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Abstract

A self-Airy membrane shell is a special type of shell structure whose shape coincides with the shell’s Airy stress surface. It
provides the convenient property that any polyhedral discretization of such a surface will automatically generate a mesh in funicular
equilibrium. A self-Airy shell designed for a uniform vertical load would simply have a constant isotropic Gaussian curvature.
However, a challenge in implementing a self-Airy shell in architecture is the lack of a design method, especially in designing
unreinforced boundaries. Those are singular planar curves, where the two principal curvatures approach 0 and∞ individually. This
paper presents methods for designing unreinforced boundaries of self-Airy shells, including both smooth and discrete methods.
These methods work for both positively and negatively curved surfaces. The proposed methods work linearly without iteration.
The preliminary results show that the seemingly very restrictive conditions admit a variety of non-trivial surfaces.
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1. Introduction

For visual simplicity, an elegant structure tends to have max-
imum agreement between its form and its internal forces. This
paper discusses the agreement between the shell structure’s
form and the underlying Airy stress function, which encodes
the stress tensor field [1, 2, 3]. When the shapes of a shell and
its Airy stress function coincide, it is called a self-Airy shell [4]
(Fig. 1).

In designing curved surface structures (e.g., masonry vaults,
concrete shells, steel-glass grid-shells), designers can choose
different degrees of agreement between the form and forces.
Any misalignment of form and forces will result in additional
structural elements for reinforcement, which reduces architec-
tural appealing. For instance, an arbitrarily designed vault
would require boundary walls for support and an arbitrarily de-
signed shell would require boundary beams for reinforcement
[1]. To get rid of the cumbersome walls or beams, designers
should align the stress flow with the boundary. Heinz Isler de-
veloped the design technique by hanging clothes and nets to
form-find the desired shape that is free from reinforcing beams
[5]. As a result, the form-found shells can fully expose the thin-
ness of concrete shells (see Fig. 2).

Designers can also ask for the alignment of the orientations
of principal stress and principal curvature; such a surface can
easily be built with CNC-cut planar quadrilateral panels without
the need of diagonal bracing [6].
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Figure 1: Two self-Airy surfaces meet at the same unreinforced boundary. The
surface on the left side of the narrow skylight is positively curved, meanwhile
the right-hand side is negatively curved.

This paper is asking for even more alignment: curvature and
stress have not only the same principal orientation but also mag-
nitudes. Or, more precisely, the Airy stress function and the
shell have the same shape. Thus, any polyhedral surface dis-
cretizing the shape is also a polyhedral discretization on the
Airy stress function. Therefore, the resultant mesh is funicu-
lar (i.e., structural equilibrium only relies on axial forces of the
mesh edges) and has planar faces (Fig. 1).

When the load per horizontal area is constant, a self-Airy
shell has a constant isotropic Gaussian curvature (iK). This sur-
face is the basis for the design of all other isotropic linear Wein-
garten surfaces [7], which are the shells that have the isotropic
principal stress and curvature aligned [8, 9]. Strubecker [10]
has provided great insight into constant isotropic Gaussian cur-
vature surfaces. This paper extends Strubecker’s method to dis-
crete meshes and includes singular points to create more com-
plex yet interesting designs for such surfaces.
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Figure 2: A form-found shell with unreinforced boundaries by Isler (top)
and a hyperbolic paraboloid shell with boundary beams (bottom) [Sources:
Chriusha/CC-BY-SA-3.0; Linda Spashett/CC-BY-3.0]

1.1. Related research

As Aish et al. [11] suggest, form-finding is the process
of seeking “good” shapes. There are various ways to quan-
tify what constitutes a good shape, one of which is based on
structural equilibrium. Pottmann et al. [12] refer to this ap-
proach as “statics-aware design”. Notable research in this area
includes dynamic relaxation [13], the force density method
[14], trust network analysis [15]. Most of these studies focus
on utilizing membrane stresses to balance the external loads
[16, 17, 18, 19, 20], while some also incorporate transverse
shears and bending moments [21, 22]. Some studies express
the statics geometrically, in 2D [15, 18] or in 3D [23, 24, 25]

Another way to quantify good shapes is based on manufac-
turability, referred to as “fabrication-aware design” [12], con-
sidering how easily the components can be fabricated. Since
the fabrication of free-form surfaces often relies on industri-
ally mass-produced planar panels, it is practical to discretize
free-form surfaces into planar components, including surfaces
consisting of planar quadrilaterals [26, 27, 28, 29] or even with
planar parameter lines [29].

Geometry plays a crucial role not only in discretizing curved

surfaces into polyhedral forms but also in the statics. Mini-
mal surfaces, for example, resemble soap films and can be el-
egantly realized as tensile structures [11]. Constant mean cur-
vature surfaces and constant Gaussian curvature surfaces can
be constructed as funicular structures using planar quadrilater-
als and torsion-free nodes [30, 31]. These surfaces belong to the
family of “linear Weingarten surfaces”, which have the constant
weighted sum of mean and Gaussian curvatures. Remarkably,
both scaled and offset copies of a linear Weingarten surface also
remain within the same surface family [7].

For shallow shells under vertical loads, isotropic geometry
offers valuable insights (see § 2.3). A shell structure shaped as
an isotropic linear Weingarten surface possesses an Airy stress
function whose isotropic principal orientations of curvatures
align with those of the surface [8, 9]. This alignment means
that an isotropic principal mesh discretization of such a sur-
face is automatically funicular (a desirable equilibrium condi-
tion [32]) without the need for diagonal bracing when subjected
to a uniform vertical load. Pellis and Pottmann [6] also explored
the alignment of principal stress and curvature orientations, al-
though their work was situated in Euclidean space rather than
isotropic space.

Millar et al. [4] as well as Chiang [25, 33] had tried to merge
the shape of the shell and the Airy stress function even further.
They had sought the shells that have the same shape as their
Airy stress function. They call such cases “self-Airy” shells.
The self-Airy shells presented in Millar et al. [4] are all well
supported and no unsupported boundaries are left. The cases in
Chiang [33] contain unsupported and unreinforced boundaries.
However, the numerical cases were solved by solving the bilin-
ear Pucher’s equation iteratively. Furthermore, the results were
limited to positively curved surfaces.

Under a uniform vertical load, a self-Airy shell is a con-
stant isotropic Gaussian curvature surface. Strubecker [10,
pp.554–559] extensively discussed how to generate a smooth
isotropic Gaussian curvature surface from a parameterized ana-
lytical curve. Strubecker’s insights serve as an important build-
ing block of this paper. However, his method is limited to the
surface of a regular parameter net.

One may connect regular parameter nets to form a semi-
regular net. Shearman and Venkataramani [34] noted that, for
negatively curved constant Gaussian curvature surfaces with a
semi-regular asymptotic net, the asymptotic curves will be only
C1-smooth across the boundaries between the regular patches.
Meanwhile, at the junctions of the borders, one can observe the
singular or “branch point” of the asymptotic net. Their insights
also benefit this paper greatly when we look into how to deliver
more interesting self-Airy meshes.

1.2. Contributions and overview

The structure of the paper and its contributions can be sum-
marized as follows:

• We review the theories of membrane shells, self-Airy sur-
faces, metric duality, and constant isotropic Gaussian cur-
vature surfaces (§ 2).
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• Subsequently, smooth constant isotropic Gaussian curva-
ture surfaces are constructed from arbitrary unreinforced
boundaries (§ 3).

• We show how to construct discrete constant isotropic
Gaussian curvature meshes in a set of linear processes
without iterative computation (§ 4).

• Regular quadrilateral meshes are combined into semi-
regular ones, which have much more architectural design
freedom (§ 5).

• We present some architectural designs with these meshes
(§ 6), conclude the current findings, and set out some fu-
ture research directions (§ 7).

2. Theories of self-Airy shells and constant isotropic Gaus-
sian curvature surfaces

In this section, we first review the classical theories of gen-
eral shell structures (§ 2.1). Readers who are already familiar
with mechanics of shells can proceed to § 2.2 for the discussion
on self-Airy shells, § 2.3 for a brief introduction to isotropic
geometry, or § 2.4 for Maxwell’s duality.

2.1. General membrane shells

Shells that carry load only with membrane stresses (i.e., ten-
sion and compression) without bending moments are called
membrane shells. In the absence of body forces, horizontal
components of stress per unit horizontal length Ni j (i, j ∈ {x, y})
of a membrane shell in an equilibrium state can be represented
by second derivatives of a smooth Airy stress function F(x, y)
[35, 36]: [

Nxx Nxy

Nxy Nyy

]
=

[
F,yy −F,xy

−F,xy F,xx

]
, (1)

where the partial derivatives are expressed by the subscripts
such as [·],i j = (∂2/∂i∂ j)[·]. This expression automatically
satisfies the equilibrium equations of the horizontal directions:
Nxx,x + Nxy,y = 0, Nxy,x + Nyy,y = 0 [35, 37, 38].

The equilibrium in the vertical direction is governed by

Z,xx Nxx + 2 Z,xy Nxy + Z,yy Nyy = −pz,

where Z(x, y) is the elevation of the shell and pz is the vertical
load per horizontal unit area.

Governing equation. By expression (1), the vertical equilib-
rium becomes Pucher’s equation [37, 38]:

Z,xx F,yy − 2 Z,xy F,xy + Z,yy F,xx = −pz. (2)

This single equation (2) governs the equilibrium of all three
directions. It also suggests that the vertical load pz equals the
bilinear form of the two scalar functions: the shape Z(x, y) and
the Airy stress function F(x, y).

Conditions for unreinforced boundaries. When a segment of a
shell’s edge is free from structural support, structural engineers
conventionally call it a “free edge”. In this paper, we call it an
unreinforced boundary, provided that the term “edge” will be
confused with the border lines between faces of a polyhedral
surface. At such a boundary, there should be no normal stress
transmitting across the boundary nor shear stress acting along
the edge. These two conditions can be expressed as

Nnn = F,tt = 0, Nnt = −F,nt = 0, (3)

ntwhere the subscripts [·],tt and [·],nt denote
the second-order directional derivatives,
n and t are normal and tangential vec-
tors of the boundary. These conditions
require the stress function F(x, y) to be
tangential to a plane at the boundary [1, 39].

2.2. Self-Airy membrane shells

Governing equation. When the shape of a shell coincides with
its Airy stress function: F(x, y) = F0 · Z(x, y), Pucher’s equa-
tion (2) turns into

Z,xx Z,yy − Z2
,xy = −

pz

2F0
. (4)

The left-hand side of equation (4) is the determinant of the Hes-
sian matrix of the shape Z(x, y). This determinant is also the
isotropic Gaussian curvature of the shell [40, 41]. When the
vertical load per horizontal area pz is constant, the self-Airy
surface has a constant isotropic Gaussian curvature.

Similar to a smooth Airy stress function that can be dis-
cretized into a polyhedral surface [42], the self-Airy surfaces
can also be discretized [4, 25]. The resulting surfaces have pla-
nar faces and are all funicular nets at the same time. This is a
desired feature because the need for diagonal bracing of such a
surface is minimized, which can improve the visual clarity of
the structure.

Constant pz. This paper remains within the assumption of con-
stant pz, although a uniform thickness shell should have the re-

alistic gravitational load pz ∝
√

1 + s2, where s =
√

Z 2
,x + Z 2

,y is
the slope. This suggests that where the slope is 20%, the realis-
tic gravitational load is approximately 2% higher than the sim-
plified assumption. In engineering practices, an approximate
error below 5% is acceptable. More importantly, gravitational
load is just one of many factors to consider when approving a
structure. Therefore, the assumption of a constant pz is largely
valid, especially for a conceptual design phase.

Conditions for unreinforced boundaries. For a self-Airy shell,
the unreinforced boundaries are planar and singular. Conditions
(3) apply to its shape, therefor when a point in a self-Airy shell
approaches an unreinforced boundary,

Z,tt → 0, Z,nt → 0. (5a)
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Since equation (4) should be satisfied, Z,nn must approach infin-
ity:

Z,nn → ∞. (5b)

By (5a), we can infer that the unreinforced boundaries of a
self-Airy shell must be planar. By (5b), we know that such
boundaries are also singular. Taken together, the boundary con-
ditions (5) require that an unreinforced boundary be tangent to
a plane and possess one infinite principal curvature.

2.3. Isotropic geometry
The right geometric framework for studying the Airy stress

surface is so-called isotropic geometry.
Be aware that the term isotropic here has a different meaning

from “having the same properties in all directions”. In classical
geometry, it refers to lines on which the length measurement de-
generates. Those are not real in Euclidean geometry, but other
geometries may contain real isotropic lines. An example is pro-
vided by so-called isotropic geometry, which has first been set
out by Strubecker [43, 44, 45, 46], who has been the first to re-
alize that the graph of the Airy stress function should be studied
within isotropic geometry [47], as explained below.

Let us consider a body in the xy-plane, in equilibrium with
forces only applied at its boundary. Then, its associated Airy
stress function F(x, y) is only determined up to the addition
of a linear function, since that does not influence the Hessian
H(F) of F, which is the adjoint of the stress tensor and contains
the essential mechanical characteristics. Since the mechanical
characteristics of the 2D stress state should not depend on the
Cartesian system chosen in the plane, a geometric study of the
Airy stress surface z = F(x, y) should be based on concepts that
are invariant under the following group G6 of affine transforma-
tions:

x′ = a + x cos θ − y sin θ,
y′ = b + x sin θ + y cos θ,
z′ = c + cxx + cyy + z, (6)

where a, b, c are constants of translation and cx, cy, θ are con-
stants of isotropic rotation. These are the isotropic motions,
and the geometry based on that group is known as isotropic ge-
ometry. Geometry in isotropic 3-space I3 has been developed
by K. Strubecker in a series of papers [43, 44, 45, 46, 10], which
led to many further contributions. Most of them are contained
in the monograph by Sachs [41]. Here, we just outline some
basic facts on self-Airy surfaces that are useful for the applica-
tion in structural design. We also add a few remarks to provide
a deeper insight into the presented constructions.

Maxwell paraboloid and curvatures. Maxwell already used the
following rotational paraboloid Σ in his studies on reciprocal
diagrams [48, 49, 50]:

Σ : z =
1
2

(
x2 + y2

)
. (7)

In isotropic geometry, it plays the role of a unit sphere. The
isotropic surface theory uses the following counterpart to the

Gauss map and shape operator of Euclidean surface theory:
Given a surface S , the isotropic Gauss map γ maps a point
p ∈ S to a point γ(p) ∈ Σ in such a way that the tangent planes
of S at p and of Σ at γ(p) are parallel. The derivative of this
map is the isotropic shape operator, from which curvatures are
deduced as in the Euclidean case. In particular, its determinant
is the isotropic Gauss curvature iK. If the surface S is given in
the form z = f (x, y), one has

iK = f,xx · f,yy − f 2
,xy, (8)

showing that the self-Airy surfaces discussed above have con-
stant isotropic Gaussian curvature [4].

One can also relate the isotropic Gaussian curvature iK with
its Euclidean counterpart EK:

iK = En−4
z ·

EK = (1 + s2)2 · EK, (9)

where Enz is the z-component of the normalized Euclidean nor-

mal vector, s =
√

Z2
,x + Z2

,y is the slope (see e.g., [51], p. 36).
This suggests that when the slope is 0%, isotropic Gaussian
curvature iK has the same value as its Euclidean counterpart EK.
When the slope is 20%, the value of iK is approximately 8.2%
higher than EK.

2.4. Maxwell polarity and metric duality

Maxwell also used Σ via its polarity. It is a projective duality
δ that maps a point Ξ = (ξ, η, ζ) to a plane

δ(Ξ) = P : z + ζ = ξx + ηy

and vice versa: δ(P) = Ξ. For geometric interpretations of this
polarity, readers are referred to Crapo and Whiteley [52] and
Konstantatou et al. [53].

This polarity realizes a metric duality in isotropic space
I3, which has no counterpart in Euclidean geometry. Since
isotropic motions appear in the top view as Euclidean 2D
motions, the isotropic distance of a pair of points Ξi =

(ξi, ηi, ζi), i = 1, 2 is naturally defined as Euclidean distance
in the top view, d =

√
(ξ1 − ξ2)2 + (η1 − η2)2. Applying met-

ric duality to these pair of points, one obtains two planes
δ(Ξi) : z = ξix + ηiy − ζi, whose isotropic angle equals d.
Thus, metric duality turns the distance of two points into the
angle of the image planes, and vice versa.

Metric duality maps a surface S (as a set of contact elements,
i.e., points and tangent planes) to a surface δ(S ) (as a set of con-
tact elements, i.e., tangent planes and their contact points). A
contact element of S with isotropic Gauss curvature iK corre-
sponds to a contact element of δ(S ) with Gauss curvature 1/iK.
Hence, self-Airy surfaces as those with iK = iK0 = const. cor-
respond in metric duality to self-Airy surfaces with iK = 1/iK0.
As in any projective duality, asymptotic tangents correspond to
asymptotic tangents. The asymptotic curves of constant tor-
sion ±

√
−iK get mapped to asymptotic curves of constant tor-

sion ±1/
√
−iK, in agreement with the constant Gauss curvature

1/iK.
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Figure 3: A surface S and its dual surface S δ. The red planar singular curve in
(a) is dual to the red conical singular point in (b).

Under metric duality, a planar singular curve (unreinforced
boundary) corresponds to a cone singularity and vice versa
(fig. 3).

Remarkably, metric duality δ maps a plane Tp to a point
δ(Tp) which has the same top view as the image of the plane
under the isotropic Gauss map γ. Let δ(TpS ) denote the image
of a tangent plane TpS with a tangency point p ∈ S on the sur-
face S under the metric duality δ. Let γ(p) denotes the image of
the point p under the isotropic Gauss image γ. The two points
δ(TpS ) and γ(p) are contained in the same vertical line. Since
the duality δ shares the same top view as the Gauss image γ,
we will extensively use duality in the following sections. The
readers are advised to bear in mind that the distances in the dual
surface correspond to angles in the primal surface.

3. Simple construction of constant iK surfaces

In this section, we present a simple introduction to explicit
construction methods for self-Airy surfaces with constant ver-
tical loads. In the classical geometric literature, they go back
to Darboux’s solution of the Monge Ampere equation, but the
deeper geometric roots of this construction have been uncov-
ered by K. Strubecker in a series of papers that study them
within isotropic geometry [44, 45, 46, 10]. In isotropic space,
these surfaces possess constant Gaussian curvature.

While we are also addressing the general construction of
self-Airy surfaces, we emphasize those having an unreinforced
boundary, i.e., possess a planar singular curve. Their construc-
tion does not require any knowledge of isotropic geometry. Our
focus is on proposing discrete versions (§ 4) that are not found
in the classical literature.

3.1. Strubecker’s construction

In a paper on relations between the so-called paratactic map
and the theory of closed planar convex curves, Strubecker
[10] presented the following geometric construction of surfaces
which solve equation (4) with constant pz, and thus constant iK,
and possess a given planar curve c(t) =

(
cx(t), cy(t), 0

)
as a sin-

gular curve. The restriction of this curve onto the plane z = 0 is
easily removed later by adding a linear function to the solution,
which is equivalent to an affine shearing in z-direction (x,y,z)
7→ (x, y, z + ax + by + d).

c

c

( )c u

( )c u

x
y

z

x

y

1( )c v

1( )c v

2( )c v

2( )c v

3( )c v

3( )c v

3( , )m u v
1( , )m u v

2( , )m u v

2( , )S u v

1( , )S u v

3( , )A u v1( , )A u v
2( , )A u v

(a)

(b)

(c)
3 3 32
=  
 

 
 ( , ) ( , ), ( , )

iKS u v m u v A u v−

3
( , )C u v

2
( , )

C u v
2

( , )
C u v

1

( , )
C u v

Figure 4: Strubecker’s construction of an isoparametric curve of the self-Airy
surface with a given curve c(t) in the plane z = 0 as the singular curve. (a) The
top view of the self-Airy surface S (u, v) is the midpoints of c(u) and c(v). (b-c)
The height of the surface S (u, v) is proportional to the area A(u, v) bounded by
the curve c and the line segment c(u)c(v). Note that the areas shown in (b) have
been scaled down for brevity.

One picks any two points on the planar curve c, say c(u) and
c(v) and considers the midpoint m(u, v) = [c(u) + c(v)]/2 of the
straight line segment C(u, v) with these points (c(u) and c(v))
as end points. Then, one takes z-coordinate at m(u, v) propor-
tional to the oriented area A(u, v) of the segment which is cut
off by C(u, v) from c (see Fig. 4). With varying choices of the
parameters (u, v) one obtains the announced solution surface
S (u, v) =

(
m(u, v),

√
−iK/2 · A(u, v)

)
of equation (4). Analyti-

cally, we do not obtain it in explicit form z = Z(x, y), but in a
parametric representation:

S (u, v) =

(
1
2

[
cx(u) + cx(v)

]
,

1
2

[
cy(u) + cy(v)

]
,

√
−iK
4

{ ∫ v

u

[
cx(t)ċy(t) − ċx(t)cy(t)

]
dt

−
[
cx(u)cy(v) − cx(v)cy(u)

]} )
, (10)

where dots above the functions indicate derivatives. The for-
mula can be applied to any choice of u and v. In all cases,
A(u, v) is the oriented area of the domain swept out by the line
segment Oc(t) for t ∈ [u, v] (O being the origin) minus the ori-
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ented area of the triangle Oc(u)c(v) (fig. 5).

( )c u

x

y

( )c v

O

( , )A u v

= −

c

Figure 5: The calculation of area A(u, v)

It is remarkable that Strubecker’s simple construction yields
all solutions:

Theorem 1. Application of affine maps of the form (x, y, z) 7→
(x, y, d + ax + by + ez) to surfaces S (u, v) in equation (10) yields
all possible negatively curved self-Airy surfaces with constant
vertical loads and an unreinforced boundary curve c.

Proof. We only sketch the proof, since it would require more
details on the paratactic map that underlies the construc-
tion. The paratactic map takes surface elements (points X =

(x1, x2, x3) plus their tangent planes T (X) : z = px + qy + r,
with x3 = px1 + qx2 + r) as input and maps them to two points
Xl = (x1 + p, x2 − q, 0) and Xr = (x1 − q, x2 + p, 0) in the plane
z = 0. Xl and Xr are called left and right image points. A gen-
eral surface has a left and right image domain that are related
by an area-preserving map. Exactly for a surface that solves
equation (4) with constant right-hand side −1, the left and right
images are curves. Exactly if we put the unreinforced boundary
into the plane z = 0, these curves agree and constitute a singular
curve c of the surface. This is the case described by equation
(10). To get another constant on the right-hand side of (4), we
multiply the z-coordinate with a factor e. To move the singu-
lar curve c to a more general position, we add a linear function
ax + by + d to the z-coordinates.

Duality of Strubecker’s construction. As stated in § 2.4, the du-
ality is convenient for us to discuss the curvature of the surfaces
since the top view of the image under duality is the same as the
top view of the image of the Gauss map.

The slopes of the tangent plane TpS for a tangency point
p = S (u, v) can be defined via the cross product of the first
derivatives S,u and S,v, which are included in Appendix A
(eq. A.6). Let S δ denote the dual of S , so that S δ = δ(S ).
We can express the dual surface in a parametric representation

S δ(u, v) =
√
−iK ·

(
cy(u) − cy(v)

2
,
−cx(u) + cx(v)

2
,

1
4

{
−

∫ v

u

[
cx(t)ċy(t) − ċx(t)cy(t)

]
dt

−
[
cx(u)cy(v) − cx(v)cy(u)

]} )
. (11)

3.2. Negatively curved constant iK surfaces

Strubecker’s construction (10) is readily applied to nega-
tively curved surfaces where iK < 0, therefore the z-coordinate
stays as a real number. Let us consider cases with iK = −1.

Example 2. A simple example is provided by a parabola
(cx, cy) = (−t2, t), which yields the primal and dual surfaces
(fig. 6 b-c):

S (u, v) =
(
−

u2 + v2

2
,

u + v
2

, −
u3 − v3

12
+

u2v − uv2

4

)
,

S δ(u, v) =
( u − v

2
,

u2 − v2

2
,

u3 − v3

12
+

u2v − uv2

4

)
.

Example 3. We can also take curve c as an ellipse (cx, cy) =

(a cos t, b sin t), yielding primal and dual surfaces (fig. 6 d-e):

S (u, v) =

(
a
2
[
cos u + cos v

]
,

b
2
[
sin u + sin v

]
,

ab
4

[
− u + v + sin(u − v)

])
,

S δ(u, v) =

(
b
2
[
sin u − sin v

]
,

a
2
[
− cos u + cos v

]
,

ab
4

[
u − v + sin(u − v)

])
.

This surface is an affine image of a rotational surface that is
obtained for a = b. It is a special instance of the following
fact, which follows from (10): Application of an affine map
(x, y, z) 7→ (ax, by, abz) maps a self-Airy surface to another self-
Airy surface.

3.3. Positively curved constant iK surfaces

Self-Airy surfaces of positive curvature can be obtained anal-
ogously to those with negative curvature. However, since their
asymptotic curves are not real, we must use the complex exten-
sion [44]. When iK > 0, real parameters u, v leave Strubecker’s
construction (10) a non-real surface. However, inserting conju-
gate complex parameters u, v = u via[

u
v

]
=

1
2

[
1 + i 1 − i
1 − i 1 + i

] [
r
s

]
⇔

[
r
s

]
=

1
2

[
1 − i 1 + i
1 + i 1 − i

] [
u
v

]
, (12)

we obtain a real surface R(r, s) for real r, s. We assume here that
the involved functions ci (i ∈ {x, y}) are real analytic: ci(u) =

ci(u). Since the parameters are conjugate u, v = u, we have
the complex extension satisfies ci(u) + ci(u) = ci(u) + ci(u) =

2 Re(ci(u)). Therefore, the first two coordinates of R(r, s) are
real. The third coordinate is of the type i{g(u)−g(u)} = i{g(u)−
g(u)} = i{2i · Im(g(u)))} = −2 Im(g(u)), where g(u) represents
the results of algebraic and analytic operations of ci. Hence, all
coordinates of R(r, s) are real.

After affirming the surface R(r, s) is real when iK > 0. Let us
consider the cases with simply iK = 1.
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Re( )u

Re( )u

Re( )v
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y
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Sδ Rδ

S R
SδSδ

Rδ

S

R

Figure 6: Self-Airy surfaces with a parabola (b) or a circle (a degenerate ellipse) (d) as the singular curve and their dual surfaces, resp. (c) & (e). The real parameter
net (blue and green) is associated with the negatively curved surfaces (see Examples 2 and 3). The blue and green iso-parameter lines are asymptotic curves and
form a translation net in the top view. The complex parameter net (red and yellow) is associated with the positively curved surfaces (see Examples 4 and 5).

Example 4. For the case of a parabola (cx, cy) = (−t2, t), we
can have the primal and the dual surfaces

S (u, v) =

(
−

u2 + v2

2
,

u + v
2

, −i
u3 − v3

12
+ i

u2v − uv2

4

)
,

S δ(u, v) =

(
i
u − v

2
, i

u2 − v2

2
, i

u3 − v3

12
+ i

u2v − uv2

4

)
,

which after the parameter change have the real parameteriza-
tion (fig. 6 b-c)

R(r, s) =

(
− rs,

r + s
2

, −
(r − s)3

12

)
,

Rδ(r, s) =

(
−

r − s
2

, −
(r + s)(r − s)

2
, −

(r − s)(r2 + rs + s2)
6

)
.

The surface contains the parabola for r − s = 0. It is a singu-
lar curve, since R,r − R,s = (0, 0, 0) along r − s = 0. The sur-
face is a translation surface, obtained by translating the parabola
(−s2, s, 0) (when r− s = 0) along the cubic (s2, 0,−s3/3) (when
r+ s = 0), which has a cusp at r− s = 0. This surface is found in
the classification of all translation surfaces with constant Gauss
curvature in isotropic space [54].

This parameterized surface has the derivatives

R,r =

(
−s,

1
2
, −

(r − s)2

4

)
, (13)

R,s =

(
−r,

1
2
,

(r − s)2

4

)
, (14)

R,rs =

(
−1, 0,

r − s
2

)
, (15)

which suggest that the determinant
(
R,r, R,s, R,rs

)
= 0, and thus

the parameterization R(r, s) is conjugate. This conjugacy can
also be found in other positively curved examples, but we did
not find it in the literature. We discuss it in greater detail in
remark 8.

Example 5. For the case of an ellipse cx(t) = a cos t, cy(t) =

b sin t, yielding the surfaces

S (u, v) =

(
a
2
[
cos u + cos v

]
,

b
2
[
sin u + sin v

]
,

i
ab
4

[
− (u − v) + sin(u − v)

])
,

S δ(u, v) =

(
i
b
2
[
− sin u + sin v

]
, i

a
2
[
cos u − cos v

]
,

i
ab
4

[
u − v + sin(u − v)

])
,

which after the parameter change have the real parameteriza-
tion

R(r, s) =

(
a cos

r + s
2

cosh
r − s

2
, b sin

r + s
2

cosh
r − s

2
,

ab
4

[
r − s − sinh(r − s)

])
,

Rδ(r, s) =

(
− b cos

r + s
2

sinh
r − s

2
, −a sin

r + s
2

sinh
r − s

2
,

ab
4

[
− (r − s) − sinh(r − s)

])
.

7



The real parameterization R(r, s) is also illustrated in fig-
ure 6d-e.

3.4. Remarks on Strubecker’s construction
We make a few observations on Strubecker’s construction

(10). These remarks can help us later extend Strubecker’s con-
struction to discrete curves.

Remark 6. Strubecker’s construction (10) gives an overlap-
ping net in the top view for both negatively and positively
curved surfaces:

Sx(u, v) = Sx(v, u), Sy(u, v) = Sy(v, u), (16a)
Rx(r, s) = Rx(s, r), Ry(r, s) = Ry(s, r). (16b)

The following observations are based on the first and second
derivatives of the primal surface S (u, v) and the dual surface
S δ(u, v). The derivatives of S (u, v) and S δ(u, v) can help us ex-
press the derivatives of R(r, s) and Rδ(r, s) via the chain rule.
The useful ones are listed below:

R,r =
1 + i

2
S,u +

1 − i
2

S,v, (17a)

R,s =
1 − i

2
S,u +

1 + i
2

S,v, (17b)

R,rr =
i
2

S,uu + S,uv +
−i
2

S,vv, (17c)

R,rs =
1
2

S,uu + 0 +
1
2

S,vv, (17d)

R,ss =
−i
2

S,uu + S,uv +
i
2

S,vv. (17e)

Rδ
,r =

1 + i
2

S δ
,u +

1 − i
2

S δ
,v, (17f)

Rδ
,s =

1 − i
2

S δ
,u +

1 + i
2

S δ
,v. (17g)

The explicit expressions of the derivatives of S (u, v) and
S δ(u, v) are included in Appendix A. Here we succinctly point-
ing out the crucial observations.

Remark 7. In the top view, such a negatively curved surface
has a translation net, while a positively curved one has a har-
monic net.

Proof. From Strubecker’s construction (10), we can simply find
that the top view has the mixed second derivative equal to zero:

Suv = (0, 0, . . . ), (18a)

which suggests that S (u, v) is a translation net in the top view.
From equations (17c) and (17e), we can associate ∆R(r, s) with
S,uv:

∆R(r, s) = R,rr + R,ss = 2 · S,uv = (0, 0, . . . ), (18b)

which points out that R(r, s) is harmonic in the top view.

Remark 8. For negatively curved surfaces, Strubecker’s con-
struction gives an asymptotic parameterization [44]. For the
positively curved ones, the parameterization is conjugate.

Proof. According to Strubecker [44], the parameterization
S (u, v) is asymptotic, and thus the first and second partial
derivatives satisfy

det(S,u, S,v, S,uu) = det(S,u, S,v, S,vv) = 0, (19a)

which can also be verified with the derivatives included in Ap-
pendix A.

By the chain rule (17), we can find

det
(
R,r, R,s, R,rs

)
=

1
2

det
(
S,u, S,v, S,uu

)
+

1
2

det
(
S,u, S,v, S,vv

)
= 0, (19b)

expressing that the parameterization R(r, s) is conjugate.

Remark 9. For the negatively curved surface, the top view of
tangent vectors S,u, S,v of the primal surfaces S (u, v) after ro-
tating by ∓90◦ and scaling up by

√
−iK coincide with the top

view of the corresponding tangent vectors S δ
,u, S δ

,v of the dual
surfaces S δ(u, v):[

S δ
x,u

S δ
y,u

]
=
√
−iK

[
0 1
−1 0

] [
Sx,u

Sy,u

]
, (20a)[

S δ
x,v

S δ
y,v

]
=
√
−iK

[
0 −1
1 0

] [
Sx,v

Sy,v

]
. (20b)

Equations (20) can easily be verified via equations (A.1),
(A.2), (A.7) and (A.8).

Remark 10. For the positively curved surface, the top view
of tangent vectors R,r, R,s of the primal surfaces R(r, s) after
rotating by ∓90◦ and scaling up by

√
iK coincide with the top

view of the reverse corresponding tangent vectors Rδ
,s, Rδ

,t of the
dual surfaces Rδ(r, s):[

Rδ
x,r

Rδ
y,r

]
=
√

iK
[

0 1
−1 0

] [
Rx,s

Ry,s

]
, (21a)[

Rδ
x,s

Rδ
y,s

]
=
√

iK
[

0 −1
1 0

] [
Rx,r

Ry,r

]
. (21b)

Proof. From equations (17f) & (17g), we can express the x-
and y-components of Rδ

,r and Rδ
,s as the linear combination of

S δ
,u and S δ

,v:
Rδ

x,r
Rδ

y,r
Rδ

x,s
Rδ

y,s

 =
1
2


1 + i 0 1 − i 0

0 1 + i 0 1 − i
1 − i 0 1 + i 0

0 1 − i 0 1 + i



S δ

x,u
S δ

y,u
S δ

x,v
S δ

y,v

 . (22)

Equations (20) can be combined as one matrix equations:
S δ

x,u
S δ

y,u
S δ

x,v
S δ

y,v

 =
√
−iK


0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0



Sx,u

Sy,u

Sx,v

Sy,v

 . (23)

Equations (17a) & (17b) state the linear relation between the
vectors R,s, R,t and the vectors S,u, S,v. By inverting the linear
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coefficient matrix, we get
Sx,u

Sy,u

Sx,v

Sy,v

 =
1
2


1 − i 0 1 + i 0

0 1 − i 0 1 + i
1 + i 0 1 − i 0

0 1 + i 0 1 − i



Rx,r

Ry,r

Rx,s

Ry,s

 . (24)

By equations (22-24), we arrive at
Rδ

x,r
Rδ

y,r
Rδ

x,s
Rδ

y,s

 =
√

iK


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



Rx,r

Ry,r

Rx,s

Ry,s

 , (25)

which is equivalent to equations (21).

In the remarks 7-10, the positively curved surface R(s, t) in-
herits the properties from the negatively curved surface S (u, v)
via the conjugate complex parameters (12). To be much more
specific, S x,uv = S y,uv = 0 transforms into Rx,ss + Rx,tt =

Ry,ss + Ry,tt = 0 (remark 7). Secondly, det(S,u, S,v, S,uu) =

det(S,u, S,v, S,vv) = 0 transforms into det(R,r,R,s,R,rs) = 0 (re-
mark 8). Finally, equations (20) transform into equations (21)
(remarks 9 & 10).

4. Construction of constant isotropic Gaussian curvature
meshes

The midpoint and area associated with a segmented curve are
straightforward to calculate. Therefore, it would be no problem
at all to apply Strubecker’s construction (10) for a negatively
curved mesh on any arbitrary segmented curve.

However, for a positively curved mesh, the complex exten-
sion for such a midpoint and area is anything but straightfor-
ward. There is no obvious method to a create complex exten-
sion of an arbitrary segmented curve. § 4.2 proposes a method
based on the mathematical observations we have just discussed
in § 3.4. Before that, we shall first discuss the easy cases: neg-
atively curved meshes.

4.1. Negatively curved constant iK meshes

We will now show that Strubecker’s construction directly ap-
plies to the discrete setting (fig. 7). Instead of prescribing a
smooth curve c, one prescribes a polyline c (discrete curve)
with vertices c(1), . . . , c(N) in the plane z = 0, Now, the con-
struction is the same as above. Pick two vertices c(i), c( j),
compute the midpoint m(i, j) = (c(i) + c( j))/2 and lift it up
to the z-coordinate A(i, j)/2 which is equal to half the area cut
off from c by the line segment C(i, j) with end points c(i), c( j).
A(i, j) is the oriented area of the closed polyline with vertices
c(i), c(i + 1), . . . , c( j), c(i),

A(i, j) =
1
2

{ j−1∑
k=i

[
cx(k)cy(k + 1) − cx(k + 1)cy(k)

]
−

[
cx(i)cy( j) − cx( j)cy(i)

]}
. (26)

c

c

x
y

z

x

y

(a)

(b)

( )c i

1( )c j
2( )c j

3( )c j

( )c i

1( )c j 2( )c j

3( )c j

3( , )m i j
2( , )m i j1( , )m i j

1( , )S i j

2( , )S i j

3 3 3( , ) ( , ), ( , )
2

S i j m i j A i j
 

=   
 

iK−

Figure 7: Construction of a self-Airy mesh with a given discrete curve c in the
plane z = 0 as a singular curve.

The resulting point is the vertex S (i, j) of a quad mesh S , which
is a discrete version of a self-Airy stress surface with unrein-
forced boundary c. This discrete construction is not found in
the literature. Remarkably, we obtain all essential properties
directly in the discrete model.

Theorem 11. The discrete version (26) of Strubecker’s con-
struction (10), illustrated in figure 7, yields quad meshes S
which have planar vertex stars (edges through a vertex are
coplanar) and thus are discrete asymptotic nets (A-nets). Their
faces appear in the top view as parallelograms and thus the top
views are translation nets. Both diagonal meshes have planar
faces and are funicular. Provided that the input polyline has a
constant edge length, both diagonal meshes of S have circular
meshes as top views.

Proof. We pick a segment c(i), c( j), its midpoint m(i, j) and cor-
responding mesh point S (i, j) at height A(i, j)/2. The edges
of S which emanate from S (i, j) arise from the four seg-
ments shown in fig. 8. All of them have either c(i) or c( j)
as an end point, while the other end point is a neighbor of
c( j) or c(i), respectively. The z-coordinates of the neighbor-
ing mesh vertices S (i, j − 1), S (i + 1, j), S (i, j + 1), S (i − 1, j)
are obtained by either adding or subtracting half the area of
a triangle with vertices c(i), c( j) and one of the four points
c(i + 1), c( j − 1), c( j + 1), c(i − 1) as third vertex. Let η(l)
be the signed distance of c(l) to the base line c(i) c( j). Then,
with L = ‖c(i) − c( j)‖, the z-coordinate of vertex S (i, j − 1)
equals

√
−iK/2·[A(i, j)−Lη( j−1)/2], the z-coordinate of vertex

S (i + 1, j) equals
√
−iK/2 · [A(i, j)−Lη(i + 1)/2], and analogous
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( 1)c i +
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( 1)c j −

( 1)c j −

( )c j

( )c j

( 1)c j +

( 1)c j +

ξ

ξ

η

η

( , )m i j

( 1, )m i j+

( 1, )m i j− ( , 1)m i j +

( , 1)m i j − ( 1, )m i j+

( 1, )m i j− ( , 1)m i j +

( , 1)m i j −

( , )m i j

( , )S i j( , )S i j1
2

iK−L

(a)

(b)

Figure 8: Illustration for the proof of Theorem 11. In the top view (a), a mesh
vertex S (i, j) appears as midpoint m(i, j). A vertex and its neighboring points
lie in the plane with slope of L

√
−iK/2, where L is the distance between c(i)

and c( j). The axonometric view (b) depicts this slope.

expressions hold for the other two vertices. Introducing a local
(ξ, η) frame as in Fig. 8, vertex S (i, j) and its four neighbors lie
in the plane with equation z =

√
−iK/2 · [A(i, j) − Lη]. Hence,

the mesh S is a so-called A-net, a quad mesh with planar vertex
stars. A-nets are a discrete counterpart to asymptotic param-
eterizations and well studied in discrete differential geometry
[55]. The planes of vertex stars in S are face planes of the di-
agonal meshes. As polyhedral meshes of a self-Airy shape, the
diagonal meshes are funicular. If the edges have constant length
d in the top view, the direct neighbors of m(i, j) lie at distance
d from m(i, j) and thus on a circle, showing that the top views
of diagonal meshes are circular.

Figure 9 illustrates the constructions with the same base
curve, yet sampled into different polylines. They show the re-
sulting A-nets and their diagonal meshes. Note that the dis-
crete parameterization (set of edge lengths in the polyline) de-
termines the shape of the diagonal nets. This is a simple way to
get a variety of funicular nets via diagonal nets of A-nets.

4.2. Positively curved constant iK meshes

Since there is no obvious method to extend an arbitrary seg-
mented curve c(t) from the real domain t = a, a ∈ {1, 2, . . . , n}
to the complex domain t = a + bi, a, b ∈ {1, 2, . . . , n},
Strubecker’s construction (10) may not immediately be appli-
cable to segmented curves for positively curved meshes. In-
stead, we can generalize the observations (Remarks 6-10) for
the parameterized surface to the positively curved meshes.

A discrete parameterized surface would be a quadrilateral
mesh R(i, j), i, j ∈ {1, 2, . . . , n}. From the understanding of

x

y

y
x

z

Figure 9: Two funicular meshes generated via the A-nets based on the same
curve yet sampled in different intervals. (Parts of the meshes are extended and
truncated to connect to the ground plane. The truncated parts are shown in
dotted lines.)

the parameterized surfaces R(r, s) and Rδ(r, s), firstly, the mesh
R(i, j) should be overlapping and harmonic in the top view (re-
marks 6 & 7). Secondly, the mesh should have planar quadrilat-
erals since the parameterization R(r, s) is conjugate (remark 8).
Thirdly, in the top view, the edges of the primal mesh R(i, j)
and their corresponding edges in the dual mesh Rδ(i, j) are or-
thogonal and have a constant length ratio (remark 10). By these
properties, we can create a quadrilateral mesh from a segmented
curve and derive the slope of each quadrilateral, then get the
overall shape of the mesh.

Determine the top view of the primary mesh. The first step is
to determine the top view

(
Rx(i, j),Ry(i, j)

)
. As highlighted in

remarks 6 & 7, the top view of Strubecker’s construction should
be overlapping (Rx(r, s) = Rx(s, r), Ry(r, s) = Ry(s, r)) and har-
monic. When discretized, we can interpret the first condition as
the mesh is folded along the singular curve (i = j):

Rx(i, j) = Rx( j, i), Ry(i, j) = Ry( j, i). (27a)

Additionally, the vertex R(i, j) should sit at the barycenter of
the four adjacent vertices in the top view:

Rx(i, j) =
1
4

[
Rx(i + 1, j) + Rx(i − 1, j)

+ Rx(i, j + 1) + Rx(i, j − 1)
]
, (27b)

Ry(i, j) =
1
4

[
Ry(i + 1, j) + Ry(i − 1, j)

+ Ry(i, j + 1) + Ry(i, j − 1)
]
. (27c)
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Figure 10: Self-Airy meshes with a discrete singular curve. The negatively curved mesh is shown in blue and green parameter lines, while the positively curved
mesh is shown in red and yellow parameter lines. In order to get the 3D mesh (a), one should first work in the top view (b), then use the derivative properties to get
the top view of the dual mesh (c). Eight corresponding pairs in (b) and (c) are labeled by numbers.

Furthermore, at i = j, the mesh should coincide with the planar
curve c(i):

Rx(i, i) = cx(i), Ry(i, i) = cy(i). (27d)

Due to rank deficiency, equations (27) can not uniquely de-
termine the values of Rx(i, j) and Ry(i, j). One can include the
harmonic equation in the diagonal directions:

Rx(i, j) =
1
4

[
Rx(i + 1, j + 1) + Rx(i + 1, j − 1)

+ Rx(i − 1, j + 1) + Rx(i − 1, j − 1)
]
, (28a)

Ry(i, j) =
1
4

[
Ry(i + 1, j + 1) + Ry(i + 1, j − 1)

+ Ry(i − 1, j + 1) + Ry(i − 1, j − 1)
]
. (28b)

However, equations (27) & (28) will make the problem
over-determined. We recommend using weighted least squares
and putting much higher weights on equations (27). There-
fore, the resulting mesh

(
Rx(i, j),Ry(i, j)

)
will strongly comply

with equations (27) and gently follow the suggestion of equa-
tions (28).

Determine the top view of the dual mesh. By remark 8, we can
assume that the primal mesh R(i, j) has planar quadrilaterals.
Each planar quadrilateral of the primal mesh would be dual to
a vertex in the dual mesh. Let Rδ(α, β) denote the vertex in the
dual mesh that is corresponding to the quadrilateral formed by
vertices R(α± .5, β± .5), where α, β ∈ {.5, 1.5, 2.5, . . . , n− .5}.

By discretizing remark 10, we can establish conditions:

Rδ
x(

++
α , β) − Rδ

x(α, β) =
√

iK
[
− Ry(

+
α,

+

β) + Ry(
+
α,
−

β)
]
, (29a)

Rδ
y(

++
α , β) − Rδ

y(α, β) =
√

iK
[

Rx(
+
α,

+

β) − Rx(
+
α,
−

β)
]
, (29b)

Rδ
x(α,

++

β ) − Rδ
x(α, β) =

√
iK

[
Ry(

+
α,

+

β) − Ry(
−
α,

+

β)
]
, (29c)

Rδ
y(α,

++

β ) − Rδ
y(α, β) =

√
iK

[
− Rx(

+
α,

+

β) + Rx(
−
α,

+

β)
]
, (29d)

where
++
α = α + 1,

+
α = α + .5,

−
α = α − .5, similarly,

++

β = β + 1,
+

β = β + .5,
−

β = β − .5.
The primal mesh R(i, j) at i = j = t coincides with the singu-

lar curve (cx(t), cy(t), 0), which is contained in the plane z = 0.
By duality, we can infer the dual mesh Rδ(α, β) at α = β should
follow the condition

Rδ
x(α, α) = Rδ

y(α, α) = 0. (29e)

The top view of the dual mesh Rδ(α, β) can be uniquely deter-
mined by the top view of R(i, j) via equations (29). So far, the
heights of both meshes Rz(i, j) and Rδ

z (α, β) remain unknown.
The following paragraphs can help us to determine the heights.

Determine the height of the primal and dual meshes. The top
view of the primal mesh R(i, j) and the dual mesh Rδ(α, β) are
ready, which means the slopes of the meshes are known. As
indicated by the duality (§ 2.4), a planar face of R(i, j) is dual
to a point of Rδ(α, β):

Rz(i, j) + Rδ
z (α, β) = Rx(i, j) · Rδ

x(α, β) + Ry(i, j) · Rδ
y(α, β), (30)

where i = α ± .5, j = β ± .5, α, β ∈ {.5, 1.5, 2.5, . . . , n − .5}.
The duality also works in another way: a point of R(i, j) is

dual to a planar face of Rδ(α, β). Equation (30) also works,
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just the indices are different: i, j ∈ {1, 2, 3, . . . , n}, α = i ± .5,
β = j ± .5.

To get the heights of the primal mesh Rz(i, j), we have

Rz(
++

i , j) − Rz(i, j) =
[
Rx(

++

i , j) − Rx(i, j)
]
· Rδ

x(
+

i ,
+

j)

+
[
Ry(

++

i , j) − Ry(i, j)
]
· Rδ

y(
+

i ,
+

j), (31a)

Rz(i,
++

j ) − Rz(i, j) =
[
Rx(i,

++

j ) − Rx(i, j)
]
· Rδ

x(
+

i ,
+

j)

+
[
Ry(i,

++

j ) − Ry(i, j)
]
· Rδ

y(
+

i ,
+

j), (31b)

where
++

i = i + 1,
+

i = i + .5,
−

j = j − .5,
−−

j = j − 1. Since the
singular curve is set to be on the plane z = 0, at i = j, we also
have

Rz(i, i) = 0. (31c)

Equations (31) can sufficiently determine the heights of the pri-
mal mesh Rz(i, j).

To get the heights of the dual mesh Rδ
z (α, β), the same pro-

cedure we just worked on the primal mesh can also help us to
solve the height of the dual mesh:

Rδ
z (

++
α , β) − Rδ

z (α, β) =
[
Rδ

x(
++
α , β) − Rδ

x(α, β)
]
· Rx(

+
α,

+

β)

+
[
Rδ

y(
++
α , β) − Rδ

y(α, β)
]
· Ry(

+
α,

+

β),
(32a)

Rδ
z (α,

++

β ) − Rδ
z (α, β) =

[
Rδ

x(α,
++

β ) − Rδ
x(α, β)

]
· Rx(

+
α,

+

β)

+
[
Rδ

y(α,
++

β ) − Rδ
y(α, β)

]
· Ry(

+
α,

+

β),
(32b)

Rz(α, α) = 0, (32c)

where
++
α = α + 1,

+
α = α + .5,

−

β = β − .5,
−−

β = β − 1.
By equations (27)-(32), one can determine the primal mesh

R(i, j) and dual mesh Rδ(α, β). Figure 10 provide an example.

4.3. Area ratio between primal and dual meshes

The area ratio between primal and dual meshes is essentially
isotropic Gaussian curvature since dual mesh share the same
top view as the isotropic Gauss image. Thus, we can prove a
mesh has a constant isotropic Gaussian curvature whenever the
area ratio of the primal quadrilaterals and their corresponding
dual quadrilaterals is constant.

We first discuss the negatively curved mesh and assume the
isotropic Gaussian curvature is negative one: iK = −1. The ver-
tex stars are all planar since the connecting edges are discrete
asymptotic curves (remark 8, theorem 11). Therefore, one can
easily define the dual vertex of each vertex star. The area of the
primal quadrilateral constructed by the adjacent points of a ver-
tex is composed of four triangles. These triangles correspond to
four dual triangles. Each dual edge is orthogonal to the corre-
sponding primal edge. Also, from § 2.4, we know that the dual
asymptotic edges have the same lengths as the primal edges

when iK = −1. Thus, a primal triangle and the correspond-
ing dual triangle have the same area (ab sin θ = ab sin (π − θ),
fig. 11). The dual triangles form the dual quadrilateral. These
primal quadrilaterals and the dual quadrilaterals respectively
completely cover the primal and the dual mesh twice. Thus, we
know the area ratio of primal and dual mesh is indeed constant
for individual vertex stars and for whole meshes.

(a) (b)

a

b
c

d

aδ

bδcδ

d δ

Figure 11: A pair of dual vertex stars for negatively curved meshes (iK = −1).
The edges a, b, . . . respectively correspond to edges aδ, bδ, . . . . The triangles
of the same color have the same area.

Now we shift our attention to a positively curved mesh and
assume the isotropic Gaussian curvature is one: iK = 1. The
mesh is conjugate, and therefore the quadrilaterals are planar.
Each quadrilateral corresponds to a vertex in the dual mesh,
and vice versa. The area of the primal quadrilateral constructed
by the adjacent points of a regular vertex is twice the area of the
corresponding dual quadrilateral (fig. 12). Such primal quadri-
laterals completely cover the primal mesh twice. As a result, the
sum of the areas is twice the area of the primal mesh. The cor-
responding dual quadrilaterals also completely cover the dual
mesh. Therefore, we can be sure the area ratio of primal and
dual meshes is indeed constant for each vertex star and its cor-
responding rectangle, as well as for whole meshes.

a

b
c

d

aδ

bδ

cδ

d δ

(a) (b)

Figure 12: A dual vertex star and its corresponding quadrilateral for positively
curved meshes (iK = 1). The edges a, b, . . . respectively correspond to edges
aδ, bδ, . . . . The triangles of the same color have the same area.

5. Singularities and stitching regular patches

Section 4 has shown how to generate regular quadrilateral
meshes from a single discrete curve. A regular quadrilateral
mesh has each vertex connected by 4 edges and each polygon
bounded by 4 edges. Although one can arbitrarily design the
discrete curve (thus the shape of the unenforced edge), a single
unreinforced edge is too limiting for architectural design.
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a
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bδ

cδ

d δx
y

z

(a) (b)

Figure 13: A pair of dual negatively curved self-Airy meshes. The primal mesh
(a) has a valence-6 singular point. The dual mesh is self-intersecting (b). The
primal singular point corresponds to the “pinch point” in the dual mesh. Two
highlighted parameter lines ac and bd correspond to aδcδ and bδdδ

This section is going to explore wider solutions: semiregular
quadrilateral meshes that have a few singular points (vertices
connected by 5 or more edges) or singular polygons (polygons
bounded by 5 or more edges). With the singularity, designers of
self-Airy shells can stitch regular patches to create much more
interesting forms and incorporate more than one unreinforced
edge to a design.

5.1. Negatively curved mesh with a singular point

Large negatively curved constant Gaussian curvature sur-
faces (e.g., hyperbolic surfaces) tend to have singular points
and curvature discontinuity [34]. Shearman and Venkataramani
[34] have pointed out that, at the singular or “branch” point,
there are n ≥ 3 asymptotic directions. In contrast, a regular
point has only 2 asymptotic directions, which divide the neigh-
borhood region into 4 “sectors”. Two of them are above the tan-
gent plane, while the other two are below. At a singular point
of 3 (or n) asymptotic directions, there are 6 (or 2n) sectors, of
which 3 (or n) are above the tangent plane, whereas the other 3
(or n) are below.

The asymptotic curves emanating from the “branch” points
divide the surfaces into patches. Within a patch, the sur-
face can enjoy C∞ smoothness, but, at the transition curves
between patches, the maximum continuity is C1. Shearman
and Venkataramani’s [34] observation in Euclidean geometry
also extends to isotropic geometry as well as the discrete set-
ting. Therefore, for the negatively curved constant iK meshes,
asymptotic lines crossing through the patch boundaries will
have intense geodesic curvature (fig. 13).

The singular points correspond to “pinch points” at their dual
surfaces. As a result, surfaces with such a singularity have self-
intersecting dual surfaces. The discretized mesh has the same
properties (fig. 13).

These singularities may cripple the constant area ratio of pri-
mal and dual meshes. For instance, an isotropic translation
net consisting of mostly quadrilaterals and a singular hexagon
would find the area ratio of the primal hexagon and the self-
intersecting dual hexagon different from the ratio of the pairs
of regular quadrilaterals. When the self-Airy surface is di-
vided into a finer mesh, the area of the singular hexagon is less
prominent, and thus the mesh is closer to the ideal self-Airy
surface. However, a coarse isotropic translation net consisting

(a) (b)

a

bc

d

aδ

bδ

cδ

d δ

eδ
f δ

e
f

Figure 14: A pair of dual valence-6 vertex stars for negatively curved meshes
(iK = −1). The edges a, b, . . . respectively correspond to edges aδ, bδ, . . . . The
triangles of the same color have the same area.

of only quadrilaterals (even having singular valence-6 vertices)
can have a dual mesh of constant area ratio and thus constant
isotropic Gaussian curvature (fig. 14).

One may like to seek whether there is a self-Airy mesh
consisting of point supports (conical singularities) and unrein-
forced edges (planar singular curves). There exist negatively
curved constant iK meshes with two point supports and two seg-
ments of unreinforced boundary. However, there is no obvious
solution of a negatively curved constant iK mesh with n ≥ 3
point supports and n ≥ 3 segments of unreinforced boundary
without degenerate quadrilaterals. The condition of being a
“translation net” in the top view is quite restrictive. A close
solution as well as a degenerate solution of a 3-support mesh
are included in § 6.

5.2. Positively curved mesh with a singular point

As remark 7 suggests, Strubecker’s construction for a posi-
tively curved constant iK surface has a harmonic net in the top
view. The condition of a harmonic net is less restrictive than
that of a translation net. As a result, in the discrete setting,
one can easily find a harmonic mesh with 3 or more singular
point supports and singular boundaries. The discretized har-
monic conditions (27) can be generalized as the top view of
each vertex (Rx,Ry) sitting at the barycenter of the adjacent n
vertices (Rxi,Ryi), 1 ≥ i ≥ n:

(Rx,Ry) =
1
n

n∑
i=1

(Rxi,Ryi). (33)

The n = 2 when the point (Rx,Ry) is at the singular curve; the
n = 4 when the point is a regular interior point; the n ≥ 5 when
the point is a singular interior point.

Equation (33) is equivalent to the 2D equilibrium of nodes in
a network of springs, in which the relaxed lengths are zero and
the spring constants are identical (see [14] and [56]). The equi-
librium of such a network can be represented by an Airy stress
function, which is automatically a polyhedral surface. Fig-
ures 15a & b respectively provide a network of springs and its
polyhedral Airy stress function R. The dual mesh Rδ also auto-
matically satisfies equations (29). A self-Airy mesh of isotropic
Gaussian curvature iK is associated with a spring network of
spring constant k =

√
iK.
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(a)

(b)

(c)

Figure 15: A simple example of a spring network (a) and its polyhedral Airy
stress function (b) as well as the dual mesh of the Airy stress function (c).

Such a positively curved self-Airy mesh is uniquely defined
by its topology and its support points, since the positions of
all the vertices are determined by the harmonic condition (33).
Topology refers to the mesh’s connectivity properties—how its
vertices, edges, and faces are arranged and connected. Fig-
ure 16 shows a series of self-Airy meshes. All these meshes
have 1 valence-6 singular point at the center, 3 point supports,
and 3 segments of unreinforced boundary. The difference is in
the topology distances from the center to the point supports or
the unreinforced boundary. The topology structure affects the
shape of unreinforced boundaries as well as the value of the
isotropic Gaussian curvature.

However, around singular vertex stars, the area ratios be-
tween the primal and dual meshes are not constant. As § 4.3
shows, for a regular mesh of iK = 1, the area of the primal
quadrilateral constructed by the adjacent points of a regular ver-
tex is twice the area of the dual corresponding quadrilateral.
For a singular vertex of valence-n, the area of the n-polygon
constructed by the adjacent points is twice the area of the cor-
responding n-polygon minus the n/2 star polygon. Figure 17
shows an example of valence-6 vertex star and its dual hexagon,
where the area deficit is the hexagram. When the mesh becomes
denser, the deficit becomes smaller (fig. 18).

It is also possible to locate a pentagon next to a singular ver-
tex of valence-5, which respectively dual to a valence-5 vertex
start and a pentagon. This arrangement produces two 5/2 star
polygons. One of them is deficit while the other is surplus.
When the shapes of the pentagons are the same, the 5/2 star
polygons have the same area and thus the deficit is neutralized
by the surplus (fig. 18).

6. Application

This section presents a few examples that utilize the pro-
posed method of constructing constant isotropic Gaussian cur-
vature meshes to conceptually design self-Airy shells for roof-
like structures.

6.1. Negatively curved self-Airy shells with two supports

Figure 19 shows a series of self-Airy shells that result from
Strubecker’s construction taking curves of double rotational
symmetry as input. Since the curves are symmetric with respect

69
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9 12

3
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n 4

Group of points
to be overlapping

Topological
distances

r
s

(a)

x

y

Prim
al

Dual

(b)

x
y

z

(c)

Figure 16: The topological input affects the shape of the unreinforced bound-
aries. (a) Five topological inputs of different topological distances from the
center to the unreinforced boundary and the support. (b) The results of solving
equations (27-29). (c) The results of solving equations (31). The longer the
distance from the center to the support, the larger the Gaussian curvature.
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(a) (b)

a

bc

d aδ

bδ
cδ

d δ

eδ f δ

e f

Figure 17: A dual vertex star and its corresponding hexagon for positively
curved meshes (iK = 1). The edges a, b, . . . respectively correspond to edges
aδ, bδ, . . . . The triangles of the same color have the same area. The 6/2 star
polygon in (b) will not completed covered by the 6 triangles.

Prim
al

Dual

Area deficit

Area surplus

(a) (b) (c)

Figure 18: Harmonic meshes and their dual. When the dual mesh is considered
as the top view of the Gauss image, we can observe a singular vertex star would
have an area deficit (or a curvature surplus), which has higher local Gaussian
curvature. The primal mesh in (b) has a denser network and therefore has a
smaller area deficit than the case in (a). A singular polygon in the primal mesh
creates an area surplus (or a curvature deficit).

x
y

z

x

y

(a) (b) (c) (d)

Figure 19: Negatively curved self-Airy shells which originate from double rota-
tional symmetry curves. The top row shows top views as well as the associated
curves in a lighter shade at the side. The bottom row shows axonometric views.

to two points, the resulting surface will have a conical singular-
ity at each of these points. Let c(t) denote such a planar curve
that passes through the symmetrical centers ci (i ∈ {1, 2})) when
t = ti. Provided the curve is rotationally symmetric with respect
to ti, we can infer c(ti + ∆t) + c(ti − ∆t) = 2ci. The top view of
Strubecker’s construction (10) yields the surface S (u, v), which
has singular points at points ci when the parameters adhere to
u + v = 2ti.

Furthermore, the resulting surface has two planar singular
curves. The obvious one traces u − v = 0. The less obvious
one follows u − v = 2(t1 − t2). On u − v = 2(t1 − t2), one has
the straight line segment C(u, v) with end points c(u) & c(v) and
its midpoint m(u, v) = [c(u)+c(v)]/2 that are moving parallelly.
Since the straight line segment has a constant length of ‖c1−c2‖,
the u − v = 2(t1 − t2) traces a planar curve. Since Strubecker’s
construction gives a constant isotropic Gaussian curvature sur-
face for any pair of (u, v), this planar curve must be singular.

One can tilt the resulting surface by an affine map to make
both the unreinforced boundaries incline and only leave the sin-
gular points touching the ground. Architects may want to build
such surfaces. Although there are only two supports, which are
insufficient to stably fix a structure, engineers can add minor
secondary supports to stabilize the structure. Therefore, after
some adjustment, these surfaces are still practical to be physi-
cally built.

When the curve approaches a zigzag, one can notice that
part of the asymptotic net degenerates into straight lines at the
boundaries. These boundaries are still free and do not need ex-
tra support to reach equilibrium. However, reinforcements are
needed to take care of the concentrated axial load. The result of
a zigzag is a hyperbolic paraboloid which was a popular shape
for shells in the 1950s to the 60s. The Spanish-Mexican archi-
tect and engineer Félix Candela (1910-1977) extensively used
this shape in his ingenious designs [57].

6.2. Negatively curved roofs with three supports

Designers can introduce singular points to combine regular
patches into an interesting whole. Here, we introduce a sin-
gular point of valence-6 and design a mesh of three supports.
If one insists that, except at the conical singular points, there
should be no degenerate quadrilaterals, one may only find self-
Airy meshes similar to the one shown in figure 20(a), which
has short linear supports between conical point supports and
the unreinforced boundaries. If one allows degenerate quadri-
laterals, one can assemble a mesh similar to the case shown in
figure 20(c), which has three conical point supports directly ad-
jacent to unsupported boundaries.

Dual meshes of self-Airy meshes are also self-Airy meshes,
as discussed in § 2.4. Figures 20(b) & (d) respectively show
the dual meshes of the primal meshes shown in (a) & (c).
These dual meshes have a pinch point and therefore are self-
intersecting. Although they are not suitable for a practical roof-
like structure, they might serve as inspiration for art installa-
tions. A minor remark is that, as the shell in (a) has short seg-
ments of linear supports, its dual shell in (b) would require extra
struts for supporting.
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Figure 20: Two pairs of dual meshes, which are negatively curved self-Airy meshes with three supports. Mesh (a) is dual to mesh (b), while mesh (c) is dual to
mesh (d). Since each support of mesh (a) consists of a conical point and two segments, its dual support features an unreinforced boundary and two shear walls. In
contrast, since each support of mesh (c) consists only of a conical point, its dual support consists solely of an unreinforced boundary.

6.3. Four point supports for positively curved roofs

Singular points can also combine positively curved patches.
To generate a four-point-support shell, one can use one of the
various singular structures, for example:

1. one valence-8 singular point (fig. 21a),
2. two valence-6 singular points (fig. 21c),
3. two valence-5 singular points with two 5-sided singular

polygons (fig. 21e), and
4. the duals of the above cases (respectively, fig. 21b, d, & e).

The boundaries of these positively curved meshes can con-
tain only point supports and unreinforced segments, unlike the
negatively curved case in figure 20a which must have short seg-
ments of linear supports. Each of the primal meshes (fig. 21a,
c, & d) has 4 point supports and 4 segments of unreinforced
boundaries. Since a point support is dual to an unreinforced
boundary and vice versa, each of the dual meshes (fig. 21b, d,
& e) contain 4 segments of unreinforced boundaries and 4 point
supports.

Some of the four point supports may need to be elevated
since they may not be coplanar. As discussed in § 5.2, after
designers choose the mesh topology and the top view of the sup-
porting points, the top view of the unreinforced boundaries will
be uniquely determined by the harmonic condition (33). The
height is also subsequently determined by equations (29-31).
The only left freedom is the affine shearing in the z-direction
(x,y,z) 7→ (x, y, z+ax+by+d), which has 3 degrees of freedom.
Since the number of point supports exceeds the affine shearing
map’s degrees of freedom, it is generally not possible for level-
ing the point supports of an arbitrary self-Airy mesh. However,

if the topology and the support points are arranged in a symmet-
ric manner, the four points can still be leveled as in the cases in
figure. 21a, b, & c, while two point supports of the meshes in
figure. 21d, e, & f are elevated.

6.4. Roof of mixing positively and negatively curved meshes

We can combine positively and negatively curved meshes
along the unreinforced boundary to generate more interesting
results. For a positively curved self-Airy mesh, the top view of
the unreinforced boundary is dictated by the harmonic condi-
tion (33). Conversely, for a negatively curved self-Airy mesh of
two supports, the boundary is free to accept an arbitrary curve.
Then, it becomes obvious that we should first determine the
positively curved part. Based on the “form-found” unreinforced
boundary, we then shape the negatively curved self-Airy mesh
accordingly.

We can stitch the positively and negatively curved meshes
tightly or leave a gap between them. The roof shown in fig-
ure 22 features a positively curved mesh at the center and four
segments of unreinforced boundaries. Two of these are tightly
connected to two negatively curved meshes, while the other
two are connected to another pair of negatively curved meshes
through skylights. Owing to the planarity of the unreinforced
boundaries, we can make one of the skylights planar, while the
other one is prismatic.

7. Conclusion

Contributions. This paper has reviewed the features of self-
Airy shells and identified its unreinforced boundaries as planar
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Figure 21: Three pairs of dual meshes, which are positively curved self-Airy
meshes with four supports. (a & b) A pair of dual meshes. The valence-8
singular point in (a) is dual to the 8-sided singular polygon in (b). (c & d) and
(e & f) are the other two pairs. A valence-n singular point dual to a n-sided
polygon.

singular curves. We have also reviewed the important contribu-
tion of Strubecker’s early works on smooth constant isotropic
Gaussian curvature surfaces and his construction of such sur-
faces from arbitrary planar singular curves. We have pro-
posed a systematic approach to convert Strubecker’s construc-
tion into the discrete counterpart for both positively and neg-

(a)
planar skylight

prismatic skylight

tightly connected seam

tightly connected seam

(b)

(c)

Figure 22: A roof mixing positively and negatively curved meshes. (a) Top
view. (b & c) Perspective views respectively looking towards the planar skylight
and the prismatic one. (d) An internal view.

atively curved constant isotropic Gaussian curvature meshes.
The former positively curved cases, which require the complex
extension, are also converted into real parameters which allow
users to deal with much ease.

Beyond the construction of regular quadrilateral meshes, we
also proposed the method for building up semi-regular quadri-
lateral meshes, which contain singular points. For negatively
curved meshes, the asymptotic net will have kink angles cross-
ing the bounders between regular patches. For positively curved
meshes, the parametric net remains smooth. Yet, a singular ver-
tex star (dual to a singular polygon) will have an area deficit,
which can be reduced by a finer subdivision.

A few designs of roof-like structures are also presented. De-
signers can generate various self-Airy shells with unreinforced
boundaries. Mixing positively and negatively curved self-Airy
shells in one design is also demonstrated.

Future Work. This paper assumes the load is vertical and uni-
formly distributed per horizontal area, therefore the resulting
surfaces are constant isotropic Gaussian curvature surfaces.
These surfaces can be the basis for future research in at least
three directions:

17



1. Offset the meshes into isotropic linear Weingarten surfaces
and explore the wider range of design domains.
Offsetting a constant isotropic Gaussian curvature surface
will yield an isotropic linear Weingarten surface, which
admits a stress distribution of which the principal orienta-
tion aligns with the one of curvature.

2. Refine the resulting meshes into constant Gaussian curva-
ture surfaces in terms of the Euclidean metric.
Such a surface would be the Euclidean counterpart of the
self-Airy surface that withstands a uniformly distributed
normal stress. One of the simplest examples would be a
sphere under uniform pressure.

3. Amend the meshes to have isotropic Gaussian curvature
proportional to the tilting area.
As discussed in § 2.2, the more realistic load intensity
should be proportional to the tilting area. Since the vertical
load of a self-Airy surface is proportional to its isotropic
Gaussian curvature, amending the curvature distribution is
to adopting the realistic load distribution.

The first direction would be relatively straightforward com-
pared to the other two. Both the second and the third directions
make the problem non-linear. The later two directions require
the linear proportionality between the area of each facet and the
area of its Gauss image, to be more precise, Euclidean Gauss
image for the second direction while isotropic Gauss image for
the third direction. One can reformulate the problem as an op-
timization problem to minimize the deviation of the ratio be-
tween the areas. Nonetheless, the results from this paper would
serve as convenient inputs to initialize the non-linear optimiza-
tion process.
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Appendix A. Derivatives of Strubecker’s construction

From Strubecker’s construction (10), the parametric surface
S (u, v) has the first and second derivatives:

S,u =

(
ċx(u)

2
,

ċy(u)
2

,

√
−iK
4

{
ċx(u)[cy(u) − cy(v)] − ċy(u)[cx(u) − cx(v)]

})
,

(A.1)

S,v =

(
ċx(v)

2
,

ċy(v)
2

,

√
−iK
4

{
ċx(v)[cy(u) − cy(v)] − ċy(v)[cx(u) − cx(v)]

})
,

(A.2)

S,uu =

(
c̈x(u)

2
,

c̈y(u)
2

,

√
−iK
4

{
c̈x(u)[cy(u) − cy(v)] − c̈y(u)[cx(u) − cx(v)]

})
,

(A.3)

S,uv =

(
0, 0,

√
−iK
4

{
− ċx(u)ċy(v) + ċy(u)ċx(v)

})
, (A.4)

S,vv =

(
c̈x(v)

2
,

c̈y(v)
2

,

√
−iK
4

{
c̈x(v)[cy(u) − cy(v)] − c̈y(v)[cx(u) − cx(v)]

})
.

(A.5)
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Subsequently, we can have the normal vector iN of the tangent
plane TpS :

iN = S,u × S,u

=
√
−iK ·

[ ċx(u)ċy(v) − ċy(u)ċx(v)
4

]
·

(
−cy(u) + cy(v)

2
,

cx(u) − cx(v)
2

,
1
√
−iK

)
. (A.6)

The dual surface S δ of surface (eq. 11 has the first derivatives:

S δ
,u =

√
−iK ·

(
ċy(u)
2

,
−ċx(u)

2
,

− ċx(u)
[
cy(u) + cy(v)

]
+ ċy(u)

[
cx(u) + cx(v)

])
,

(A.7)
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√
−iK ·
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−ċy(v)

2
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ċx(v)
2
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ċx(v)
[
cy(u) + cy(v)

]
− ċy(v)
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cx(u) + cx(v)

])
.
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