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Preface

These notes are based upon a series of lectures givenatitheer School on Combina-
torial Geometry and Optimisation 2004 “Giuseppe Tallinlt took place at th&€atholic
University of Brescialtaly, from June 4th until June 10th, 2004, within ti¢UR COFIN
2004 research projecstrutture Geometriche, Combinatoria e loro Applicazjaroordi-
nated by @WGLIELMO LUNARDON, and supported bruppo Nazionale per le Strutture
Algebriche, Geometriche e le loro ApplicazioAi preliminary version was used during
the lectures. In its final form, several remarks, suggestfonfurther reading, and addi-
tional references have been added to the text.

It was wonderful to speak and discuss with so many parti¢gpahthe summer school.
Their feedback, questions, and criticism helped substiynto improve the final text.

Also, | am very grateful to ADREA BLUNCK (Hamburg) and RLPH-HARDO SCHULZ
(Berlin) for providing a lot of material, making so many sugtiens, updating the list of
references, and adding valuable remarks. It is impossiiesink them enough.

JOHANNES GMAINER (Vienna) deserves special mention for his careful proafirea It
allowed to eliminate a lot of errors.

Last, but not least, | would like to express my great apptexigo the local organizers:
My thanks go to (in alphabetical order)A®10 MARCHI, SILVIA PIANTA, and B ENA
Zi1zioLl, for their great efforts in organizing this summer schdwjt valuable assistance
In many respects, their enthusiasm, their patience, thatation to teach at this meeting,
and their overwhelming hospitality.

HANS HAVLICEK

Vienna, December 2004






Contents

Preface i

1 Introduction 1

2 Divisible Designs 3
2.1 Basicconceptsandfirstexamples . . ... ... .. ... ....... 3
22 Groupactions . . . . . . ... 11
23 Atheoremof 8ERA . . . . . . . . 13
2.4 Divisible designs and constant weightcodes . . . . ... ... ... 16
2.5 Notes and furtherreferences . . . . .. .. ... ... ... ... .. 17

3 Laguerre Geometry 19
3.1 RealLaguerregeometry . . . . . . . . . ... 19
3.2 The affine and the projective lineoveraring . . . .. ... ...... .. 20
3.3 Thedistantrelation . . . .. .. .. ... .. ... .. ... 6 2
3.4 Chaingeometries . . . . . . . . . . . . . e 30
3.5 Localrings, local algebras, and Laguerre algebras . . . . . .. ... 34
3.6 Notes and furtherreferences . . . . .. ... ... ... ... .. .. 40

4 Divisible Designs viaGLs-Actions 41
41 Howtochooseabaseblock. . .. ... ... ... ............ 41
4.2 Transversal divisible designs from Laguerre algebras. . . . . . . . . 42
4.3 Divisible designs from localalgebras . . . . .. ... ... ...... 43
4.4 Otherkindsofblocks . . . ... ... .. ... ... ... . .. . ... . 47

45 Notes and furtherreferences . . . . . . . . . . . .. ... ... ... 49



Contents

5 An Outlook: Finite Chain Geometries
5.1 A parallelism based upon the Jacobson radical

5.2 Countingthepointset. . . . ... .. ... .......
5.3 Divisible designs vs. finite chain geometries . . . . . . ...... . . ..

Bibliography

Index



Chapter 1

Introduction

In these lecture notes we aim at bringing together desigorytend projective geometry
over aring. Both disciplines are well established, but tselts on the interaction between
them seem to be rare and scattered over the literature. Tiruman goal is to present
the basics from either side and to develop, or at least sk#étehprincipal connections
between them.

In Chapter 2 we start from the scratch with divisible designe®sely speaking, a divisible
design is a finite set of points which is endowed with an edenee relation and a family
of distinguished subsets, called blocks, such that no twbondt points of a block are
equivalent. Furthermore, there have to be several cossteaited the parameters of the
divisible design, as they govern the basic combinatorigberties of such a structure. Our
exposition includes a lot of simple examples. Also, we atlgme facts about group
actions. This leads us to a general construction principtedivisible designs, due to
SPERA. This will be our main tool in the subsequent chapters.

Next, in Chapter 3 we take a big step by looking at the clastiaglierre geometry over
the reals. This part of the text is intended mainly as a mttimaand an invitation for
further reading. Then we introduce our essential geometmxzept, the projective line
over a ring. Although we shall be interested in finite ring$ypwe do not exclude the
infinite case. In fact, a restriction to finite rings would digrsimplify our exposition.
From a ring containing a field, as a subring, we obtain a cheamgetry. Again, we take a
very short look at some classical examples, likébiis geometries. Up to this point the
connections with divisible designs may seem vague. Howéwee restrict ourselves to
finite local rings then all the prerequisites needed for troieting a divisible design are
suddenly available, due to the presence of a unique maxdeal in a local ring.

Chapter 4 is entirely devoted to the construction of a dilesdesign from the projective
line over a finite local ring. The particular case of a locgeddra is discussed in detalil,
but little seems to be known about the case of an arbitrarieflocal ring, even though
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such rings are ubiquitous. It is worth noting that the isgohesms between certain divis-
ible design can be described in terms of Jordan isomorphadmsgs and projectivities;
strictly speaking this applies to divisible designs whitdns from chain geometries over
local algebras with sufficiently large ground fields. Geamehappings arising from Jor-
dan homomorphisms are rather involved, and the relatedph@ve the tendency to be
very technical; we therefore present this material withgpving a proof.

Chapter 5 can be considered as an outlook combined with atatiovi for further re-
search. We sketch how one can obtain an equivalence retatitime projective line over
any ring via the Jacobson radical of the ring. Recall that suckquivalence relation is
one of the ingredients for a divisible design. The maximakidf a local ring is its Ja-
cobson radical, so that we can generalize some of our rdsuitsa local to an arbitrary
ring. It remains open, however, if this equivalence retatiould be used to construct suc-
cessfully a divisible design even when the ring is not loEaially, we collect some facts
about finite chain geometries. Their combinatorial prapsrare—in a certain sense—
almost those of divisible designs, but no systematic treatraeeems to be known.



Chapter 2

Divisible Designs

2.1 Basic concepts and first examples

2.1.1 Suppose that a tournament is to take place wiplarticipants coming from various
teams, each team having the same number of members, Isayrder to avoid trivialities,

we assume > 0 ands > 0. So there are/s teams. The tournament consists of a number
of games. In any gamk > 2 participants from different teams play against each other.
Of course, there should be at least two teams,3.€.,v/s.

The problem is to organize this tournament in such a way thpa#gicipants are “treated
equally”. Strictly speaking, the objective is as follows:

The number of games in which any two members from differentstpéay against each
other has to be a constant value, say

In this way it is impossible that one participant would have advantage of playing over
and over again against a small number of members from othensgewhereas others
would face many different counterparts during the games.

In the terminology to be introduced below, this problem antsuo constructing &-

(s, k, \y)-divisible design withv elements. The points of the divisible design are the par-
ticipants, the point classes are the teams, and the blocksspond to the games. Many
of our examples will give solutions to this problem for cartealues ofs, &, A9, andov.

2.1.2 Throughout this chapter we adopt the following assumptiohss a finite set with
an equivalence relatidR C X x X . We denote byz| theRR-equivalence class of € X
and define

§:={[z] |z € X}. (2.1)

A subsetY” of X is calledR-transversalif #(Y N [z]) < 1for all z € X. Observe that
here the word “transversal” appears in a rather unusuaeggrdince it is not demanded
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thatY meetsall equivalence classes in precisely one element. Cf., howtedefinition
of a transversal divisible design in 2.1.5.

Definition 2.1.3 A triple D = (X, B, 8) is called at-(s, k, \;)-divisible designif there
exist positive integers s, k, \; such that the following axioms hold:

(A) B is aset ofR-transversal subsets &f with #B = £k for all B € B.
(B) #[z] =sforallz € X.

(C) For eachRk-transversat-subsety” C X there exist exactly, elements ofB con-
tainingY'.

(D) t < %, wherev := #X.

The elements ofX are calledpoints those ofB blocks and the elements & point
classes

We shall frequently use the shorthand “DD” for “divisiblesign”. Sometimes we shall
speak of a-DD without explicitly mentioning the remainingarameterss, k£, and ;.
According to our definition, a block is merely a subsefofHence the DDs which we are
going to discuss argimple i.e., we do not take into account the possibility of “regelit
blocks”. Cf. [12, p. 2] for that concept.

Sinces is determined byR and vice versa, we shall sometimes also write a divisible
design in the form{ X, B, R) rather than X, B, S).

2.1.4Let us write down some basic properties af@;, k, \;)-DD. Sinces, t > 1, axiom
(D) implies that
#X =v>st>1 (2.2)

or, said differently, tha( # (). From this and (B) we infer that

48 = g > 1, (2.3)

Hence, by (D) and (B), there exists at least Gtiransversat-subset ofX, sayY,. By
virtue of (C), thisYj is contained in\; > 1 blocks so that

#B=0>1. (2.4)
So, sinceB # (), we can derive from axiom (A) and (2.3) the inequality

4B =k< "’ forall B e B. (2.5)
S
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2.1.5A divisible design is calledransversalif each block meets all point classes, oth-
erwise it is calledregular. Hence a-(s, k, \;)-DD is transversal if, and only if equality
holds in (2.5).

During the last decades there has been a change of termnyn@wiginally, the point
classes of a DD were callgmbint groupsand DDs carried the nangroup-divisible de-
signs In order to avoid confusion with the algebraic term “gropip’[11] this name was
changed to reagroop-divisible designd\Ve shall not use any of these phrases.

2.1.6 Let us add in passing that some authors use slightly diffexgioms for a DD in
order to exclude certain cases that do not deserve int€i@séxample, according to our
definitions = v is allowed, but this forces= k = 1.

On the other hand, our axiom (D) is essential in order to rutdrivial cases which would
cause a lot of trouble. If we would allotv> ? then there would not be ar§-transversal
t-subset ofX, and (C) would hold in a trivial manner. Such a valuefavould therefore
have no meaning at all for a structube= (X, B, S).

Examples 2.1.7We present some examples of DDs.

(a) We consider th€appos configuratioim the real projective plane which is formed
by 9 points and lines according to Figure 2.1. We obtairz43, 3, 1)-DD, sayD,

Figure 2.1: Pappos configuration

as follows: Let
X = {p17p27p37 q1,92,43,71,72, T3}7

l.e.,v = 9. The blocks are, by definition, thesubsets of collinear points i,

so thatk = 3. We define three point classes, namély, p2, ps}, {¢1,¢2,¢3}, and
{r1, 72,73}, €ach withs = 3 elements. Then for any two points from distinct point
classes are is a unique block containing themt So2 and\, = 1. This DD is
transversal.
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(b)

(€)

Let us take aegular octahedronn the Euclidears-space (Figure 2.2), and let us
turn it into a DD as follows: Denote by the set of allv = 6 vertices of the

Figure 2.2: Octahedron

octahedron. For alb,q € X we putp R ¢ if, and only if, p and ¢ are opposite
vertices. Hence = 2. The blocks are defined as the triangular faces, whenee.
So we get a transversad(2, 3, 1)-divisible design.

Our next example is thprojective planeof order three which is depicted on the
left hand side of Figure 2.3. ItisZ(1,4, 1)-DD with v = 13 points. There aré3
blocks; they are given by those subsets of the point set wiankist oft = 4 points
on a common curve. (Some of these curves are segments, atherst.) There are
13 point classes, because= 1 means that all point classes are singletons.

We shall not need the definition of a finite projective plane @fer to [12, p. 6]. Let
us add, however, that in the theory of projective planes pealss oflines rather
than blocks. Therder of a projective plane is defined to lde— 1 if there arek
points on one (or, equivalently, on every) line.

Let us remove one point from the point set of this projectilenp. Also, let us
redefine the point classes as the four truncated linest(gitesl by thick segments
and a thick circular arc), the other nine lines remain asksdod@his yields &-
(3,4,1)-DD.

If we delete one line and all its points from the projectivar@ of order three then
we obtain theaffine planeof order three. Each of the twelve remaining lines gives
rise to a block with three points, the point classes are defasesingletons. As
before, one speaks of (affine) lines rather than blocks icdnéext of affine planes.
Observe that therder of an affine plane is just the number of points on one (or,
equivalently, on every) line. See [12, p. 8] for further dista

This affine plane is &-(1,3,1)-DD with v = 9 points and, as before, all point
classes are singletons. See the third picture in FigureT8.lines of an affine
plane are callegarallel if they are identical or if they have no point in common.
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Finally, we change the set of lines and the set of point ckagkthis affine plane as
follows: We exclude three mutually parallel lines from tiveel set, turn them into
point classes, and disregard the one-element point clagslee underlying affine
plane. The remaining nine lines are considered as blockkidway a2-(3, 3, 1)-
DD with v = 9 points is obtained. On the right hand side of Figure 2.3 thd bo
vertical segments represent the point classes.

e e

Figure 2.3: DDs from the projective plane of order

(d) We proceed as in the previous example, but starting lghptrojective plane of
order two which is &-(1, 3, 1)-DD with v = 7 points. In this way we obtain 2
(2,3,1)-DD with v = 6 points, a2-(1, 2, 1)-DD with v = 4 points (the affine plane
of order2), and a2-(2, 2, 1)-DD with v = 4 points. See Figure 2.4.

Ao 0

Figure 2.4: DDs from the projective plane of order

It is easy to check that tieeDD from Example (b) is also 2 DD; likewise all our2-DDs
are at the same timeDDs. Thus the previous examples illustrate the followieguit:

Theorem 2.1.8Let D be at-(s, k, \)-DD with ¢ > 2 and leti be an integer such that
1 <i <t. ThenD is also ani-(s, k, \;)-DD with

< vs™t—1 ) i
t—i )°
Ai =N . (2.6)

(521
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Proof. We fix one transversalsubset/. The proof will be accomplished by counting in
two ways the number of pai(¥’, B), whereY is a(t — i)-subset ofX such that/ U Y is
a transversal-subset, and wherB is a block containing U Y'.

On the one hand, let us single out one of Mablocks containing. Then there are

(32))

possibilities to choose ¥ within that particular block.

On the other hand, to select an arbitrafyamounts to the following: First chooge- 7
point classes out of thes—! — i point classes that are disjoint froh(cf. (2.3)), and then
choose in each of these point classes a single point (o)t bfence there are precisely

vs Tt —i\ ..,
( t—i )°

ways to find such &". For everyY there are\, pairs(Y, B) with the required property.

Altogether we obtain
k—i vsTt—i\ 4,
V() () @)

which completes the proof. O

2.1.9 Theorem 2.1.8 enables us to calculate several gaameterof at-(s, k, \;)-DD.
Lettingi = 0 in formula (2.6) provides the number of blocks, i.e.

(”3_1) t
" S
b= #B = )\ . (2.8)

(+)

ri=X\ (2.9)

Likewise, for: = 1 we obtain the number

of blocks through a point which is therefore a constant. llex/that; = ¢t — 1 formula

(2.6) reads
v—St+ s

k—t+1
By Theorem 2.1.8, formula (2.10) remains valid is replaced with an integef, subject
to the conditionl < ¢’ < ¢. Hence we infer the equation

)\t,1 = )\t (210)

bk = rv (2.11)
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by letting?’ = 1. Fort > 2 we may lett’ = 2 which gives
r(k—1) = X(v—s). (2.12)

The last two equations are just particular cases of fornfulg (

2.1.10 A divisible design withs = 1 is called adesign we refer to [67], or the two
volumes [12] and [13]. In design theory the parametés not taken into account, and
at-(1,k, \,)-DD with v points is often called & (v, k, \;)-design. Of course, this is a

different notationand we urge the reader not to draw the erroneous conclusien §
when comparing these lecture notes with a book on desigmytheo

We have already met examples of designs in Examples 2.1.@ngt)d), namely the
projective and affine planes of orders three and two. Howelesigns are not the topic of
this course. Instead, we shall focus our attention on the whgns > 1.

21.111f D = (X, B,8) is at-(s,k, \;)-DD andD’ = (X', B, §') is at’-(s', k', \},)-DD
then anisomorphismis a bijection

o: X =X :p—p¥
such that

BeB & Be®B (2.13)
Se§ & S¥e¥. (2.14)

Clearly, the inverse mapping of an isomorphism is again amagphism. If the product
of two isomorphisms is defined (as a mapping) then it is an @phism. The set of all
isomorphisms of a DD onto itself, i.e. the set of alltomorphismsis a group under
composition of mappings.

2.1.12 Suppose that there exists an isomorphism of(a, k, \;)-DD D onto at'-
(s, k', \},)-DD D’. Such DDs are said to hgomorphic Then

v=1", s=35,andk = k.
However, in view of Theorem 2.1.8 we may hawveZ t'. Thus we impose the extra
condition that the parametersind¢’ are maximal, i.e.D is at-DD but not a(t 4 1)-DD,

and likewise forD’. Then, clearly,

t=t"and)\; = \,,.
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2.1.13 Condition (2.14) in the definition of an isomorphism can belaegd with the
seemingly weaker but nevertheless equivalent condition

Se8 = Sve§: (2.15)

Suppose that we are given a bijection X — X’ satisfying (2.15). IfS¥ € & for some
subsetS of X then there is an: € S. Hencex? € S¥ N [z]? with [z]? € § by (2.15).
Since two equivalence classes with a common element aréddgrwe getS¥ = [z]?
and, finally,S = [z] € 8. In sharp contrast to this result, the equivalence sign.ib3)2s
essential. Cf. Example 2.1.14 below.

We may even drop condition (2.14) in the following particidauation: Letp : X — X’
be a bijection of 2-DD D onto a2-DD D’ such that (2.13) holds. Then, for ally € X
with x # y we havex R y if, and only if, there exists a block containingandy. The
same kind of characterization appliesl®G Hencer R y is equivalent tac¥ R’ % for all
xz,y € X.

Example 2.1.14Let us consider once moreregular octahedronn the Euclidears-
space. We turn the set of its vertices int@-®D with 6 points in two different ways
(Figure 2.5): For both DDs the point classes aretsets of opposite vertices. However,
the blocks are different. Firstly, we takdl 8 triangular faces as blocks (left image). This
gives a2-(2, 3,2)-DD which is also a3-DD. Cf. Example 2.1.7 (b). Secondly, only
triangular faces (given by the shaded triangles in the righge) are considered as blocks,
so that &-(2, 3, 1)-DD is obtained.

Figure 2.5: Two non-isomorphiz:DDs from an octahedron

Observe that the identity mappindy maps every block of the second design onto a
block of the first design, but not vice versa. Hence a bijechetween the point sets of
DDs which preserves point classes in both directions anckblin one direction only,
need not be an isomorphism.

Exercise 2.1.15Which of the DDs from Examples 2.1.7 and 2.1.14 are isomofphic
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2.2 Group actions

2.2.1Let us recall that all bijections (germutation}of a finite set X form thesymmet-
ric group Sy. If GG is any group then a homomorphism

a:G— Sx:g—g”

is called gpermutation representaticof G. In this case the grou@ is also said t@perate
oracton X via «. In fact, eachy € G yields the bijection

¢ X = Xz g9,

Whenever is clear from the context, then we shall writéfor the image of: under the
permutatiorny®. Thus, if the composition i/ is written multiplicatively, we obtain

29 = (z9)" forall z € X and allg,h € G.

Provided thatx is injective the representation is callélthful. So for a faithful repre-
sentation we havker « = {14} as is kernel, and we can identify with its imageG*.
However, in most of our examples the representation willbefaithful, i.e., there will
be distinct elements @ which yield the same permutation oa

2.2.2For the remaining part of this section we suppose ¢hatts onX (via «).

For eachr € X we writex® := {29 | g € G} for theorbit of z underG. The set of all
such orbits is a partition oX. If X itself is an orbit thert~ is said to operat#ansitivelyon

X. This means that for any two elements; € X there is at least onge G with 29 = y.

If, moreover, thisg is always uniquely determined then the actiorGois calledregular

or sharply transitive If G operates regularly o then the representation is necessarily
faithful, since every € ker o has the property? = z for all z € X, whencey = 145.

The given groug~ acts also in a natural way on certain other sets which areiadsd
with X. E.g., for every non-negative integerthe groupG acts on the-fold productX*
by

(X1, 29, ... x)? = (2f,29,...,2]).
If this is a transitive action on the subsettetuples withdistinct entriefrom X then one
says thatz actst-transitivelyon X.
Moreover, fort < # X, the groupG acts on the (non empty) séft() of all t-subsets of
X by

{x1, 20, .. 2} = {af, 25, ... 2]}

IMost of the results from this section remain true for an indisietX.
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In case that this is a transitive action, the gr@us said to act-homogeneousiyn X.
Similarly, G acts on the power set of.

Later, we shall be concerned witthomogeneous andtransitive group actions. Thus the
following result, due to DNALD LIVINGSTONE and ASCHERWAGNER [76], deserves
our interest, even though we are not going to use it.

Theorem 2.2.3 Suppose that the action of a groagpon a finite setX is t-homogeneous,
where4 < 2t < #X. ThenG acts(t — 1)-transitively onX. If, moreovers > 4 thenG
even actg-transitively onX.

See also [109] for a short proof, [43, p. 92], and [716].

2.2.4 An equivalence relatio® on X is calledG-invariant if
rRy=a2Ryforallz,y € X and allg € G. (2.16)

Then
rRye IRy forallz,y e Xandallg € G (2.17)

follows immediately, by applying (2.16) te? R y¢ andg—'. The finest and the coarsest
equivalence relation o, i.e. the diagonaliag(X x X) = {(z,z) | x € X} andX x X,
obviously areG-invariant equivalence relations on.

Suppose now thaf acts transitively onX. If diag(X x X) andX x X are the onlyG-
invariant equivalence relations onthen the action of- is said to berimitive; otherwise
the action ofG is calledimprimitive

Suppose that acts imprimitively onX . A subsetS C X is called alock of imprimitivity
if it is an equivalence class of@-invariant equivalence relation, s& which is neither
diag(X x X) nor X x X. Thus a block of imprimitivity is a subset of X such that
#S > 1,85 # X, and for allg € G we have eithef? = SorS9N S = (.

2.2.5 Given a subseY C X thesetwise stabilizeof Y in G is the sety, say, of all

g € G satisfyingY? = Y. This stabilizer is a subgroup @f. The pointwise stabilizer
of Y C X in G isthe setof ally € GG such thayy? = y for all y € Y. This pointwise
stabilizer is also a subgroup of and, clearly, it is a normal subgroup of the setwise
stabilizerGy-.

If y € X then we simply writeGG,, instead ofG',;. With this convention, the mapping
y? — G,g is a bijection of the orbi“ onto the set of right cosets 6f, in G, whence we
obtain the fundamental formula

¢ _ #G

#Y e
It links cardinality of the orbity“ with the index of the stabilize, in G, i.e. the number
of right (or left) cosets of7, in G.
We refer to [69, pp. 71-79] for a more systematic account oagactions.

(2.18)
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2.3 Atheorem of SPERA

2.3.1 One possibility to construct divisible designs is given hg following Theorem
which is due to AITONINO GIORGIO SPERA[101, Proposition 3.2]. A similar construc-
tion for designs can be found in [12, Proposition 4.6].

The ingredients for this construction are a finite Zetvith an equivalence relatidR on

its elements, a finite grou@ acting on.X, and a so-callethase blocl{or starter bloch
By, say. Its orbit under the action 6f will then be our set of blocks. More precisely, we
can show the following:

Theorem 2.3.2Let X be a finite set which is endowed with an equivalence reldipn
the corresponding partition is denoted BySuppose, moreover, thétis a group acting
on X, and assume that the following properties hold:

(a) The equivalence relatioRR is G-invariant.
(b) All equivalence classes 6t have the same cardinality, say

(c) The groupG acts transitively on the set dR-transversatlt-subsets ofX' for some
positive integet < #3.

Finally, let By be ank-transversalt-subset ofX with¢ < k. Then
(X,B,8)withB := BS = {BJ | g € G}

is at-(s, k, \;)-divisible design, where

k
#G t
At 1= 2.19
t #GBO ('US_l) t’ ( )
S
t
and whereG 5, C G denotes the setwise stabilizer 8.

Proof. Firstly, let#X =: v. SinceB, is R-transversal, we have < t < k = #B, <
#8 = 2 so that axiom (D) in the definition of a DD is satisfied. Also, el#ains, £ > 0.

As B, is anR-transversak-set, so is every element &' by (2.17). This verifies axiom
(A), whereas axiom (B) is trivially true due to assumption (b)

Next, to show axiom (C), we consider the base blégkand at-subsety” C B, which
exists due to our assumption< k. Let \; > 0 be the number of blocks containing
Given an arbitraryR-transversat-subsety”” C X there is ag € G with Y’ = Y9, since
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Y C B is R-transversal. Thig takes the\; distinct blocks through” to ), distinct
blocks throughy”. Similarly, the action of;~! shows that there cannot be more than
blocks containing”’.

Altogether, we have verified the axioms of a divisible desiggt, it remains to calculate
the parameteh,. By definition, the group- acts transitively on the s& of blocks. By
equation (2.18), the number of blocks is

#G

b= )
#G o

whence, by (2.8), we get

which proves (2.19). O

Note that in [101] our condition (b) is missing. On the othand it is very easy to show
that (b) cannot be dropped without effecting the assertiahetheorem:

Example 2.3.3Let X = {1,2,3}, § = {{1},{2,3}}, and letG be that subgroup of
the symmetric grougs which is formed by the identitydx and the transposition that
interchangeg® with 3. Then, apart from (b), all other assumptions of Theoren2aBe
satisfied if we define := 2 and B, := {1, 2}. However, n@-DD is obtained, since there
are two blocks containingy, but there exists only one block through the pa@int

2.3.4 In the subsequent chapters we shall mainly apply a slightidified version of
Theorem 2.3.2 which is based on the following concept-tdple (z1, zs, ..., z;) € X'
is calledR-transversalf its entries belong te distinctpoint classes.

Corollary 2.3.5 Theorem2.3.2 remains true, mutatis mutandis, if assumpti() is
dropped and assumptidio) is replaced with

(c1) The groupG acts transitively on the set dR-transversalt-tuples of X for some
positive integet < #3.

Proof. We observe that eacR-transversat-subsetY” gives rise tot! mutually distinct
R-transversat-tuples with entries fronY. As0 < ¢ < #38, it is obvious from (¢) that
G acts transitively on the set dt-transversak-subsets ofX, i.e., condition (c) from
Theorem 2.3.2 is satisfied.



2.3 Atheorem of BERA 15

In order to show that all equivalence classeRaire of the same size, we prove tliaacts
transitively onS. Since assumption (a) remained unchanged, formula (2ati7pe shown
as before. This implies that, for &l € § and allg € G, the imageS? is an equivalence
class; hencé; acts onS. For this action to be transitive it suffices to establish tia
operates transitively oX. So letz; andx} be arbitrary elements oX. We infer from

0 < t < #38 that there exisR-transversat-tuples(zy, xo, ..., z;) and(z, 2}, ..., x}).

By (c,), there is at least ong € GG which takes the first to the seconduple. Therefore
g __ ../

] = T7. U

2.3.6 Suppose that a divisible desighis defined according to Theorem 2.3.2 or Corol-
lary 2.3.5. Then the action @f on 8 ist-homogeneous artransitive, respectively. In both
cases the grou@' acts onX as an automorphism group ©f which, by the definition of
B, operates transitively on the set of blocks.

2.3.7 Clearly, Theorem 2.3.2 remains valid if we replace assumgt with the follow-
ing:

(b;) G acts transitively ors.

Another possibility to alter the conditions in Theorem 2.i3.as follows [94, Remark 2.1]:
Suppose that condition (b) is dropped and that (c) is redladth

(c2) The groupG acts transitively on the set dR-transversalt-subsets ofX for some
positive integer < #38..

In this case, let, yq, ..., v, Wherew = #S38, be a system of representatives for the
equivalence classes &f such that#[y;] < #[ys] < --- < #[yw]. We claim that (g)
implies

#lyil = #lya] = - = #[yu]

which in turn is equivalent to (b). By {&, we have) < ¢ < w so that

Y = {yla Yo, .. 7yt} andY’ = {927937 e Yty yw}

areR-transversat-subsets ofX. By the action ofG on 8, thet-tuple

(#[92]7 #[?JS]: ceey #[ytL #[yw])
arises from
(#[yl]v #[QQ], SRR #[yt])
by re-arranging its entries. Therefore we obt#ily,| = #[v.,], as required.

Finally, we may even just drop assumption (b) if the integadmits the application of
Theorem 2.2.3 which in turn will ensure th@tacts transitively ors.
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2.4 Divisible designs and constant weight codes

2.4.1 There is a close relationship between DDs and certain codehwill be sketched
in this section.

First, we collect some basic notions from coding theory, g@ng others, the book [63]
for an introduction to this subject. Let us wrte

L :={0,1,...,m} C Z, wherem > 1.

Also let n be a positive integer. Thelamming distancef x = (zy,zs,...,2,) and

vy = (y1,92,...,yn) € Z is defined as the number of indices {1,2,...,n} such that
x; # y;. ltturnsZ? into a metric space. Thdamming weighof an elementc € Z7,

is its Hamming distance frort0, 0, . . ., 0) or, said differently, the number of its non-zero
entries. This terminology is in honour ofl®HARD WESLEY HAMMING (1915-1998),
whose fundamental paper on error-detecting and erroecting codes appeared in 1950.

For our purposes it will be adequate to defineaatomorphisnof Z?, as a product of any
two mappings of the following form: First we apply a bijectio

Lo, — Lo : (1, X9,y oy @) — (], 252,00 x0m),

where eacl; is a permutation o¥,,, and then a bijection

7y, — L (x1, 29, ..., &) — (T1a, Toa, ..., Tya),

wherea is a permutation of1,2,...,n}. All such automorphisms form a group under
composition of mappings. Every automorphism preservedHdamming distance. The
Hamming weight is preserved if, and only (f), 0, ..., 0) remains fixed.

An m-ary codeof lengthn is just a given subset’ C Z7,. Its elements are callezbde-
words The setZ,, is called the underlyinglphabetof the codeC. A code is called a
constant weight codé all codewords have the same (constant) Hamming weight.

LetC,,Csy C Z, be codes. Amsomorphisms an automorphism ¢f”, takingC, to Cs.
An automorphisnof a code is defined similarly.

2.4.2 We now present the essential construction: SupposeRhat (X, B,S) is at-
(s,k, A )-DD with n := ¥ point classes. Also let := s + 1. We augment ideal points

to X, thus obtaining a seX with
#)? =v+n=mn.

To each point class we add precisely one ideal point in suclaathat distinct point
classes are extended by distinct ideal points. Given a ptassS € § we write S for the

2In Chapter 3 we shall use this symbol to denote the ring ofjgre modulan.
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correspondingxtended point clasg@\ny block B € B hask < s points. We turn it into
anextended blocksay B, by adding to5 then — £ ideal points of those extended point
classesS which have empty intersection witB. Hence B meets every extended point
class at precisely one point.

By the above, there exists a bijection
VX = {1,2,...,n} X Zy,
such that for each point classe 8 there is anindex € {1,2,...,n} with
SY = {i} x (Zm \ {0}) andS?¥ = {i} X Z,,.

This means that undep the setX \ X of ideal points goes over t§(i,0) | i €

{1,2,... ,n}}. Furthermore, two points ok are in the same extended point class if,
and only if, the first entries of theis-images coincide.

We are now in a position to define thede of D (with respect ta)) as the subset

C(®) = {(j17j27 s 7]71) ‘ dBeB: éw = {(le)’ (27j2)7 te (n7]n>}} - Z?n

According to our construction, all codewords have weightvhenceC(D) is in fact a
constant weight code.

In generaly) can be chosen in different ways. However, this will yieldhsophic codes.
So the actual choice af turns out to be immaterial. In [96] the codes arising in thes/w
are characterized. Also, it is shown that the entire constrm can be reversed, i.e., one
can go back from certain codes to divisible designs.

2.4.3 A neat connection exists between the automorphism grouDd) and the auto-
morphism group of its constant weight code. Up to the exoepticase wheh = 2 and

v = 2k, the two groups are isomorphic [96, Theorem 3.1]. Also, & gutomorphism
group of D is “large” then its corresponding code is well understoask 814], [92], and
[96] for a detailed discussion.

2.5 Notes and further references

2.5.1There is a widespread literature on divisible designs, antkesparticular classes of
DDs have been thoroughly investigated and characterized.

Among them ardranslation divisible designs.e. 2-DDs with a group?’ of automor-
phisms which acts sharply transitive gh(see 2.2.2) such that the following holds: For
all blocksB € B and allg € T there is eithe3Y = B or BY N\ B = (). The name of these
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structures is due to the fact the same properties hold, mutaitandis, for the action of
the group of translations on the set of points and lines oEididean plane. We refer to
[14],[62], [70], [86], [87], [88], [89], [90], [91], [98], P9], and the references given there.

The more general class ofs; k&, A1, As)-translation DDs” is considered in [93] and [100].

Another construction of these more general DDs us8sger groupwith arelative dif-
ference sef71]. As a general theme, each of the preceding constrigtfobased upon a
group which acts as a group of automorphisms of the DD.

2.5.2While Theorem 2.3.2 and Corollary 2.3.5 pave the way to coostg DDs, the
actual choice ofX, R, GG, and a base block, is a subtler question. We collect here some
results:

In [101] the following case is considered: is the projective line over a finite loca&{ -
algebraR, andG is the general linear grougL,(R) in two variables overR. All this is
part of our exposition in Chapters 3 and 4. In this way one obtadivisible designs.

A higher-dimensional analogue, based upon the projegbaeesover a finite local algebra
can be found in [102]; here, in general, oRHDDs are obtained.

Another approach uses as the Sethe set of (affine) lines of a finite translation plane,
R is chosen to be the usual parallelism of lines, &hi a group of affine collineations
which acts2-transitively on the line at infinity and contains all traetsbns. Apart from
the finite Desarguesian planes this leads@ioéburg planes and Suzuki groups; see [95]
and [104]. A more general setting, whekeacts2-transitively on a subset of the line at
infinity can be found in the papers [37], [40], and [94].

A class of DDs, wheré= is an orthogonal group or a unitary group, is determined in
[39]. It was pointed out in [46] that one particular case astbonstruction is—up to
isomorphism—a Laguerre geometry (see 3.5.13) which, bynaptetely different ap-
proach, appears already in [101].

In [38] the groupG is chosen to be the classical groGp.;(¢) (the general linear group
in 3 variables over the field with elements) in order to obtain divisible designs.

Finally, we refer to [103] for a discussion of transitive @xsions of imprimitive groups.
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Laguerre Geometry

3.1 Real Laguerre geometry

3.1.1 The classicalLaguerre geometrys the geometry of spears and cycles in the Eu-
clidean plane. Aspearis an oriented line andeycleis either an oriented circle or a point
(a “circle with radius zero”). There istangency relatiorbetween spears and cycles; see
the first two images in Figure 3.1. Furthermore, there eriptrallelism(written as||) on

the set of spears which is depicted in the third image. Wd sbagive formal definitions

of these relations.

For our purposes it is more appropriate to identify a cyclihhe set of all its tangent
spears. Then it is intuitively obvious that any cycle coméaprecisely one spear from
every parallel class, i.e., it is d|-transversal set”. Also, given any three non-parallel
spears there is a unique cycle containing them. All this nelsius of a divisible design,
even though the set of spears is infinite.

This geometry is named after the French mathematiciamd@&\D NICOLAS LAGUERRE
(1834-1886) who used it to solve a famous problem due R@IAONIUS OF PERGA
(2627-1907? BC): Find all circles that touch three given c&r¢lgthout orientation). See,
for example, [82] and [83].

3.1.2 It was in the year of 1910 that WHELM BLASCHKE (1885-1962) showed that
the set of spears is in one-one correspondence with thespafiatcircular cylinder of the
Euclidear-space [15], now called tH&laschke cylindér Under this mapping the cycles
correspond to the ellipses on the cylinder and two speargaaediel if, and only if, their
images are on a common generator of the cylinder. Blaschkesalswed that the real

LFrom the point of view of projective geometry this is a quéidraone without its vertex, whence it is
also called thélaschke cone
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¥ 4

Figure 3.1: Two cycles with tangent spears, and a family odlpa spears

Laguerre geometry can be represented in terntiaf numbers: + ye, wherezx, y € R,
e ¢ R, ande? = 0; see Example 3.5.4 (b) for a concise definition.

3.1.3 There is a wealth of literature on the classical Laguerrargeny. We refer to [5,
Chapter 1§ 2], [6, Chapter 4], [45, Chapter 15 A], [85], [110], [111], arftetsurvey
article [55]. Note that in [110] the teriversive Galileian plane-named after GLILEO
GALILEI (1564-1642)—is used instead.

3.1.4 Our construction of divisible designs in Chapter 4 can be sesem generalization
of the classical Laguerre geometry, where a finite local takgs over the role of the ring
of dual numbers over the reals.

3.2 The affine and the projective line over a ring

All our rings are associative with a unit elemdnsually denoted by), which is inherited
by subrings and acts unitally on modules. The trivial case 0 is excluded.

3.2.1 Let R be aring. Given an elementc R there are various possibilities:

If there is anl € R with [s = 1 thens is calledleft invertible. Such an elemeritis said to
be aleft inverseof s. Right invertibleelements andght inversesare defined analogously.

If s has both a left inverskeand a right inverse then
l=11=I(sr)=(Us)r=1r=r. (3.1)

In this case, the elemeatis said to banvertible Moreover, by the above, all left (right)
inverses ofs are equal to (1) so that it is unambiguous to cdll= r =: s7! theinverse
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of s. The (multiplicative) group of invertible elementsn(ts) of a ring R will be denoted
by R*. Clearly,0 is neither left nor right invertible.

If s # 0 thens is called aleft zero divisorif there exists a non-zero element R such
thatsr = 0. Such ars has no left inverse, sinde = 1 would imply r = (Is)r = [(sr) =
0. However, an element without a left inverse is in generalantft zero divisorRight
zero divisorsare defined similarly.

Of course the distinction between “left” and “right” is sufl@ous if R is a commutative
ring.

3.2.2Suppose that we are given elememts € R with ab = 1. Hencey = y1 = (ya)b
for all y € R. This implies that theight translationp, : R — R : z — zb IS surjective.
Moreover,(ba —1)b = b1 —b = 0. Thus, whenever we are able to show thas injective
we obtainba — 1 = 0, i.e.,ba = 1. This conclusion can be applied, for exampleRifs a
finite ring or a subring of the endomorphism ring of a finiteadnsional vector space.

Rings with the property that, for all. b € R, ab = 1 impliesba = 1 are calledDedekind-
finite (see e.qg. [73]). In fact, in most of our examples this conditwill be satisfied. It
carries the name of IRHARD DEDEKIND (1831-1916).

Exercise 3.2.3Show that the endomorphism ring of an infinite dimensionatmespace
is not Dedekind-finite.

3.2.4 Let R be aring. Then it is fairly obvious how to define th#fine lineover R. It

is simply the set, but—as in real or complex analysis—we adopt a geometriotpdi
view by using the ternpoint for the elements of. We shall meet again this affine line
as a subset of the projective line over However, to define something like a “projective
line” over aringR is a subtle task. As a matter of fact, various definitions Hmsaen used
in the literature during the last decades. Some of thoseitiefis are equivalent, some
are equivalent only for certain classes of rings. A shoneyon this topic is included in
[75].

3.2.5 Of course, a definition of a projective line over a ring hasidude, as a particular
case, the projective line overfeeld F. Observe that we use the term “field” for what
other authors call akew fieldor adivision ring Thus multiplication in a field need not be
commutative.

A particular case is well known from complex analysis: Toenplex projective linean
be introduced a€ U {cc}, whereco is an arbitrary new element. Intuitively, we think of
oo as beingg, wherea € C is non-zero. For alt € C, we have} = =%, x # 0. Thus
everyfraction ¢ other than G determines an element 6f U {oo}.

It is immediate to carry this over to an arbitrary figld However, one has to be careful
when using fractions in case thétis non-commutative, sincgcould mearb ="' orb™'a.
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We avoid ambiguity by representing the elements ofpitogective line over an arbitrary
field F via
a < F(a,1)={z(a,1) |z € F}foralla € F,
oo < F(1,0).

More formally, the projective line over appears as the set of one-dimensional subspaces
of theleft vector space™. Every non-zero vector i is a representative of a point. In
terms of the projective line the zero vect®; 0) € F? has no meaning. Of course, we
could also considef” as aright vector space in order to describe this projective line. The
choice of “left” or “right” is just a matter of taste.

(3.2)

3.2.6 Now let us turn to an arbitrary rin§. We consider a (unitary) left modul® over
R. A family (b, bo, ..., b,) of vectorsin M is called abasisprovided that the mapping

R" — M : (zq1,29,...,2,) — inbi (3.3)
i=1

is a bijection. In this cas@/1 is calledfree of rankn. It is important to notice that this
rankn is in generahot uniquely determined b/ . See, for example, [74, Example 1.4]

In order to define the projective line over a ridgwe start with a moduleéV! over R
which is free of rank. By virtue of the bijection given in (3.3), we repladd with k2.
Of course, the leff-module R? is free of rank2; this is immediate by considering the
standard basig(1,0), (0,1)) of R?.

It is tempting to define the projective line over a ring justseime way as we did for a
field in (3.2). However, this would not give “enough pointsihce we would not get any
“point” of the form R(1, s), wheres # 0 has no left inverse. Neverthelesgs, 1) would
be a point, i.e., we would not have symmetry with respect &dtder of coordinates.
At the other extreme one could say, as in the case of a fieltdetleaypair (a,b) € R?,
(a,b) # (0,0) should be a representative of some point. Yet, also heretdgmoarises:
In general, we would get “far too much points” for our purp®sgf., e.g., [36, p. 1128],
where a distinction between “points” and “free points” isdaa

It turned out that a “good” definition of the projective lineay a ringR is as follows: A
submoduleR(a, b) C R?*is a pointif(a, b) is an element of a basis with two elements. As
in the case of a vector space, theneral linear groupgsL,(R) of invertible2 x 2-matrices
with entries inR acts regularly on the set of those ordered bases?afhich consist of
two vectors. Therefore, starting at the canonical basisredead to the following strict
definition:

Definition 3.2.7 Theprojective line overr is the orbit

P(R) == (R(1,0))*"
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of R(1,0) under the natural action 6fL,(R) on the subsets d@&?. Its elements are called
points

We refer to [55, Definition 1.2.1] for an equivalent definitiovhich avoids using coordi-
nates. Cf. also [32] for thdual of a projective line

3.2.8 Let us describé®(R) in different words: A pair(a,b) € R? is calledadmissible
(over R) if there existc, d € R such that(‘cl Z) € GLy(R). So we have

P(R) = {R(a,b) C R*| (a,b) admissiblé. (3.4)

Thus our definition of the projective line relies on admigsibairs. However, there may
also be non-admissible paifs, b) € R? such thatR(a,b) € P(R). Strictly speaking, this
phenomenon occurs precisely whins not Dedekind-finite (see 3.2.2). We refer to [29],
Propositions 2.1 and 2.2, for further details. We thereéatept the following convention:

Points of P(R) are represented by admissible pairs anly
This brings us in a natural way to the next result:

Theorem 3.2.9Let(a,b) € R* and(d/, ¥') be admissible pairs. TheR(a,b) = R(da’, V)
if, and only if, there exists an elemant R* with (a’, V') = u(a,b).

Proof. Let R(a,b) = R(d’,0’). By our assumption, there is a matrjxe GLy(R) with
first row (a, b). Thus
(aa b) ’ 7_1 = (17 0)7 (CL/, b/) ) P)/_l = (U,U), and R(L 0) = R<u7v)‘

As (a', V') is admissible, so i$u,v). Now (u,v) € R(1,0) impliesz(1,0) = (u,v) for

somez € R, whencev = 0. Similarly, we obtainy(u,v) = (yu,0) = (1,0) for some
y € R. This means thaj is a left inverse of.. By the above(u, v) = (u, 0) is admissible.
Hence there exists an invertible matsixsay, with first row(u, 0). Then

10y [(u O 2 %\ [ uz *
0 1) \Ux /) Ux ) x «
55,_/ N——
§5—1
shows that;, i.e. the north-west entry df !, is a right inverse of.. Therefore
(a/,b") = u((1,0) - v) = u(a,b) with u € R*,

as required.

Conversely, ifu is a unit with (a/,0') = wu(a,b) then R = Ru, whenceR(a,b) =
R(ua,ub) = R(d', V). O
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3.2.10We note that, for alk € R,

(gf (1)):((1) fx)léGLz(R% (é Of):(é zx)leGLg(R). (3.5)

Hence the projective line oveR contains all pointsR(z, 1) with z € R. If z,y € R
are different thenR(x,1) # R(y,1). Analogous results hold foR(1,z) € P(R) for
all z € R. However, ifxr € R* thenR(1,z) = R(z~',1), i.e., this point is taken into
account for a second time. This shows that we can restrictetees to pointsR(1, x)
with z € R\ R*, and it establishes the estimate

#P(R) = #R + #(R\ 7). (3.6)

We shall see below that for certain rings the projective tiortains even more points. Cf.
however Theorem 3.5.5 and Corollary 3.5.6.

Example 3.2.11LetZ/(6Z) =: Z¢ be the (commutative) ring of integers modélowe
haveZ{ = {1,5}, whereb = —1 (mod 6); the ideals ofZs are {0}, 2Z¢ = 4Z¢, 3Zs,
andZg. Cf. [69, 2.6] for further details.

As z varies inZg, we obtain from the first matrix in (3.5) six points
Zs(0,1), Zg(1,1), ..., Z¢(5,1),
and, forz € Zg \ Z; from the second part of (3.5) four more points
Z¢(1,0), Zg(1,2),Z6(1,3), Zg(1,4).

In this way we reach all point&s(a, b) wherea or b is a unit. Therefore it remains to find
out if there exist elementis b € Zs \ Z andc, d € Zg such that

(‘CL Z) € GLy(Zs)

which in turn is equivalent to

a b «
det(c d)zad—bc€Z6.

This means that the ideal generatedutandb has to be the entire rings. Consequently,
(a,b) €{(2,3),(4,3),(3,2), (3,4)}.
Thus the only remaining points in the projective line o¥grare
Z6(27 3)7 ZG(3a 2)

Therefore#P(Zs) = 12. Altogether, we see that among th& elements ofZ2 there are
24 admissible and2 non-admissible pairs.
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3.2.12A pair (a,b) € R?is calledunimodular(over R) if there existr, y € R with
ar + by = 1.

This is equivalent to saying that the right ideal generated andb is the entire ringk.

Let (a,b) be the first row of a matrixy € GLy(R) and suppose that the first column of
v~ ! reads(z,y)*. We read off fronny~! = 1, wherel denotes the identity matrix in
GL2(R), that every admissible pair is unimodular. We remark that

(a,b) € R* unimodular ovel? = (a,b) admissible oveR (3.7)

is satisfied, in particular, for alommutativeings, sincexx + by = 1 can be interpreted
as the determinant of an invertible matrix with first row ) and second row—y, x).
WALTER BENZz in his famous book [5] considers only commutative rings aefings the
projective line using unimodular pairs.

In fact (3.7) holds also for certain non-commutative rings, [Proposition 1.4.2], namely
for rings ofstable rank2, but we shall not give a definition of this concept here. It teaes
late Dutch geometerERDINAND D. VELDKAMP (1931-1999) who first pointed out the
significance for geometry of the stable rank of a ring. Werrtf¢106,§ 2] and [108] for
excellent surveys on this topic. Let us remark, howevet, alidinite rings are of stable
rank2.

An example of a ring?, where (3.7) is not true, can be found in [31, Remark 5.1].

3.2.13 As the concept of an admissible pair depends on the invigstibf square matrices
over a ringR, one may ask for a criterion which allows to decide whethenairsuch a
square matrix is invertible. In the general case, sometlikeghis does not seem to exist.
Nevertheless, there are particular cases where we can hotlecide invertibility but
also explicitly describe the inverse, as we already did 111®. Some of the subsequent
examples come from thelementary subgroupf GL(R), i.e. the subgroup generated
by elementary matrices; see [41] for the algebraic backgtpand [31] for the geometry
behind.

Examples 3.2.14Lety be a2 x 2 matrix overR.

(a) If all entries ofy commute with each other then we can calculate the deteriinan
det v in the usual way. The given matrix is invertible if, and orflydet v € R*. In
this casey~! can be described in terms @ét v and the cofactor matrix of as in
the case of a commutative field.

(b) A diagonal matrixy = diag(a, b) is invertible if, and only ifa andb are units.
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(c) If we are given a lower triangul@rx 2 matrixy then

=)= E) ) e

€ GLa(R)

We know from (3.5) that the second matrix on the right hane sdnvertible.

Suppose now that or d is a unit. By (b) and (3.8)y is invertible if, and only if,a
andd are units. In this case

_ a™! 0
= (—d‘lca_l d—l) . (3.9)

Of course, there is a similar formula for the inverse of anargpangular matrix
with invertible entries in the main diagonal.

(d) Suppose that € R is right invertible so thatb = 1 for someb € R. A straightfor-
ward verification shows that

. a 0 w9 (b 1—=ba
7'_<1—ba b)EGLg(R),WIthy _(O " )

This means that for rings which are not Dedekind-finite treeeinvertiblelower
triangular matrices withboth diagonal entries not ii?*. Also, somewhat surpris-
ingly, the inverse of such a matrix igopertriangular.

3.3 The distant relation

3.3.1The point sef?(R) is endowed with a relatiodistant(~) which is defined via the
action of GLy(R) on the set of pairs of points by
A== (R(1,0), R(0,1)) "

Lettingp = R(a,b) andg = R(c, d) and taking into account Theorem 3.2.9 gives then

paq o (‘; 2) € GLy(R). (3.10)

The distant relation is symmetric, since exchanging twasrowan invertible matrix does
not influence its invertibility. In additiony is anti-reflexive, becausi(1,0) # R(0,1)
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implies that distant points are distiicHowever, in general distinct points need not be
distant. Cf. Theorem 3.3.7 below.

Non-distant points/f) are also calledeighbouringor parallel; see, for example, [5], [55],
[108]. However, in these lectures we shall use the term flgdirén a different meaning
which will be explained in 5.1.1. The two notions “parallalid “neighbouring” coincide
precisely whenR is a local ring. See Theorem 5.1.4 and our preliminary déimiin
3.5.8.

A crucial property of the distant relation is stated in thikdiwing result on the action of
GL2(R) on the projective line.

Theorem 3.3.2 The groupGLy(R) acts3-a-transitivelyon P(R), i.e, transitively on the
set of triples of mutually distant points.

Proof. (a) We consider the point3(1,0), R(0,1), andR(1, 1). They are mutually distant
by (3.5). Also, letR(a, b) be a point which is distant t&8(1, 0) andR(0, 1). Consequently,

(Cll 2) € GLy(R) and (8 llj) e GLy(R).

Hencea,b € R* by Example 3.2.14 (c). But this means that the madiiixg(a,b) €
GLy(R) takesR(1,1) to R(a,b), whereask(1,0) andR(0, 1) remain unchanged.

(b) Given three mutually distant poinis ¢, € P(R) there is, by the definition of
the distant relation, a matrix € GLy(R) which takes the pair of pointép,q) to
(R(1,0), R(0,1)). Then, according to (a), there is also an invertible matrclv takes
r7 to R(1,1), while R(1,0) and R(0, 1) remain invariant. Since this property holds for
every triple of mutually distant points, the assertiondois. O

3.3.3 Let us determine the pointwise stabiliz& say, of { R(1,0), R(0,1), R(1,1)}
under the action ofzL,(R) on the projective linéP(R). If ~ is in this stabilizer then
~ = diag(a,b), because each d?(1,0) and R(0, 1) has to coincide with its image. By
Example 3.2.14 (b); andb are units inR. Moreover, we infer fromR(1,1)” = R(a,b) =
R(1,1) thata = b. These two conditions are also sufficient. Therefore

) = {diag(a,a) | a € R*}. (3.11)

Now we ask for the kernel of the action 6fL,(R) on the projective liné?(R) which
clearly is contained if. If v = diag(a, a) € Q2 is in this kernel then

R(1,2)" = R(a,za) = R(1,a 'za) forall z € R.

2This is one of the rare occasions where we needhétl in R. Over the zero ring? = {0} (which
is excluded from our exposition) we hate= 1. Therefore, by defining the projective line as above, we
obtainR(0,0) = R(1,0) = R(0, 1). This means thak(0, 0) is the only point of this projective line, and
that R(0, 0) is distant to itself.
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Recall that
Z(R) :={a € R|ax = za forall z € R}

Is thecentreof R; it is a subring ofR. Thereforea has to be unit in the centre @.
Conversely, every matridiag(a, a) with a € Z(R)* fixesP(R) pointwise. It is easy to
show (as in elementary linear algebra) that the kernel ofgoomp action is equal to the
centreof GLy(R), viz.

Z(GLy(R)) = {B € GLy(R)| B¢ =¢B forall & € GLy(R)}
= {diag(a,a) | a € Z(R)"}. (3.12)

As usual, the factor grouiLy(R)/Z ( GLs(R)) =: PGLy(R) is called aprojective
linear group it elements are callegdrojectivitiesand can be considered as permutations
of P(R).

Theorem 3.3.4 The following statements are equivalent.

(a) PGL4y(R) acts sharply transitive the set of triples of mutually digtpoints.

(b) The groupR* of units inR is contained in the centrg(R).
Proof. The result is an immediate consequence of (3.11) and (3.12). O

The interested reader should also compare this result hélcharacterizations given in
[55, Proposition 1.3.4].

3.3.5Given a poinp € P(R) let

a(p) :=={r € P(R) | z & p}.

If we considerP(R) as the set of vertices of tliéstant graphi.e. the unordered graph of
the symmetric relation, thena(p) is just theneighbourhoodf p in this graph. Once a
point p has been chosen, the pointsigfR) fall into two classes: The points ef(p) are
calledproper (with respect tg), the remaining points are calléhproper (with respect
to p).

As GL,(R) acts transitively of?( R) it suffices to describe the neighbourhoodiifl, 0),

a point which is also denoted by the symbol By Example 3.2.14 (c), a poirR(a, b)

is in a(oc0) precisely wherb € R*. But then we may assume w.l.0.g. thhat 1, because
R(a,b) = R(b'a,1). Theembedding

R —P(R):a~ R(a,1) (3.13)
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maps the affine line ovek injectively onto the subset(co) of the projective line oveR.
We already met this embedding in 3.2.10. It shows that thghtiurhood of any point
has# R elements.

By virtue of (3.13), we may even identify the affine line ovee ting R with the subset

A(00). From
o ) a)=(""Y)

€GLa(R)

follows that—in affine terms—two poinis, b € R are distant, precisely when— b is a
unit.

Example 3.3.6 We continue the investigation of the projective liR€Zg); see Exam-
ple 3.2.11. In Figure 3.2 each point BfZ) is labelled by one of its admissible pairs.

Figure 3.2: The distant relation &Z)

The distant relation offf(Zs) is illustrated in the following way: Two distinct points are
distant if they arenot on a common line. The six points inside the ellipse compihee t
neighbourhood ofo = Zg(1,0) in the distant graph.

As a general theme, one aims at characterizing algebrapepres of a ringR in terms of
the distant relation on the associated projective lineeHkea first result in this direction.

Theorem 3.3.7 Aring R is a field if, and only if, any two distinct points of the projeet
line P(R) are distant.

Proof. (a) Let R be a field. Given distinct poings= R(a,b) andq = R(c,d) of P(R) we
obtain(0,0) # (a,b) ¢ R(c,d) and(0,0) # (c¢,d) ¢ R(a,b), since a one-dimensional
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vector space is spanned by each of its non-zero vectorsnigasis thata, b) and(c, d)
are linearly independent vectors of the left vector spAéewhencep » ¢ follows from
(3.10).

(b) Conversely, the poink(1,0) is distinct from each poinf2(1, x), wherex varies in
R\ {0}. By Example 3.2.14 (c), we obtain that every non-zero eleroERtis invertible
or, said differently, thaf? is a field. U

3.4 Chain geometries

3.4.1 The only structure on the projective line over a ring we hav@entered so far is the
distant relation. Suppose now that a fi&ldis contained inR, as a subring. Thus € K

is the identity element oR, andR can be considered as a left or a right vector space over
K. The ringR is, by definition, a/-algebraprecisely when the field belongs to the
centre ofR.

Lemma 3.4.2 The mapping
P(K) — P(R) : K(k,l) — R(k,l) (3.14)

is well defined. It takes distinct points Bf ) to distant points of?(R).
Proof. The assertions are immediate fr@m,(K) C GLy(R). O

The following definition is taken from a paper by 8JDI0 BARTOLONE [2]. For a sys-
tematic account see [28], and for the particular case whkas an algebra ovek the
reader should compare with [5] and [55].

Definition 3.4.3 Let R be a ring containing a fiel&’, as a subring. Also, lef’y be the
image of the projective lin®( K') under the embedding (3.14). A subsefdR) is called
a K-chain(or shortly achain, K being understood) if it belongs to set

C(K, R) := 5™,
Thechain geometrpver (K, R) is the structure

S(K, R) := (P(R),C(K, R)).

By definition, all chains arise from theandard chainCy under the action of the group
GL2(R). Observe that we refrain from excluding the trivial case wke= K.
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3.44 If X(K,R) andX(K', R') are chain geometries then &omorphismis a bijec-
tion ¢ : P(R) — P(R') preserving chains in both directions. By definition, the grou
PGL2(R) is a group of automorphisms &f( K, R).

Our first observation is a characterization of the distalattien ~ of P(R) in terms of a
chain geometryo( K, R) (see [55, 2.4.2] for the case of algebras):

Theorem 3.4.5Letp, g € P(R) be distinct points of( K, R). Thenp A ¢ holds if, and
only if, there is a chairD € C(K, R) joining p andg.

Proof. By the definition of the distant relation in 3.3.1, we know tpat g impliesp =
R(1,0)7, g = R(0,1)” for somey € GLy(R). Hence in this casg, g € C € C(K, R).
Conversely, ifp,q € C] € C(K, R), with v € GL,(R), thenp” " andq” " are distinct
points of the standard chai, = P(K). By Lemma 3.4.2, we have” ' 2 ¢" . Sincey
preserves, this proves the assertion. O

Given three mutually distant points we now want to deterntimeechains through them.
Note that, by Theorem 3.4.5, any two distinct points on archae distant.

Theorem 3.4.6 Let the pointg, ¢, € P(R) be mutually distant. Then there is at least
one chainD € C(K, R) containingp, ¢, andr.

Proof. As the groupGL.(R) acts3-a-transitively onP(R) by Theorem 3.3.2, there exists
ay € GLy(R) with p = R(1,0)?, ¢ = R(0,1)7, andr = R(1,1)". Obviously,D := Cj
Is a chain through, ¢, andr. O

The essential result on the group actiordf; (R) on 3( K, R) is as follows:

Theorem 3.4.7Let D, D' € C(K, R) be chains. Suppose, furthermore, thay,r € D
andp’, ¢, € D’ are, respectively, three mutually distinct points. Theerehexists a
matrixy € GLy(R) such thap” = p', ¢” = ¢, 7 =1/, and D" = D'.

Proof. There exists a matrix; € GLy(R) mappingD to the standard chaify. Put
pro=p" o= ¢, rp = r". The groupGLy(K) C GLy(R) leavesCy invariant
and acts3-fold transitively onCj. Hence there is g, € GLy(K) with p*> = R(1,0),
q> = R(0,1), r]* = R(1,1). Then, we also hav€}* = Cj.

Definey, and~,, accordingly. Theny = v,7275 ', has the required properties. [

Now it is easy to determine the number of chains containinggtimutually distant points:
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Theorem 3.4.8 Let
N:={neR|n'K'n=K"}

be thenormalizerof K* in R*. Then the following assertions hold:
(a) The set of chains through any three mutually distant poifitS @<, R) is in 1-1-

correspondence with the set
{Nr|reR"}

of right cosets ofV in the multiplicative group?*.

(b) In X(K, R) there exists exactly one chain through any three mutuaditadi points
if, and only if, K* is a normal subgroup of*.

Proof. We recall from (3.11) that the subgroup
) ={diag(a,a) |a € R*} = R*

of GLy(R) is the pointwise stabilizer of the séR(1,0), R(0,1), R(1,1)}. So, by Theo-
rem 3.4.7, the chains throudt(1, 0), R(0, 1), R(1, 1) are precisely the imagé€s;, where
w ranges irt2. Since

R(1,2)* ={R(1,a 'za) | a € R*}

holds, in particular, for alk € K*, the stabilizer of the standard chai in €2 is
Q¢, = {diag(n,n) | n e N} = N.
So, by (2.18), assertion (a) follows for the three given and, by Theorem 3.4.7, for

any three pairwise distant points.
Of course, the condition in (b) just means tii&t= N. OJ

Examples 3.4.9In each of the following examples there is a unique chainughoany
three distinct points oE (K, R):

(a) Suppose thak™ belongs to the centre @, i.e., R is a K-algebra. Then, sinc&™
is in the centre ofR*, its normalizerN coincides withR*. Most of the examples
which we shall encounter later on will be of this kind.

(b) Let R be a commutative ring. Then the assumptions of Example @a¥atisfied
without imposing a condition of'.

(c) Supposethat™* = R*. ThenN = R* = K*istrivially true. Observe thak™* = R*
does not mean thak’ = R; take, for example, a polynomial rinfy[T] over a
commutative fields in an indeterminaté’; see also [28, Example 2.5 (a)].
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(d) LetZ, = GF(2) be the field with two elements. Also l&t = Z2** be the ring of
2 X 2 matrices ovet,. There are six invertible elements in this ring, namely

) G (o) () Go) (o)

The centre ofR is given byZ(R) = {diag(z,z) | © € Zy}. We put

K::{@ xzy>

It is easily seen thak is a subring of? which is isomorphic t&zF(4), i.e. the field
with 4 elements. Of coursés™ ¢ Z(R). Since#R* = 6, the multiplicative group
K* has index in R* and therefore is normal.

x,yeZg}.

We now determine the intersection of all chains throughahmeitually distant points of
a chain geometr{ (K, R). To this end we introduce the field

F = ﬂ a'Ka
a€ER*

which is a subring of?R. Consequently, we can embed the projective Ié&') in P(R)
and define a chain geomet( I, R) as above. Its chains will be calldd-chainsin order
to distinguish them from the chains which arise fralt¥s, R).

Theorem 3.4.10Letp, ¢,r € P(R) be mutually distant points. Then the intersection of
all chains of ¥( K, R) throughp, ¢, r is an F’-chain.

Proof. We consider w.l.0.g. the point8(1,0), R(0,1), andR(1,1). According to Theo-
rem 3.4.7 the chains joining them are exactly the imaggsvith w € 2; compare (3.11).
Given a matrixdiag(a, a) € {2 we compute

CY = {R(a,0)} U{R(ka,a) | k € K} = {R(1,0)} U{R(a 'ka,1) | k € K}.
Therefore

¢y = {RA,0}U ({R(a "ka,1) | k€ K}

weN a€eR*

= {R(,0}U{R(f,1) | f € F},

which equal€P(F'), considered as a subsetR(R). O
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3.5 Localrings, local algebras, and Laguerre algebras

3.5.1Let R be aring. Thelacobson radicabf a ring R, named after NTHAN JACOBSON
(1910-1999) and denoted byd R, is the intersection of all maximal left (or right) ideals
of R. Itis a two sided ideal of? and its elements can be characterized as follows:

berad R 1—abe R forallae R & 1 —bac R foralla € R;

see [73, pp. 53-54].

Suppose thakr is left artinian—after BviL ARTIN (1898-1962)—i.e., there does not ex-
ist an infinite strictly descending chain of left ideals®fthenrad R is the largeshilpo-
tentleft ideal, and it is also the largest nilpotent right idekls means thatrad R)" = 0
for some positive integet [73, Theorem 4.12]. Consequentiyd R is actually a nilpo-
tent ideal. All this holds, in particular, iR is a finite ring. See [72] for further references
on nilpotent rings.

3.5.2Aring Ris called docal ring if R\ R* is an ideal of R. There are several equiv-
alent definitions of a local ring and the interested readeulshcompare with [73, The-
orem 19.1]. We just mention that a rirfgis local if, and only if, it has an ideal # R
containing all ideals other thaR. This is equivalent to saying that has a unique maxi-
mal ideal.

Let R be a local ring. Sincé \ R* is the only maximal left ideal oR, we obtain
rad R = R\ R",

Sincerad R is an ideal, we can construct the factor rRg= R/rad R based upon the
canonical epimorphisf® — R : a — @. If @ # 0 thena € R*, whencea is a unitinR.
This means thak is a field, and we have the property

weR & aeR. (3.15)

Given a matrixy = (v;;) with entries ink we puty := (7;;). Then one can show as above
that

v € GLn(R) < ¥ € GL,(R) (3.16)

holds for all natural numbers > 1.

3By an “ideal” we always mean a two-sided ideal. The term “loicey” comes from algebraic geometry:
At any pointp of an algebraic variety, the rational functions which aedlly” regular (i.e. regular in some
neighbourhood op) form a local ring. The non-units in this ring are those fuma$ which vanish ap.
Compare [97, p. 72].
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3.5.3 A K-algebraR is said to bdocal if R is a local ring. Clearly/ X’ andrad R are
subspaces of the vector spaBe(over K), and they meet aib only. If, moreover, the
group(R, +) is the direct sum of its subgrougs andrad R thenR is called aLaguerre
algebraover K. Here it is important to emphasize the ground field. Each eagualgebra
R over K is a local algebra over amyropersubfield /" of K. On the other hand, it is not
a Laguerre algebra ovét, becausd’ @ rad R (direct sum of additive groups) is a proper
subgroup of R, +).

Examples 3.5.4Here are some examples of local rings and local algebras:

(@)
(b)

(©)

(d)

(€)

A trivial example of a local ring is a field.

As has been noted before, the classical example of a limgals the ring ofdual
numbersover the reals. There are several ways to define it. For exam@ may
start with the polynomial rin@®[T] in the indeterminaté&’, consider the idegl7™)
which is generated by, and define the real dual numbers as the quotient ring
R[T]/(T?). Lettinge := T + (T?) leads to the usual notation of a dual number in
the form

a+be with a,b € R, wheree ¢ R, and ¢* = 0.

This example allows several generalizations which areudsed below.

In Example (b) we may repladwith any commutative field( thus obtaining the
ring of dual number®ver K. Such a ring of dual numbers will be denoted/&{¢]|.
It is a two-dimensional Laguerre algebra ovémwith rad K[e] = K.

We may even allowx to be a (hon-commutative) field if we requiféto be acen-
tral indeterminate This means that in the polynomial rifg[7'] the indeterminate
T commutes with every element &f. Even though this ring of dual numbers is of
the formK @& Ke, itis not an algebra ovel(, unlessk' is commutative.

Let R = K|e] be aring of dual numbers as in (c) anddet Aut(K) be an auto-
morphism of K other than the identity. We keep addition unaltered, bubthice a
new multiplication (denoted by) in K[e| as follows:

(a+be) * (c+ de) := ac+ (ad + bc?)e forall a,b,c,d € K.

This gives a ringX [¢; o] of twisted dual numbersver K. It is a local ring withKe
the ideal of all non-invertible elements. It cannot be arebtg overk’, even if K
is commutative, becaud€ is not in the centre oi[¢; o].

An immediate generalization of (c) is to consider thedacing K [T]/(T") for
some natural numbeér > 1. As before, we put := T + (T™), whence this ring is
of the form

Kl =KoKedKe*® ... Ke" .

=rad K|e]
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(N Let V' be ann-dimensional vector space over a commutative figldThen the
exterior algebra

AV=AVveAve a\'V (3.17)
=K =V

is a Laguerre algebra ovéf with dimensior2™; see, for example, [69, 7.2]. Multi-
plication in this algebra is usually denoted by the wedge 6i9. If (b, bs, ..., b,)
is a basis oV then the family of vectors

b, Nbi, N\...A\b;, wherel <i; <iy<---<ip<n andke{0,1,...,n}

()
is a basis of/\ V. Of course, wherk = 0 the corresponding empty product is

defined to bel € A V. The product of vectors is alternating and therefore skew
symmetric. Thus we have A v =0 andv Aw = —w Av forallv,w € V.

In particular, forV = K the exterior algebr@\ K is just the ring of dual numbers
over K. Here some care has to be taken, since according to (3.17gtWe@copies
of Kin A\ K, namely/\0 K (a copy of the fieldk) and/\1 K (a copy of the vector
spacek), and theymust not be identified

(9) LetZ be the ring of integers and lét < ¢ = p" € Z be a power of a prime.
ThenZ/(qZ) =: Z, is a local ring. The idealad Z, comprises the residue classes
(modulog) of all integerskp, wherek € 7Z, so it is the zero ideal precisely when
h = 1. The quotient fieldZ,/ rad R is the Galois fieldZ, = GF(p) which carries
the name of FARISTE GALOIS (1811-1832).

If ~ > 1thenZ, is not an algebra over any field, because the smallest positiv
integern satisfying) " ;1 = 0 (mod ¢) isn = ¢. However, the characteristic of
a finite field is a prime, and an infinite field cannot be a subB&t,0

While for an arbitrary ring it is difficult (or maybe even hopss) to describe explicitly
the associated projective line, for a local ring this is asydask:

Theorem 3.5.5Let R be a local ring. Then
P(R) ={R(z,1) |z € R}U{R(l,x) |z € R\ R"}. (3.18)
Proof. By 3.2.10, the elements of the sets on the right hand side d8)Y&re points of
P(R). We infer from (3.16) that the mapping
P(R) — P(R) : R(a,b) — R(a,b) (3.19)

is well-defined; moreover, it takes distant point®6f?) to distinct points of the projective
line over the fieldR. Cf. Theorem 3.3.7. So le&(a, b) be a point ofP(R). By (3.19),
R(a,b) is a point ofP(R). Thus eitheb # 0, whenceb € R* andR(a,b) = R(b~'a, 1);
orb=0,whencen #0,b € R\ R*,a € R*, andR(a,b) = R(1,a"'b). O
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Corollary 3.5.6 The projective line over a local ring has cardinality

#P(R) = #R + #rad R. (3.20)

This improves formula (3.6) for local rings. The followinbaracterization is essential:

Theorem 3.5.7 Aring R is a local ring if, and only if, the relation “non-distant(4) on
the projective linéP(R) is an equivalence relation.

Proof. (a) Over any ringR, the relationX onP(R) is reflexive and symmetric, sineeis
anti-reflexive and symmetric according to 3.3.1.

(b) Suppose thak is local. By the action ofzL,(R), it suffices to show that £ R(1,0)
andR(1,0) £ g impliesp 4 ¢ for all p,q € P(R). With p = R(a,b) andq = R(c,d) we
obtain

(1 0)¢crmans (1) ¢arm

Thus, by Example 3.2.14 (d),andd are inR \ R* = rad R. But thenzb + yd € rad R
forall z,y € R, whence

* ok a b x %
(x y)(c d);«é(* 1>foral|:c,yeR.

This impliesp #« q.

(c) Conversely, lel be an equivalence relation. We have to show that R\ R* # () is
anideal. Giver, b € J we infer from 3.3.5 thaR?(1, a) #R(1,0) £R(1,b). So, transitivity

of X yields
1 a
(1) ¢cLm,

()= (1.0) (1 5) eouim
Ga)

€ GL2(R)

From

we read off that the first matrix on the right hand side is ne¢itible, whencer — b € J.
Thus/J is an additive subgroup af.

Next, we show thatb = u, wherea,b € R andu € R*, implies thate andb are units. It
suffices to treat the case= 1: By Example 3.2.14 (d), the matrix

a 0
1—ba b
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has an inverse. Hend&(a, 0) and R(1 — ba, b) are points such that
R(1,0) £ R(a,0) o R(1 — ba, b).

As R(a,0) andR(1 — ba, b) are in distinct equivalence classes, soAfé,0) andR(1 —

ba, b). Therefore
1 0
( 1 — ba b) € GLy(R).

We deduce from Example 3.2.14 (c) tihas a unit. Thus, finallyg = b~ is a unit, too.

By the above, a product of two ring elements, with one factos iitannot be a unit.
Altogether, this means thatis an ideal. O

3.5.8If Ris alocal ring then two point, ¢ € P(R) are said to bearallel, in symbolsp ||

q, if they are non-distant. By the above this is an equivalealzion and the equivalence
classes of?(R) are also callegarallel classesA definition of parallel points on the
projective line over amrbitrary ring will be given in 5.1.1.

The following result is immediate from the proof of Theorers.3:

Corollary 3.5.9 LetP(R) be the projective line over a local ring. Then every parallel
class of P(R) has# rad R elements.

The relations ||” and “=" coincide precisely whetk is a field; see Theorem 3.3.7. In this
case we get the finest equivalence relatiorPOR), i.e., parallel classes are singletons.

Our proof of Theorem 3.5.7 could be shortened by using tHevimhg characterization
of local rings (see [73, Theorem 19.1]): A rirgyis local if, and only if, R \ R* is a group
under addition.

3.5.10 Suppose that is a field and that{ C L is a proper subfield contained in the centre
of L. Then the chain geometdy( K, L) is called aMobius geometrin honour of AUGUST
FERDINAND MOBIUS (1790-1868). Two points ofi( K, L) are distant precisely when
they are distinct, sincé is a local ring andad R = {0}. Hence there is a unique chain
through any three distinct points.

Observe that the terminology in the literature is varyinge Wllow [55] by assuming
that K is in the centre ofL. Some authors drop this condition and speak of @bMs
geometryX (K, L) even if K is just a proper subfield of. Also the termgeometry of a
field extensioffior such a chain geomet®y( K, L) is being used. However, because of our
emphasis on the finite case, this more general point of viewelevant for our purposes.
Cf. Theorem 3.5.12.

Examples 3.5.11Here are some examples ofdidius geometries and their generaliza-
tions. The reader should consult [5] for further details.
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(a) The classical example of addius geometry is based on the fieldsandC =
R @ Ri of real and complex numbers. In fagi(R, C) can be seen as an algebraic
model of the geometry of circles on a Euclideasphere. There is a unique chain
(circle) through any three distinct points.

(b) LetH = R@® Ri @ Rj & RE denote the real quaternions. The(R, H) is a Mobius
geometry which is isomorphic to the geometry of circles anEiclideani-sphere.
There is a unique chain (circle) through any three distioobfs.

(c) Another interesting classical exampléigC, H), whereC is identified withR & Rq.
It is an algebraic model for the geometry &pheres on a Euclideafisphere.
Here there is more than one chain through three distincttigdinis not a Mbbius
geometry according to our definition, because the centreeofdal quaternions is
R.

Now we turn to the finite case. Finite fields are commutativeabigmous theorem due
to JOSEPHHENRY MCLAGAN-WEDDERBURN (1882-1948) for which ENST WITT
(1911-1991) has given an elegant short proof; cf. [1]. Sfimiee commutative fields are
precisely the well known Galois fields, the finitedlius geometries are easily described.

Theorem 3.5.12

(a) Each finite Mbbius geometry is of the fordi(GF(q), GF(¢")), whereq > 2 is a
power of a prime and > 2 is an integer.

(b) Letq > 2 be a power of a prime and |6t > 1 be an integer. Then the chain
geometryZ(GF(q), GF(qh)) is a3-design if its chains are considered as “blocks”.
The parameters of this design are

v=q¢"+1, k=qg+1, and); = 1.

Proof. (a) If K is a proper subfield of a finite field then X' = GF(q), whereq > 2 is a
power of a primeL = GF(¢"), andh > 2 equals the dimension df over K, as a vector

spacé.

(b) We have#IP’(GF(qh)) = ¢"+1according to (3.18). By their definition, all chains have
#IP(GF(q)) = ¢+ 1 elements. Sincé is commutative, every multiplicative subgroup of
L* is normal. Thus, by Theorem 3.4.8 (b) appliedi6 and L*, there is a unique chain
through any three distinct points. 0J

In part (b) of the preceding Theorem we did not exclude thealricaseh = 1, even
though it does not deserve our attention.

41t is worth noting here that = GF(¢") contains a unique subfield withelements.
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3.5.13Suppose thak is Laguerre algebra ovét. ThenX (K, R) is called aLaguerre ge-
ometry If, moreover,R is finite then the chain geomet®y K, R) gives rise to a transver-
sal divisible3-design; it will be discussed in detail in Section 4.2.

3.6 Notes and further references

3.6.1 There are several surveys on chain geometries and relateg@s. The publica-
tions [4], [5], [7], [8], [9], and [55], together with the refences given there, cover these
topics from the very beginning up to the year 1992. Below wéricour attention to
recent publications.

3.6.2 Various approaches have been made to axiomatize chain ¢ygesneertain classes
of chain geometries, or structures sharing some propexiibsa specific type of chain
geometry.

This has lead to concepts lilBenz planegsee [42, Section 5])yeak chain spaceshain
spaces contact spacesgcf. [55, Section 3], [80]), andircle planes[25]. However, in
general those structures are much more general than chaimegyges. Nevertheless they
can sometimes be described algebraically in terms of a ongaing a subfield if some
extra assumptions are made. See [20], [24], [58], [59], &44l [

The investigation ofopological circle planess part of the book [84]. It contains a wealth
of bibliographical data.

Characterizations of projective group$sL.(R), whereR is a ring, are given in [21],
[26] and [57].

3.6.3 On the other hand, it is possible to consider structuresgbeiare general than
associative algebras (eaternative algebra®r Jordan systemsn order to obtain a kind
of “chain geometry”. We refer to [10], [16], [17], [18], [19]26], [35], and [56].

3.6.4 Other papers related with certain chain geometries are [23], [47], [48], [49],
[50], [53], and [54]. Every chain geometry gives risetrtial affine spacesSuch spaces
are investigated in [60], [79], and [81].



Chapter 4

Divisible Designs viaGLo-Actions

4.1 How to choose a base block

4.1.1 Let R be afinite local ring. As before, we writed R := R\ R* for its Jacobson
radical. According to Theorem 3.5.7 and by the definition.m &, the relation “parallel”
(I is an equivalence relation on the projective ling?). Also, GLy(R) is a group acting
onP(R). In fact, we are in a position to apply Theorem 2.3.2:

Theorem 4.1.2 Let R be a finite local ring, and leB3, be a||-transversal subset of the
projective lineP(R) with £ > 3 points. Then

(P(R), B, ) with B .= B2
is a3-(s, k, A)-divisible design withy = # R + #frad R points, ands = #rad R.

Proof. By Corollary 3.5.6, the projective line ovét has finite cardinality R + #rad R.

It was shown in Corollary 3.5.9 that all parallel-classesdyvad R elements. According

to its definition, the relation is aGLy(R)-invariant notion. Recall that, by the definition
in 3.5.8, the relation§ and X coincide for a local ring. Therefore, also the equivalence
relation|| is GLo(R)-invariant. Hence the assertion follows from Theorem 2.3.2 [

4.1.3 While Theorem 4.1.2 shows that we can construct a wealth of fd@ps the pro-
jective line over a finite local ring, one essential probleamains open:

What is the number of blocks containingj-dransversaB-se®
Or, said differently:

What is the value of the paramet®y?
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We read off from (2.19) that to answer this question amowntsting two non-negative
integers: Firstly# GL,(R) and, secondly, the cardinality of the setwise stabilizethef
base blockB, under the action of the general linear grasip,(R). Itis easy to determine
the order of the group:L,(R); see the exercise below. However, it seems impossible to
state any result about the size of setwise stabilizéspivithout any further information
concerningBy.

Exercise 4.1.4Show that

# GL2(GF(q)) = (¢* — 1)(¢* — q)- (4.1)
Given a finite local ringR with R/ rad R = GF(q) verify that
# GLy(R) = (#rad R)!(¢* — 1)(¢* — ). (4.2)

4.1.5 If R is a finite local ring, butot a local algebra (e.g? = Z,), then the divisible
designs which arise froi(R) seem to be unknown. We therefore have to exclude them
from our discussion in the next section.

It would be interesting learn more about the DDs which aretapon the projective line
over such a ring. However, it seems to the author as if therdduvaot exist a “natural”
choice for a base block.

4.2 Transversal divisible designs from Laguerre algebras

4.2.11In applying Theorem 4.1.2, we start with the easiest cagethe3-divisible designs
defined by Laguerre geometries. Recall that for a fi€ld/hich is contained in a ring?,
as a subring, we writ€( K, R) for the set of-chains of the projective linB(R).

Theorem 4.2.2 Let R be anh-dimensional Laguerre algebra ovéfF(q), 1 < h < oo.
Then

(P(R), €(GF(q), R), II)
is a transversaB-(s, k, 1)-divisible design withy = ¢" + ¢" ! points,s = ¢"~', and
k=q+1.

Proof. The assertions onands follow immediately from Theorem 4.1.2:R = ¢", and
#rad R = ¢"~'. Also, we havek = #P(GF(q)) = ¢+ 1 = 2. Finally, sinceGF(¢) is in
the centre of?, we obtain\; = 1 by Example 3.4.9 (a). O

As an immediate consequence we can show that there exist @& loutually non-
isomorphic transversal divisible designs:
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Theorem 4.2.3Letq > 2 be a power of a prime and lét> 1 be a natural number. Then
there is at least oné-dimensional Laguerre algebra ovéefF(q). Therefore at least one
transversaB-(s, k, 1)-DD with parameters as in Theoren2.2exists.

Proof. The assertion follows from Example 3.5.4 (e), by lettiig= GF(q). O

Exercise 4.2.4Determine the parameteds, \;, and \, (the number of chains) of the
DDs from Theorem 4.2.2.

4.3 Divisible designs from local algebras

4.3.1 We shall frequently make use of the following result fromedda. It is known as
theWedderburn principal theorem

Theorem 4.3.2 Let R be a finite local algebra ovek’ = GF(¢). Then there is &F(q)-
subalgebral of R which is isomorphic to the fiel®/ rad R such thatk = rad R & L.

We refer to [78, Theorem VI11.28] for a proof.

4.3.3 Given a finite-dimensional local algebfaover K = GF(q) we have the associated
field R/rad R = R. The canonical epimorphisifi — R takesK to an isomorphic field
which is a subring of?. So we obtain that

R = GF(¢™) for some natural numben > 1.
This implies
dimg R = m + dimg(rad R).

By the above and Theorem 4.3.2, there is a fielhich is isomorphic ta? =~ GF(¢™)
such thatk’ C L C R, whenceR is a left vector space ovér. We let

h:=dimy, R > 1.

Hence
dimg R = (dimy R)(dimg L) = hm (4.3)
and
dimg(rad R) = (h — 1)m. (4.4)

The next theorem is taken from [101, Example 2.5]. It is a galimtion of Theorem
4.2.2 which, of course, is included as a particular casefer 1.
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Theorem 4.3.4Let R be an finite-dimensional local algebra ovéf = GF(q), with
R/rad R = GF(q™), whencelimx R = hm for some positive integér. Then

(P(R),€(GF(q), R),||)

is a3-(s, k, 1)-divisible design withy = ¢"™ +¢"~V™ points,s = ¢/"~V™ andk = ¢+ 1.

Proof. It suffices to repeat the proof of Theorem 4.2.2, taking intooaint that now
#rad R = ¢"~Y™ by virtue of (4.4). O

Next, we apply this result to construct DDs:

Theorem 4.3.5Letq > 2 be a power of a prime. Also, létandm be a positive integers.
Then there is at least onen-dimensional local algebr& over GF(q) with R/ rad R =
GF(q™). Therefore at least ong (s, k, 1)-divisible design with parameters as in Theorem
4.3.4exists.

Proof. We infer from Theorem 4.2.3 that there is Ardimensional Laguerre algebra
overGF(q™). ThereforeR/ rad R isisomorphic tdGF(¢™). This R is anhm-dimensional
local algebra oveGF(q) C GF(¢™). O

Observe that foh. > 1 non-transversal DDs are obtained in this way.

4.3.6 By the definition of an (arbitrary) chain geomedy K, R), the groupGL.(R) acts
onP(R) as a group of automorphismsdt K, R) or, said differently, of the corresponding
divisible design. Recall tha&GL,(R) denotes the transformation group BR) which

is induced byGL,(R). However, in general this group is only a subgroup of the full
automorphism group.

We shall describe below the full automorphism group of ¢ertdain geometries and
hence of the corresponding DDs. In order to do so we need llog/fog concept carrying
the name of the German physicist$CUAL JORDAN (1902-1980), who should not be
confused with the French mathematiciaaNBLLE JORDAN (1839-1922).

4.3.7 Let R and R’ be rings. A mapping : R — R’ is calledJordan homomorphisiif
(a+b)7=a’+0V7, 17=1(€ R'), (aba)’ =a’b’a’ foralla,be R. (4.5)

See, among others, [68, p. 2] or [55, p. 832]. For such a magppiand any element
a € R* the equation
17 = (aa"?a)’ = a’(a"?)%a’ (4.6)
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shows that:? has a left and a right inverse, whenceis a unit in?’. Also,
a’ = (aata)’ = a’(a)7%a” 4.7)

implies
(a™')? = (a”) ' foralla € R*. (4.8)

As usual, a bijective Jordan homomorphism is callelbalan isomorphisimts inverse
mapping is also a Jordan isomorphism.

4.3.8 Leto : R — R’ be a mapping. It is a homomorphism of rings then it is also a
Jordan homomorphism. This remains true if R — R’ is anantihomomorphisirthis
means that is a homomorphism of the additive groups, sehdsR to 1 € R’, whereas
(ab)? = b7a” for all a, b € R. Of course, this antihomomorphismis at the same time a
homomorphism iR is a commutative subring at’.

Leto : R — R’ be a Jordan homomorphism of rings.Afand R’ are commutative and
if 1+ 1 € R*theno is a homomorphism. IR has no left or right zero divisors then
o is @ homomorphism or an antihomomorphism. See, among off3r$51], and [69,
p. 114]. Thus under certain circumstances there will bproperJordan homomorphisms
for two given rings, i.e. Jordan homomorphisms that areneeid homomorphism nor an
antihomomorphism.

Examples 4.3.9We present some Jordan homomorphisms other than homoragrghi

(@) A well known example of an antiautomorphism (a bijecawgihomomorphism of
a ring onto itself) is as follows: Lekz commutative ring (or even a commutative
field) and letR™*™ be the ring ofn x m matrices with entries fron® with m > 2.
The transposition of matrices is an antiautomorphigii™ — R™*™.

(b) Suppose thak = Hje] R; is the direct product of ring®;. Similarly, let R’ =
Hjej R’. Assume, furthermore, that : R; — R is a family of mappings, where
eacho; is a homomorphism or an antihomomorphism. Then

o= H(Ij R — R :(x))jes — (xj‘j)ng

jeJ
Is Jordan homomorphism.

If among the mappings; there is a homomorphism, other than an antihomomor-
phism, and an antihomomorphism, other than a homomorpltieno will be a
proper Jordan homomorphism. Thus proper Jordan homonsonghtan easily be
found.
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(c) LetV be atwo-dimensional vector space over a commutative fiedhd letb,, b,
be a basis. Thefl, by, by, by A by) is a basis of the exterior algebfaV’; see [69,
Section 7.2]. Hence there exists a unidudinear bijections : AV — A V with
the following propertiess interchanges, with b; A b, and fixes the remaining
basis elements andb,. In order to show that is a Jordan isomorphism, it suffices
to verify the last condition in (4.5) for the elements of theeqp basis. As a matter
of fact, that condition is satisfied in a trivial way: Cleaiilyis true ifa = 1 orb = 1,
otherwise it follows fromw; A vy A v3 = 0 for all v, vo, v3 € V. Because of

(bl/\bg)gzbg%o, andbi’/\bg:bl/\bl/\bgzo,

the Jordan isomorphismis proper.

4.3.10 If a Jordan homomorphism df -algebras is at the same timesalinear mapping
then it is called & -Jordan homomorphisnThe importance of<-Jordan isomorphisms
is illustrated by the following result, due to”MIN HERZER, which is presented with-
out proof. See [55, Theorem 9.2.1], [2], and [33] for geneedions, and compare with
Proposition 2.3 and Proposition 3.6 in the article [52].

Theorem 4.3.11Let R and R’ be a local algebras ovek'. Then the following assertions
hold:

(@) If o : R — R’ is a K-Jordan isomorphism then the mapping

n. ) R(La) — R(17,a%),
P(R) — P(R) : { R(a,1) — R'(a”,17),

is a well defined isomorphism of chain geometries.

(b) If, moreover#K > 3 then every isomorphism df(K, R) onto (K, R') is the
product of a mapping as ifa) and a projectivity ofP(R’).

4.3.12 By the above, we know not only all automorphisms of the DDs frbmeorem
4.3.4, but also all isomorphisms between such DDs, prowicisd X' > 3. Of course, “to
know” means that the problem is reduced to findingiélDordan isomorphisms between
the underlyingk -algebras.

According to [52, Remark 4.3.2], there exist non-isomordtaguerre algebras which
give rise to isomorphic chain geometries and therefore,hsofem 4.2.2, to isomorphic
divisible designs. However, those Laguerre algebras agadasomorphic.
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4.4 Other kinds of blocks

4.4.1 The construction of a DD from a chain geometry over a finitealalgebra, as
described in Theorem 4.3.4, can be generalized by modityi@get of blocks as follows.

Theorem 4.4.2Let R be an finite-dimensional local algebra ovéf = GF(q), with
R/rad R = GF(¢™), whencelimy R = hm for some positive integet. Furthermore,
let Cy be the standard chain of the chain geomeii<, R), and suppose the base block
By to be chosen as follows:

(@) By :=Cp \ {R(1,0)}, forq > 2.
(b) By :=Co\ {R(1,0),R(0,1)}, forq > 3.
() By:=Co\ {R(1,0), R(0,1), R(1,1)}, forq > 4.
This gives, according to Theorefnl.2 a 3-(s, k, \3)-divisible design with

v = qhm + q(h—l)m ands = q(h—l)m‘

The remaining parametersand \; are

k=q, A3 =q— 2, in case(a),
k=q—1, Xs=1(qg—2)(q—3) in case(b),
k=q—2, X =1tg—2)(q—3)(g—4), incasec).

Proof. Firstly, we observe thatC, = ¢ + 1 and thatC}, is a||-transversal subset. So the
assumptions on the cardinality @fjuarantee thabB, has at least three points.

Next, sinceGLy(R) acts3-a-transitively onP(R), it suffices to determine the number of
blocks throughV/ := {R(1,0), R(0,1), R(1,1)}. By Theorem 4.2.2, the standard chain
() is the only chain containing/. Henceforth any block containiny/ has to be a subset
of Cy. There are(qf) possibilities to choose asetV in Cy \ M, wherej € {1,2,3}.
We infer from Theorem 3.4.7 that each such\ 1V is a chain. This proves the assertions
on \s. The rest is clear from Theorem 4.3.4. O

4.4.3 The previous theorem is taken from [46]. It suggests to rearfour or even more
points from the standard chain in order to obtain a base Hiack 3-DD. It is possible
to treat the case for four points by considering the numberrags ratiosthat arise if
those points are written in any order. In general, four dettpoints determine six cross
ratios, but for aharmonic equianharmonicor superharmonidetrad there are less than
six values; cf. [65, Section 6.1]. Thus several cases halie toeated separately. We refer
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to [46], and note that the results from there carry over imiatet) to our slightly more
general setting of a local algebra. Also, the “complemsafitsetting where al-subset of
the standard chain is chosen to be the base block is descniljé€]. As before, cross
ratios are the key to calculating the parametger

4.4.4 Yet another “natural choice” of a base block is the projectine over such a field
L C R which meets the requirements of the Wedderburn princigderdm (see 4.3.2).
A general treatment of these DDs seems to be missing in #ratitre, but we are in a
position to present at least one example. It is based on j&cise XIX.1]:

Example 4.4.5Let L := GF(4) = {0, 1, 7, 7*} be the field with four elements. Its multi-
plicative group is cyclic of order three. Addition inis subjecttocr+xz = O forall x € L,
andl 4+ 7 = 2. The mappingr : L — L : x — 2?2 is easily seen to be an automorphism
of order two.

We consider the local ring := GF(4)[e; o] of twisted dual numbers ovér. Thus
g2 =0andex = 2% = 2% forallz € L;

cf. Example 3.5.4 (d)R is a local algebra ovek := GF(2) C L, but not an algebra
over L, because is not in the centre of:. The radical ofR israd R = Le = L. An
isomorphismR/rad R — L is given by(x + ye) + rad R — x forall z,y € L.

Following Theorem 3.4.8 we determine the normalizeLbin R*. The units inkR* have
the form

n=x+yswithz € L*andy € L.
Given such am we clearly haver'1n = 1. By n='7?n = (n~!'rn)?, it remains to
calculaten—'7n. We obtain

nlrn = (x+ye) 'r(z + ye)

= (a7 —ye)T(z +ye)
= T+ x_lTyg — YETX — YETYE
= 7+a lrye — 2?yrie — yirie?

= 7(1+2%(1 - 1)e).

As 22y can assume all values iy there are four possibilities, viz.

?y=0 : nltn=r71¢€L"
y=1 : nlrn=71+e¢ L
y=7 : nltn=71+71e¢ L*,
?y=1%: nlrn=7+1%¢ L*.

We infer thatn = x + ye is in the normalizer of.* in R* if, and only if, y = 0. Conse-
qguently, this normalizer coincides withi*. By #L* = 3 and#R* = 16 — 4 = 12, there



4.5 Notes and further references 49

are four chains through any three mutually distant poinisni®ing up, we have shown
that
(P(GF(4)[e; 0]), €(GF(4), GF(4)[e; 0]). 1)

is a transversas-(4,5,4)-DD with v = 20 points andb = 256 blocks. As a matter of
fact, we actually have & (4, 5, 1)-DD: Given anyR-transversal-set, say{po, p1, P2, Ps },
precisely one of the four blocks through p;, p> will contain ps.

4.5 Notes and further references

4.5.1 All finite chain geometries (not only Laguerre geometrieayennice point models
in finite projective spaces, and models in terms of finite &ra@nnians. See the many
references in [55, p. 812], [29], and [30]. Thus, many DDsfthis chapter allow—up to
isomorphism—other descriptions from which their conrattvith finite local algebras
may not be immediate.

For example, the DD which belongs to the algebra of dual nusnbeer GF(q) arises
also as follows:

(a) The points of the DD are the points of a quadratic conewiithits vertex in the
three-dimensional projective space 0@ (q). The blocks are the non-degenerate
conic sections of this cone. The point classes are the gengraf this cone, the
vertex being removed from them. This is the finite analogudeBlaschke cone.

(b) The points of the DD are the lines of a parabolic linearggaence without its axis
in the three-dimensional projective space o@f(q). The blocks are the reguli
which are entirely contained in this congruence. The pdagses are the pencils of
lines which are entirely contained in this congruence, the laeing removed from
them.

The Klein mapping—carrying the name of EL.IXx KLEIN (1849-1925)—is a one-one
correspondence between the set of lines of the three-diorexigrojective space over
a commutative field< and the set of points of a certain quadric in a five-dimengiona
projective space ovek’; it is called theKlein quadric A reader who is familiar with this
mapping will notice immediately that the Klein image of thedel in (b) is just the model
described in (a). However, the ambient space of the cone savthree-dimensional
tangent space of the Klein quadric. Cf. [64, 15.4].
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An Outlook: Finite Chain Geometries

5.1 A parallelism based upon the Jacobson radical

5.1.1Now we turn our attention to the projective line over an adit ring R, as we
present the announced definition of parallel points in theeged case. It is taken from
[34], where the term “radical parallelism” is used insteAdpoint p € P(R) is called
parallel to a pointg € P(R) if

TAD = TALQ
holds for allz € P(R). In this case we writg || ¢. By definition, the distant relation on
P(R) is aGLy(R)-invariant notion. Hence

pllga< v |l¢ (5.1)

holds for allp, ¢ € P(R) and ally € GLy(R).

Clearly, the relation| is reflexive and transitive. We shall see below thas in fact
an equivalence relation; also it will become clear that aewvipus definition of parallel
points (R a local ring) is a particular case of the definition from the\a

5.1.2 The connection between the parallelismBff?) and the Jacobson radical &f
(cf. 3.5.1) is as follows: We consider the factor rifiy rad 2 =: R and the canonical
epimorphismRk — R : a — a + rad R =: @. It has the crucial property

a€ER & aeR* (5.2)
for all « € R; cf. [73, Proposition 4.8]. The Jacobson radical of thedadng R/ rad R
is zero [73, Proposition 4.6].
In geometric terms we obtain a mapping

P(R) — P(R) : p = R(a,b) — R(a,b) =:p (5.3)
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which is well defined and surjective [29, Proposition 3.5)rtRermore, as a geometric
counterpart of (5.2) we have
poq e Dag (5.4)

forall p, ¢ € P(R), where we use the same symbol to denote the distant relatidh&?)
and onP(R), respectively. See Propositions 3.1 and 3.2 in [29]. Of seuall this is a
generalization of the mapping given in (3.19), whé&wvas supposed to be local.

The following is taken from Theorem 2.2 and Corollary 2.3 ia]f3
Theorem 5.1.3 The mapping given bfb.3) has the property

plle D=7 (5.5)

for all p, ¢ € P(R). Consequently, the parallelis(i) on the projective line over a ring is
an equivalence relation.

Let us write[p| for theparallel classof p € P(R). It can be derived from (5.5) that

#[p] = #rad R (5.6)

for all p € P(R). Thus the cardinality ofad R can be recovered from tH& R) as the
cardinality of an arbitrarily chosen class of parallel gsirin particular/| is the equality
relation if, and only ifrad R = {0}.

An easy consequence of (5.4) and Theorem 5.1.3 is
plla©P=0=DLT < pLq (5.7)
for all p, ¢ € P(R). In general, however, the converse of (5.7) is not true:

Theorem 5.1.4Let R be an arbitrary ring. The relations “parallel’(||) and “non-
distant” (£) onP(R) coincide if, and only ifR is a local ring.

For a proof we refer to [34, Theorem 2.5]. By the above, our tefnitions of parallel
points in 3.5.8 and 5.1.1 coincide in case of a local ring.

5.2 Counting the point set

5.2.1 Let R be a finite ring. The problem to determine the number of pahthe pro-
jective line overR is intricate. Our approach follows [107, Section 10] andsési the
following famous theorem on the structure of semisimplgsidue to ®SEPHHENRY
MACLAGAN—WEDDERBURNand BEvIL ARTIN; cf. [73, Theorem 3.5]. We state it only
for the particular case of a finite ring:
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Theorem 5.2.2 Let R be a finite ring such thatad R is zero. ThenR is isomorphic to a
direct productR; x Ry x --- X R, where eachR; is a full matrix ring GF(g;)™*™. The
numbern is uniquely determined, as are the pairs;, ¢;) fori € {1,2,... ,n}.

5.2.3 It is possible to count the number of points of the projectine over the ring
of m x m matrices with entries front:F(¢), because there exists a bijection from this
projective line onto the set afi-dimensional subspaces o2a-dimensional vector space
over the same field. This result is due teXER HUBAUT [66, p. 500], who proved it for
an arbitrary commutative fiel& instead ofGF(q). This powerful tool was generalized
by ANDREA BLUNCK [22, Theorem 2.1] to the ring of endomorphisms of a vectocepa
without any restriction on its dimension or the ground field.

By virtue of this bijection and by a result ob3EPHADOLPHE THAS [105, 3.3], we
obtain

#EGFQ™ ™) =[] ey (5.8)

See also [65, Theorem 3.1].
Next, it is easy to see that the projective line over a direatlpct of rings, say
Ry X Ry X -+ X Ry,
is in one-one correspondence with the cartesian préduct
P(Ry) x P(Ry) x - -- x P(R,,).

Hence the Wedderburn—Artin Theorem 5.2.2 and formula (pr8Yyide the number of
points on the projective line over a direct product of matigs.

Finally, given any finite ring? we infer from (5.6) that
#P(R) = (# rad R) (#IP’(E)), (5.9

whereR = R/rad R. Sincerad R = 0, we can apply our result from the above to count

the number of points off(R), thus obtaining a formula for the number of points of the
projective lineP(R).

5.3 Divisible designs vs. finite chain geometries

5.3.1To end this series of lectures, let us compare the definitioa divisible design
from 2.1.3 with properties of a chain geomekyK, R), whereR is a finite ring. Given
Y (K, R) we can associate with it the positive integers

v:i=#P(R), t :==3, sy :=#rad R, sy:=v—#R, k:=#K + 1, and),, (5.10)
1The cas&s = GF(2) x GF(3) is illustrated in Figure 3.2.
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where)\, is the constant number of blocks through @ny 3 mutually distant points. As
we saw,)\; depends on “how” the fiel& is embedded iR, whence we cannot not state
a precise value. We remark that> # R + # rad R implies the inequality

s9 > #R+#rad R — #R = #rad R.

5.3.2 Given a finite chain geometry the following assertions heltiere we use the
constants introduced in (5.10):

(A1) #[x] = s, forall x € P(R).
(A) #{y € P(R) |y £z} = sy forall z € P(R).

(B1) C(K, R) is a set of subsets @ R) with #C = k for all chainsC € C(K, R). The
points of any chain are mutually distant.

(C,) For eacht-subsety” C P(R) of mutually distant points there exist a exacty
chains ofC(K, R) containingY".

(D) t < &

Thus any finite chain geometries is “almost3alivisible design. However, unleds is

a local ring, al|-transversaB-subset of?( R) need not be a subset of any chain, and the
parametes; need not coincide with,.

On the other hand, the preceding conditions){AD,) could serve as a starting point for
the investigation of “divisible design-like structures’the future.
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