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Fig. 1. Snapping deployable toroid structure. Concept of a lightweight pavilion of multistable toroidal modules. Each individual module is a polyhedral torus
that admits two isometric configurations: the deployed state as depicted but also a flat-folded state (see Figs. 2 and 21). In both states corresponding faces are
congruent to each other, only the angles at the edges (hinges) are different. There is no continuous motion from one state to the other but a snapping motion
is possible due to the flexibility of the material.

We introduce a novel class of polyhedral tori (PQ-toroids) that snap between

two stable configurations – a flat state and a deployed one separated by an

energy barrier. Being able to create PQ-toroids from any set of given planar

bottom and side faces opens the possibility to assemble the bistable blocks

into a thick freeform curved shell structure to follow a planar quadrilateral

(PQ) net with coplanar adjacent offset directions.
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A design pipeline is developed and presented for inversely computing

PQ-toroid modules using conjugate net decompositions of a given surface.

We analyze the snapping behavior and energy barriers through simulation

and build physical prototypes to validate the feasibility of the proposed

system.

This work expands the geometric design space of multistable origami for

lightweight modular structures and offers practical applications in architec-

tural and deployable systems.
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1 Introduction
The construction of doubly curved surfaces has long been a cen-

tral challenge in architectural geometry, especially when targeting

lightweight, buildable, and geometrically controlled forms. While

traditional approaches often rely on tiling such surfaces with repeat-

able components, our focus shifts toward assembling shell structures

from modules that are individually tailored to the geometry. This

approach offers greater design flexibility and curvature resolution,

enabling structurally expressive forms that go beyond conventional

repetition.

Deployable structures have emerged as a compelling solution in

this context, enabling spatial systems that can fold, compress to en-

hance the transportability, or transform to suit a variety of functional

and environmental demands. Origami, in particular, has proven to

be a powerful functional design strategy, offering a rich geometric

vocabulary for folding mechanisms that embed both structure and

motion. Beyond its visual appeal, origami provides a precise geomet-

ric framework for shaping surfaces, enabling localized movements

and coordinated global transformations, particularly when extended

into three-dimensional configurations.

Origami structures can broadly be classified into rigid and non-
rigid systems. In rigid origami, the faces are assumed to be non-

deformable panels connected via ideal hinges, allowing the structure

to fold without stretching or bending any surface elements. This

property is especially useful for applications involving thick mate-

rials or precise kinematic control. Non-rigid origami, on the other

hand, permits elastic deformation of panels and/or hinges during

motion, which enables a wider range of transformations, but intro-

duces mechanical complexity. In the latter case, recent interest has

focused on structures that exhibitmultistability. This is the ability to
stably hold multiple configurations, often realized through geomet-

ric frustration or elastic snap-through behavior. Such multistable

systems have been explored for their potential in shape morphing,

mechanical memory, and deployable mechanisms. Our work builds

on this foundation by developing bistable origami modules that are

individually flat-foldable, geometrically programmable, and capable

of tessellating curved surfaces.

1.1 Contribution and overview
This paper presents a geometric investigation into a new class of

deployable, snapping origami toroids, which we term PQ-toroids.
Our work builds upon the framework established in [Lee et al. 2024],

where T-toroids are introduced as a class of multistable origami

modules derived from T-hedral tubes. These T-toroids were shown

to be flat-foldable and could be assembled into positively curved

surfaces. However, as discussed in [Lee et al. 2024, Sec. 3], the

design space of T-toroid assemblies is limited to convex geometries,
significantly restricting their architectural potential.

In contrast, the PQ-toroids introduced in this work offer a sub-

stantially broader design space. While retaining multistability and

deployability, they impose far fewer geometric constraints. In Sec-

tion 2 we show how a PQ-toroid can be constructed from a general

hexahedron with planar faces where the top and the bottom face

are parallel.

Consequently, PQ-toroids conform to any quadrilateral meshwith

planar faces and coplanar offset directions. We show in Section 3

how this allows us to approximate any given surface with a PQ-

toroid tessellation.

Mechanically, PQ-toroids are bistable: they exhibit a zero-energy

flat state and a deployed state, with the transition involving elastic

deformation of material and a characteristic snapping behavior, ana-
lyzed in detail in Section 4. Their infinitesimal flexibility is discussed

in Section 2.4.

As a demonstration, we fabricated a desktop-scale structure com-

posed of sixty PQ-toroids. Eachmodule can be folded flat by pressing

two opposite sides inward and can snap back to its deployed form

via gentle tension (see the supplemental videos).

We discuss the design pipeline which allows for surface-guided

module generation and give more digital examples in Section 5. We

conclude with a discussion of the limitations in Section 6.

1.2 Previous and related work
1.2.1 On the conceptual level.

Deployable structures. Deployable structures are spatial systems

that can transition between compact and expanded configurations,

typically for the purposes of storage, transport, or on-demand de-

ployment. They have long been of interest in aerospace, architecture,

and civil engineering. Early innovations in the field include Hober-

man’s mechanical linkages and expandable domes [Hoberman 1990].

With a similar mechanism, Ren et al. [2022] introduce a bistable

structure that deploys into a surface with structural thickness. Pi-

oneering structural studies by Guest and Pellegrino established

theoretical models for deployability, structural stiffness, and trans-

formability in large-scale systems, including in Guest’s doctoral

work [Guest 1994] and in Pellegrino’s monograph Deployable Struc-
tures [Pellegrino 2001].

More recently, origami has been adopted as a geometric frame-

work for deployable structures, particularly in architectural contexts,

offering bothmaterial efficiency and precise control over form. Some

notable works include the development of Miura-ori–based fold-

able shelters [Curletto and Gambarotta 2016; Thrall and Quaglia

2014], rigid-foldable canopy [Ando et al. 2020], thick-panel deploy-

ables [Zhu and Filipov 2024], and mechanisms incorporating snap-

through behavior [Melancon et al. 2021]. These systems leverage

folding kinematics to achieve deployability without the need for tra-

ditional mechanical joints, making them lightweight and fabrication-

friendly. Our work builds on this trajectory, introducing multistable

modules that combine geometric deployability with architectural

curvature and modularity.

Modular systems. Having a system of prefabricated modules can

bring considerable advantages such as faster, safer and more pre-

cise manufacturing and construction as well as having lower en-

vironmental impacts [Thai et al. 2020]. Architectural modularity

enables the discretization of complex surfaces into constructible

units, which may vary locally to conform to curvature and structural

requirements. In computational design, modularity allows curvature
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Fig. 2. Flat-folding of a deployed toroid. Left to right: PQ-toroids number
18, 4 and 14 of the desktop model illustrated in Figure 20 in fully deployed,
half-folded and flat-folded states. The deployed and flat-folded states have
planar faces with zero stored energy, while the unstable half-folded state in
the middle exhibits deformation of the faces.

approximation using deployable [Wei and Pellegrino 2017], volu-

metric [Bechert et al. 2021] or panel-based [Eigensatz et al. 2010;

Pottmann et al. 2007a] primitives.

Lightweight gridshells. Doubly curved shell structures benefit

from lightweight, deployable, and tessellated design strategies. Such

systems minimize material use while offering expressive spatial per-

formance. While many recent works on deployable lightweight grid-

shells consider elastic or active bending structures [Lienhard et al.

2013; Lienhard and Gengnagel 2018; Panetta et al. 2019; Pillwein and

Musialski 2021], in our work we demonstrate how snapping origami

modules can realize curved surfaces in deployable architecture.

Rigid and non-rigid origami. Rigid origami assumes panels re-

main undeformed during motion, allowing analytical modeling and

structural predictability. Kinematics and geometry of rigid origami

as well as its folding simulation have been studied widely, pioneered

by the works of Tachi et. al [2009b; 2011]. Non-rigid origami relaxes

this constraint, introducing elastic deformations and enabling multi-

stable behavior [Liu et al. 2021]. The work of Liu and Paulino [2017]

and Bertoldi et al. [2017] establishes multistability as a design fea-

ture, rather than a byproduct, with applications in shape morphing

and structural reconfiguration.

1.2.2 On the module level.

Non-Euclidean origami. conventional applications of origami in

engineering [Koryo 1985] often consider a fully developable sheet to

start the folding process. This is not only an inspiration from the art

of paper folding, but rather a fabrication and manufacturing choice

due to the thin materials often being produced in sheets. Towards

recent years, and along with the advances in additive manufacturing,

this paradigm has shifted and non-developable yet flat-foldable

systems [Tachi 2009a] capable of embedding negative or variable

Gaussian curvature have drawn interest and have been studied

from a geometric and kinematic point of view [Foschi et al. 2022;

Waitukaitis et al. 2020].

Tubular origami. Miura-ori pattern and its tubular variants [Fil-

ipov et al. 2015; Tachi and Miura 2012] form the geometric core of

several recent multistable tubular origami structures [Fang et al.

2017; Wang et al. 2024; Yasuda and Yang 2015]. An approach based

on Monge surfaces and so-called cone nets was taken by [Vidulis

et al. 2025] to obtain 3D tubular structures composed of developable

surface strips. Sharifmoghaddam et al. [2023] presented a generaliza-

tion of rigidly foldable origami tubes to T-hedral [Sharifmoghaddam

et al. 2020] design space. Based on that, Lee et al. [2024] introduced

multistable T-toroids for constructing positively curved surfaces.

Multistability analysis. Themultistable origami modules are often

analyzed to understand their interesting behavior, such as snapping

transition, shape stability, using the geometric or mechanics per-

spective. Jianguo et al. [2015] modeled bistable origami as the bar

elements and estimated the energy barrier by bar stretch, andMelan-

con et al. [2021] and Lee et al. [2023] estimated the energy barrier

as a metric for the incompatibility between multiple rigid origami.

Mechanics-based analysis of multistable origami modules often uses

a bar-and-hinge model-based snap-through energy computation,

finite element analysis, and experimental validation. Filipov and Red-

outey [2018], also Liu et al. [2019] analyzed metastable transitions

using the experiments and bar-and-hinge model, and Almessabi

et al. [2024] analyzed reprogrammable multistable origami mod-

ules using finite element analysis and experiments. These form the

background of the analysis methods of geometry and mechanics

for the bistable behavior studied in this paper. Beyond the methods

discussed above, [Chen et al. 2021] analyzes deployment energy bar-

riers and stiffnesses of a bistable deployable material system around

the deployed state using a finite element numerical homogenization

approach.

1.2.3 On the surface level.

Discrete conjugate nets and offset meshes. PQ-toroid structures are
typically materializing two layers of quad meshes where each quad

is planar. Such nets are well studied in discrete differential geometry

under the name ‘conjugate net’ or Q-nets. Already Sauer [1970]

defined discrete conjugate nets as quad nets with Z2
combinatorics

such that each quad is planar. Smooth conjugate nets have been

studied extensively with respect to transformation theories in the

last two centuries. Bobenko and Suris [2008] have laid the ground

for discretizing this transformation theory in a systematic way. Q-

nets, in particular if they follow principal directions on the surface,

have become increasingly important in applications. They appear

within multilayer structures to control ‘thickness’ of a mesh (as our

toroidal structures do) in [Liu et al. 2006; Pottmann et al. 2015, 2007b].

The offset mesh is also important for the snapping property of the

toroids. Also of interest are special offset properties like face-offset

and edge-offset properties [Pottmann et al. 2010, 2007b].

2 Snapping Toroids
We are aiming for discrete toroidal structures that can snap between

two stable states; namely a flat-folded one and a deployed state.

Note that the existence of a flat state in combination with the Bel-
lows Theorem [Connelly et al. 1997] implies rigidity of the toroidal

structure. However, we design our toroids such that they become

rigid foldable tubes after one cut, see Figure 7. On the one hand, this

ensures that every corner is flat-foldable (compare Theorem 2.1),

and on the other hand, it provides a useful design tool to construct

a globally flat-folded state. Moreover, the rigid movement of the cut

open parts of the toroid allows us to precisely measure the gap that
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Fig. 3. Top: A non-developable degree-4 vertex, (𝑎) in a singular config-
uration, where a dihedral angle (between 𝛼1 and 𝛼2) is zero, (𝑏 ) a val-
ley fold is introduced, and (𝑐 ) close to a flat-folded state demonstrating
𝛼1 − 𝛼2 + 𝛾 − 𝛽 = 0. Bottom: Similar degree-4 vertex, (𝑑 ) in a singular con-
figuration, (𝑒 ) a mountain fold is introduced, and (𝑓 ) close to a flat-folded
state demonstrating 𝛼1 − 𝛼2 − 𝛾 + 𝛽 = 0.

has to be closed through material deformation, see Section 4.1 for

details.

This idea was already used in [Lee et al. 2024] where the authors

introduced the so-called T-toroids. The foldable tube closing up to

form a T-toroid is of the T-hedral type described in [Sharifmoghad-

dam et al. 2020]. Although the high symmetry of these tubes makes

them attractive for manufacturing, we will see in Section 3 that

the design space of T-toroid-only structures satisfying the assembly

conditions given in [Lee et al. 2024] is limited to convex shapes

discretized by edge-offset-meshes.

Consequently, we need to base our toroids on a more general

flexible tube. In Section 2.1, we show that such a tube can be carved

out from a hexahedron with planar faces and parallel top and bottom

face, a PQ-hexahedron (see Fig. 4). This allows for a wide variety of

shapes as basically any surface can be approximated by a grid shell

of PQ-hexahedra; see Section 3.

In general, the tube carved out from a PQ-hexahedron does not

close in its flat state. We show in Section 2.2 that this can be achieved

by adding two extra foldlines. The shape space of PQ-hexahedra is

9-dimensional if one cancels out similarities by fixing one side of the

hexahedra. The final T-toroid is then uniquely determined by two

more parameters: the width𝑊 of the parallelogramic cross-section

of one side of the toroid and one parameter 𝜃 for the position of

the extra foldlines. Hence, the class of the resulting PQ-toroids is

11-dimensional.

2.1 Geometric construction implied by local flat-foldability
We consider a hexahedron with planar faces, where the top and

bottom face are parallel and refer to it as a PQ-hexahedron; compare

Fig. 4. We show that a locally flat-foldable toroid with parallelo-

gramic cross-section can be carved out of this hexahedron with

exactly one degree of freedom.

By having parallelogramic cross-section, the toroid can be cut

in four prisms that each flat fold with one degree of freedom. For

the entire tube to flat fold, an adapted version of the Kawasaki’s
theorem [Foschi et al. 2022] has to hold:

Theorem 2.1. Let 𝛼1, 𝛼2, 𝛾 and 𝛽 be the angles of a flat-foldable
corner in a PQ-toroid, like in Fig. 3(𝑎). Then either 𝛽 − 𝛼1 = 𝛾 − 𝛼2

(valley fold; Fig. 3(𝑐)) or 𝛽 + 𝛼1 = 𝛾 + 𝛼2 (mountain fold; Fig. 3(𝑓 ))
has to hold.

Therefore, the angles 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 in a corner of the top face of the

hexahedron (compare Fig. 4) already determine the angles 𝛼1

𝑖
and

𝛼2

𝑖
of the PQ-toroid by

𝛼1

𝑖 =
𝛼𝑖 ± 𝛽𝑖 ∓ 𝛾𝑖

2

and 𝛼2

𝑖 =
𝛼𝑖 ∓ 𝛽𝑖 ± 𝛾𝑖

2

. (1)

The choice of sign determines whether the foldline is a mountain

fold or a valley fold, which has to be consistent throughout the

toroid. Due to the edge parallelity of top and bottom face, the angles

at the bottom corner are 𝛼𝑖 , 𝜋 − 𝛽𝑖 , 𝜋 −𝛾𝑖 . Thus, we obtain coplanar

foldlines for the bottom corner with the same angles 𝛼1

𝑖
and 𝛼2

𝑖
. A

valley fold angle in the top corner corresponds to a mountain fold

angle in the bottom corner, and vice versa.

With the foldlines prescribed, the toroid seems overdetermined

as the width𝑊𝑖 of one prismatic tube determines the width𝑊𝑖+1 of

the next tube by

𝑊𝑖+1 =𝑊𝑖

sin𝛼1

𝑖+1

sin𝛼2

𝑖+1

. (2)

However, the next lemma shows that the angles 𝛼1

𝑖
and 𝛼2

𝑖
meet a

loop-closure condition.

Lemma 2.2. The angles 𝛼1

𝑖
and 𝛼2

𝑖
, 𝑖 ∈ {0, . . . , 3} determined by

Kawasaki’s theorem in a PQ-hexahedron naturally meet the loop-
closure condition

3∏
𝑖=0

sin𝛼1

𝑖

sin𝛼2

𝑖+1

= 1 (3)

with all indices taken modulo 4.

Proof. We give a geometric reason why the above formula holds.

Assume that we have a valley fold at the top corners, i.e. 𝛼1

𝑖
=

(𝛼𝑖 + 𝛽𝑖 − 𝛾𝑖 )/2 and 𝛼2

𝑖
= (𝛼𝑖 − 𝛽𝑖 + 𝛾𝑖 )/2. Then, the foldlines are

also the lines along which a sphere 𝑆 , tangent to the two side faces

and the top face, touches the top face. This is due to the fact that

the touching points of 𝑆 form equal angles with the edges of the

hexahedron, compare Fig. 5. We can assume that all side faces of

the PQ-hexahedron touch the same sphere 𝑆 , since the loop-closure

condition is not affected by parallel translation of the side faces. This

implies that all foldlines meet at a single point forming four triangles.

In this configuration the loop-closure condition is obviously met

and thus it is met in the original PQ-hexahedron as well. Switching

from valley folds to mountain folds only exchanges the role of 𝛼1

𝑖

and 𝛼2

𝑖
. Consequently, the loop-closure condition holds in the case

of mountain folds as well. □

2.2 Extra foldlines for global flat-foldability
So far, we have only taken care of the local foldability of the PQ-

toroid. The existence of the global flat state is achieved by adding

two extra foldlines. To do this, we cut the PQ-toroid open through

the foldlines at corner zero and compute the flat-folded tube. Let us
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Fig. 4. Top: A PQ hexahedron. We denote the angles at the top corner𝑇𝑜𝑖
by 𝛼𝑖 , 𝛽𝑖 and 𝛾𝑖 . Center: The Kawasaki theorem determines the foldlines
in the corners. Left: We see the foldline of a mountain fold, and right: we
see the one of a valley fold. Bottom: The PQ-hexahedron can be carved out
along the foldlines yielding the inner vertices𝑇𝑖𝑖 in the top faces and 𝐵𝑖𝑖 at
the bottom faces. Due to Lemma 2.2 all faces are trapezoids. The left toroid
corresponds to a mountain fold in the top faces and right to a valley fold.

Fig. 5. Left: For every PQ-hexahedron we can find a PQ-hexahedron with
parallel faces and edges such that all faces touch a common sphere. Right:
If all faces of a PQ-hexahedron touch a common sphere, then the valley
foldlines intersect in the touching point of that sphere. From this, it is easy
to see that the angles have to meet equation (3).

denote the flat vertices by 𝐵𝑜∗,𝑇𝑜∗, 𝐵𝑖∗,𝑇 𝑖∗. They are recursively

given by

𝑋 ∗
𝑖+1

= 𝑋 ∗
𝑖 +

(
cos(𝛿𝑖+1)
sin(𝛿𝑖+1)

)
∥𝑋𝑖+1 − 𝑋𝑖 ∥,

𝛿𝑖+1 = 𝛿𝑖 + (−1)𝑖 · (𝜋 − 𝛾𝑖 + 𝛽𝑖 ), 𝛿1 = 0

𝐵𝑜∗
0
=

(
0

0

)
, 𝐵𝑖∗

0
=

(
cos(𝛼1

0
)

sin(𝛼1

0
)

)
∥𝐵𝑖0 − 𝐵𝑜0∥,

𝑇𝑜∗
0
=

(
cos(𝜋 − 𝛽0)
sin(𝜋 − 𝛽0)

)
∥𝑇𝑜0 − 𝐵𝑜0∥, 𝑇 𝑖∗0 = 𝐵𝑖∗

0
+𝑇𝑜∗

0
,

where 𝑋 ∈ {𝐵𝑜,𝑇𝑜, 𝐵𝑖,𝑇𝑖} and 𝑖 ∈ {0, 1, 2, 3}. Note that in this

case 𝑋 ∗
4

≠ 𝑋 ∗
0
. Instead, we obtain two congruent quadrilaterals

[𝐵𝑜∗
0
,𝑇𝑜∗

0
,𝑇 𝑖∗

0
, 𝐵𝑖∗

0
] and [𝐵𝑜∗

4
,𝑇𝑜∗

4
,𝑇 𝑖∗

4
, 𝐵𝑖∗

4
], compare Fig. 7. Since

they have the same orientation they are related by a rotation of

angle 𝜙 around center 𝑐 . This rotation is the composition of the

reflections across two lines intersecting at 𝑐 , forming the angle 𝜙/2.

Hence, the first foldline is computed by intersecting a line through 𝑐

Fig. 6. The toroids sharing a col-
ored edge can stay connected
while they are flat folded. By
adding the extra fold lines on op-
posite and adjacent edges of the
toroids one can connect the entire
structure. The black path demon-
strates the connectivity of the
structure.

in direction (cos(𝜃 ), sin(𝜃 ))𝑇 with the four segments 𝑋 ∗
𝑘
𝑋 ∗
𝑘+1

, 𝑋 ∈
{𝐵𝑜,𝑇𝑜,𝑇𝑖, 𝐵𝑖}. The intersection points are then mapped back to

the deployed state. For the second fold we rotate the previous line

around 𝑐 by the angle −𝜙/2 and intersect the segments𝑋 ∗
𝑙
𝑋 ∗
𝑙+1
, 𝑋 ∈

{𝐵𝑜,𝑇𝑜,𝑇𝑖, 𝐵𝑖} where 𝑙 > 𝑘 . The change of sign in the angle is due

to the fact that the second foldline is reflected in the first foldline as

well.

The free parameter 𝜃 can be tedious in the design process as it

has to be chosen for every toroid. As an initial choice we simply aim

to put the extra foldlines as close to the center of the intersected

edges as possible. To do so, we enumerate the eight edges that

are intersected by the extra foldlines and denote the ratio with

which the 𝑖-th edge is divided by 𝜆𝑖 . The concave function 𝑓 (𝜃 ) =∑
8

𝑖=1
𝜆𝑖 (1 − 𝜆𝑖 ) gives a measure on how centered the foldlines are.

Choosing 𝜃 as the maximizer of 𝑓 gives a geometrically reasonable

placement for the extra foldlines. Starting from this initial choice a

more sophisticated placement of the foldlines can then be done by

taking the analysis of Section 2.4 and 4 into account.

Apart from choosing 𝜃 , one also has to choose which edges to

intersect. This can affect the collision behavior of the toroid. We

distinguish three cases. If the sum of lengths of inwards folding

edges is smaller than the length of the edge they fold towards, then

no collision can appear during the folding motion. If one of the

inward folding edges is longer than the edge it folds towards, then

the flat state will always have self-intersection. For the cases in

between, collisions can occur during the folding motion. However,

if one allows the faces to slide on top of each other, the folding

motion is still possible. This sliding motion was observed in all

physical models in which collisions occurred.

Toroids that share an edge without extra foldline can stay con-

nected during their folding motions. By correctly placing additional

foldlines, the user can create arbitrarily large regions that flat fold

simultaneously, compare Fig. 6.

2.3 The special case of T-toroids
The afore mentioned T-toroids introduced in [Lee et al. 2024] appear

as a special case of PQ-toroids. T-toroids can be generated by two

planar polygons 𝑃 and 𝑇 on two orthogonal planes. The profile

polygon 𝑃 is then swept along the trajectory polygon 𝑇 from one

bisector plane of consecutive edges of 𝑇 to the next one. If the

trajectory is a quad and the profile is a parallelogram with a pair of

opposite sides parallel to the base plane containing 𝑇 , then it is a
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Fig. 7. Top left: We start with a PQ-toroid without extra foldlines, and cut
it open to a tube. Top right: The resulting tube is flat-foldable but in the
flat state the ends do not close. The two open ends illustrated in blue can
be mapped onto each other by two reflections. The intersection of these
reflection lines give the extra foldlines indicated by dotted red points. Bottom
right: Folding the toroid along these dotted red lines closes the flat tube.
Bottom left: Going back to the deployed state, we obtain the final PQ-toroid.

special case of a PQ-toroid (see Fig. 8). Similarly, if a PQ-toroid has

the additional property that 𝛼1

𝑖
= 𝛼2

𝑖
for all 𝑖 , it is a T-toroid.

Since 𝛼1

𝑖
= 𝛼2

𝑖
the parallelogramic cross-section in a T-toroid has

constant width. All side faces of a T-toroid have the same height

and form the same angle with the base plane. Moreover, 𝛾𝑖 = 𝛽𝑖 in

every corner of the T-toroid. In a T-toroid grid-shell this property

of equal angles propagates around a vertex star. Hence, the edges

of the underlying mesh are contained in one side of a rotational

cone per vertex star. In particular, this implies that every vertex

star is positively curved and thus T-toroid grid-shells can only form

convex structures.

Since the inner foldlines in the corners of a T-toroid are the angle

bisectors, all corners can be mountain and valley folds at the same

Fig. 8. Left: A general T-toroid generated by arbitrary profile and trajectory
polygons. Right: A T-toroid with parallelogram-based cross-section and
quadrilateral trajectory is a special case of a PQ-toroid. Due to its symmetry
the corner foldlines can be all either with mountain or valley assignment.

time. This implies a bifurcation that allows for two modes of folding.

We analyze the snapping behavior of these two modes in Section 4.

2.4 Infinitesimal flexibility analysis
It can easily be seen that a PQ-toroid without additional foldlines

in its deployed state only allows the infinitesimal translation of the

inner ring in the 𝑧-direction under the assumption that the outer

ring (which is in general rigid
1
) is fixed to the reference frame in a

way that the top and bottom faces are parallel to the 𝑥𝑦-plane.

Now the question arises if the deployed structure obtains addi-

tional infinitesimal flexes by adding the extra foldlines? One way

to check this would be to compute the kernel of the rigidity matrix

[Schulze and Whiteley 2017], which would be in this case a 96 × 66

matrix
2
. In the following, we use a tailor-made approach which

simplifies computation and gives us a first criterion for the selection

of the additional foldlines.

We consider again the inner and the outer ring of the toroid con-

sisting of six panels. Now both rings can be considered as closed

kinematic 6R chains, i.e. two adjacent panels are connected by a ro-

tary (R) joint. Each of these 6R loops is infinitesimally flexible as the

six rotation axes belong to a singular
3
linear line complex [Pottmann

and Wallner 2001, Sec. 3.1]. One can compute the corresponding

infinitesimal flex of each 6R loop, which is determined by the ratio

of angular velocities of the axes𝑂1, . . . ,𝑂6 of the outer 6R loop and

of the axes 𝐼1, . . . , 𝐼6 of the inner one, respectively. In general
4
these

two infinitesimal flexes of the 6R loops do not fit together to imply

an additional degree of freedom on the level of velocities to the

toroid; beside the already mentioned infinitesimal translation of the

inner ring to the outer one. The closeness of the structure to such

an additional infinitesimal flexibility can be evaluated kinematically

as explained in Appendix A.

In contrast to the deployed state, the flat-folded toroid starts

deploying along an infinitesimal flex. The existence of this flex

follows already from the fact that all edges are coplanar. Therefore,

the velocity vectors of the vertices are orthogonal to this plane, and

will not change the lengths of the edges in first order. This shows

that the flat-folded state is not stiff in contrast to the deployed one.

The above mentioned closeness index can be interpreted as stiffness

(see Appendix A), which can serve as a design criterion; e.g. for the

selection of the additional foldlines.

3 Surface and Shape Generation

3.1 Modules to meshes
We start by geometrically assembling our modules into shell struc-

tures and derive properties for the underlying meshes. Our overarch-

ing goal is to approximate a given surface Φ by a grid of PQ-toroids

1
It can only be infinitesimal flexible if the four edges of the outer ring belong to a bundle

of lines, field of lines, a regulus or two pencils of lines, where the intersection line of

the two carrier planes equals the line spanned by the two pencil vertices [Pottmann

and Wallner 2001, Sec. 3.3].

2
We have 96 edges (including both diagonals of each quad) and 24 vertices, which imply

24 · 3 = 72 variables, but 6 can be set to zero in order to eliminate rigid-body motions

of the complete structure.

3
The six axes are located in two planes and their common line equals the axis of the

singular linear line complex.

4
In special cases an additional flex can exist as demonstrated in Example 5.7.
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Fig. 9. Doubly curved surface with toroids. We optimized the base net for
the Q-net property and additionally in the positively curved area for the
edge-offset property and in the negatively curved area for the face-offset
property. In this way the positively curved area is covered mainly with
T-toroids and the negatively curved area with PQ-toroids. See also Sec. 3.2.1
and 3.2.2.
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Fig. 10. Geometric properties of a PQ-toroid. Left: A planar quadrilateral
face 𝑓 . Two edges 𝑒,𝑑 are emanating from vertex 𝑥𝑖 . Center: Through each
vertex 𝑥𝑖 there is a ruling 𝑟𝑖 . Edge-neighboring rulings meet in a point.
Right: The planes of the toroids coincide with the planes spanned by edge-
neighboring rulings.

(see Sec. 3.3). More precisely, we will consider a surface mesh M
which approximates Φ such that there is

(i) one toroid per face of the mesh,

(ii) for each face of the mesh the face itself is identical with the

base quadrilateral of the corresponding toroid (Fig. 10 right),

(iii) neighboring toroids share a common toroid-face.

From (ii) follows that the faces of meshM are planar quadrilater-

als (hence, M is often called a PQ-mesh). If such a PQ-mesh has the

combinatorics of a Z2
lattice it is called a Q-net or (discrete) conju-

gate net. These nets discretize smooth conjugate nets or conjugate

parametrizations of a smooth surface (see, e.g., [Bobenko and Suris

2008; Doliwa and Santini 1997]). Illustrations of conjugate nets are

depicted in Fig. 14: smooth (b) and discrete (f). We conclude:

Lemma 3.1. Discrete parametrizations that are covered by PQ-
toroidal structures are Q-nets.

From (iii) follows that there is a unique plane 𝜀𝑒 through each

edge 𝑒 containing the side face of neighboring PQ-toroids. Consider

two such planes 𝜀𝑒 , 𝜀𝑑 corresponding to two edges 𝑒, 𝑑 emanating

from a vertex 𝑥𝑖 in a face 𝑓 (see Fig. 10). These two planes contain

two neighboring faces of the PQ-toroid and therefore intersect in

an edge 𝑟𝑖 of the PQ-toroid. Since neighboring PQ-toroids share

corresponding faces, all planes 𝜀𝑒 around a vertex star pass through

a common line 𝑟𝑖 , a ruling, containing 𝑟𝑖 . Two rulings 𝑟𝑖 , 𝑟 𝑗 corre-

sponding to vertices 𝑥𝑖 , 𝑥 𝑗 which are connected by an edge 𝑒 must

lie in the same plane 𝜀𝑒 and therefore intersect in a point. This point

could be a point at infinity since 𝑟𝑖 and 𝑟 𝑗 could be parallel. We

conclude:

Lemma 3.2. PQ-toroidal structures come with rulings (straight lines)
𝑟𝑖 per vertex 𝑥𝑖 . Edge-neighboring rulings 𝑟𝑖 , 𝑟 𝑗 intersect in a point
(including points at infinity).

A discrete two-parameter family (Z2
combinatorics) of straight

lines where neighboring lines intersect is called a discrete hyperbolic
line congruence. This term comes from smooth line geometry (see,

e.g., [Pottmann and Wallner 2001, p. 427]).

We have discovered that the two notions, Q-nets and hyperbolic

line congruences, are important for us. We will therefore derive

both notions from within their smooth theory and give a short

introduction for both.

3.1.1 Conjugate nets (Q-nets). Discrete nets with the combinatorics

of a Z2
lattice and planar quadrilateral faces (PQ-meshes) discretize

conjugate surface parametrizations (see, e.g., [Bobenko and Suris

2008, Def 1.1]).

Definition 3.1. A parametrization of a surface 𝑓 : 𝑈 ⊂ R2 → R3

is said to be conjugate or 𝑓 is a conjugate net or a Q-net if 𝜕𝑢𝑣 𝑓 ⊥ 𝑛

where 𝑛 is the unit normal vector field.

Conjugate nets are invariant under projective transformations

and should therefore be considered within the framework of pro-

jective differential geometry of which we refrain for the sake of

simplicity. A detailed source on that topic is [Lane 1942].

Definition 3.2. Let 𝑓 : 𝑈 → R3 be a Q-net. A net 𝑔 : 𝑈 → R3 is
called parallel to 𝑓 or a Combescure transform of 𝑓 if 𝜕𝑢 𝑓 ∥ 𝜕𝑢𝑔 and
𝜕𝑣 𝑓 ∥ 𝜕𝑣𝑔 everywhere (see, e.g., [Bobenko and Suris 2008, Def 1.4]).

The existence of a non-trivial Combescure transform character-

izes Q-nets. We will need the notion of Combescure transforms to

characterize all hyperbolic line congruences in Section 3.1.2.

Example 3.3. A curvature line parametrization 𝑓 (cf. Bobenko and

Suris [2008, Sec. 1.4.4]) of a smooth surface is conjugate. Any offset

𝑓 𝑑 = 𝑓 + 𝑑𝑛 of a principal curvature parametrization with 𝑑 ∈ R is

also conjugate and a Combescure transform of 𝑓 .

Discrete Combescure transforms 𝑔 of discrete Q-nets 𝑓 : 𝑈 ⊂
Z2 → R3

are edgewise parallel, i.e., 𝑓𝑖 − 𝑓𝑗 ∥ 𝑔𝑖 − 𝑔 𝑗 for all pairs
of neighboring vertices (𝑥𝑖 , 𝑥 𝑗 ). Consequently, a toroid structure

consists of a pair of Q-nets which are Combescure transforms of

each other.

3.1.2 Smooth line geometry. Line congruences belong to the field

of line geometry. A detailed source on this topic is [Pottmann and

Wallner 2001]. In this section, we will recall only a few necessary

concepts.
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Fig. 11. Left: Elliptic line congruence. Any congruence surface, i.e., one-
parameter subfamily of lines, forms a skew ruled surface. Right: Hyperbolic
line congruence. Through each ruling of the congruence there are two
congruence surfaces that are torsal ruled surfaces.

Definition 3.4. A line congruence Γ is a two-parameter family
of straight lines (rulings).

A line congruence Γ can be parametrized by

𝑐 (𝑢, 𝑣, 𝜆) = 𝑓 (𝑢, 𝑣) + 𝜆𝑟 (𝑢, 𝑣),
where 𝑓 : 𝑈 ⊂ R2 → R3

parametrizes a reference surface and

𝑟 : 𝑈 → R3 \ {0} a vector field. The parameter of the ruling is 𝜆. A

congruence surface is a ruled surface generated from a one-parameter

subfamily of a given line congruence. They can be represented in

the form 𝑐 (𝑢 (𝑡), 𝑣 (𝑡), 𝜆) for some curve 𝜑 (𝑡) = (𝑢 (𝑡), 𝑣 (𝑡)) in the

parameter domain. Such a congruence surface can be torsal (i.e.,
developable) or skew (i.e., non-developable).

Definition 3.5. A line congruence Γ is called hyperbolic [para-

bolic, elliptic, torsal] if in each ruling 𝑟 of Γ there are exactly 2 [1, 0,
∞] torsal congruence surfaces passing through 𝑟 . See, e.g., [Pottmann
and Wallner 2001, Sec. 7.1] and for an illustration see Fig. 11.

Example 3.6. A simple example of a congruence is obtained by

connecting each point of a reference surface with a single point (a

vertex). In this way, we generate a part of a line bundle. This line
congruence has the form

𝑐 = (1 − 𝜆) 𝑓 + 𝜆𝑝 or 𝑐 = 𝑓 + 𝜆𝑞,
if the point 𝑝 is a finite point in R3

or if the vertex is a point at

infinity in direction 𝑞, respectively.

Example 3.7. An important example of a line congruence is the

normal congruence consisting of all normals of a smooth surface Φ.
The surface normals along a curve 𝛾 on Φ are torsal if and only if 𝛾 is

a curvature line. Since every smooth surface has two curvature lines

passing through each point, the normal congruence of a generic

surface is hyperbolic.

In a hyperbolic line congruence Γ we have two families of torsal

congruence surfaces. These congruence surfaces can be aligned

with a conjugate parametrization of the reference surface Φ in the

following sense (cf. [Lane 1942]).

Definition 3.8. Let 𝑓 (𝑢, 𝑣) be a Q-net on Φ and let Γ be a hyper-
bolic congruence. Then Γ and 𝑓 are called conjugate if the congruence
surfaces𝑢 ↦→ 𝑐 (𝑢, 𝑣0,R) and 𝑣 ↦→ 𝑐 (𝑢0, 𝑣,R) are the torsal congruence
surfaces for all 𝑢0, 𝑣0.

Fig. 12. Discrete Q-net with con-
jugate line congruence. The blue
base net 𝑓 is a Q-net (planar
quadrilateral faces and Z2 combi-
natorics). The Combescure trans-
form 𝐹 has corresponding par-
allel edges and faces. The lines
connecting corresponding lines
forms a discrete hyperbolic line
congruence Γ. The congruence
surfaces along the parameter
lines are torsal.

𝑓

¯𝑓

Γ

Hence we conclude the following important observation: A pair

(𝑓 , Γ) consisting of a Q-net 𝑓 and a hyperbolic line congruence Γ
conjugate to 𝑓 is the smooth analogue to the discrete parametriza-

tion from Lemma 3.1 and the rulings from Lemma 3.2.

Lemma 3.3. Let 𝑓 be a Q-net. Then all line congruences Γ conjugate
to 𝑓 are of the form

𝑐 (𝑢, 𝑣, 𝜆) = (1 − 𝜆) 𝑓 (𝑢, 𝑣) + 𝜆 ¯𝑓 (𝑢, 𝑣),
where ¯𝑓 is a Combescure transform of 𝑓 .

In other words, all line congruences Γ conjugate to a Q-net 𝑓

connect corresponding points of 𝑓 with a Combescure transform
¯𝑓

of 𝑓 . See Fig. 12 for an example of a discrete congruence conjugate to

a discrete Q-net. This insight gives an intuitive method of designing

a conjugate line congruence to a given Q-net.

We describe an application where a carefully placed Combescure

transform generates a useful hyperbolic congruence in Example 5.4.

3.2 Meshes to modules
To obtain modules for a given mesh we must bring together discrete

Q-nets with discrete hyperbolic line congruences. We start with a

discrete version of Definition 3.8:

Definition 3.9. Let 𝑓 : 𝑈 ⊂ Z2 → R3 be a discrete Q-net and let
Γ : 𝑈 → {lines in R3} be a discrete hyperbolic congruence. Then Γ
and 𝑓 are called conjugate if edge-neighbouring lines are coplanar
(hence generate a discrete torsal congruence surface). See Fig. 12.

We are dealing with two different types of modules, PQ-toroids

and T-toroids. A discrete conjugate pair consisting of a Q-net 𝑓 and

a hyperbolic congruence Γ (Def. 3.9) must have different properties

to facilitate different types of toroids. While using T-toroids implies

the usage of more special Q-nets as base surfaces (see Sec. 3.2.1),

PQ-toroids are more flexible as every Q-net can be tessellated with

PQ-toroids.

3.2.1 T-toroids and edge-offset meshes. As mentioned in Section 2.3

T-toroids have the properties that all side faces are trapezoids of

equal height. Moreover, the “torsal” (i.e., vertical) ruling 𝑟 is the axis

of a cone containing the adjacent edges 𝑒1, . . . , 𝑒4 (see Fig. 13). These

observations are summed up in the following lemma.

Lemma 3.4. All edges of a vertex star of a Q-net that correspond to
a conjugate pair (𝑄, Γ) tessellated with T-toroids lie on a rotational
cone whose axis is the corresponding ruling 𝑟 of Γ. Such a Q-net is a
positively curved edge-offset mesh (Def 3.10).
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Fig. 13. Two neighboring toroids. The amount by “how much” the fold line
𝑑 deviates from the bisector of the edges 𝑒1 and 𝑒2 is governed by Eq. (1).
Also the thickness of the toroid is more evenly distributed if the corner
foldlines 𝑑 are close to those bisectors. Both depend on “how much” the
ruling 𝑟 is a discrete normal (see Sec. 3.2.3).

Definition 3.10. An edge-offset mesh is a PQ-mesh where there
exists a non-trivial edge-wise parallel mesh such that corresponding
edges have constant distance (see, e.g., [Pottmann et al. 2007a]).

Edge-offset meshes are Laguerre isothermic surface parametriza-

tions and as such objects of Laguerre geometry [Pottmann et al.

2010]. They are edgewise parallel to a Koebe polyhedron, which is

a polyhedron whose edges touch a sphere.

3.2.2 PQ-toroids and face-offset meshes. For applications, a con-

stant height between the two layers of the toroid structure might

be a desirable property. This can be achieved if the two layers are

face-offsets of each other.

Definition 3.11. A face-offset mesh is a PQ-mesh where there
exists a non-trivial edge-wise parallel mesh such that corresponding
faces have constant distance (see, e.g., [Pottmann et al. 2007a]).

Face-offset meshes are characterized by the existence of a cone

of revolution at each vertex which is in tangential contact with the

faces around this vertex [Pottmann et al. 2007a]. Taking a face-offset

mesh 𝑓 and as line congruence Γ the cone axes yields a conjugate

pair (𝑓 , Γ) which leads to a PQ-toroid structure with constant height
throughout the surface.

3.2.3 Toroids from normal congruences. Taking as line congruence

a discrete normal congruence (e.g., from face-offsets, edge-offsets,

vertex-offsets or any other sensible definition) is useful for several

reasons. One of them is that the foldlines are “bisecting” the cor-

ner angle of the base net: In Fig. 13 the angle between 𝑒1 and 𝑑 is

approximately the same as the angle between 𝑒2 and 𝑑 . This fol-

lows from Equation (1): If the ruling is approximately orthogonal

to the base face then the two angles 𝛽𝑖 and 𝛾𝑖 are approximately

equal. Consequently, Equation (1) implies that 𝛼1

𝑖
≈ 𝛼2

𝑖
≈ 𝛼/2. An-

other advantage is that the thickness of a toroid on all four sides is

more equal the closer the aforementioned foldlines are to the angle

bisectors, since 𝑑𝑖+1/𝑑𝑖 = sin(𝛼1

𝑖+1
)/sin(𝛼2

𝑖+1
) see Eq. (2).

3.3 Surface approximation and optimization
3.3.1 Finding a base surface. In theory, there are infinitely many

smooth Q-nets on a smooth surface Φ. Q-nets that are suitable for
architectural applications often have (nearly) orthogonal parameter

curves, hence constitute a principal net. Consequently, a typical

task is to find a discrete principal net on a given reference surface

that is represented as a dense triangle mesh. We do this in three

steps. First, we estimate principal directions for each face of the

mesh as described in [Rusinkiewicz 2004]. We smooth and integrate

the obtained vector field using libigl’s [Jacobson et al. 2018] im-

plementation of [Bommes et al. 2009]. This results in a mesh with

quadrilateral faces that are almost planar. We planarize the faces of

this mesh by applying the form-finding method [Tang et al. 2014].

This method works efficiently when the involved constraints can

be written as quadratic polynomials of the variables (which can be

achieved by introducing auxiliary variables).

Let the meshM be defined by a set 𝑉 = {𝑥1 . . . , 𝑥 |𝑉 | } of vertices
and a set 𝐹 = {𝑓1, . . . , 𝑓 |𝐹 | } of faces. To optimize for planarity of
faces we introduce unit length face normals 𝑛𝑖 as auxiliary variables

for all faces 𝑓𝑖 of the meshM, i.e.,

∥𝑛𝑖 ∥2 = 1, ⟨𝑛𝑖 , 𝑥 𝑗 − 𝑥𝑘 ⟩ = 0,

for all edges (𝑥 𝑗 , 𝑥𝑘 ) ∈ 𝑓𝑖 . The above conditions are implemented

as soft constraints and contribute to the total energy by the term

𝐸FN =
∑︁ |𝐹 |

𝑖=1

[ (
⟨𝑛𝑖 , 𝑛𝑖 ⟩ − 1

)
2 +

∑︁
(𝑥 𝑗 ,𝑥𝑘 ) ∈ 𝑓𝑖

⟨𝑛𝑖 , 𝑥 𝑗 − 𝑥𝑘 ⟩2

]
.

Optimizing for the face-offset property yields conical meshes [Liu

et al. 2006]. These are Q-nets such that around each vertex star the

four faces are tangent to a rotational cone. We introduce unit-length

vertex normals 𝑟𝑖 as auxiliary variables which act as cone axes.

Faces are in tangential contact with a cone if the angle between face

normals 𝑛 𝑗 (that we already introduced for planarization purposes)

and the vertex normals 𝑟𝑖 are constant, i.e.,

⟨𝑟𝑖 , 𝑛 𝑗 ⟩2 = 𝑐2

𝑖 ,

for all normals 𝑛 𝑗 where the corresponding face 𝑓𝑗 is incident to

vertex 𝑥𝑖 . The sign of the inner product
5
is not important since we

are dealing with double cones. The above equations contribute to

the total energy by

𝐸FO =
∑︁ |𝑉 |

𝑖=1

[ (
⟨𝑟𝑖 , 𝑟𝑖 ⟩ − 1

)
2 +

∑︁
𝑓𝑗 ∋𝑣𝑖

(
⟨𝑟𝑖 , 𝑛 𝑗 ⟩2 − 𝑐2

𝑖

)
2

]
.

For aesthetic reasons, one can choose to use T-Toroids in posi-

tively curved areas as they allow for toroids with constant width in

the entire structure. This requires an underlying edge-offset mesh

according to Lemma 3.4. Hence, the edges emanating from a vertex

must be the rulings of a rotational cone. In analogy to the above,

the edge vectors of incident edges have to make a constant angle

with 𝑟𝑖 . We express this condition
6
as

⟨𝑟𝑖 , 𝑥𝑖 − 𝑥 𝑗 ⟩2 = 𝑑2

𝑖 ∥𝑥𝑖 − 𝑥 𝑗 ∥
2 .

As energy contribution we get

𝐸EO =
∑︁ |𝑉 |

𝑖=1

[ (
⟨𝑟𝑖 , 𝑟𝑖 ⟩−1

)
2+

∑︁
𝑥 𝑗∼𝑥𝑖

(
⟨𝑟𝑖 , 𝑥𝑖−𝑥 𝑗 ⟩2−𝑑2

𝑖 ∥𝑥𝑖−𝑥 𝑗 ∥
2
)
2

]
.

While PQ-toroids work well for positively and negatively curved

surfaces, T-toroids have a tapering shape and can only be used for

positively curved surfaces. Consequently, in the case of the presence

of both signs in the surface curvature we can adjust the energy we

5
Vertex normals 𝑟𝑖 are initialized as averages of incident faces normals and we start

with 𝑐𝑖 = (∑𝑥𝑗 ∼𝑥𝑖 | ⟨𝑟𝑖 , 𝑛 𝑗 ⟩ | )/valence(𝑥𝑖 ) .
6
The 𝑑𝑖 are initialized just like 𝑐𝑖 but using unit edge vectors instead of face normals.
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optimize for at each vertex star depending on its curvature. See

Fig. 9 for an example.

3.3.2 Finding a line congruence. To optimize a discrete line con-

gruence to be torsal along parameter lines, we require a planarity

condition for neighboring rulings passing through the vertices of

an edge 𝑒 = (𝑥𝑖 , 𝑥 𝑗 ). We use

⟨𝑟𝑖 × 𝑟 𝑗 , 𝑥𝑖 − 𝑥 𝑗 ⟩ = 0

and obtain the energy contribution

𝐸LC =
∑︁

(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐸
⟨𝑟𝑖 × 𝑟 𝑗 , 𝑥𝑖 − 𝑥 𝑗 ⟩2 .

3.3.3 Additional energies. For successful surface approximation a

proximity measure (closeness to a reference surface) is required. Our

reference surfaces Φ are represented as dense triangle meshes and

we measure distance via a point-to-plane distance in the following

way. Let 𝑥∗
𝑖
denote the closest point to 𝑥𝑖 on the reference surface

and let 𝑛∗
𝑖
be the surface normal at 𝑥∗

𝑖
. The distance is evaluated by

dist(𝑥𝑖 ,Φ) = ⟨𝑥𝑖 − 𝑥∗𝑖 , 𝑛
∗
𝑖 ⟩,

which measures the distance of 𝑥𝑖 to the tangent plane at the closest

point. Measuring distance in this way allows the meshM to slide

on Φ. To allow large deformations, the footpoints 𝑥∗
𝑖
are recomputed

after a fixed number of iterations. Proximity contributes to the total

energy by

𝐸PROX =
∑︁ |𝑉 |

𝑖=1

⟨𝑥𝑖 − 𝑥∗𝑖 , 𝑛
∗
𝑖 ⟩

2 .

Form-finding typically requires a fairness measure in addition to

proximity to a target surface. For meshes with Z2
combinatorics let

𝑦1, . . . , 𝑦4 be the neighbors of a vertex 𝑥𝑖 in clockwise order. Our

fairness energy term is then given by

𝐸FAIR =
∑︁ |𝑉 |

𝑖=1

[
∥𝑦1 + 𝑦3 − 2𝑥𝑖 ∥2 + ∥𝑦2 + 𝑦4 − 2𝑥𝑖 ∥2

]
.

At vertices with degree different from four, simple Laplacian smooth-

ing is applied (not listed explicitly in the following formulas).

3.3.4 Total energy and implementation details. To compute the ver-

tex positions 𝑥𝑖 and torsal directions 𝑟𝑖 we minimize the energy

𝐸 = 𝜏1𝐸FO + 𝜏2𝐸EO + 𝜈1𝐸FN + 𝜈2𝐸LC + 𝜈3𝐸PROX + 𝜈4𝐸FAIR .

As mentioned above, weights 𝜏1 and 𝜏2 for 𝐸FO and 𝐸EO are set

inside the respective terms on a per-vertex basis depending on

curvature. For a positively curved vertex star we set (𝜏1, 𝜏2) = (0, 𝜈)
where at a negatively curved vertex star we set (𝜏1, 𝜏2) = (𝜈, 0)
for some 𝜈 > 0. The resulting non-linear least squares problem is

solved using the Levenberg-Marquardt Algorithm [Marquardt 1963].

Except for 𝜈3 and 𝜈4, weights are typically 1 or 0 to turn constraints

on or off. We chose values for 𝜈3 in the range [0.1, 1]. The fairness
weight 𝜈4 was chosen in the interval [0, 0.1] (0 to turn fairness off).

As we approach a solution fairness is reduced gradually down to

10
−6
. During optimization the mesh M is scaled to fit the unit box.

The Levenberg-Marquardt Algorithm is implemented in Python. For

the most complex example (Fig. 17) one iteration takes slightly less

than 1 second on a 12th generation Core i7 processor.

4 Snapping Behavior Analysis
In Section 2, we guaranteed the PQ-toroids to have a deployed state

and a flat-folded one. During deformation from one state to the other,

the structure must overcome an energy barrier (i.e., a deformation

energy peak), causing the structure to snap. For the design of the

snapping toroid, the evaluation of this energy barrier and the forces

needed for deploying and flat-folding are essential.

Different approaches can be employed to analyze nonlinear snap-

ping, ranging from fine-scale to coarse-scale models: (1) finite ele-

ment analysis (FEA), (2) bar-and-hinge models, (3) quad soups, and
(4) geometric incompatibility. While FEA provides the most accurate

representation of reality by quantifying strain energy and forces,

it is computationally expensive and impractical for early design

iterations. The bar-and-hinge method [Filipov et al. 2017; Liu and

Paulino 2018] models material stretching via springs and bending

through angular springs. This approach is relatively efficient and

qualitatively captures structural behavior. However, in our case,

when starting from a flat-folded configuration, the analysis is prone

to bifurcation at singular states, making it unsuitable for our study.

Both the quad soup and geometric incompatibility methods assume

rigid panel motion. However, the quad soup method introduces gaps

between all panels, while the geometric incompatibility approach

specifies gaps between the two halves of the torus split along the

extra foldlines. These gaps store the elastic energy, thereby creat-

ing an energy barrier. A comparison of the FEA, quad soup, and

geometric incompatibility methods is presented in Appendix B.

Based on our comparison, we suggest the geometric incompatibil-

ity method (Section 4.1) for the earliest design phase. This method

provides an initial estimate of the energy barrier and clarifies the fac-

tors that affect it. In particular, the width parameter of each toroid is

determined to achieve desirable snapping properties. Subsequently,

the quad soup approach (Section 4.2) is employed to run a more de-

tailed simulation, enabling snapping force estimation and collision

detection.

4.1 Incompatibility method
By observing physical prototypes, we experienced that most of the

stress is concentrated along the extra foldlines during the snap. This

observation motivated us to come up with the following incompati-

bility method. We assume that only the extra foldlines are realized

by compliant hinges made of elastic material, e.g. rubber, with a

spring-like behavior. As the faces are assumed to be rigid, all the

deformation energy during the snap has to be accommodated by

these elastic hinges. The extra foldlines separate the torus into two

halves, each of which is a one-DOF mechanism. The basic idea of

geometric incompatibility was already successfully used, e.g. in [Lee

et al. 2023; Melancon et al. 2021; Zhou et al. 2023] to design and

analyze origami-based multistable structures. The incompatibility

measure used in [Melancon et al. 2021] is tailor-made for a special

class of deployable structures with triangular faces, thus it cannot

be applied to our toroids. A more general approach was used in [Lee

et al. 2023; Zhou et al. 2023] where zero-length springs (with spring

constant 𝑘) are introduced between corresponding endpoints of the

elastic hinges to estimate the strain energy under the deformation.

In [Lee et al. 2023], these springs were used to couple rigid-foldable
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(a) (b)
(c) (d) (e)

Fig. 14. (a) A given smooth surface. (b) A smooth conjugate parametrization 𝑓 (𝑢, 𝑣) . (c), (d)
Torsal strips corresponding to the conjugate parametrization 𝑓 (𝑢, 𝑣) . Strips corresponding
to 𝑢-parameter curves (c) and corresponding to 𝑣-parameter curves (d). The rulings of the
strips belong to a line complex with two torsal directions. (e) The two families of torsal strip
corresponding to the conjugate net form elementary cubes that we turn into PQ toroids
(g). (f) A discrete conjugate net obtained from aligning discrete quads along 𝑓 (𝑢, 𝑣) .

(f) (g)
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Fig. 15. The two half-toroids T𝑖
(𝑖 = 1, 2): The shape of the cut
parallelograms 𝑃𝑖 and 𝑃𝑖 can be
parametrized in dependence of
the dihedral angle 𝜈𝑖 .

structures to multistable ones, in contrast to the method of [Zhou

et al. 2023], which assumes all hinges to be elastic. However, re-

ducing the deformation to the vertices does not go along with the

elastic hinge idea, as the springs have to be attached not only at the

end points of the edges but also continuously between related point

pairs. This elastic joint energy between the line-segments [𝑎, 𝑏]
and [𝑎𝜎 , 𝑏𝜎 ], where 𝜎 denotes a rigid motion, can be computed as

𝐸 = 1

2
𝑘𝐷2

with

𝐷2
: =

∫
𝑥∈[𝑎,𝑏 ]

∥𝑥 − 𝑥𝜎 ∥2

=
∥𝑎−𝑏 ∥

3

(
∥𝑎 − 𝑎𝜎 ∥2 + ∥𝑏 − 𝑏𝜎 ∥2 + ⟨𝑎 − 𝑎𝜎 , 𝑏 − 𝑏𝜎 ⟩

) (4)

according to [Nawratil 2017]. As 𝐸 is proportional to 𝐷2
it is suffi-

cient to consider this geometric quantity within the incompatibility

approach.

Remark 4.1. Note that Eq. (4) can be seen as the zero-thickness limit

case of the elastic energy used in [Botsch et al. 2006] for thin shells.

The computation of the incompatibility method can be subdivided

into the following two steps:

Step one. We split the toroid along the extra foldlines, which

form two parallelograms 𝑃 and 𝑃 , into two half-toroids T1 and T2

(see Fig. 15). Each one is now rigid-foldable with one degree of

freedom.We take a dihedral angle 𝜈𝑖 along an uncut tube as a flexion

parameter, which is denoted by 𝑡𝑖 after half-angle substitution; i.e.

𝑡𝑖 = tan
𝜈𝑖
2
. Then, the shape of the two cut parallelograms 𝑃𝑖 and

𝑃𝑖 can be computed in dependence of 𝑡𝑖 by solving a biquadratic

equation [Stachel 2010], which can be done explicitly. This implies

a parametrization of the rigid-folding for each half-toroid T𝑖 .
Step two. The basic idea is to compute for each configuration

T1 (𝑡1) a rigid motion 𝜍 (𝑡1) and the configuration parameter 𝑡2 (𝑡1)
in such a way that the sum of squared distances (4) of corresponding

edges of the parallelograms 𝑃1 (𝑡1) and 𝑃𝜍
2
(𝑡2) as well as 𝑃1 (𝑡1) and

𝑃
𝜍

2
(𝑡2) is globally minimal (see Fig. 25-right). This registration prob-

lem with known correspondence can be solved using the approach

of Horn [1987]. After translating the barycenter of the two paral-

lelograms 𝑃𝑖 (𝑡𝑖 ) and 𝑃𝑖 (𝑡𝑖 ) into the origin for 𝑖 = 1, 2, we compute

the best relative orientation of the half-toroids. This boils down

to the computation of the largest eigenvalue of a (4 × 4)-matrix.

After discretizing the intervals of 𝑡1 and 𝑡2 we find the optimal value

𝑡2 (𝑡1) by a brute force search.

4.2 Quad soup approach
In general, the incompatibility method cannot be used for the simu-

lation of a folding motion on which an overall self-collision test can

be based, due to the discontinuity of 𝜍 (𝑡1) and 𝑡2 (𝑡1) demonstrated

in Section B.1. As a consequence, this method will in general not

provide reliable estimates of the forces needed for deploying and

flat-folding. These problems can be resolved by the quad soup ap-

proach, where all hinges are elastic ones. The nudged elastic band
method proposed in [Zhou et al. 2023] can be adopted for the elastic

hinge energy (4). Moreover, the configuration implying the energy

barrier of the incompatibility method can be used for the initial

span of the elastic band
7
. Results of the quad soup approach are

presented in Section B.2.

5 Design Pipeline and Results
We briefly explain how Sections 2, 3, and 4 come together in our

design pipeline.

First, a given shape is approximated with a PQ-mesh and an offset

direction is computed as described in Section 3. Here, the user has

a design choice whether to go for a normal offset direction that

will result in nearly equally thick toroids or to go for a general

hyperbolic line congruence, as was done in Example 5.4.

Next, the PQ-toroids or T-toroids are generated. The height of

each toroid can be chosen so that all toroids align, or it can be

individually adjusted for each toroid. For choosing a good width

and the correct placement of the extra foldlines, many criteria have

to be taken into account. The energy barrier should not be too

big (compare Appendix B) to prevent the structure from breaking.

7
Linear interpolation between this configuration and the flat/deployable state.
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Note that by decreasing the toroid width, the energy barrier can

become arbitrarily small, see Remark B.1. At the same time, the

toroid should not be too close to an infinitesimal flexibility; i.e. the

stiffness should not be too low to obtain enough stability in the

deployed state (compare Section 2.4). The same criteria must be

taken into account when placing the extra foldlines.

For most toroids one can guarantee that one has no self-collision

during the folding motion by adding the foldlines on the shorter

edges of the toroid. For toroids with large width or height in com-

parison to the base quad this might not be possible and sliding can

occur during the folding motion as explained in Section 2.2. This

sliding motion can be detected using the quad soup approach by

checking non-adjacent faces for intersection.

We suggest that the user first analyzes their choices with the

incompatibility method, as it is the fastest approach. The quad soup

technique can then give a more accurate picture including forces

needed for deploying and flat-folding. When it comes to building

real world modules, a finite element analysis that takes the mate-

rial properties into account should be done eventually; compare

Appendix B.3.2.

We proceed with some results of the design pipeline. All meshes

were optimized for planarity of faces measured as distance of diago-

nals divided by circumference and coplanarity of normals measured

as determinant of an edge and the corresponding normals. The

results are given in Table 1.

Table 1. Planarity error (PE) of faces and coplanarity error (CE) of normals
of the meshes used for the toroid generation.

Fig.

Error

PE Max PE Min PE Mean CE Max CE Min CE Mean

9 2e-7 3e-11 3e-8 8e-7 2e-13 2e-8

14 1e-7 8e-8 4e-5 1e-7 2e-11 2e-8

16 7e-6 1e-9 2e-6 3e-5 0 4e-6

17 3e-3 9e-8 4e-4 7e-2 2e-6 6e-3

18 4e-7 0 8e-8 9e-8 7e-12 2e-8

19 1e-7 7e-11 2e-8 1e-2 1e-12 5e-4

20 2e-4 5e-7 4e-5 4e-5 0 1e-4

Example 5.1. The base surface of the helicoid in Fig. 16 is a discrete

conical Q-net. At each vertex star, there is a cone of revolution in

tangential contact with the four adjacent faces. The cone axes form

a discrete torsal congruence conjugate to the base surface. This

congruence can be considered a discrete normal congruence. As a

result of taking a discrete normal congruence for the torsal lines,

the foldlines on the top faces at the corners of the quads are (almost)

angle bisecting, and the height of all toroid modules is the same.

While we mainly used opposite sides of the toroids to place the extra

foldlines, in this example adjacent sides are used as well.

Example 5.2. In Fig. 14, we demonstrate how torsal strips can be

found based on a conjugate parametrization of a given smooth

surface. The torsal strips form a hyperbolic line congruence and

thus can serve as a torsion free beam structure, compare [Pottmann

et al. 2007b]. Such a beam structure could be filled with perfectly

aligned PQ-toroids.

Fig. 16. Discrete helicoid.
The base net is a discrete
conical isothermic helicoid
(cf. [Müller 2016]). The tor-
sal lines are the discrete
normals (the cone axes of
the rotational cones in tan-
gential contact with the
four faces around each ver-
tex). The heights of all
toroid modules are the
same (see Example 5.1).

Fig. 17. Converting the diva_n reference surface (original design and 3D
modeling by Ingrid Erb and Peter Ferschin) into a toroid structure. Top left:
Reference surface as triangle mesh with ∼70k faces. Top center: Quad mesh
with 619 faces after re-meshing (see Sec. 3.3.1). Edges are roughly aligned
with the principal directions and faces are almost planar. Top right: Q-net
optimized for face-offset property. Computation time: 77.4 seconds. Bottom:
Toroid structure with PQ-toroids. The base surface is the Q-net (top right).

Example 5.3. In Fig. 17, we started with the design of a couch

inspired by the Moebius strip. The reference surface is provided as

a dense triangle mesh. We derive a coarser PQ-net on it by quad

re-meshing along the principal curvature lines. The resulting mesh

is then further optimized to be a face-offset mesh. The final toroid

structure consists of PQ-toroids.

Example 5.4. In a daytime-dependent shading system with toroids

(see Fig. 18) the holes of the toroids can be aligned with the direc-

tion towards a particular position of the sun. This can be achieved

by taking a Combescure transform of the base surface of the shad-

ing and place it "towards the sun" where (or better when) the sun

should pass through the holes of the toroids. The lines connecting

corresponding points of the base surface and the carefully placed

Combescure transform generate the discrete line congruence needed
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Fig. 18. Daytime-dependent shading system. The holes of the toroids can be
aligned with the direction towards a particular position of the sun. Left: The
strongest sunlight gets blocked, right: while later in the day some sunlight
passes through the toroid structure.

Fig. 19. A toroid structure over a so-called discrete isothermic net. In the
rendering the holes are covered with a transparent or translucent material
(e.g., some foil or some plexiglass).

for computing the toroids. In this way, the chosen sunlight direction

(typically the strongest sunlight) gets blocked while later in the day

some sunlight passes through the toroid structure. The height and

thickness of the toroids can be used to let more and longer or less

and shorter sunlight through the structure.

Example 5.5. In Fig. 19, we created a toroid structure based on a

so-called discrete isothermic net. This is a Q-net where each face

has a circumcircle and cross-ratio −1. This helps to obtain a mesh

where all faces are close to squares.

Example 5.6. To put our computational approach to the test we

fabricated a desktop model. The model is based on a Q-net with

positive and negative curvature. The line congruence is a discrete

normal congruence. This toroid structure consists of 60 PQ-toroids

and is illustrated both as a rendering and as a photo of the built

model in Fig. 20.

The compression achieved through flat folding is illustrated in

Fig. 21. Close-up photos of individual modules in deployed and

flat-folded states can be found in Fig. 2 and in video 1.mov in the

supplemental materials.

Fig. 20. Top: A rendered version of a toroid structure , and bottom: a photo
of the same structure built from modeling cardstock. For convenience in pro-
duction, each PQ-toroid is developed into four flat pieces: top, bottom, inner
and outer rings with extra flaps to help the gluing process into volumetric
toroidal shape. To assemble the structure, corresponding common faces in
adjacent blocks are taped with double sided tape allowing to dismantle and
re-assemble multiple times.

Example 5.7. We study a module (cf. Fig. 22) of the desktop model

presented in Fig. 20 in more detail. For the 1-parametric set of

extra foldlines we computed the energy barrier with respect to the

incompatibility method (see Fig. 23-left). Moreover, according to

Appendix Awe evaluated for this family the stiffness of the deployed

state (see Fig. 23-right). Note that the toroid used in the desktop

model corresponds to the 50% value of the red foldline variation.

For an energy-efficient deployable design, which is infinitesimally

very stable, the energy barrier should be low but the stiffness high.

From this point of view it would be better to change the design of the

toroid in the desktop model slightly to the one which corresponds

approximately to 40% of the red foldline variation.

Finally, it should be mentioned that within numerical accuracy

every foldline variation contains at least one design which gains an

additional infinitesimal flexibility beside the infinitesimal translation

of the inner ring to the outer one.
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Fig. 21. The right half of the desktop model illustrated in Fig. 20 takes up
∼6982𝑐𝑚3 space, while the same 30 PQ-toroids can be individually flat-
folded and packed into a box of the size ∼1400𝑐𝑚3 which is ∼20% of the
deployed volume. This percentage is ∼15.7% for the entire structure with
the total volume ∼19050𝑐𝑚3 which can be fit into a box with ∼3000𝑐𝑚3

volume, as the toroids of the other half are larger in average.
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Fig. 22. Foldline variations within the interval [0; 1]: During the snap the
inner ring moves upwards/downwards (Left/Right).
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Fig. 23. The colors of the graphs of the energy density barrier (a) and
stiffness (b) correspond to the fold variations illustrated in Fig. 22.

6 Discussions and Limitations

6.1 On the analyses
The nudged elastic band (NEB) method of the quad soup approach
mentioned in Section 4.2 has its limitations as it over-detects self-

collision. We noticed that some modules work, even if a collision is

detected because the faces slide on each other. Therefore, a future

implementation should restrict the infinitesimal relative motion of

two non-adjacent quads which are in contact (i.e. their distance is

below a certain threshold) to gliding motions [Pottmann and Ravani

2000].

Moreover, it would also be interesting to apply other geometric

methods for evaluating the snappability of PQ-toroids which keep

the integrity of the structure (i.e. it is not split up into two halves or

separated quads) like the one presented in [Nawratil 2022] based

on the intrinsic metric of the structure.

Note that this work does not contain any static analysis of the

resulting PQ-toroidal gridshells, but their structural performance

can also be improved by the underlying geometry of self-supporting

quad surfaces [Vouga et al. 2012].

6.2 On the surface discretization
We established that the underlying meshes we need for the toroid

assembly need to be discrete versions of conjugate nets. Although

an infinite number of smooth conjugate nets exists on any surface,

one cannot always hope to easily find a net that is well suited

for discretization. If the conjugate directions get too close to the

asymptotic directions of the surface, the quadrilaterals degenerate

to lines. The best way to avoid asymptotic directions is to follow

the principal curvature lines. However, the principal curvature lines

will not align with the boundary curves of the surface in general.

Moreover, size control can be an issue when following principal

directions. If the curvature variation is high, quadrilaterals might

be too small or too large for practical use.

6.3 On fabrication-related considerations
When manufacturing actual modules, the panel thickness and hinge

design must be carefully considered. Although thickness accom-

modation in rigid origami has been extensively explored [Chen

et al. 2015; Lang et al. 2018; Tachi et al. 2011], directly applying

these methods to the PQ-toroid poses challenges in realizing its flat-

folded state. In this configuration, the additional creases intersect

the other creases at right angles, which prevents existing methods

from yielding valid solutions. However, since our approach already

accounts for elastic bending and stretching of the materials, we

can compensate for the thickness through minor controlled ma-

terial deformations. Although thinner materials lead to reduced

elastic deformation in the flat state, Appendix B demonstrates that

thicker panels are necessary to achieve reliable snapping behavior,

presenting an inherent trade-off in the design.

These trade-offs have a solution, at least for the desktop scale

model in Fig. 20, which uses a 300𝑔/𝑚2
craft cardboard sheet with a

thickness of 0.3𝑚𝑚. This is approximately 0.5% of the average edge

length, with the foldlines generated by folding along the dashed

cut lines. The model exhibits both compact flat-folding and reliable

snapping behavior. Given that the snapping mechanism is scalable,

maintaining the same thickness-to-length ratio should allow this

technique to be successfully applied to meter-scale models. Elastic

materials, such as polypropylene sandwich panels featuring half-

cuts for mountain creases and single or double V-cut hinges for

valley creases on one side, are promising candidates for construct-

ing the structure at a larger scale. Deployment can be actuated

manually for the meter-scale models, but for enhanced reliability
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and automation of the deployment process, pneumatic inflation

could be adopted, as demonstrated in [Melancon et al. 2021].

6.4 Future research
Multistable toroids can be generalized in several different ways,

which can then potentially tessellate other types of parametrizations.

One direction is to start the construction from non-planar quads; i.e.

skew quads (SQ) and generate SQ-toroids. Also, hexagonal meshes

can be considered, since our study suggests that a similar approach

can be taken to generalize a hexagonal T-toroid.

Another direction is to limit the variety of toroidal blocks and

reconfigurable modular systems or other assemblies such as topolog-

ically interlocking blocks used in generalized versions of Abeille’s

structures [Anastas et al. 2024; Brocato and Mondardini 2012].

6.5 Conclusion
The goal of this paper was to design freeform shapes from multi-

stable snapping origami-modules that possess a deployed state and

a flat-folded state. Initial attempts were made with T-toroids (see

[Lee et al. 2024]) only. However, understanding the design space of

T-toroids in terms of discrete differential geometry shows that these

structures were limited to convex Laguerre isothermic surfaces, see

Section 3.2.1.

In contrast, the PQ-toroids that we introduced in this paper allow

for a significantly larger design space. A PQ-toroid can always be

aligned with a given planar quadrilateral and edgewise coplanar

offset directions, as described in Section 2. A quadrilateral mesh

with planar faces and edgewise coplanar normal vectors in the ver-

tices is a discrete version of a conjugate mesh and a corresponding

conjugate line congruence, as explained in 3.1. Note that any smooth

surface admits such a parametrization and line congruence. Hence,

theoretically, any surface can be approximated by a PQ-toroid struc-

ture.

Our energetic analysis of the bending behavior of the PQ toroids

showed that they indeed exhibit a snapping behavior. Moreover,

the analysis methods we presented can be used to choose the free

design parameter in the surface assembly.

We built a desktop-sized model (see Fig. 20) as a proof of concept.
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A Closeness to an Additional Infinitesimal Flexibility
The lengths 𝐿𝑖, 𝑗 of the edges 𝑒𝑖, 𝑗 with endpoints 𝑥𝑖 and 𝑥 𝑗 do not

change infinitesimally if there exist velocity vectors 𝑣𝑖 and 𝑣 𝑗 such

that Δ𝐿𝑖, 𝑗 = 0 holds (see e.g. [Stachel 2011]) with

Δ𝐿𝑖, 𝑗 := ⟨𝑥𝑖 − 𝑥 𝑗 , 𝑣𝑖 − 𝑣 𝑗 ⟩, (5)

where the velocity vectors are not allowed to originate from a rigid-

body motion of the complete structure. These so-called trivial flexes

can be avoided by pinning down one link of the 6R loop to the fixed

base Σ0. Without loss of generality, we can assume that the system

containing the axes 𝑂1 and 𝑂6 is fixed to Σ0. As the inner ring can

only make an infinitesimal translation in 𝑧-direction, due to the

parallelogram-based cross-section of the tubes, we can also assume

that the link between 𝐼1 and 𝐼6 is pinned to the base Σ0. Note that

this assumption only blocks the already known infinitesimal flex.

Therefore we could indicate the closeness to an additional infini-

tesimal flex by minimizing

∑
Δ𝐿2

𝑖, 𝑗
under the normalizing condition∑︁

∥𝑣𝑖 ∥2 = 1. (6)

We prefer to optimize ∑︁ Δ𝐿2

𝑖,𝑗

𝐿𝑖,𝑗
→ min (7)

as then the result is proportional to the instantaneous change of the

Cauchy strain energy of the structure interpreted as bar and hinge

model. This is due to the fact, that the elastic strain energy stored
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in a deformed bar 𝑒𝑖, 𝑗 equals

𝐸𝐴
2

(𝐿𝑖,𝑗−𝐿′𝑖,𝑗 )2

𝐿𝑖,𝑗
, (8)

where 𝐴 is the cross-sectional area of the bar, 𝐸 the Young modulus

and 𝐿′
𝑖, 𝑗

the length of the deformed bar. Summed up, the two infini-

tesimal flexes of the pinned inner and outer 6R-loops imply a stress

in the toroid, as they do no fit in general. The extend the toroid

resists unit-deformation (6) in response to this force is measured by

(7). Hence, this closeness index can also be interpreted as stiffness.

Note that in our case only the eight horizontal edges, which do

not belong to the fixed system Σ0, can change their lengths as all

other edges are R joints of the inner or outer loop, respectively. It

remains to give the computation of the velocity vector 𝑣𝑖 of a vertex

𝑥𝑖 located on the axis 𝑂𝑖 of the outer ring. It is well known (see e.g.

[Pottmann and Wallner 2001]) that this can be done by the formula

𝑣𝑖 = 𝑞𝑖 + 𝑞𝑖 × 𝑥𝑖 (9)

where 𝑄𝑖 := (𝑞𝑖 , 𝑞𝑖 ) is the instantaneous screw describing the infin-

itesimal motion of 𝑂𝑖 with respect to Σ0 for 𝑖 = 2, . . . , 5. Assuming

that the 𝑂𝑖s are given by their spear coordinates (see [Pottmann

and Wallner 2001, Sec. 2.3]), the 𝑄𝑖s can compactly be written as

𝑄𝑖 := 𝐾𝜔

𝑖−1∑︁
𝑗=1

𝑂 𝑗𝜔 𝑗 . (10)

where (𝜔1, . . . , 𝜔6)𝐾𝜔 denotes the ratio of angular velocities of the

axes 𝑂1, . . . ,𝑂6 of the outer loop with 𝐾𝜔 ∈ R \ {0}. Analogously,
the velocity vectors on the inner ring are given by

𝑄𝑖 := 𝐾𝜄

𝑖−1∑︁
𝑗=1

𝐼 𝑗 𝜄 𝑗 (11)

where (𝜄1, . . . , 𝜄6)𝐾𝜄 denotes the ratio of angular velocities of the

axes 𝐼1, . . . , 𝐼6 of the inner loop with 𝐾𝜄 ∈ R \ {0}.
It is important to note that the resulting velocity vectors only

depend on 𝐾𝜄 for points of the inner ring and on 𝐾𝜔 for points on

the outer ring. Therefore, (7) is a quadratic form in 𝐾𝜄 , 𝐾𝜔 and (6)

a quadratic side condition in these variables. This problem can be

solved as a generalized eigenvalue problem. The resulting closeness

index is demonstrated in Example 5.7.

B Snapping Analysis: Comparative Example
For comparison of the different methods we use a T-toroid with a

square 𝐵 of side length 1200 the and a square𝑇 of side length 1661.88

as bottom and top face of the corresponding PQ-hexahedron. The

planes of the outer and inner ring enclose 𝜋/3 with the bottom plane

(see Fig. 28(b)). The height of the toroid is fixed with 𝐻 = 400 but

its width𝑊 is varied from 100 to 500, as this geometric parameter

can be selected separately for each module within a gridshell.

Remark B.1. Note that for the limit case of zero width the toroid

degenerates into a closed 6R loop, which has the special property

that all axes meet in a common point. Therefore, it can be seen as a

spherical 6-bar mechanism, which has three degrees of freedom. As

a consequence, the transition from the deployed to the flat-folded

state can be done by a rigid-folding; i.e. the energy barrier is zero.

For the FEA, we have an additional free parameter because a

thickness has to be assigned to the panels. In order to make the

results comparable, we consider the energy density 𝐸/𝑉 ; i.e. energy
divided by the volume 𝑉 , which remains constant during the defor-

mation due to the chosen Poisson ratio of 0.5. Therefore, we also

divided the results of the incompatibility method and quad soup

approach by the area 𝐴 of the toroid, which is constant for these

methods during the snap.

We have chosen a T-toroid for this comparative example as it

has the nice property of possessing two folding modes, where the

deployed state is a bifurcation configuration between them. In the

first folding mode, the inner ring moves down from the base plane,

and in the second mode up (see Fig. 28(c) and supplemental video

2.mov). In the remainder of this section, we call the latter one high-
energy mode and the other one low-energy mode, due to the following
results of our analysis.

We investigate the snapping behavior of the T-toroid by pulling

apart along the measured distance in Fig. 28(b). We employ the

following steps to enable direct comparison between the incompati-

bility method, quad soup, and the FEA, with different deployment

control. First, we continuously measure the potential energy across

states, spanning from flat configuration to full deployment in both

low-energy and high-energy modes; here, the deployment control

can be chosen for each method separately (not necessarily driven

by the distance). Then, these measurements are illustrated as a

deployment-energy plot, where the deployment 𝐷 is defined as the

ratio of the distance illustrated in Fig. 28(b)-right to its maximum

achievable value (i.e., 0% represents the flat state and 100% the fully

deployed state). Here, the tangential slope of the deployment-energy

plot corresponds to the required force. Computation of the incom-

patibility method took 1.9 seconds on an 8th generation Core i5

processor, the quad soup approach took 35.9 seconds on a 12th gen-

eration Core i7 processor. The finite element analysis took typically

20 to 30 minutes or more than an hour, if crumbling occurred, on a

Core i9-9980XE processor.

B.1 Results of the incompatibility method
For the computation of this example, we discretized the intervals of

𝑡1 and 𝑡2 into 120 steps.

Let us start by discussing the low-energy mode. In Fig. 24-left, the

graphs of 𝐷2/𝐴 in dependence of 2 arctan 𝑡1 for the five different

widths are displayed. In Fig. 26 we have just converted the horizontal

axis from the input angle into the deployment distance between the

outer ring of the two half-toroids (explained in Fig. 28(b)-right) in

order to facilitate the comparison with the FEA results. Moreover,

this allows us to interpret the slopes of the latter graphs as force

density, which are also visualized in Fig. 26. The ratio of the forces

needed for flat-folding and deploying is given in Table 2.

Let us proceed with the discussion of the high-energy mode.

Clearly, in this case the graph of 𝐷2/𝐴 in dependence of 2 arctan 𝑡1
is still continuous (see Fig. 24-right) but 𝜍 (𝑡1) and 𝑡2 (𝑡1) show some

discontinuity. Note that in the general case, these discontinuities

are expected, and that the continuity of 𝜍 (𝑡1) and 𝑡2 (𝑡1) in the low

energy mode is exceptional. The discontinuities arise because the

ACM Trans. Graph., Vol. 44, No. 6, Article 235. Publication date: December 2025.



235:18 • Dellinger et al.

W = 100
W = 200
W = 300
W = 400
W = 500

Low-mode

Deployment (Angle) [%]

En
er

gy
 D

en
si

ty

High-mode

Deployment (Angle) [%]
En

er
gy

 D
en

si
ty

0 100 0 100
0

0.6

0

4 W = 100
W = 200
W = 300
W = 400
W = 500

Fig. 24. The energy density computed by the incompatibility method with
respect to the dihedral input angle. Left: Low energy mode. Right: High
energy mode.

paths of the largest and second to largest eigenvalue of the (4 × 4)-
matrix mentioned in Section 4.1 are crossing each other (in the red

highlighted singularity of the graphs in Fig. 24-right) during the

snap. In order to get continuous energy-displacement plots and

force-displacement plots (see Fig. 27), we follow the correct dashed

paths in Fig. 24-right, even if the energy along them is a little higher

towards the flat-folded state. The ratio of the forces needed for flat-

folding and deploying is given in Table 3. Finally, the ratio of the

energy barriers of the high mode and low mode is given in Table 4.

Table 2. Low energy mode: Absolute value of the ratio of the forces needed
for flat-folding and deploying.

Method

Width

100 200 300 400 500

Incompatibility 10.475 6.890 5.352 4.512 3.990

Quad Soup 11.354 7.302 5.537 4.609 4.069

FEA 2.173 2.879 5.893 7.823 7.202

Table 3. High energy mode: Absolute value of the ratio of the forces needed
for flat-folding and deploying.

Method

Width

100 200 300 400 500

Incompatibility 6.582 8.253 12.469 25.583 4011.611

Quad Soup 7.279 8.656 11.013 12.399 12.906

FEA 7.773 3.338 3.319 3.732 3.040

Table 4. Ratio of the energy barriers of the high mode and low mode.

Method

Width

100 200 300 400 500

Incompatibility 6.865 6.946 6.973 6.955 6.914

Quad Soup 6.931 6.721 6.564 6.421 6.250

FEA 5.963 4.291 4.499 4.572 5.224

Fig. 25. Quad soup actuation. Left: Deployed state showing the fixed face
(blue) and the constrained vertices (red, green). Center: Intermediate folding
state at maximum energy of the quad soup. Right: Folding state of maximum
energy resulting from the incompatibility method.

B.2 Results of the quad soup approach
We adopt the computational setup presented in [Botsch et al. 2006;

Zhou et al. 2023]. All faces of a toroid move independently subject

to a rigid body motion while corresponding edges are connected

via the elastic energy (4). We minimize this energy subject to the

rigidity of faces while (i) keeping one face fixed and (ii) prescribing

coordinates for a selected subset of toroid vertices. In the example

shown in Fig. 25 the blue face remains fixed. The model is contin-

uously actuated between the flat state and the deployed state by

changing the x-coordinates of the red and green vertex (simulating

a force pushing ‘inwards’).

The results meet the expectations that the incompatibility method

has to overshoot the quad soup approach. This is due to the fact that

in the quad soup approach the deformation energy during the snap

is not concentrated along the extra foldlines but can distribute over

the complete toroid; i.e. a large gap between the two half-toroids

is split up into several smaller gaps between the 24 quads. Due to

this refinement, the quad soup approach fits the results of the FEA

better than the incompatibility method (please see Figs. 26 and 27 as

well as Tables 2–4). Finally, it should be noted that the solution from

the incompatibility method implies an upper bound for the energy

of the quad soup approach, as it is also an admissible configuration

for this approach.

B.3 Finite element analysis
B.3.1 FEA modeling. We conducted FEA using Abaqus 2024 (Das-

sault Systèmes) to validate the snapping behavior and compare it

with the incompatibility method. Fig. 28(a) shows the overall model-

ing strategy used to simulate the origami structure within the FEA

interface.

Each panel of the representative block was modeled using shell

elements, and S8R quadrilateral mesh elements were applied. To

ensure proper connectivity, edges of equal length were divided

into the same number of segments, allowing mesh nodes to align

precisely between adjacent panels.

To simulate the folding behavior and accurately capture it in

computation, we developed a new hinge modeling method. Based

on the pin-joint array hinge proposed in [Lee and Tachi 2024],

we implemented pin joints by connecting mesh nodes at identical

locations using connector elements.

Each connector type was defined with ‘Cartesian-type’ for the

translational degrees of freedom (x-, y-, and z-directions) and ‘Rotation-

type’ for rotational degrees of freedom (Rx-, Ry-, and Rz-directions).

While simple pin joints can be modeled using only the rotational

ACM Trans. Graph., Vol. 44, No. 6, Article 235. Publication date: December 2025.
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Fig. 26. Analysis comparison with incompatibility, soup, and finite element analysis of Low-mode. The upper row shows a deployment-energy density plot,
and the lower row shows a gradient of energy density, which can be estimated as the force density. The energy barrier of the quad soup approach for𝑊 = 100

was scaled to match with the one of the FEA. This scaling factor is applied to all graphs of the quad soup approach and the incompatibility method.
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Fig. 27. Analysis comparison with incompatibility, soup, and finite element analysis of High-mode. Note that the graphs of the quad soup approach and the
incompatibility method are scaled by the same factor used in Fig. 26.

setting, complex origami structures, especially at Degree-N-Vertices,

often produce errors due to loops created in the master-slave rela-

tionships among multiple connected nodes. To avoid this, we also

activated the translational degrees of freedom and assigned them

high stiffness values to constrain them. By assigning equal stiffness

to the x, y, and z translational directions, and likewise to the Rx,

Ry, and Rz rotational directions, we ensured that each pin joint

maintains the intended translational and rotational stiffness regard-

less of its position in the global coordinate system. This approach

differs from other implementations [Almessabi et al. 2024; Lahiri

and Pratapa 2024] which rely on local coordinate systems at each

node connection, as our method achieves hinge behavior without

generating local frames, simplifying the modeling process. To focus

on the geometric behavior of the blocks, we did not set the complex

physical behavior where actual creases occur, such as plastic or

viscoelastic behavior. Instead, we used only linear stiffness values

for each pin joint: translational stiffness of "1.0 × 10
6

N/mm / edge

nodes count" and rotational stiffness of "0.0001 N · mm/rad / edge

nodes count".

Fig. 28(b) shows the boundary conditions applied to the model.

Only one-quarter of the full block was modeled, and a mirror con-

straint was applied to the upper cut section along the YZ-plane

(fixing x-translation, and Ry, Rz rotations), and translational con-

straints in the y-direction were applied at the additional crease

lines to realize ideal hinge behavior without rotational stiffness.

Note that although Fig. 28(b) illustrates the model in its deployed
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Self-Intersection Self-Intersection & Crumpling

Fig. 28. (a) FEA modeling details, (b) Boundary conditions and deployment
calculation, (c) Deployment and compression of motion of the low- and
high-modes of𝑊 = 400 case. The low-mode has self-intersection and the
high-mode experiences severe panel deformation like crumpling.

state for clarity, the actual simulation was conducted from the flat

configuration.

To simulate deployment, displacements of 830.94 mm and 600 mm

were applied to the top and bottom edges of the topmost panel in

the y-direction. Additionally, the bottom edge of this panel was

constrained in the z-direction to prevent vertical translation. The

model was analyzed using the dynamic implicit solver with the

quasi-static setting.

The material properties used in the simulation are as follows. We

adopted an approximate Elastic modulus of 1400 MPa and a density

of 9.05× 10
−10

t/mm
3
, example of polypropylene. The Poisson ratio

was set to 0.4999..., modeling the material as nearly incompressible

with non-volumetric change to emphasize the geometric behavior

and facilitate comparison with the incompatibility-based method.

This is due to the fact that the complete energy goes into the defor-

mation of the shape without any change in the internal energy of

the material caused by the change of volume.

B.3.2 FEA results. Fig. 28(c) shows the low-mode and high-mode

deployed configurations obtained through finite element analysis. In

the low-mode configuration, self-intersections are observed around
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Fig. 29. The thickness parameter results of the (a) Low-mode, and (b) High-
mode of the𝑊 = 400 case, by finite element analysis. For plot clarification,
we scaled the y-axis as the square root of energy density.
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Fig. 30. Cycle loading results of the width 300 case. (a) Energy density, and
(b) Force density plots.

the additional creases, while in the high-mode configuration, self-

intersections occur near the edge tips, accompanied by severe crum-

pling of the panels around the added creases. This analysis was

conducted to compare against geometry-based models such as the

incompatibility and quad soup methods. Consequently, the simula-

tion focused on capturing the elastic behavior of the panels without

incorporating detailed physical conditions such as contact, plastic-

ity, and damping. As the primary objective was to investigate the

morphological characteristics and behavioral differences between

deployments rather than to reproduce realistic structural responses,

it should be noted that some self-intersections may appear in the

results.

Given the pre-assembled curved surfaces using toroids, we only

have two key design parameters that influence the energy barrier

between stable states: the material thickness and the toroid width.

Therefore, we carried out a parametric analysis based on these two

parameters to examine their impact on structural behavior across

different deployment modes.

Fig. 29 presents a comparison of the energy densities for the low-

mode and high-mode configurations across varying panel thick-

nesses. For reference, both modes depicted in Fig. 28 (c) are based

on a thickness of t = 10. As shown in Fig. 29 (b) 𝑡 = 2.5 - 50 cases,

when an unexpected energy drop occurs, the energy curves deviate

from the smooth, single-peak profile typically observed in geometry-

based analyses above and instead display unstable behavior. In this

study, we refer to such behavior as crumpling. Crumpling tends to

occur more frequently at lower thicknesses and is observed in both

the low and high modes. In particular, for the high mode, severe
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local deformations are concentrated near the additional crease re-

gions during deployment (see figure 28(c)), making it difficult to

eliminate crumpling, even by increasing the thickness. Moreover,

structures with lower thicknesses tend to exhibit unstable behav-

ior after the peak, likely due to membrane-like movements and

increased panel oscillations (see Fig. 29(b), 𝑡 = 10 case). Overall, as

the thickness increases, the total energy density tends to rise, and

in cases without crumpling, the energy peak tends to appear earlier

in the deployment process.

The blue curves in Figs. 26 and 27 show the finite element analysis

results for the width (𝑊 ) parameters. Overall, as the width increases,

the energy density of the structure tends to rise, and the energy

peak tends to occur earlier in the deployment process. Additionally,

the energy curves exhibit a gentler slope at larger widths, indicat-

ing that panel deformation influences the structure from the early

stages of deployment. For the low-mode configuration in Fig. 26,

the energy curves increase relatively smoothly across all𝑊 cases,

forming a distinct single peak. In contrast, the high-mode configu-

ration in Figs. 27 shows crumpling behavior at all width cases once

deployment progresses. This crumpling occurs earlier as the struc-

ture becomes wider, suggesting that the panel deformation occurs

from the early deployment stage, leading to earlier loss of structural

stability. This behavior is also reflected in the force-density plots,

where the post-crumpling regime shows unstable patterns. In wider

structures, early-onset crumpling appears to hinder the structure

from achieving a clear snap-through transition.

One notable observation is the resistance behavior of the toroid

to compressive loading. In the fully deployed state, the additional

crease lines become straightened, effectively forming axial mem-

bers that enhance compressive resistance along the edge direction.

Fig. 30 presents the energy and force density under cyclic loading for

the case of𝑊 = 300. For the low-mode configuration, compression

requires higher energy and force than deployment, with the load

required for compression almost the same as the deployment load

of the high-mode configuration. Furthermore, in the high-mode

case, the structure turns into the low-mode configuration during

compression (see Fig. 28(c)). This behavior occurs because the struc-

ture tends to follow the configuration with lower energy. Therefore,

the high-mode toroid is characterized by difficult deployment but

relatively easy compression, whereas the low-mode toroid exhibits

easy deployment but relatively difficult compression.

B.4 Conclusion of comparison
From the comparison between the incompatibility method and the

FEA, we observed that the incompatibility method tends to overesti-

mate the energy barrier. The quad soup approach has similar trends

but performs better than the incompatibility.

The first notable trend is that the strain energy rises higher in the

geometric incompatibility than in the FEA in the early deployment

stage. Fig. 31 displays a double-log plot of deployment (𝐷) versus

energy. In the low-mode, the potential energy near the flat state

(0%–10%) increases with deployment following a higher-order rela-

tionship (𝐷2.68
–𝐷3.06

) in the FEA model compared to a lower-order

behavior (𝐷1.98
–𝐷2.00

) in the geometric incompatibility approach.

This illustrates the slower potential energy response exhibited by

Lo
w-

m
od

e
Lo

g 
(E

. D
en

si
ty

)

e-10

FEAIncompatibility Quad Soup

W = 100 W = 200 W = 300 W = 400 W = 500

10

H
ig

h-
m

od
e

Lo
g 

(E
. D

en
si

ty
)

Log (Deployment)
100 100 100 100 100

e-10

1 100 100 100 100 1001 1 1 110 10 10 10 10

10 10 10 10 101 1 1 1 1

1

10
1

Fig. 31. Double-log plots of deployment-energy density. The upper row
shows the Low-mode configurations, and the lower row shows the high-
mode configuration.

the FEA model. The quad soup approach does not have the plots

for these ranges because of the choice of actuation method; how-

ever, it has a similar or even higher order trend than the FEA for a

latter range (10%–20%). We conjecture that this discrepancy arises

because a thin shell initially accommodates the incompatibility

through global bending of the panels, rather than panel stretching,

having a delayed energy increase. Despite these limitations, the

dependency of snapping behavior with respect to the geometric

parameters of width is observed. This helps to identify the width

dimension of the given toroid in the first design step.

Also, the degree of overestimation increases as the maximum

incompatibility becomes more pronounced. In real materials or FEA

models, the material tries to bend and buckle before it reaches the

predicted high peak of energy from the stretching of the material.

In its extreme case, crumpling occurs, for example in the high-

energy mode, when the structure experiences a sharp drop in the

strain energy before reaching the maximum (Figs. 27 and 29). The

structure with thinner material and higher incompatibility is more

prone to unpredictable crumpling, which is better avoided in the

actual design. Empirically, we suggest choosing a thickness in the

range 1.40%-13.98% of the characteristic length ((𝐷1 + 𝐷2)/2) of

the model to achieve a reliable snapping behavior; however, the

behavior also depends on the width parameter.

For the desktop model the characteristic length ranges between

∼61mm-193mm. With a 0.3mm thickness of the card stock used, the

range is 0.15%-0.49% and yet, reasonable snapability is achievedwith-

out geometric thickness accommodation. The range of the width

parameter was ∼20mm-50mm which has been chosen as a relative

value 60% of the maximum possible width of each individual toroid.

The height parameter was a constant value 35mm for all the toroids.
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