given positions are generic samples, 𝑁 = 17 is

sufficient for the same conclusion.

Proof. By Prop. 2.2, it is sufficient to consider meshes of size 3×3.

We show that there are continuous functions𝑤 (𝑣), 𝑧 (𝑣), 𝑢 (𝑣) such
that for all 𝑣 contained in a suitable interval, the original constraints

𝑇1 = . . . = 𝑇4 = 0 are fulfilled, when substituting these functions for

variables𝑤, 𝑧,𝑢. Since the dihedral angle 𝑣 is moving in its interval,

this represents a nontrivial continuous flexion. Observing degrees,

we see that at most 8 of the assumed 𝑁 solutions violate (30), (33),

(34), so at least 𝑁 − 8 lead to positive solutions of 𝐻 (𝑣) = 0. Since

𝑁 − 8 ≥ 17, (36)

Equ. (35) implies that 𝐻 = 0. It follows that every (partial) solution

𝑣 over the field of complex numbers lifts to solutions 𝑣 → (𝑤, 𝑣) of
𝐹4 (𝑤, 𝑣) = 𝐺4 (𝑤, 𝑣) = 0, and further to a lift (𝑤, 𝑣) → (𝑤, 𝑧, 𝑣,𝑢) of
solutions of 𝑇1 = . . .𝑇4 = 0. Generically however, (30), (33), (34) are

not violated anyway, so (35) simply reduces to 𝑁 ≥ 17.

To discuss how many solutions are real, we use well-known

properties of quadratic equations. Since the 𝑁 assumed solutions
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Fig. 23. Two flexing meshes (nonplanar quad case) approximating the same bending surface. Optimization here was based on the method of § 4.3.3. On the
left we show the flexion of a 5 × 5 precision model fabricated from faces with hinges in the way described by Fig. 22. The model with 20 × 20 faces on the right
has been 3D printed on a HP Multi Jet Fusion 3D Printing system using thermoplastic polyurethane. The material is flexible (Shore A hardness 88) but harder
than the rubber of a typical automobile tire (Shore A hardness 70). The model has a thickness of 4mm that is reduced to 0.6mm at the joints. The resulting
local reduction in stiffness creates a well-defined flexure bearing. Note that the 3D printed version still exhibits only the flexibility that was computed on
the basis of rigid faces and hinges in the edges. This is shown by our actuating the model on the right hand side only and observing that the left hand side
automatically moves as computed.

of 𝑇1 = . . . = 𝑇4 = 0 are real, the discriminant of the equation

𝑇2 (𝑣, 𝑧) = 0, seen as a quadratic equation in 𝑧, is nonnegative there:

Δ2 (𝑣) = 4𝑣2 − 4(𝐵20𝑣
2 + 𝐵00) (𝐵22𝑣

2 + 𝐵02) ≥ 0. (37)

At least 𝑁 −2 of the 𝑁 given values of 𝑣 have Δ2 (𝑣) > 0, and around

each there is a small interval (𝑣−𝜖, 𝑣 +𝜖) where Δ2 (𝑣) > 0. It follows

that there is a continuous real solution branch 𝑧 (𝑣). The argument

can be repeated for 𝑢 (𝑣) and𝑤 (𝑣), using𝑇3 and𝑇4, respectively. □

Proposition A.4. Further to Prop. A.3, if the given isometric posi-
tions of the mesh are infinitesimally flexible, 𝑁 = 17 is sufficient to
conclude existence of a continuous flexion. If they are even 2nd order
infinitesimally flexible, 𝑁 = 14 is sufficient.
If we assume that the given positions are generic samples, 𝑁 = 9

resp. 𝑁 = 6 are sufficient.

Proof. Infinitesimal flexibilitymeans that not only does (𝑤 ,𝑧,𝑣 ,𝑢)
fulfill 𝑇𝑖 = 0 for 𝑖 = 1, . . . , 4, but there is also a nonzero derivative

vector ( ¤𝑤, ¤𝑧, ¤𝑣, ¤𝑢) such that ⟨∇𝑇𝑖 , ( ¤𝑤, ¤𝑧, ¤𝑣, ¤𝑢)𝑇 ⟩ = 0. It is known that

the resultant 𝐹 of 𝑇1,𝑇2, see (31), can be expressed as 𝐹 (𝑣,𝑤) =

𝑎(𝑤, 𝑧, 𝑣)𝑇1 (𝑧,𝑤) + 𝑏 (𝑤, 𝑧, 𝑣)𝑇2 (𝑣, 𝑧). Observing that in the solution

variety 𝑇1 = 𝑇2 = 0, we compute partial derivatives 𝐹𝑤 = 𝑎𝑇1𝑤 ,

𝐹𝑣 = 𝑏𝑇2𝑣 and 𝐹𝑧 = 𝑎𝑇1𝑧 +𝑏𝑇2𝑧 . Observe also that 𝐹𝑧 = 0 because the

variable 𝑧 does not occur in 𝐹 . Some elementary manipulations now

show ⟨∇𝐹, ( ¤𝑤, ¤𝑣)𝑇 ⟩ = 𝐹𝑤 ¤𝑤 + 𝐹𝑣 ¤𝑣 = 0. Similarly, ⟨∇𝐺, ( ¤𝑤, ¤𝑣)𝑇 ⟩ = 0.

Geometrically, this means that curves 𝐹 (𝑤, 𝑣) = 0 and 𝐺 (𝑤, 𝑣) = 0

have the same tangent and therefore intersection multiplicity ≥ 2.

Their resultant 𝐻 (𝑣) then has a double zero, replacing Equ. (36)

by 2(𝑁 − 8) ≥ 17. In case of 2nd order flexibility, an analogous

argument yields 3(𝑁 − 8) ≥ 17. Generically, the same argument as

above yields 2𝑁 ≥ 17 resp. 3𝑁 ≥ 17. □

The skew quads case. For each face consider the tetrahedronwhich
is the convex hull of its four vertices. In a 3 × 3 piece of quad mesh,

we can still introduce angles𝜓1, . . .𝜓4 as above, but these angles are

now measured between faces of tetrahedra. The configuration space

is defined by equations very similar to (28), see [Aikyn et al. 2024]:

𝑇1 (𝑧,𝑤) is replaced by 𝑇1 (𝑧,𝑤) := 𝑇1 (𝑧,𝑤) + 𝐴21𝑧
2𝑤 + 𝐴12𝑤

2𝑧 +
𝐴10𝑧 +𝐴01𝑤 and similar for 𝑇2,𝑇3,𝑇4. We get:

Proposition A.5. A generic quad mesh, which has 𝑁 = 49 mu-
tually isometric positions enjoying property (A) as stated by Def. A.2,
does also exhibit a continuous nontrivial flexion. If the given positions
are generic samples, then 𝑁 = 33 is sufficient.

Proof. The counting arguments we used in the planar faces case

still work, leading to a resultant 𝐻 of degree 32. However, equations

are not symmetric, and (35) is replaced by the statement hat more

than 32 zeros of 𝐻 imply that 𝐻 = 0. Equation (36) is replaced by

𝑁 − 16 ≥ 33, leading to the number 𝑁 = 49. In the generic case we

get the equation 𝑁 ≥ 33. We omit the details. □

Propositions A.3 to A.5 together yield Th. 3.2. The proofs above

assumed generic shape of the mesh. If these assumptions are not

fulfilled, then the resultants will actually have a lower degree, and

a smaller number of mutually isometric mesh positions already

implies a continuous flexion.

B APPENDIX: A SAMPLE TYPE OF FLEXIBLE 3X3 MESH
We here summarize one of the types of flexible meshes with planar

quadrilaterals that have been found by Izmestiev [2017], namely

the so-called linear conjugate type, anti-deltoid subtype. The 16

angles around the vertices of the inner face are labeled 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 ,

𝑖 = 1, 2, 3, 4 according to Fig. 15. With the notation

𝜆𝑖 :=
tan𝑑𝑖 + tan𝑎𝑖

tan𝑑𝑖 − tan𝑎𝑖
, 𝜇𝑖 :=

tan𝑑𝑖 + tan 𝑐𝑖

tan𝑑𝑖 − tan 𝑐𝑖
,

𝜅𝑖 ∈
{

sin
1

2
(𝑎𝑖 − 𝑏𝑖 )

sin
1

2
(𝑎𝑖 + 𝑏𝑖 )

,
cos

1

2
(𝑎𝑖 − 𝑏𝑖 )

cos
1

2
(𝑎𝑖 + 𝑏𝑖 )

}
.

introduced by Def. 2.8 and Th. 2.4 of [Izmestiev 2017], the variables

𝑎𝑖 , . . . , 𝑑𝑖 obey 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 = 2𝜋 (expressing planarity of the

central face), further the linear constraints 𝑎1 + 𝑑1 = 𝑏1 + 𝑐1 =

𝑎3 + 𝑏3 = 𝑐3 + 𝑑3 = 𝑎2 + 𝑐2 = 𝑏2 + 𝑐2 = 𝑎4 + 𝑐4 = 𝑏4 + 𝑐4 = 𝜋 , and

the nonlinear constraints 𝜅4

𝜇1−1

cos𝛿1

= 𝜅2

𝜆3−1

cos𝛿3

, 𝜅2

4
𝜇1 = 𝜆3. The linear

constraints express the fact that opposite vertices No. 2 and 4 are of

the anti-deltoid type and vertices No. 1 and 3 are of the anti-isogram

type [Izmestiev 2017, § 3.6].
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