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Fig. 1. Aesthetic and symmetric meshes computed by our method. Left: A designer manipulates a (8, 4)2 pattern with a small number of positional constraints
(green), obtaining a result where the pattern is locally symmetric. Center and right: Existing designs are optimized for pattern quality, revealing interesting
geometries. Center: Every face is as regular as possible, and the entire mesh appears as a crease folding. Right: A hexagonal mesh is optimized for regularity
with a fixed boundary. The result is smooth, and the element shapes are uniform.

We present a framework for designing shapes from diverse combinatorial

patterns, where the vertex 1-rings and the faces are as rotationally symmetric

as possible, and define such meshes as regular. Our algorithm computes the

geometry that brings out the symmetries encoded in the combinatorics. We

then allow designers and artists to envision and realize original meshes with

great aesthetic qualities. Our method is general and applicable to meshes

of arbitrary topology and connectivity, from triangle meshes to general

polygonal meshes. The designer controls the result by manipulating and

constraining vertex positions. We offer a novel characterization of regularity,

using quaternionic ratios of mesh edges, and optimize meshes to be as

regular as possible according to this characterization. Finally, we provide a

mathematical analysis of these regular meshes, and show how they relate to

concepts like the discrete Willmore energy and connectivity shapes.
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1 INTRODUCTION
Artists and designers constantly explore new types of meshes with

desired aesthetics and function. The properties of these meshes are

determined by both the combinatorics (valences of vertices and faces,

connectivity, and topology), and the geometry (vertex positions).

The geometry is important to faithfully represent an underlying

surface, and the combinatorics is important for the quality of the

representative mesh. Meshes are often designed for realization;

for instance, as architectural structures, artistic constructions, and

panelled buildings. As such, they need to have original and daring

shapes, while adhering to constraints such as prescribed boundaries,

limitations on face shapes, and more.

In this work, we compute an “ideal” geometry for a given combi-

natorial pattern. It is often the case where the pattern is the center

of attention in a designed shape, while the geometry is chosen to

highlight the beauty of the pattern. Notable contemporary examples

are the Soumaya museum [Museo Soumaya], the Kreod [KREOD],

the works by Rinus Roelofs [Rinus Roelofs], the Eye Film Museum

in Amsterdam [Eye], and De Blob in Eindhoven [de Blob].

Triangle meshes are ubiquitous in computer graphics, but are not

very suitable for realization, because of high node complexity. Quad

meshes [Pottmann et al. 2007] and hexagonal meshes [Li et al. 2015]

gained recent attention in the field of design. In [Jiang et al. 2015],

the repertoire was extended to semi-regular tilings. We extend the

range even further by incorporating Archimedean, aperiodic, and

hyperbolic patterns into design.

The question is thenwhat the ideal geometry is for a given pattern.

Common and natural measures of aesthetics are symmetry and

smoothness, and by them we define the concept of regular meshes,
where either the faces, or the vertex neighborhoods of a pattern, are

as rotationally symmetric as possible. For this purpose, we define
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Fig. 2. We compute a reg-
ular (4, 3, 4, 3, 3) mesh
for prescribed handles,
as the centerpiece of an
architectural design.

novel energies that encode the symmetry and anisotropy of 1-rings

and faces. By minimizing our energies for prescribed positional

constraints, we obtain as-regular-as possible meshes. Fig. 1 and 2

depict examples of various meshes designed with our method, in

the context of architectural geometry [Pottmann et al. 2015].

We compute meshes that minimize these energies, and therefore

the mesh elements of our optimal results are “as-regular-as-possi-

ble”. The energies are based on manipulating three basic quantities:

the vertex based quaternionic cross-ratio [Hertrich-Jeromin 2003],

a novel 1-ring based polygon that encodes the regularity of this

1-ring, and a face based normal ratio, with which we control the

regularity of faces. In addition, we show how existing definitions for

ideal geometry from combinatorics, such as connectivity shapes, are

related to our framework. Themeshes that our method computes are

aesthetic, and enrich the vocabulary of mesh design considerably.

Finally, our regularity definitions correlate with notions in discrete

differential geometry, like the discrete Willmore energy [Bobenko

and Schröder 2005]. Our contributions are:

• We introduce a new method to design and optimize meshes to

become as regular as possible, allowing for mesh editing with arbi-

trary boundary and handle-based positional constraints.

• We introduce two novel measures of regularity: one measures

the rotational symmetry of faces (Euclidean regularity), and one

measures symmetry of mesh elements invariantly under Möbius

transformations (Möbius-regularity).

• We define geometric characterizations of regularity, based on an

analysis of quaternionic ratios on the elements of the mesh.

• We generalize and optimize for regularity for all mesh combina-

torics, including pattern imperfections, singularities, and unordered

or irregular patterns.

• Our definitions relate to the discrete Willmore energy.

2 RELATED WORK
Geometry to/from combinatorics. There are several commonmesh-

design paradigms. A popular choice is combinatorics-from-geometry,
where a given shape is reassigned a connectivity with a different

resolution, quality (e.g., more regular elements), or different types of

elements (e.g., a triangle mesh is converted to a quad mesh) [Botsch

et al. 2010, Chap. 6]. Conversely, in the geometry-from-combinatorics
approach, the vertex positions are inferred from the connectiv-

ity [Bobenko et al. 2006; Isenburg et al. 2001]. This approach is

desired when a specific pattern is to be realized (for instance, a

quadrilateral grid), and the surface is not known in advance; rather,

it is designed to adhere to positional and structural constraints. This

process is referred to as form-finding [Tang et al. 2014]. Our work

follows the latter type of approach, where we optimize for a mesh

that is the most regular, or symmetric, for a prescribed pattern.

Polygonal mesh design. Most methods are not designed to deal

with polygonal meshes of arbitrary connectivity, and are not suscep-

tible to such an adaptation. A possible way to construct polygonal

meshes with rotationally-symmetric faces is by using methods that

perform general projections [Bouaziz et al. 2012; Tang et al. 2014],

but there is no insight for what an optimal solution is, or whether it

is possible to obtain one. In addition, they do not define notions of

symmetries in 1-rings and vertices. We nevertheless offer a modi-

fication to [Bouaziz et al. 2012] in Section 5. In [Jiang et al. 2015],

polyhedral patterns were computed for given surfaces, optimizing

for planarity, while keeping the faces symmetric. This requires the

decomposition of a surface into strips, and thus they target patterns

of specific symmetries, with limited generality and control over the

behavior of singularities. As such, the quality of the result depends

heavily on feature alignment and combinatorics. Instead, in our

work, the geometry is created from any underlying polygonal pat-

tern, and does not require any specific structure to work. We do not

adhere to a given embedding of a prior shape, but rather compute

the geometry that would optimize the quality of the mesh elements.

Critical meshes. Other works created geometry from constraints

and combinatorics, with well-known energies, for which the result-

ing surfaces were critical points. A prominent example is that of

discrete minimal surfaces [Pinkall and Polthier 1993]. They have

been defined for triangular meshes, in the language of finite-ele-

ments (FE), and for quadrilateral meshes, general polyhedral sur-

faces, and hexagonal meshes [Bobenko et al. 2006, 2010; Müller

and Wallner 2010; Pottmann et al. 2007] in the language of discrete

differential geometry (DDG). DDG differs from FE, in the sense that

it attempts to create discrete definitions that share properties with

continuous concepts, rather then discretize continuous quantities in

a piecewise-continuous way. The definitions in our paper follow the

DDG philosophy, by defining ratios on elements of a mesh. Minimal

surfaces are a subclass of constant mean curvature surfaces. Their

aesthetics, and their elegant mathematical properties, motivated

their computation as triangular meshes [Pan et al. 2012], and as

quad and hex meshes in [Pottmann et al. 2007].

Other approaches for creating critical shapes from given combina-

torics are the creation of minimal surfaces from circle patterns with

given combinatorics [Bobenko et al. 2006]. This mathematical result,
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Fig. 3. Examples of tilings with regular faces
in the plane. A 3-uniform tiling (top-left), semi-
regular (Archimedean) tilings (top-center and -
right), and a regular tiling of the hyperbolic plane
(bottom-left).

however, does not provide a flexible design method of minimal sur-

faces in practice, for instance to solve boundary value problems. Two

works are closely related in context to our work. In [Bobenko and

Schröder 2005], a discrete Willmore energy is devised by looking at

the intersection angles of circumscribed circles of the triangles of a

mesh. Then, a mesh minimizing the Willmore energy is computed.

However, they do not target mesh regularity, but rather only local

cosphericality. We show that our characterization of regularity is

related to the discrete Willmore energy in Section 6, and argue that

this is why our results exhibit a smooth “as-spherical-as-possible”

appearance, while optimizing for the regularity of the elements.

Isenburg et al. [2001] create geometry for a given mesh connectivity

by optimizing for edges of unit lengths, which is closely related to

our Euclidean regularity energy, as we discuss in Section 7.

3 REGULAR MESHES
We work with meshesM = {V, E,F }. A face f ∈ F is a closed

(not necessarily planar) polygon with an arbitrary number of edges

(we refer to this number as the valence of the face). We denote

meshes and patterns where all faces have the same valence as pure
meshes (e.g., pure quad meshes, where all faces have valence 4) and

meshes with diverse face valences as mixed meshes. Consequently,
we denote the neighborhood, or 1-ring, of a vertex v ∈ V as pure,
if all the adjacent faces have the same valence (e.g., any vertex in a

pure triangle mesh), and we denote it as mixed otherwise.

A pattern is the combinatorics of a mesh, and it is mostly de-

fined with some repetition, or periodicity. A tiling is a realization

of a pattern (assigning coordinate positions to vertices) such that

the realized mesh covers a subset of some space. Notable exam-

ples are planar and spherical tilings (see Fig. 3). The terms “pure”

and “mixed”, in the sense of combinatorics, apply here as well. The

classical definition of tiling requires the realization to respect the

repetition of the pattern. For instance, that faces of the same va-

lence are congruent. Examples range from the simplest pure tilings

in the plane, to intricate tilings combining regular and rhombic

faces interchangeably, like Penrose tilings [Grünbaum and Shep-

hard 1986]. Repetitive combinatorial patterns are usually identified

by enumerating the valences of faces around each vertex, and using

upper indices for multiples if all 1-rings are identical up to Euclidean

transformations. For instance, a pure-quad pattern is 4
4
.

Fig. 4. Perfect Euclidean-regular meshes. Top row: Icosahedron (left),
Archimedean solid (rhombicosidodecahedron; center), PolyCube mesh
(right). Bottom row: developable quad mesh (left), two Archimedean solids
glued together (center), developable triangle strip (right).

Planar tilings. There are three regular tilings of the plane where all
faces are the same regular polygon: triangle, quad or hexagon. They

are pure regular tilings, according to our valence characetrization.

There are some other notable tilings with regular faces. They are

often denoted as semi-regular or Archimedean. These patterns are
mixed and regular by our definition. The set of tilings with regular

faces is however larger than all the above mentioned (semi-)regular

patterns. Their generalizations can be further identified, e.g., by

their invariance under transformations of the wallpaper group. See

Fig. 3 for examples of planar tilings. The guiding principle is that

the angle sum around a vertex in a planar tiling must be 2π , or
otherwise not all faces can be regular.

Spherical tilings. Regular and semi-regular tilings on the sphere

correspond to Platonic and Archimedean solids. Each face is a reg-

ular n-gon. The five platonic solids are pure regular tilings of the
sphere. Any two vertex stars of an Archimedean solid are congru-

ent, and in the case of Platonic solids the vertex stars are even

rotationally symmetric (with rotations of 2π/valence).

Hyperbolic tilings. There are also well-known regular and semi-

regular tilings in the hyperbolic plane. Any two regular n-gons are
related by a hyperbolic isometry (i.e., by a Möbius transformation in

the Poincaré disk model). The heptagonal tiling, for example, does

not exist in the Euclidean plane, as the angle sum of three regular

heptagons around a vertex (Fig. 3 bottom-left) equals
15

7
π > 2π .

Inspired by the aesthetics of (semi-) regular tilings, we aim to cre-

ate realizations for meshes with a similar appearance. For a flexible

design process, we allow a designer to freely prescribe positional

constraints. In order to understand the results that we would get

from the design process, we need to explore and expand the defini-

tion of regularity for general meshes, as we do in the following.

3.1 Euclidean-regular meshes
We define a mesh, pure or mixed, to be perfectly Euclidean-regular if
all its faces are perfectly regular in the usual sense (i.e., each face is

rotationally symmetric). Well-known examples of Euclidean-regular
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Fig. 5. Meshes optimized for Euclidean regularity. The quad mesh assumes
perfect developability, the heptagonal mesh assumes a hyperbolic pattern,
as the prescribed angle defect is negative, and the hexagonal mesh has the
appearance of a dual geodesic dome.

meshes are Platonic and Archimedean solids, and all the aforemen-

tioned regular and Archimedean planar tilings. Other interesting

examples are that of PolyCube meshes [Tarini et al. 2004], and de-

velopable meshes with perfect faces. This definition also includes

meshes that are composed by gluing these well-known examples

together. Some of these meshes are depicted in Fig. 4.

By the assumption that every face is perfectly Euclidean-regular,

it is then evident that the combinatorics determines the inner an-

gles of the faces completely, which in turn determine the Gaussian

curvature at each vertex (i.e., their angle defect). Since all faces of

a perfectly Euclidean-regular mesh are regular polygons, all edges

must have the same length. Hence, once an edge length is selected,

the geometry of perfectly Euclidean-regular meshes is determined

from the combinatorics up to isometric deformation. In fact, in many

cases, the only possible isometric deformation is a rigid motion. A

notable exception is the case of perfectly Euclidean-regular meshes

with 4
4
combinatorics (pure quads): we obtain developable (and

flexible) surfaces. In general, more degrees of freedom are possible

for meshes with boundaries: for instance, a strip of perfect triangles.

See Fig. 4 for such examples.

In general, not every pattern admits a perfectly-regular realization.

Moreover, additional user specified positional constraints further

restrict the solution space. In light of this, perfectly Euclidean-reg-

ular meshes are for the most part restricted and inflexible with

respect to design needs. Our method then targets the generation

of as-Euclidean-regular-as-possible meshes. We denote them as just

“Euclidean-regular”meshes in short (omitting “perfectly”).We define

them as meshes of arbitrary given combinatorics, where the faces

are optimized to be close to perfectly regular faces, under given

constraints (such as boundary or positional handles).

Even though such meshes are at best approximately regular, we

can predict the geometric realization by noting that perfectly-regular

faces prescribe a specific metric and specific Gaussian curvature:

For example, modeling in our context (a part of the mesh) with the

combinatorics of a planar regular pattern will therefore result in

a mesh which is (in that part) “as developable as possible”, and a

mesh optimized for Euclidean-regularity with a regular pattern from

the hyperbolic plane will assume the shape of a negatively curved

surface in R3 (i.e., hyperbolic surface points). See Fig. 5 for examples.

Fig. 6. PerfectMöbius-regular meshes. The truncated dodecahedron (102, 3)
pattern (left), and a pure triangle patch (right) underMöbius transformations.
The meshes, as a result, are embedded in spheres.

Knowing this, a designer who optimizes for Euclidean regularity,

can design the combinatorics in advance to fit her expectations.

3.2 Möbius-regular meshes
We offer an additional definition of regularity, extending our reper-

toire of regular meshes. We define a mesh to be perfectly Möbius-
regular if every 1-ring can be individually transformed by a Möbius

transformation to a perfectly Euclidean-regular respective 1-ring,

embedded in a generalized sphere (i.e., sphere or plane). As a conse-

quence, every face is Möbius equivalent to a regular face. We call the

original perfectly-Euclidean regular 1-ring the canonical embedding.
Note that this definition categorically excludes rings that are not

embeddable in a sphere with perfectly Euclidean-regular faces. For

instance, 1-rings with negative Gaussian curvature. Example: a junc-

tion of 5 quads in a PolyCube mesh is not a canonical embedding

for Möbius regularity, despite having Euclidean-regular faces.

Broadly speaking, perfectly Möbius-regular meshes are spheri-

cal meshes (in a Möbius-geometry sense, including planar). Such

meshes either are Archimedean, or stereographic projections of reg-

ular planar tilings (Fig. 6). Spherical regular tilings, like Archimedean

solids, are then perfectly Euclidean- and Möbius-regular.

Our motivation for introducing the definition of Möbius regular-

ity is that, from a design perspective, they provide more options for

results that are beautiful and symmetric. The shapes of the regular

elements transform into aesthetic shapes, as a Möbius transforma-

tion is conformal. One should note that Euclidean regularity is not
a special case of Möbius regularity. The aforementioned PolyCube

junctions are one example, but non-planar developable meshes are

another, as the vertices are not Möbius regular. These two notions

of regularity are related and intersecting, yet distinct.

Nevertheless, as in the case of perfectly Euclidean-regular meshes,

the flexibility gained by the Möbius-equivalence between elements

is limited if we only consider perfectlyMöbius-regular meshes. Thus,

we focus on geometric realizations that are as-Möbius-regular-as-
possible, for given constraints. Again, we denote these as Möbius-

regular meshes (without ‘perfectly’). We can predict their appear-

ance from the combinatorics itself: they are always as-spherical-

as-possible (including planes), where additionally the elements are

as-regular-as-possible. See Fig. 7 for some examples. The notion of

trying to become as-spherical-as-possible brings up the concept of

the Willmore energy [Bobenko and Schröder 2005]. Indeed, as we

show in Section 6, perfectly Möbius-regular meshes are related to

discrete Willmore surfaces.
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3.3 Boundary behavior
The definition of Möbius regularity readily extends to boundaries: a

boundary vertex is Möbius regular if it has a canonical embedding

as a planar boundary vertex, where all faces are regular. This include

spherical patterns, as boundary vertices can always be embedded in

the plane without distortion. The definition of Euclidean regularity

is thus straightforward.

This is considered as the natural bound-
ary behavior, and mimics the effect of cut-

ting out faces from a wallpaper pattern,

seamlessly along the edges (see inset). As

a result, the boundary curvature is also pre-

determined (for the canonical embedding),

and different patterns exhibit considerably

different boundaries accordingly (see Fig. 7).

For instance, it is expected to find smooth boundaries when the

angles add up to π , and jagged boundaries otherwise. We employ

natural boundary conditions in all examples in our paper, wherever

they are not explicitly constrained as handles.

Fig. 7. Examples of Möbius-regular meshes. The Eye mesh is as spherical as
possible with the given two boundaries. The three planar patterns, where
faces are color-coded according to valence, are optimized with the same
positional constraints (black spheres), and natural boundary conditions. The
resulting shapes are similar on the inside, and considerably different on the
boundary, where the natural curvature of each pattern is obtained.

3.4 Imperfect patterns
Not all mesh combinatorics admit a perfectly-regular realization

(Euclidean or Möbius), even without considering any positional or

boundary constraints. For Euclidean regularity, every mesh that

cannot be optimized to developable patches without cutting, or

changing the combinatorics, falls into this category (Fig. 8).

A basic example of imperfection for Möbius

regularity is this geodesic dome (see inset), i.e.,

the sphere with 12 cone singularities of index

1

6
. Consider two neighboring vertices with va-

lences 5 and 6 (green and red, resp.). The per-

fectly Euclidean-regular 1-ring for the vertex of

valence 6 is the respective element in a 3
6
tiling.

The perfectly Euclidean-regular 1-ring of valence 5 is a spherical

1-ring, as the angle defect
π
3
is positive. For both 1-rings to be

perfectly Möbius-regular, the mutual flap (two dashed triangles

in the inset) must be Möbius equivalent to perfect flaps of both

valences 5 and 6. This is impossible, as can be easily verified with

the invariance of the cross-ratio (see Section 4). Thus, the singular

vertices of this geodesic dome cannot be perfectly Möbius-regular

without some distortion in the neighboring vertices.

The challenge is in fact more considerable: not every conceiv-

able 1-ring admits a canonical embedding even independently: for

instance, there is no canonical embedding for quad-mesh vertices

of valence 5, or triangle-mesh vertices of valence 7, due to the

negative angle defect. Nevertheless, we want our method, and defi-

nition of regularity, to incorporate imperfect combinatorics, so that

our method would be general and useful. This is also essential for

meshes of higher genus that admit negative-index singularities. We

therefore must define a canonicalization of imperfect 1-rings.

As a motivational example to how we canonicalize

imperfect 1-rings, consider a pure 1-ring of valence

d . We then choose the perfectly symmetric solution:

arrange the vertices in a regular d-gon, and put the

central vertex at the barycenter (see inset). We then

consider 1-rings that are Möbius equivalent to this

canonical reference as regular.

Several examples of pure regular meshes from imperfect patterns

are given in Fig. 8. While we defined a way to work with imperfect

pure patterns, we still do not know how to cater to mixed imperfect

patterns at this stage, or how to produce these meshes in practice.

To do these, one needs to produce a consistent geometric character-

ization of regularity and canonical 1-rings, that can be optimized

for; we do so in the following section.

4 GEOMETRIC CHARACTERIZATION OF REGULARITY
We optimize for pattern realizations that are as regular as possible,

either Möbius or Euclidean, where we cater to perfect as well as

imperfect patterns automatically. For that, we proceed as follows:

First, we introduce a compact characterization of the geometry of

perfectly-regular meshes. To this end, we consider three quaterni-

onic ratios of edges on a mesh: the classical cross-ratio, a normal

ratio for two consecutive edges within each face, and the corner

tangent on every adjacent three vertices within a face. With them,

we define canonicalized embeddings to imperfect patterns.

4.1 Preliminaries
Face flaps, 1-rings and boundary polygons. We consider a mesh

M = {V, E,F } as before. To define our ratios we refer to several

configurations/elements in a mesh: a single face-flap contains two

faces f ,д with a common edge e (see Fig. 9 top-left). A 1-ring around
a central vertex v consists of all faces adjacent to that vertex. In

addition, we use the vertex star around a central vertex v which

consists of the edges vu1, . . .vun emanating from v and which also

contains their endpoints u1, . . . ,un in a cyclic order (Fig. 9 right).

Vertex stars and 1-rings are identical in pure triangle neighborhoods

(Fig. 9 bottom left). Otherwise, the triangles of a vertex star are not

necessarily faces of the mesh (see the three dashed triangles in Fig. 9

ACM Transactions on Graphics, Vol. 36, No. 4, Article 113. Publication date: July 2017.
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ER
orig. MR

0

bunny + fandisk

E
ER

1

0

rockerarm

5EMR

Fig. 8. Imperfect meshes optimized for regularity. Optimized for Möbius
regularity (MR), the genus-0 meshes (Bunny and Fandisk) become spherical
with faces that are as-regular-as-possible. The genus-1 Rockerarm interest-
ingly achieves a cyclide appearance, which is the as-spherical-as-possible
shape for genus-1. Optimized for Euclidean regularity (ER), Fandisk and
Bunny achieve approximate, but imperfect, developable appearance. Color
coding is for the energies defined in Section 5.

right). We predominantly use the vertex star in our definitions. We

denote the polygon generated by the sequence of the endpoints

u1, . . . ,un of a vertex-star around v as its boundary polygon, and
mark it as Bv .

Quaternions. Quaternions are defined as q = [r ,x ,y, z] = [r ,v] ∈
H �R4, where r =Re(q) is the real part, and v = (x ,y, z) = Im(q)
the imaginary part. The noncommutative product of two quater-

nions [r1,v1] and [r2,v2] is [r1r2 − ⟨v1,v2⟩, r1v2 + r2v1 +v1 ×v2].
Quaternions q with Im(q) , 0 can be uniquely decomposed as

q = s[cosϕ, sinϕ v], where s ≥ 0 is the modulus (absolute value),
0 ≤ ϕ < π is the (principal) argument, and v ∈ R3 is the (unit) vector
of the quaternion. Throughout this paper, we mark unit vectors with

bold letters. Given two quaternions a,q, we call the product aqa−1

a rotation, and aqa a similarity. We avoid using the term “conjuga-

tion” for rotations, in the context of this paper, in order to dispel

confusion with the conjugate [r ,v] = [r ,−v]. Rotations only alter

the vector part, while similarities also change the modulus.

We represent vertices and edge vectors inR3 by imaginary quater-
nions qi = [0,xi ,yi , zi ]. The product of two imaginary quaternions

is then q1q2 = [−⟨Im(q1), Im(q2)⟩, Im(q1) × Im(q2)]. Representing
this product by s[cosϕ, sinϕ v], we get that s = |q1 | |q2 |, ϕ = π − α ,
where α measures the convex angle between the vector parts, and

v = (q1 × q2)/|q1 × q2 | is the normal vector to both quaternions.

qiqiqiqiqiqiqiqiqiqiqiqiqiqiqiqiqi

qj

qk

ql ддддддддддддддддд fffffffffffffffff

vvvvvvvvvvvvvvvvv

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2

u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3
u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4

u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6

iiiiiiiiiiiiiiiii

kkkkkkkkkkkkkkkkk

lllllllllllllllll

jjjjjjjjjjjjjjjjj

Fig. 9. The setting of our exposition. Top-left: A face-flap consisting of two
triangles adjacent along a common edge. Bottom-left: A pure triangle 1-ring
around a vertex v , identical to the vertex star of v . Right: A mixed polygonal
mesh. The vertex star around vertex i consists of all triangles generated by
the edges through i (red dashed). The polygon jkl is its boundary polygon.

A quaternionic Möbius transformation is of the form q 7→ w =
(aq + b) (cq + d )−1. We only regard imaginary-preserving transfor-

mations, s.t.w is imaginary if and only if q is. Imaginary transforma-

tions map R3 to R3 (with the point at∞). Properties of imaginary-

preserving transformations were explored in [Vaxman et al. 2015].

4.2 Quaternionic cross-ratio
We abbreviate edge vectors between vertices by qi j =qj −qi . The
quaternionic cross-ratio of four points qi ,qj ,qk ,ql is crq [i, j,k, l] :=
qi j q

−1
jk qkl q

−1
l i . For completeness, we repeat some of its relevant

properties from [Vaxman et al. 2015].

Intersection angle. Consider the circumcircles of vertices ijk and

kli , as in Fig. 10 (left). The cross-ratio argument ϕ[i, j,k, l] encodes
the intersection angleψ [i, j,k, l] between both oriented circles as

ϕ[i, j,k, l] = π −ψ [i, j,k, l]. We thus obtain the well known result

that qi ,qj ,qk ,ql are circular (lying on a common circle) if and only

if the cross-ratio is real (zero imaginary part).

Under transformation. The edge vector of two transformed points

qi ,qj under a Möbius transformation is obtained by

(cqi + d )
−1 (qj − qi ) (cqj + d )

−1. (1)

Thus, a Möbius transformation, applied to four points qi ,qj ,qk ,ql ,

rotates the old cross-ratio crq by (cqi+d ) to

crw [i, j,k, l] = (cqi + d )
−1

crq [i, j,k, l] (cqi + d ).

qiqiqiqiqiqiqiqiqiqiqiqiqiqiqiqiqi

qj

qk

ql

t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]

t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]t [l, i, k]

ψψψψψψψψψψψψψψψψψ

Im cr[k, l, i, j]

Im cr[i, j, k, l ]

iiiiiiiiiiiiiiiii jjjjjjjjjjjjjjjjj

kkkkkkkkkkkkkkkkk

lllllllllllllllll

Fig. 10. Left: Triangle flap with intersection angle ψ between the circumcir-
cles of neighboring triangles. Right: Imaginary parts of cross-ratios corre-
sponding to two permutations of the four points.
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The modulus |cr| and the argument ϕ are preserved.

4.3 The corner tangent
The corner tangent at qi is defined on three consecutive vertices

qk ,qi ,qj within a face, constituting an oriented corner, as follows:

t[k, i, j] := −q−1ki qjkq
−1
i j = q

−1
ki + q

−1
i j .

The last equality holds since p−1 + q−1 = p−1 (q + p)q−1. Note that
the corner tangent is always imaginary. The cross-ratio cr[i, j,k, l]
can be expressed in terms of corner tangents:

cr[i, j,k, l] = t[k, i, j]−1 · t[k, i, l].

Other than the simple algebraic relation between the corner tan-

gents t and the cross-ratio cr, the corner tangent has the following

interesting geometric meaning (see also Fig. 10 left):

Lemma 4.1. Consider the circumcircle of qi ,qj ,qk , oriented accord-
ing to this defining triangle. Then, t[k, i, j], placed at qi , is in oriented
tangential contact to the circle.

We include a proof of Lemma 4.1 in Appendix A. This lemma

provides a geometric interpretation to the vector part of the cross-

ratio: it is orthogonal to the tangents of two intersecting circles ijk
and ikl , and therefore it is in the direction of the radius vector of

the sphere which is defined by these circles, or equivalently by the

four vertices of the triangle flap.

The tangent polygon. By observing the definition of the corner

tangents, it is straightforward to see that at a vertex star with central

vertex v and vertices u1, . . . ,un , we have:∑n
i=1 t[ui ,v,ui+1] = 0,

where the indices are taken modulo n. By that property, if we con-

sider the vectors t as edge vectors of an abstract polygon, then this

polygon is closed for every vertex star (whenv is not a boundary ver-

tex). We denote it as the tangent polygon of v (see Fig. 11), and mark

it as Tv . The imaginary parts of the cross-ratios cr[v,ui−1,ui ,ui+1]
then serve as the normals to each respective corner ofTv . Note that
the vector part of a cross-ratio is always in the direction of the cross

product t[k, i, l] × t[k, i, j]. As such, if and only if Tv is convex (and

planar), all vector parts are co-directional.

iiiiiiiiiiiiiiiii

jjjjjjjjjjjjjjjjj

kkkkkkkkkkkkkkkkk

lllllllllllllllll
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ImNlImNlImNlImNlImNlImNlImNlImNlImNlImNlImNlImNlImNlImNlImNlImNlImNl

Im criIm criIm criIm criIm criIm criIm criIm criIm criIm criIm criIm criIm criIm criIm criIm criIm cri

t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]t [k, i, j]
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Fig. 11. The normal ratios Nj , Nl are defined on corners j, l and their
vector parts are orthogonal to corresponding triangles. The vector part of
the cross-ratio cri of the flap i jkl is orthogonal to the corresponding edges
t [k, i, j], t [l, i, k] of the tanget polygon Ti .
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Fig. 12. Left: Regular vertex star. The cross-ratio of each flap in the 1-ring
is [cosϕ, 0, 0, sinϕ]. Right: The vertex star after a Möbius transformation,
and its tangent polygon undergoing a similarity.

Under a Möbius transformation, a corner tangent t[k, i, j] trans-
forms via a similarity (cf. Eq. (1)):

tw [k, i, j] = (cqi + d ) tq [k, i, j] (cqi + d ). (2)

Thus, Möbius transformations of the vertex star result in similarities

of Tv (see Fig. 12). This invariance of the tangent polygon makes

it the centerpiece in our definition of Möbius regularity, and in the

canonicalization of imperfect patterns, as we see in Section 4.5.

Ratios on faces. To be able to discuss Möbius regularity of meshes,

we also need to discuss ratios on the faces, and not only on vertex

stars. Two triangles are always Möbius equivalent to each other.

Therefore, we only discuss faces with valence d ≥ 4 in this con-

text. To be able to characterize faces in a similar way to that of

vertex stars, we consider the cross-ratios of each four consecutive

points of a face of valence d , with vertices (u1, . . . ,ud ). If the face
is Möbius equivalent to a Euclidean-regular face, the cross-ratio is

predetermined by d alone; see Section 4.5 for the specifics.

The tangent polygon and the cross-ratio are objects of Möbius ge-

ometry, and are consequently used by us to defineMöbius regularity;

in the following we define an object of Euclidean regularity.

4.4 Normal ratios
Having defined the tangent polygon, whose edge vectors are the

corner tangents, and the cross-ratio of a flap in a vertex star around

a given central vertex v , we proceed to define the normal ratio, that

pertains to two consecutive edges qi j ,qjk within a face. We define

the normal ratio of each corner qi ,qj ,qk as (see Fig. 11):

N [i, j,k] = qi jq
−1
jk .

If the vertices are clear from the context, we use Nj for the normal

ratio instead of N [i, j,k], for brevity. Note that the imaginary part

of the normal ratio is always orthogonal to the plane spanned by

the two vectors. Its modulus encodes the ratio of their lengths

|qi j |/|qjk |, and its argument encodes the convex angle ∠ijk between

them. Unlike the corner tangent and the cross-ratio, the normal

ratio is not invariant under Möbius transformations, as Nw [i, j,k] =

(cqi + d )
−1 Nq[i, j,k] (cqk + d ). The normal ratio transforms as a

rotation when the Möbius transformations have no inversion (c = 0).

as such, themodulus and the argument of normal ratios are invariant

to similarities. We also obtain the elegant identity:

cr[i, j,k, l] = Nj · Nl .
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4.5 Quantifying regularity with ratios
Euclidean Regularity. A face of valence d is perfectly Euclidean

regular if and only if all the normal ratios equal

[cos(χd ),− sin(χd )nf ], where χd = 2π/d, (3)

and nf is a unit normal to the face. This is in fact stating a straight-

forward definition of Euclidean regularity: in a regular polygon,

every edge is a rotation of its adjacent edge by the angle specified by

the valence. We use it in this manner for optimization in Section 5.

Möbius regularity of faces. Under a Möbius transformation, the

cross-ratios of triangle flaps of vertex stars undergo rotations. Conse-

quently, the moduli and arguments of the cross-ratios are invariant

to the transformation. For a perfectly Möbius-regular d-gon (i.e., a

d-gon which is Möbius equivalent to a Euclidean-regular d-gon), we
get that all cross-ratios of four subsequent vertices are real (since

regular d-gons are circular) and equal

cr[ui ,ui+1,ui+2,ui+3] = [−(1 + 2 cos(2π/d ))−1, 0, 0, 0].

The tangent and the boundary polygon. The tangent polygonTv of

a perfectly Euclidean-regular vertex star with edge length 1 equals

its boundary polygon Bv (i.e., Tv =Bv ), since:

t[k, i, j] = q−1ki + q
−1
i j = −(qki + qi j ) = qjk .

Möbius regularity of pure vertex stars. Recall that a vertex star is
pure when the adjacent faces all have equal valences. Let us consider

a perfectly Möbius-regular vertex star of valence n with central

vertex v . Its canonical embedding is a perfectly Euclidean-regular

star embedded in a sphere, where all edge lengths are ∥v − ui ∥ = 1,

and Bv is a regular n-gon. This leads to the following theorems:

Theorem 4.2. The tangent polygon Tv of a pure Möbius-regular
vertex star of valence n is a Euclidean regular n-gon.

Corollary 4.3. In a pure Möbius-regular vertex star of valence n
the cross-ratios cr[v,ui−1,ui ,ui+1] of all flaps around the 1-ring are
equal to each other and to

[cosϕn , sinϕnnv ], where ϕn = (n − 2)π/n,

where nv is a unit vector.

This is easily verified. See Fig. 12 for illustration. Note that n is the

degree of the vertex, rather than that of the faces. For instance, in

the case of a cube or the dodecahedron, we have n = 3. Furthermore,

the tangent polygon undergoes a similarity while the mesh under-

goes a Möbius transformation, and therefore retains its Euclidean

regularity. nv can be considered as “the vertex normal” of the vertex

star, as it is codirectional with the radius vector of the circumsphere

to this star.

Möbius regularity vertex stars in mixed meshes. The characteri-
zation of Möbius regularity of pure vertex stars with quaternionic

ratios readily generalizes to mixed meshes. Assume that the va-

lences of the faces around a central vertex v are (d1, . . . ,dn ), and
that they are ordered cyclically around the vertex. We refer again to

the canonical embedding for the perfectly Euclidean-regular vertex

star embedded in a sphere, where edges emanating from v all have

the same length 1 and angles αi of faces i measure (di − 2)π/di .
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Fig. 13. The tangent polygon, which identifies with the vertex star. Left:
the canonical embedding of a mixed (4, 3, 4, 5) pattern. Right: the tangent
polygon with the phases of the cross-cross that are used to quantify ideal
regularity of this vertex star.

The identical tangent and boundary polygons for this star have the

following elegant theorem (see also Fig. 13):

Theorem 4.4. If the vertex star is co-spherical, and the lengths of
edges emanating from v are equal to 1, then the associated boundary
polygon Bv , and the identical tangent polygon Tv , are concyclic.

Proof. Let us denote the sphere that contains the entire vertex

star (boundary polygon and vertex v) by S1. The boundary polygon

is equidistant from v , and thus is contained in its own sphere S2 for
which v is the center. The two spheres are distinct (since v ∈ S1 but
v < S2) which implies that the boundary/tangent polygon lies in

the intersection S1 ∩ S2 and is consequently concyclic. □

Corollary 4.5. The tangent polygon of a perfectly Möbius-regular
mixed vertex star is concyclic, equal to the boundary polygon of the
vertex star in the canonical embedding.

See Fig. 13 for an example. The cross-ratios of the flaps in the

vertex star behave accordingly: they all have the same vector nv ,
and moduli and arguments derived from the ratios of edges in the

tangent polygon. Note that pure vertex stars are an interesting

subset: tangent polygons of perfectly Möbius regular vertex stars are

concyclic, and tangent polygons of pure vertex stars are additionally
regular. As we see in Section 6, the weaker property of merely being

planar has an important geometric meaning as well.

Computing the tangent polygon. Our analysis of the tangent poly-
gon and cross-ratio for Möbius regular vertex stars has a direct

purpose: given a combinatorial pattern, determine the ideal tangent

polygonTv at each vertex starv , so that an embedding of the vertex

star for whichTv is the tangent polygon, is then Möbius regular. We

then optimize for this property to obtain Möbius-regular meshes.

As we opt for a tangent polygon that is concyclic, there is a simple

way to compute the ideal one:

• For each star triangle ijk from a 1-ring face of valence d , calculate
the length of the ideal boundary edge ljk according to its valence.

This is the length of a diagonal in a unit d-gon.
• Create an embedding of the boundary polygon Bi in a circle with

the given lengths. This is also the perfect tangent polygon Ti .
The process is a bit technical, but straightforward; we give exact

details in Appendix B. To get the moduli and the arguments of
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the cross-ratio, simply compute them from the embedding. For

boundary conditions, the tangent polygon is open. Nevertheless,

since we assume natural boundary condition, we can predict what

the “missing faces” that were supposedly cut out of the boundary are,

and collect their lengths to complete the polygon. As an example, a

boundary with a quad and two triangles have natural regular angles

π
2
+ 2 · π

3
. The missing “phantom” polygon is predicted to have an

angle of
5π
6

to complete to 2π .
It may seem that the analysis of the tangent polygon is unneces-

sary, as we can just build a canonical embedding and use it. However,

the insight about the structure of the tangent polygon is essential

for the generalization of Möbius regularity into imperfect patterns

as in the following, where no such Euclidean embedding exists.

4.6 Regularity in imperfect patterns
Our method is designed to accommodate every given input pattern,

and provide as-regular-as-possible realizations. It is expected that

we reproduce perfect embeddings for perfect patterns (when posi-

tional constraints do not interrupt), but not every pattern admits a

canonical embedding, as we discuss in Section 3.4. The face-based

quantities, cross-ratios and normal ratios, are agnostic of the im-

perfectness of the pattern; we try to make each face as regular as

possible independently, according to its valence d .
For imperfect vertex stars, we need a consistent modus operandi.

The practical meaning of our insight about the structure of cross-

ratios and tangent polygons, is that we have an intuitive way to

canonicalize imperfect vertex stars:

Definition 4.6. A vertex star is canonicalized to be Möbius regular

if its tangent polygon is concyclic, with the lengths ljk , ascribing to

the valences of the faces in the vertex star.

This definition reproduces the tangent polygons of pure and

mixed perfect vertex stars, and in addition the intuitive general-

ization we gave for imperfect pure vertex stars in Section 3.4. We

then just adopt the circle embedding as our modus operandi: we

don’t have to know if the vertex stars are perfect or imperfect. As a
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Fig. 14. Meshes optimized for Möbius regularity with direct optimization.
Top: designing a Möbius regular shape from a patch of the (6, 4, 3, 4) pattern
by prescribing position constraints (green dots). Bottom: optimizing exist-
ing designs. Left: a (12, 6, 4, 6) pattern. Right: a triangle mesh, giving the
appearance of a “blob toy”. The colors refer to the EMR energy per vertex.

consequence, we get a single canonicalization of regularity for all

patterns, that we optimize for in the following section.

To summarize, our characterization seamlessly caters to any type

of input mesh, while including the exact definition of regularity for

meshes that do possess a canonical regular embedding.

5 REGULAR MESH DESIGN
We next define the regularity energies, based on our quaternionic

ratios. We hereby refer to both canonical and canonicalized embed-

dings as just “canonical” from this point on. The designer starts

from either a generic embedding of a desired pattern (e.g., a patch in

the plane), or some existing realization of a pattern, and prescribes

positional constraints to direct the design.

5.1 Regularity energies
Möbius regularity. Consider a mixed 1-ring of valence n around

vertexwi . We use unit-length vectors ni per vertex to represent the
vector parts of the ideal mutual cross-ratios, and define the following

energy, combining face-based and vertex-star Möbius regularity:

EMR =
∑

f ∈F

d∑
p=1

���cr[w
f
p ,w

f
p+1,w

f
p+2,w

f
p+3] − [

−1
(1+2 cos(2π /d ) , 0]

���
2

+
∑

wi ∈V

∑
flap (i jkl )

���cr[wi ,w j ,wk ,wl ] − li jkl [cosϕi jkl , sinϕi jklni ]
���
2

,

where d is the valence of f , ϕi jkl and li jkl are the argument and

modulus, respectively, associated with the cross-ratio of the flap, as

computed from the concyclic tangent polygon, and w
f
i denotes a

vertex i of the face f . EMR = 0 only when all cross-ratios are equal to

the ideal one, which means every 1-ring and every face are perfectly

Möbius-equivalent to their canonical embeddings. Note that the

moduli and the arguments of the common auxiliary cross-ratio are

constants and pre-computed. The variables in this energy are the

vertex positionswi that constitute the cross-ratios, and the auxiliary

normalized vector parts ni . By prescribing positional constraints,

simply as a substitution into the coordinates of the vertices, the

designer can deform any pattern to her will. We show examples of

EMR-minimizing meshes in Fig. 14.

Euclidean regularity. Consider a face of valence d . Similar to the

Möbius regularity energy, we utilize a unit-length auxiliary vector

variable nf per face, and define the energy (cf. Eq.(3)):

EER =
∑

f ∈F

∑
(ki ), (i j )

adjacent edges∈f

���wi jw
−1
ki − [cos(χn ),− sin(χn )nf ]

���
2

,

to minimize the differences between the normal ratios of the poly-

gons to a central common auxiliary normal ratio per face. Again,

both the vertex positionswi and the normalized normal vectors nf
are variables in our system. We show examples of meshes optimized

for Euclidean regularity in Fig. 15.

Direct optimization. Given coefficients λMR and λER, a direct op-
timization method minimizes the following unconstrained energy:

ER = λMREMR + λEREER.

To get Euclidean regular meshes, we set λMR = 0 and λER = 1. Möbi-

us regular meshes often have a degree of freedom, since the results
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are unique up to a Möbius transformation. While sufficient posi-

tional constraints remove this ambiguity, in practice it is preferable

to settle with a small coefficient in ER. Thus, for all our examples

we use λMR = 1 and λER = 0.01 for Möbius regularity. For initial

solution, we use the original positions as the initial wi , and solve

for the initial ni and nf by minimizing ER , where the positions are
the initialwi set as constant. These are local linear systems.

We show examples of meshes designed with direct optimization,

in Fig. 14 and 15. It is naturally possible to balance the energies

differently to get blended regularity, and we depict this in Fig. 16.

5.2 Local-global based approach
The energy is smooth, but nonlinear, as the cross-ratio is a nonlin-

ear function of the vertices and we use the normalized auxiliary

cross-ratio vector. As such, it can be solved by methods that tar-

get nonlinear least squares, and we use the Levenberg-Marquadt

algorithm [Nocedal and Wright 2006]. Nevertheless, every itera-

tion is costly, and computing Jacobians for quaternionic variables

is tiresome. It is then worthy to explore an alternative method of

computing with local-global alternating projections, and specifi-

cally with shape projections [Bouaziz et al. 2012]. Trying such an

approach is appealing, as it involves local iterations of simple prob-

lems, and efficient global linear solves with a fixed positive-definite

matrix, for which a Cholesky factorization could be computed in

a preprocessing step. To this end, we need to define an alternative

formulation of our energy, which is not equivalent, but which still

theoretically optimizes for Euclidean and Möbius regularity:

E ′R = λMR

∑ |V |+ |F |
i=1 |AiWi − PMR (AiWi ) |

2

+ λER
∑ |F |
i=1 |AiWi − PER (AiWi ) |

2,
(4)

whereWi is a subset of vertex positions participating in a projection,

i.e., vertex stars for MR and face vertices for either ER or MR, Ai

0.5

E
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0

Fig. 15. Meshes optimized for Euclidean regularity. Top and bottom left: the
optimized geometry for these semi-regular patterns. Note that they appear
as if made from conic patches, as the original patterns are planar. Bottom
right: the optimized dragon exhibits a shape that is made from patches that
are as developable as possible, having the appearance of a “paper toy”.
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Fig. 16. Balancing regularities. We use λMR = 1, and change λER according
to the specified values. The result balances between a spherical and smooth
look (dominant MR), to one that tends to developability (dominant ER).

are averaging operators, and P
ER/MR

are projection operators that

we describe in the following. The formulation is identical to the

one given by [Bouaziz et al. 2012], and we refer the reader for exact

details of the averaging and the nature of the local-global iterations.

Projection for Euclidean regularity. The core operation in the local

iteration is to take the vertices wi in iteration k , and produce the

closest (in the least-squares sense) ideal vertices PER (wi ). For Eu-
clidean regularity, it’s simply the closest regular polygon. This was

studied in [Bouaziz et al. 2012], and we do not alter the formulation.

Projection for Möbius regularity. For faces, one needs to find the

closest polygon PMR (wi ) that is related by a Möbius transformation

to a canonical regular polygon of the same valence. However, as

both the canonical polygon, and the ideal result are planar, we can

reduce this problem to two substeps: first, find the global rotation

that brings the current polygonWi as best as possible into the xy
plane where the canonical regular polygon is, and subsequently

project the coordinates onto the plane (set z = 0) to form com-

plex coordinates ηi . Second, find a planar Möbius transformation

between the canonical polygon and η by minimizing the following:∑
∀wi ∈Wi

��aηi + b − zi (cηi + d )��2,

where a,b, c,d ∈ C are the variables of the complex Möbius trans-

formation, and zi are the vertices of the canonical polygon. It is
possible to set a = 1 to remove the homogeneous ambiguity. The lo-

cal projection PMR operator comprises of the inverse to this Möbius

transformation, followed by the inverse to the rotation above.

Projection for vertex stars is more challenging. We do not always

have a canonical embedding to compute a Möbius transformation

from. Even if we do, finding the quaternionic transformation in R3

directly is not linear anymore, as quadratic imaginary-preserving

conditions on a,b, c,d have to be met [Vaxman et al. 2015].

The first challenge we solve is to create a canonical embedding.

This is straigthforward: we create the concyclic tangent polygon,

and put the central vertex in the middle. The resulting tangent

polygon is equal to the boundary polygon. For perfect patterns, this

is simply the stereographic projection of the canonical embedding

to the plane—a Möbius transformation—and we can use this as a

canonical embedding. We denote this embedding with vertices qi .
The second challenge is to find the best-fitting Möbius transfor-

mation between q and the current vertex star w . Recall that the

tangent polygon undergoes a similarity. We proceed as follows:

ACM Transactions on Graphics, Vol. 36, No. 4, Article 113. Publication date: July 2017.



Regular Meshes from Polygonal Patterns • 113:11

[i] Find the similarity between the tangent polygons of the canon-

ical embedding, and that of the current vertex starWi . This is com-

puting Gv = (cqv + d ), as per Equation (2).

[ii] Solve for c,d by minimizing∑
w ∈Wi

���w
−1
vi − (cqi + d ) (qv − qi )

−1Gv
���
2

(Eq. (1) in an inverse form). This is a linear quaternionic system.

Recall thatw is given as the current vertex positions.

[iii] Compute PMR (Wi ) by applying the Möbius transformation.

Analysis. The energies of Eq. (4) are not the same as the energies

of Sec. 5.1. The main difference is that the formers are no longer

scale invariant. Essentially, reducing edge size lowers the energy,

which is not the case for the energies of Sec. 5.1; there, every edge

is represented in both qi j and the inverse q−1i j in another term, and

each term is scale invariant. We make an empirical comparison of

both alternatives in Fig. 17. We observe that the direct optimization

requires much less iterations to converge, but has more costly itera-

tions. The lightweight iterations of the local-global approach make

up for the excessive amount of iterations.

In the case of Euclidean regularity optimization (the “Tent” mesh,

λMR = 0, λER = 1), the results are quite similar. On average, we

found the entire runtime of the local-global approach to take about

75 − 80% of the total running time per example, comparing to direct

optimization. However, the code for both approaches is not opti-

mized for performance, and the local step could be effectively paral-

lelized. In light of this, we recommend the local-global approach for

regularity optimization that is dominantly Euclidean-regular.

In the case of Möbius regularity (the “Teddy” example, λMR =

1, λER = 0.01), the local-global approach achieves good results as

well as the direct optimization, but different in appearance. However,

in other cases (same parameters), the local-global approach tends to

converge to local minima. These local minima have an interestingly

common “dumbbell shape” (the “3D bar” and the “Bishop”), which is

almost perfect everywhere, but for a small “neck”. Direct optimiza-

tion manages to avoid this type of minima. We conjecture that these

minima are related to edge sizes in the local-global formulation, but

cannot provide a theoretical proof.

It is worthwhile to inquire whether the regularity energies of

Section 5.1 can be formed in a local-global approach directly. For

instance, given cr[i, j,k, l], compute vertex positionswi , and vice-

versa (for Möbius regularity). However, the global problem is still

nonlinear and difficult, and our experimentations did not show

any advantage over the direct optimization. We chose to use direct

optimization in all the examples in our paper for uniformity. Nev-

ertheless, we see the potential of using local-global approaches as

a good alternative for regularity, with a different formulation for

Möbius regularity, but that needs to be studied further.

5.3 Implementation Details
The direct optimization method is a nonlinear least-squares system,

with |V | imaginary quaternionic variables, which are 3 |V | scalars in
total. In addition, we need |F | auxiliary imaginary quaternions for

nf , and |V | more for ni . We used the Google Ceres solver [Agarwal

et al.], that uses the Levenberg-Marquadt algorithm. Ceres provides

two major advantages: first, automatic differentiation alleviates a

somewhat tedious calculation of Jacobians in analytic form. Second,

it allows for a parametrization of ni and nf as unit quaternions,

without the need for a unit-length regularizer on our behalf. We

used libhedra [Vaxman 2016] for the representation and manipu-

lation of polyhedral patterns. The entire computation for a direct
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Fig. 17. Direct vs. local-global optimization. Top, the Teddy mesh with
Möbius-regular optimization. Middle, the Tent mesh, with Euclidean-regular
optimization. Bottom two: 3D bar quad mesh, and Bishop triangle mesh,
exhibiting the “dumbbell” result. Convergence refers to the ratio of norm of
the energy (ER or E′R ), to the initial respective energy, for fair comparison.
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optimization is between 3-10 sec. for meshes of about 500-2000 ver-

tices on a 4GHz i7 iMac with 32GB memory. This is not a real-time

rate, but still attractive for a design process.

6 ANALYSIS

6.1 Discrete Willmore energy
The Willmore energy for a smooth surface S is defined byW (S ) =∫
S (H

2 − K ) dA, and is a measure for how much S differs from a

sphere. We next discuss a discrete version of this energy.

We established in Section 4 that the tangent polygon of a pure

vertex star is a regular polygon if and only if the star is Möbius

regular, and that it is concyclic with specified lengths for a mixed

vertex star. In addition, we mentioned that the vectors of the cross-

ratio of a flap ijkl at i and at k , extended as lines, are coplanar and

meet at the center of the sphere circumscribing the flap. Finally, Mö-

bius regular vertex stars (mixed or pure) are by definition cospherical.

These geometric insights are special cases of a more general result

in discrete differential geometry:

Theorem 6.1. A vertex star is cospherical (all vertices lie on one
sphere) if and only if the vector part of the cross-ratios cr[v, ui , ui+1,
ui+2] at the central vertex v are all parallel.

Corollary 6.2. The tangent polygon Tv at v is planar if and only
if the vertex star of v is cospherical.

Thm. 6.1 appears in [Gwynne and Libine 2012] in another form,

without the relation to our tangent polygon. It interestingly ties

directly with the formulation of [Bobenko and Schröder 2005]: they

define a discrete Willmore energy by

W (v ) = 2π −
∑
ϕv,ui ,ui+1,ui+2 , (5)

where ϕ is the phase of the cross-ratio at vertex v for every flap.

Assuming the inner angles of the tangent polygons areψ = π − ϕ,
it is evident that Equation (5) is similar to Cor. 6.2.

Nevertheless, this similarity is not generally an equivalence. The

phase of the cross-ratio is always defined to be the convex angle

between the tangents; this is also used this way in [Bobenko and

Schröder 2005], as they define the phase in the range [0,π ) as well
(using the inverse cosine), and optimize for the flat and convex angle

sum. However, the tangent polygon can be planar and nonconvex. In

that case, Cor. 6.2 holds: the vertex star is cospherical, the cross-ratio

vectors are parallel, but not all in the same direction, and Eq. (5)

does not hold. That means that not all spherical vertex stars have

W (v ) = 0. Nevertheless, we should note that cosphericality in the

discrete case is considerably less intuitive than in the continuous

case: a mesh with vertices on the sphere can be very “zigzagged” and

crumpled, and planarity of tangent polygons does not guarantee

any smoothness of the mesh. For example: take any conceivable

mesh, and normalize the coordinates. The mere planarity of the

tangent polygon is thus too weak to serve as a quality measure.

Inscribable meshes. This case is acknowledged in [Bobenko 2005;

Bobenko and Schröder 2005]. They consider inscribable polyhedra,
that can be realized as a convex spherical mesh, and that achieveW =
0. Noninscribable polyhedra always haveW >0, and any spherical

embedding of them has planar nonconvex tangent polygons. See

Fig. 18 for examples of inscribable and non-inscribable polyhedra.

Fig. 18. Inscribability of meshes. Left: an inscribable mesh, with convex
tangent polygons. Right: a non-inscribable mesh, where its spherical em-
bedding shown has nonconvex tangent polygons. It is cospherical , but with
W , 0 according to Equation (5).

0

1

EMR

EER

EMR

EER

Fig. 19. Left: a noisy realization of the small Rhombicosidodecahedron.
Right: our optimization restored the perfect state.

Relation to Möbius regularity. Our optimization for regular tan-
gent polygons requires a stronger property than planarity. As such,

Möbius-regular meshes in general tend to look “as-spherical-as-

possible”. However, the strong property of regularity means that

Möbius regularity is not a discrete Willmore energy, and may have

different minima in some cases. See Fig. 25 for an example.

Conformal Willmore Flow. In [Crane et al. 2013], a conformal
Willmore flow is introduced, producing a surface that is Willmore

critical, with the property of being conformal to the original surface.

It is cogent to create a relevant formulation in our method, as a

sort of Möbius regularity, when the original surface is the canonical

embedding, rather than a perfect 1-ring. Their method is defined as

a discretization of a continuous flow, but it is possible to obtain the

cross-ratio based quantities with discrete conformality [Springborn

et al. 2008]. We will explore this possibility in the future.

7 RESULTS
In this section, we give an empirical analysis of our method by

several scenarios, and relate to other works in the literature.

Robustness. In Fig. 19, we show how our method is able to repro-

duce a small rhombicosidodecahedron, with perfect Möbius and

Euclidean regularity, from a very noisy state. This demonstrates

how our optimization is able to handle initial solutions far from the

0 E
ER

1

orig. ER orig. ER

Fig. 20. Meshes with PolyCube combinatorics have perfect Euclidean-
regularity that is achieved in our optimization.
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orig. MR ER

0 0.5

Fig. 21. The cube has both a closed-form minimal solution for Möbius regu-
larity (the symmetric spherical shape), and a perfect solution for Euclidean
regularity. Our optimization achieved both.

0

E
MR

0.1

Fig. 22. Convergence under refinement. The mesh converges to a spherical
shape with increasingly better regularity everywhere, but, as predicted,
errors on vertices around singularities do not vanish.

theoretical minimum. We demonstrate this capability further for

meshes with PolyCube combinatorics in Fig. 20, where the perfect

Euclidean regular solution is obtained, even for meshes of a higher

genus. Finally, in Fig. 21, we show that our optimization obtains the

best possible Möbius and Eulidean regularity for the twisted cube.

These examples show that our optimization can reach ground-truth

results, even with considerably different initial solutions.

Convergence. We show an interesting experiment in Fig. 22, where

a pure-quad mesh is repeatedly subdivided by Catmull-Clark, and

optimized for Möbius regularity. While all results are close to a sym-

metric spherical embedding, as expected, the more refined meshes

have better error profiles everywhere, but at the vertices adjacent to

singularities. This is the expected behaviour for imperfect patterns

that we discussed in Sec. 3.4.

Connectivity shapes. Euclidean regularity is strongly related to

the concept of connectivity shapes [Isenburg et al. 2001]. They

too create geometry from combinatorics by prescribing length 1

to all edges, and solving a nonlinear system for the embedding.

Prescribing correct length values to all diagonals in addition is

similar to minimizing for ER as in our system. While obtaining

similar results (Fig. 23), length optimization fails to achieve the

ground-truth (developable) minimum as our optimization does.

Effect of different patterns. In Fig. 24, we test how the geometry

changes when the combinatorics of the pattern is altered, to see

how predictable the results can be for a designer. We take a quadri-

lateral mesh, and subdivide it by adding diagonals, while taking

care for a more or less even valence of 6 in the result. We choose a

blend of λMR = 1, λER = 0.1, and increasingly add more positional

orig. conn.-shapes ours

0 ER 0.05

Fig. 23. Comparing to connectivity shapes. Left: original mesh with
developable-perfect connectivity. Middle: connectivity shapes result. Right:
our results reaches the ground-truth minimum.

Fig. 24. Different patterns with similar positional constraints. Left to right:
originals, with 4 positional constraints (almost the same spherical results),
8, and 16 constraints. The difference is more apparent along boundaries.

constraints. As expected, the difference grows with the amount of

positional constraints, as the mesh is more constrained, and the

deviation from regularity of each vertex star manifests somewhat

differently in each pattern. Also expectedly, the difference is bigger

around boundaries, and specifically where the natural angle sums

are different. Nevertheless, both patterns still exhibit “as-spherical-

as-possible” behavior, that is comfortable to predict.

Mesh under boundary constraints. The example in Fig. 25 comple-

ments the discussion about the behavior of different patterns. The

boundary is constrained in both a quad and a diagonal-subdivided

triangle mesh. The quad mesh is perfect, and thus its own final re-

sult. The natural-boundary perfect solution for the triangle mesh is

a
π
3
parallelogram. Constraining the boundary causes an unnatural

(though subjectively appealing) result where the inside “bulges” out,

in order to create a Möbius-regular mesh. The conclusion of both

examples is that the “as-spherical-as-possible” behavior is expected

if the mesh is not over-constrained, and otherwise the regularity of

the elements takes precedence over cosphericality.

Unconventional patterns. Our algorithm does not decompose pat-

terns, in the sense of extracting directional or repetitive information,

as done in [Jiang et al. 2015]. Thus, we could potentially optimize

any possible pattern. Three such examples are shown in Fig. 26.

We optimize a pentagonal-quad Penrose pattern for Möbius regu-

larity, a pure pentagonal pattern (a subdivided hexagonal mesh),

and a rhombic valence 3 mesh for Euclidean regularity. The Pen-

rose pattern, optimized for Möbius regularity, exhibits the same

as-spherical-as-possible appearance that we expect, even though

the faces are not regular. This is expected since we canonicalize
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Fig. 25. Overconstrained optimization. Left to right: quad (original and per-
fect alike), triangle original, perfect natural-boundary result, and “bulging”
result with constrained boundary.

Fig. 26. Unconventional patterns. Left: a Penrose pattern designed with Mö-
bius regularity behaves like our other examples. Center: a pure pentagonal
mesh becomes a mesh of glued Dodecahedrons, that are as Euclidean-
regular as possible. Right: the rhombic Camel, under Euclidean regularity
appears as being made out of small cubes.

the vertex stars. The pentagonal pattern, optimized for Euclidean

regularity, exhibits an interesting, perhaps predicable, result: the

mesh seems to be made from many glued dodecahedra, reproducing

a stock example of Fig. 4. The Camel follows suite: the valence 3

nodes become small cubes, and we get a sort of “Tetrisoid”. It is then

inspiring to explore how original patterns would behave under our

regularity measures, even without initial expectations. The patterns

are made by the subdivision rules in [Akleman et al. 2005].

8 DISCUSSION
Nonlinearity and constraints. The biggest limitation in our work

is the nonlinear objective. As such, we can guarantee neither con-

vergence, nor reaching a global optimum, though our results empir-

ically demonstrate robustness. Our algorithm relies on positional

constraints to achieve uniqueness. While setting handles is a popu-

lar designing endeavor, it requires some experience to set positional

constraints that would result in an ideal mesh. Moreover, it is dif-

ficult to tell how many constraints are needed for the solution to

be unique. Empirically, we found out that setting д + 3 positional
constraints (where д is the genus) is sufficient.

Limitations. Some patterns admit unsatisfactory solutions, inher-

ent to our energies. We demonstrate two problematic cases in Fig. 27.

Möbius transformations contain inversions, potentially producing

considerable scale differences inMöbius-regular meshes. This can be

alleviated by different positional constraints, and a more dominant

component of Euclidean regularity. Conversely, Euclidean-regular

0 E
ER

E
MR

0.5

Fig. 27. Fail cases. Left to right: original, optimized for MR with scale differ-
ences, and optimized for ER with unordered strips.

triangle meshes may also have an unappealing look in some cases:

rather than the intuitive developability that quadmeshes exhibit, and

while triangles are relatively regular, no developable strips emerge.

Identifying such strips, and biasing the optimization accordingly, is

likely essential to achieve this effect.

Irregular patterns. Our algorithm currently optimizes meshes un-

der the assumption that the faces are ideally regular. As such, it

forces a different symmetry then the one natural to irregular pat-

terns. For instance, for patterns with rhombic faces. This is the

reason for the behavior in Fig. 26. Nevertheless, these patterns also

have predictable tangent polygons with angles that can be pre-

computed. We could thus incorporate such symmetries seamlessly

into our method, in a future extension of our work.

FutureWork. Wewould like to apply our work to conformal defor-

mations as well, as discussed in Section 6, preserving surface details

relative to a given input mesh, and not necessarily an ideal one.

In addition, we would like to explore alternative ways to compute

CMC surfaces. Finally, we would like to explore the mathematical

properties of regularity with regards to discrete mean curvatures.
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A CORNER TANGENT AND CROSS-RATIO
To prove some technical Lemmas we first consider the following

geometric property, which can be easily verified.

Lemma A.1. Let pi ,pj ,pk ∈ Rn be three points. Then (pi −pj )∥pi −

pk ∥
2 − (pi − pk )∥pi − pj ∥

2 is the direction of the tangent of the
circumcircle to the triangle pipjpk at pi .

Proof of Lemma 4.1. Note that q ∈ ImH implies q−1= −q/|q |2.
Using the definition of the corner tangent yields

t[i, j,k] = q−1i j + q
−1
jk = −qi j/|qi j |

2 − qjk/|qjk |
2.

Consequently, Lemma A.1 concludes the proof. □

Lemma A.2. Let qi ,qj ,qk ,ql ∈ ImH � R3 be four points not lying
on a common circle. Then, the imaginary part of the cross-ratio is
the normal of the circumsphere (or plane) at qi . i.e., for a proper

circumsphere with center c we have Im cr[i, j,k, l] ∥ (c − qi ).

Proof. We compute the cross-ratio in terms of corner tangent

abbreviated by tf ,i =t[k, i, j] and tд,i =t[k, i, l]:

cr[qi ,qj ,qk ,ql ] = qji q
−1
k j qlk q

−1
il = qji q

−1
k j (qki q

−1
ki )qlk q

−1
il

= (q−1ki qk j q
−1
ji )
−1 (q−1ki qlk q

−1
il )

= (q−1ki qjk q
−1
i j )
−1 (q−1ki qlk q

−1
il ) = t−1f ,i tд,i ,

where Lemma 4.1 implies that t−1f ,i and tд,i are tangent vectors to

the circumcircles of triangles (qiqjqk ) and (qkqlqi ), respectively,
both at qi . Consequently, the cross-ratio is

[−⟨t−1f ,i , tд,i ⟩, t
−1
f ,i × tд,i ].

Its imaginary part is the cross product of tangents to circles on the

circumsphere at qi , hence orthogonal to the circumsphere. □

The following corollary originally appeared in [Gwynne and

Libine 2012, Lemma 15], without the preceding theorem.

Corollary A.3. Let qi ,qj ,qk ,ql ,qm ∈ ImH � R3 be five points
not lying on one circle. Then, these points are cospherical if and only if
Im cr[i, j,k, l] ∥ Im cr[i,k, l ,m], i.e., the vector parts of the cross-ratios
are parallel (cf. Fig. 10 right).

B COMPUTATIONS
Corner polygon for mixed meshes. To find the tangent polygonTv

for given lengths (see Section 4.5) , we use the following strategy. We

assume every face of the 1-ring to be a regular polygon. Assuming

unit edge lengths, the length |t | of the corner tangent (or the identical
boundary polygon) of a regular d-gon is

ld = |t | =
√
2 − 2 cos((d − 2)π/d ).

Obtaining concyclic polygons for prescribed lengths was studied

in [Kouřimská et al. 2016]. We take a binary search approach to

determine the radius of the circle that we are looking for. For a given

radius r , we embed the edges isometrically on the circle of that

radius, in cyclic progression, to obtain an open concyclic polygon.

Consequently, the sum of all sector angles is∑
arccos(1 − l2n/2r

2),

and is either larger or smaller than 2π . The polygon is closed (and

non-self intersecting) if and only if this angle sum is precisely 2π .
This is a monotone function of r , and therefore we can do a binary

search until we reach any prescribed precision. Recall that for natu-

ral boundary conditions we complete the missing lengths to a closed

polygon, and thus this process is not different in this case.
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