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Preface

These notes are based upon a series of lectures given at theSummer School on Combina-
torial Geometry and Optimisation 2004 “Giuseppe Tallini”. It took place at theCatholic
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2004research projectStrutture Geometriche, Combinatoria e loro Applicazioni, coordi-
nated by GUGLIELMO LUNARDON, and supported byGruppo Nazionale per le Strutture
Algebriche, Geometriche e le loro Applicazioni. A preliminary version was used during
the lectures. In its final form, several remarks, suggestions for further reading, and addi-
tional references have been added to the text.

It was wonderful to speak and discuss with so many participants of the summer school.
Their feedback, questions, and criticism helped substantially to improve the final text.

Also, I am very grateful to ANDREA BLUNCK (Hamburg) and RALPH-HARDO SCHULZ

(Berlin) for providing a lot of material, making so many suggestions, updating the list of
references, and adding valuable remarks. It is impossible to thank them enough.

JOHANNES GMAINER (Vienna) deserves special mention for his careful proofreading. It
allowed to eliminate a lot of errors.

Last, but not least, I would like to express my great appreciation to the local organizers:
My thanks go to (in alphabetical order) MARIO MARCHI, SILVIA PIANTA , and ELENA

ZIZIOLI , for their great efforts in organizing this summer school, their valuable assistance
in many respects, their enthusiasm, their patience, their invitation to teach at this meeting,
and their overwhelming hospitality.

HANS HAVLICEK

Vienna, December 2004
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Chapter 1

Introduction

In these lecture notes we aim at bringing together design theory and projective geometry
over a ring. Both disciplines are well established, but the results on the interaction between
them seem to be rare and scattered over the literature. Thus our main goal is to present
the basics from either side and to develop, or at least sketch, the principal connections
between them.

In Chapter 2 we start from the scratch with divisible designs.Loosely speaking, a divisible
design is a finite set of points which is endowed with an equivalence relation and a family
of distinguished subsets, called blocks, such that no two distinct points of a block are
equivalent. Furthermore, there have to be several constants, called the parameters of the
divisible design, as they govern the basic combinatorial properties of such a structure. Our
exposition includes a lot of simple examples. Also, we collect some facts about group
actions. This leads us to a general construction principle for divisible designs, due to
SPERA. This will be our main tool in the subsequent chapters.

Next, in Chapter 3 we take a big step by looking at the classicalLaguerre geometry over
the reals. This part of the text is intended mainly as a motivation and an invitation for
further reading. Then we introduce our essential geometricconcept, the projective line
over a ring. Although we shall be interested in finite rings only, we do not exclude the
infinite case. In fact, a restriction to finite rings would hardly simplify our exposition.
From a ring containing a field, as a subring, we obtain a chain geometry. Again, we take a
very short look at some classical examples, like Möbius geometries. Up to this point the
connections with divisible designs may seem vague. However, if we restrict ourselves to
finite local rings then all the prerequisites needed for constructing a divisible design are
suddenly available, due to the presence of a unique maximal ideal in a local ring.

Chapter 4 is entirely devoted to the construction of a divisible design from the projective
line over a finite local ring. The particular case of a local algebra is discussed in detail,
but little seems to be known about the case of an arbitrary finite local ring, even though
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such rings are ubiquitous. It is worth noting that the isomorphisms between certain divis-
ible design can be described in terms of Jordan isomorphismsof rings and projectivities;
strictly speaking this applies to divisible designs which stem from chain geometries over
local algebras with sufficiently large ground fields. Geometric mappings arising from Jor-
dan homomorphisms are rather involved, and the related proofs have the tendency to be
very technical; we therefore present this material withoutgiving a proof.

Chapter 5 can be considered as an outlook combined with an invitation for further re-
search. We sketch how one can obtain an equivalence relationon the projective line over
any ring via the Jacobson radical of the ring. Recall that suchan equivalence relation is
one of the ingredients for a divisible design. The maximal ideal of a local ring is its Ja-
cobson radical, so that we can generalize some of our resultsfrom a local to an arbitrary
ring. It remains open, however, if this equivalence relation could be used to construct suc-
cessfully a divisible design even when the ring is not local.Finally, we collect some facts
about finite chain geometries. Their combinatorial properties are—in a certain sense—
almost those of divisible designs, but no systematic treatment seems to be known.



Chapter 2

Divisible Designs

2.1 Basic concepts and first examples

2.1.1 Suppose that a tournament is to take place withv participants coming from various
teams, each team having the same number of members, says. In order to avoid trivialities,
we assumev > 0 ands > 0. So there arev/s teams. The tournament consists of a number
of games. In any gamek ≥ 2 participants from different teams play against each other.
Of course, there should be at least two teams, i.e.,2 ≤ v/s.

The problem is to organize this tournament in such a way that all participants are “treated
equally”. Strictly speaking, the objective is as follows:

The number of games in which any two members from different teams play against each
other has to be a constant value, sayλ2.

In this way it is impossible that one participant would have the advantage of playing over
and over again against a small number of members from other teams, whereas others
would face many different counterparts during the games.

In the terminology to be introduced below, this problem amounts to constructing a2-
(s, k, λ2)-divisible design withv elements. The points of the divisible design are the par-
ticipants, the point classes are the teams, and the blocks correspond to the games. Many
of our examples will give solutions to this problem for certain values ofs, k, λ2, andv.

2.1.2 Throughout this chapter we adopt the following assumptions: X is a finite set with
an equivalence relationR ⊂ X ×X. We denote by[x] theR-equivalence class ofx ∈ X
and define

S := {[x] | x ∈ X}. (2.1)

A subsetY of X is calledR-transversalif #(Y ∩ [x]) ≤ 1 for all x ∈ X. Observe that
here the word “transversal” appears in a rather unusual context, since it is not demanded
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thatY meetsall equivalence classes in precisely one element. Cf., however,the definition
of a transversal divisible design in 2.1.5.

Definition 2.1.3 A triple D = (X,B, S) is called at-(s, k, λt)-divisible designif there
exist positive integerst, s, k, λt such that the following axioms hold:

(A) B is a set ofR-transversal subsets ofX with #B = k for all B ∈ B.

(B) #[x] = s for all x ∈ X.

(C) For eachR-transversalt-subsetY ⊂ X there exist exactlyλt elements ofB con-
tainingY .

(D) t ≤ v
s
, wherev := #X.

The elements ofX are calledpoints, those ofB blocks, and the elements ofS point
classes.

We shall frequently use the shorthand “DD” for “divisible design”. Sometimes we shall
speak of at-DD without explicitly mentioning the remainingparameterss, k, andλt.
According to our definition, a block is merely a subset ofX. Hence the DDs which we are
going to discuss aresimple, i.e., we do not take into account the possibility of “repeated
blocks”. Cf. [12, p. 2] for that concept.

SinceS is determined byR and vice versa, we shall sometimes also write a divisible
design in the form(X,B,R) rather than(X,B, S).

2.1.4Let us write down some basic properties of at-(s, k, λt)-DD. Sinces, t ≥ 1, axiom
(D) implies that

#X = v ≥ st ≥ 1 (2.2)

or, said differently, thatX 6= ∅. From this and (B) we infer that

#S =
v

s
≥ 1. (2.3)

Hence, by (D) and (B), there exists at least oneR-transversalt-subset ofX, sayY0. By
virtue of (C), thisY0 is contained inλt ≥ 1 blocks so that

#B =: b ≥ 1. (2.4)

So, sinceB 6= ∅, we can derive from axiom (A) and (2.3) the inequality

#B = k ≤
v

s
for all B ∈ B. (2.5)
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2.1.5A divisible design is calledtransversalif each block meets all point classes, oth-
erwise it is calledregular. Hence at-(s, k, λt)-DD is transversal if, and only if equality
holds in (2.5).

During the last decades there has been a change of terminology. Originally, the point
classes of a DD were calledpoint groupsand DDs carried the namegroup-divisible de-
signs. In order to avoid confusion with the algebraic term “group”, in [11] this name was
changed to readgroop-divisible designs. We shall not use any of these phrases.

2.1.6 Let us add in passing that some authors use slightly different axioms for a DD in
order to exclude certain cases that do not deserve interest.For example, according to our
definitions = v is allowed, but this forcest = k = 1.

On the other hand, our axiom (D) is essential in order to rule out trivial cases which would
cause a lot of trouble. If we would allowt > v

s
then there would not be anyR-transversal

t-subset ofX, and (C) would hold in a trivial manner. Such a value fort would therefore
have no meaning at all for a structureD = (X,B, S).

Examples 2.1.7We present some examples of DDs.

(a) We consider thePappos configurationin the real projective plane which is formed
by 9 points and9 lines according to Figure 2.1. We obtain a2-(3, 3, 1)-DD, sayD,

p1

q1
r1

p2

q2
r2

p3 q3 r3

Figure 2.1: Pappos configuration

as follows: Let
X := {p1, p2, p3, q1, q2, q3, r1, r2, r3},

i.e., v = 9. The blocks are, by definition, the3-subsets of collinear points inX,
so thatk = 3. We define three point classes, namely{p1, p2, p3}, {q1, q2, q3}, and
{r1, r2, r3}, each withs = 3 elements. Then for any two points from distinct point
classes are is a unique block containing them. Sot = 2 andλ2 = 1. This DD is
transversal.
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(b) Let us take aregular octahedronin the Euclidean3-space (Figure 2.2), and let us
turn it into a DD as follows: Denote byX the set of allv = 6 vertices of the

Figure 2.2: Octahedron

octahedron. For allp, q ∈ X we putp R q if, and only if, p andq are opposite
vertices. Hences = 2. The blocks are defined as the triangular faces, whencek = 3.
So we get a transversal3-(2, 3, 1)-divisible design.

(c) Our next example is theprojective planeof order three which is depicted on the
left hand side of Figure 2.3. It is a2-(1, 4, 1)-DD with v = 13 points. There are13
blocks; they are given by those subsets of the point set whichconsist ofk = 4 points
on a common curve. (Some of these curves are segments, othersare not.) There are
13 point classes, becauses = 1 means that all point classes are singletons.

We shall not need the definition of a finite projective plane and refer to [12, p. 6]. Let
us add, however, that in the theory of projective planes one speaks oflines rather
than blocks. Theorder of a projective plane is defined to bek − 1 if there arek
points on one (or, equivalently, on every) line.

Let us remove one point from the point set of this projective plane. Also, let us
redefine the point classes as the four truncated lines (illustrated by thick segments
and a thick circular arc), the other nine lines remain as blocks. This yields a2-
(3, 4, 1)-DD.

If we delete one line and all its points from the projective plane of order three then
we obtain theaffine planeof order three. Each of the twelve remaining lines gives
rise to a block with three points, the point classes are defined as singletons. As
before, one speaks of (affine) lines rather than blocks in thecontext of affine planes.
Observe that theorder of an affine plane is just the number of points on one (or,
equivalently, on every) line. See [12, p. 8] for further details.

This affine plane is a2-(1, 3, 1)-DD with v = 9 points and, as before, all point
classes are singletons. See the third picture in Figure 2.3.Two lines of an affine
plane are calledparallel if they are identical or if they have no point in common.
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Finally, we change the set of lines and the set of point classes of this affine plane as
follows: We exclude three mutually parallel lines from the line set, turn them into
point classes, and disregard the one-element point classesof the underlying affine
plane. The remaining nine lines are considered as blocks. Inthis way a2-(3, 3, 1)-
DD with v = 9 points is obtained. On the right hand side of Figure 2.3 the bold
vertical segments represent the point classes.

Figure 2.3: DDs from the projective plane of order3

(d) We proceed as in the previous example, but starting with the projective plane of
order two which is a2-(1, 3, 1)-DD with v = 7 points. In this way we obtain a2-
(2, 3, 1)-DD with v = 6 points, a2-(1, 2, 1)-DD with v = 4 points (the affine plane
of order2), and a2-(2, 2, 1)-DD with v = 4 points. See Figure 2.4.

Figure 2.4: DDs from the projective plane of order2

It is easy to check that the3-DD from Example (b) is also a2-DD; likewise all our2-DDs
are at the same time1-DDs. Thus the previous examples illustrate the following result:

Theorem 2.1.8 Let D be at-(s, k, λt)-DD with t ≥ 2 and leti be an integer such that
1 ≤ i ≤ t. ThenD is also ani-(s, k, λi)-DD with

λi = λt

(
vs−1 − i
t− i

)
st−i

(
k − i
t− i

) . (2.6)
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Proof. We fix one transversali-subsetI. The proof will be accomplished by counting in
two ways the number of pairs(Y,B), whereY is a(t− i)-subset ofX such thatI ∪ Y is
a transversalt-subset, and whereB is a block containingI ∪ Y .

On the one hand, let us single out one of theλi blocks containingI. Then there are
(
k − i
t− i

)

possibilities to choose aY within that particular block.

On the other hand, to select an arbitraryY amounts to the following: First chooset − i
point classes out of thevs−1 − i point classes that are disjoint fromI

(
cf. (2.3)

)
, and then

choose in each of these point classes a single point (out ofs). Hence there are precisely
(
vs−1 − i
t− i

)
st−i

ways to find such aY . For everyY there areλt pairs(Y,B) with the required property.

Altogether we obtain

λi

(
k − i
t− i

)
= λt

(
vs−1 − i
t− i

)
st−i (2.7)

which completes the proof. �

2.1.9 Theorem 2.1.8 enables us to calculate several otherparametersof a t-(s, k, λt)-DD.
Letting i = 0 in formula (2.6) provides the number of blocks, i.e.

b := #B = λt

(
vs−1

t

)
st

(
k
t

) . (2.8)

Likewise, fori = 1 we obtain the number

r := λ1 (2.9)

of blocks through a point which is therefore a constant. Provided thati = t − 1 formula
(2.6) reads

λt−1 = λt
v − st+ s

k − t+ 1
. (2.10)

By Theorem 2.1.8, formula (2.10) remains valid ift is replaced with an integert′, subject
to the condition1 ≤ t′ ≤ t. Hence we infer the equation

bk = rv (2.11)
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by lettingt′ = 1. For t ≥ 2 we may lett′ = 2 which gives

r(k − 1) = λ2(v − s). (2.12)

The last two equations are just particular cases of formula (2.7).

2.1.10 A divisible design withs = 1 is called adesign; we refer to [67], or the two
volumes [12] and [13]. In design theory the parameters is not taken into account, and
a t-(1, k, λt)-DD with v points is often called at-(v, k, λt)-design. Of course, this is a
different notationand we urge the reader not to draw the erroneous conclusion “v = s”
when comparing these lecture notes with a book on design theory.

We have already met examples of designs in Examples 2.1.7 (c)and (d), namely the
projective and affine planes of orders three and two. However, designs are not the topic of
this course. Instead, we shall focus our attention on the case whens > 1.

2.1.11 If D = (X,B, S) is at-(s, k, λt)-DD andD′ = (X ′,B′, S′) is at′-(s′, k′, λ′t′)-DD
then anisomorphismis a bijection

ϕ : X → X ′ : p 7→ pϕ

such that

B ∈ B ⇔ Bϕ ∈ B
′ (2.13)

S ∈ S ⇔ Sϕ ∈ S
′. (2.14)

Clearly, the inverse mapping of an isomorphism is again an isomorphism. If the product
of two isomorphisms is defined (as a mapping) then it is an isomorphism. The set of all
isomorphisms of a DD onto itself, i.e. the set of allautomorphisms, is a group under
composition of mappings.

2.1.12 Suppose that there exists an isomorphism of at-(s, k, λt)-DD D onto a t′-
(s′, k′, λ′t′)-DD D′. Such DDs are said to beisomorphic. Then

v = v′, s = s′, andk = k′.

However, in view of Theorem 2.1.8 we may havet 6= t′. Thus we impose the extra
condition that the parameterst andt′ are maximal, i.e.,D is at-DD but not a(t+ 1)-DD,
and likewise forD′. Then, clearly,

t = t′ andλt = λ′t′ .
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2.1.13 Condition (2.14) in the definition of an isomorphism can be replaced with the
seemingly weaker but nevertheless equivalent condition

S ∈ S ⇒ Sϕ ∈ S
′: (2.15)

Suppose that we are given a bijectionϕ : X → X ′ satisfying (2.15). IfSϕ ∈ S′ for some
subsetS of X then there is anx ∈ S. Hencexϕ ∈ Sϕ ∩ [x]ϕ with [x]ϕ ∈ S′ by (2.15).
Since two equivalence classes with a common element are identical, we getSϕ = [x]ϕ

and, finally,S = [x] ∈ S. In sharp contrast to this result, the equivalence sign in (2.13) is
essential. Cf. Example 2.1.14 below.

We may even drop condition (2.14) in the following particular situation: Letϕ : X → X ′

be a bijection of a2-DD D onto a2-DD D′ such that (2.13) holds. Then, for allx, y ∈ X
with x 6= y we havex R y if, and only if, there exists a block containingx andy. The
same kind of characterization applies toD′. Hencex R y is equivalent toxϕ R′ yϕ for all
x, y ∈ X.

Example 2.1.14Let us consider once more aregular octahedronin the Euclidean3-
space. We turn the set of its vertices into a2-DD with 6 points in two different ways
(Figure 2.5): For both DDs the point classes are the2-sets of opposite vertices. However,
the blocks are different. Firstly, we takeall 8 triangular faces as blocks (left image). This
gives a2-(2, 3, 2)-DD which is also a3-DD. Cf. Example 2.1.7 (b). Secondly, only4
triangular faces (given by the shaded triangles in the rightimage) are considered as blocks,
so that a2-(2, 3, 1)-DD is obtained.

Figure 2.5: Two non-isomorphic2-DDs from an octahedron

Observe that the identity mappingidX maps every block of the second design onto a
block of the first design, but not vice versa. Hence a bijection between the point sets of
DDs which preserves point classes in both directions and blocks in one direction only,
need not be an isomorphism.

Exercise 2.1.15Which of the DDs from Examples 2.1.7 and 2.1.14 are isomorphic?
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2.2 Group actions

2.2.1Let us recall that all bijections (orpermutations) of a finite set1 X form thesymmet-
ric groupSX . If G is any group then a homomorphism

α : G→ SX : g 7→ gα

is called apermutation representationofG. In this case the groupG is also said tooperate
or act onX via α. In fact, eachg ∈ G yields the bijection

gα : X → X : x 7→ x(gα).

Wheneverα is clear from the context, then we shall writexg for the image ofx under the
permutationgα. Thus, if the composition inG is written multiplicatively, we obtain

x(gh) = (xg)h for all x ∈ X and allg, h ∈ G.

Provided thatα is injective the representation is calledfaithful. So for a faithful repre-
sentation we havekerα = {1G} as is kernel, and we can identifyG with its imageGα.
However, in most of our examples the representation will notbe faithful, i.e., there will
be distinct elements ofG which yield the same permutation onX.

2.2.2For the remaining part of this section we suppose thatG acts onX (via α).

For eachx ∈ X we writexG := {xg | g ∈ G} for theorbit of x underG. The set of all
such orbits is a partition ofX. If X itself is an orbit thenG is said to operatetransitivelyon
X. This means that for any two elementsx, y ∈ X there is at least oneg ∈ Gwith xg = y.
If, moreover, thisg is always uniquely determined then the action ofG is calledregular
or sharply transitive. If G operates regularly onX then the representation is necessarily
faithful, since everyg ∈ kerα has the propertyxg = x for all x ∈ X, whenceg = 1G.

The given groupG acts also in a natural way on certain other sets which are associated
with X. E.g., for every non-negative integert, the groupG acts on thet-fold productX t

by
(x1, x2, . . . , xt)

g := (xg1, x
g
2, . . . , x

g
t ).

If this is a transitive action on the subset oft-tuples withdistinct entriesfromX then one
says thatG actst-transitivelyonX.

Moreover, fort ≤ #X, the groupG acts on the (non empty) set
(
X

t

)
of all t-subsets of

X by
{x1, x2, . . . , xt}

g := {xg1, x
g
2, . . . , x

g
t}.

1Most of the results from this section remain true for an infinite setX.
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In case that this is a transitive action, the groupG is said to actt-homogeneouslyonX.

Similarly,G acts on the power set ofX.

Later, we shall be concerned witht-homogeneous andt-transitive group actions. Thus the
following result, due to DONALD L IVINGSTONE and ASCHER WAGNER [76], deserves
our interest, even though we are not going to use it.

Theorem 2.2.3 Suppose that the action of a groupG on a finite setX is t-homogeneous,
where4 ≤ 2t ≤ #X. ThenG acts(t − 1)-transitively onX. If, moreover,t > 4 thenG
even actst-transitively onX.

See also [109] for a short proof, [43, p. 92], and [77,§ 16].

2.2.4 An equivalence relationR onX is calledG-invariant if

x R y ⇒ xg R yg for all x, y ∈ X and allg ∈ G. (2.16)

Then
x R y ⇔ xg R yg for all x, y ∈ X and allg ∈ G (2.17)

follows immediately, by applying (2.16) toxg R yg andg−1. The finest and the coarsest
equivalence relation onX, i.e. the diagonaldiag(X×X) = {(x, x) | x ∈ X} andX×X,
obviously areG-invariant equivalence relations onX.

Suppose now thatG acts transitively onX. If diag(X ×X) andX ×X are the onlyG-
invariant equivalence relations onX then the action ofG is said to beprimitive; otherwise
the action ofG is calledimprimitive.

Suppose thatG acts imprimitively onX. A subsetS ⊂ X is called ablock of imprimitivity
if it is an equivalence class of aG-invariant equivalence relation, sayR, which is neither
diag(X × X) norX × X. Thus a block of imprimitivity is a subsetS of X such that
#S > 1, S 6= X, and for allg ∈ G we have eitherSg = S or Sg ∩ S = ∅.

2.2.5 Given a subsetY ⊂ X the setwise stabilizerof Y in G is the setGY , say, of all
g ∈ G satisfyingY g = Y . This stabilizer is a subgroup ofG. Thepointwise stabilizer
of Y ⊂ X in G is the set of allg ∈ G such thatyg = y for all y ∈ Y . This pointwise
stabilizer is also a subgroup ofG and, clearly, it is a normal subgroup of the setwise
stabilizerGY .

If y ∈ X then we simply writeGy instead ofG{y}. With this convention, the mapping
yg 7→ Gyg is a bijection of the orbityG onto the set of right cosets ofGy in G, whence we
obtain the fundamental formula

#yG =
#G

#Gy

. (2.18)

It links cardinality of the orbityG with the index of the stabilizerGy in G, i.e. the number
of right (or left) cosets ofGy in G.

We refer to [69, pp. 71–79] for a more systematic account on group actions.
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2.3 A theorem of SPERA

2.3.1 One possibility to construct divisible designs is given by the following Theorem
which is due to ANTONINO GIORGIO SPERA [101, Proposition 3.2]. A similar construc-
tion for designs can be found in [12, Proposition 4.6].

The ingredients for this construction are a finite setX with an equivalence relationR on
its elements, a finite groupG acting onX, and a so-calledbase block(or starter block)
B0, say. Its orbit under the action ofG will then be our set of blocks. More precisely, we
can show the following:

Theorem 2.3.2 LetX be a finite set which is endowed with an equivalence relationR;
the corresponding partition is denoted byS. Suppose, moreover, thatG is a group acting
onX, and assume that the following properties hold:

(a) The equivalence relationR isG-invariant.

(b) All equivalence classes ofR have the same cardinality, says.

(c) The groupG acts transitively on the set ofR-transversalt-subsets ofX for some
positive integert ≤ #S.

Finally, letB0 be anR-transversalk-subset ofX with t ≤ k. Then

(X,B, S) with B := BG
0 = {Bg

0 | g ∈ G}

is a t-(s, k, λt)-divisible design, where

λt :=
#G

#GB0

(
k
t

)

(
vs−1

t

)
st
, (2.19)

and whereGB0
⊂ G denotes the setwise stabilizer ofB0.

Proof. Firstly, let #X =: v. SinceB0 is R-transversal, we have0 < t ≤ k = #B0 ≤
#S = v

s
so that axiom (D) in the definition of a DD is satisfied. Also, weobtains, k > 0.

AsB0 is anR-transversalk-set, so is every element ofBG
0 by (2.17). This verifies axiom

(A), whereas axiom (B) is trivially true due to assumption (b).

Next, to show axiom (C), we consider the base blockB0 and at-subsetY ⊂ B0 which
exists due to our assumptiont ≤ k. Let λt > 0 be the number of blocks containingY .
Given an arbitraryR-transversalt-subsetY ′ ⊂ X there is ag ∈ G with Y ′ = Y g, since
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Y ⊂ B0 is R-transversal. Thisg takes theλt distinct blocks throughY to λt distinct
blocks throughY ′. Similarly, the action ofg−1 shows that there cannot be more thanλt
blocks containingY ′.

Altogether, we have verified the axioms of a divisible design. Yet, it remains to calculate
the parameterλt. By definition, the groupG acts transitively on the setB of blocks. By
equation (2.18), the number of blocks is

b =
#G

#GB0

,

whence, by (2.8), we get

λt = b

(
k
t

)

(
vs−1

t

)
st

=
#G

#GB0

(
k
t

)

(
vs−1

t

)
st

which proves (2.19). �

Note that in [101] our condition (b) is missing. On the other hand it is very easy to show
that (b) cannot be dropped without effecting the assertion of the theorem:

Example 2.3.3 Let X = {1, 2, 3}, S = {{1}, {2, 3}}, and letG be that subgroup of
the symmetric groupS3 which is formed by the identityidX and the transposition that
interchanges2 with 3. Then, apart from (b), all other assumptions of Theorem 2.3.2 are
satisfied if we definet := 2 andB0 := {1, 2}. However, no2-DD is obtained, since there
are two blocks containing1, but there exists only one block through the point2.

2.3.4 In the subsequent chapters we shall mainly apply a slightly modified version of
Theorem 2.3.2 which is based on the following concept. At-tuple(x1, x2, . . . , xt) ∈ X t

is calledR-transversalif its entries belong tot distinctpoint classes.

Corollary 2.3.5 Theorem2.3.2 remains true, mutatis mutandis, if assumption(b) is
dropped and assumption(c) is replaced with

(c1) The groupG acts transitively on the set ofR-transversalt-tuples ofX for some
positive integert ≤ #S.

Proof. We observe that eachR-transversalt-subsetY gives rise tot! mutually distinct
R-transversalt-tuples with entries fromY . As 0 < t ≤ #S, it is obvious from (c1) that
G acts transitively on the set ofR-transversalt-subsets ofX, i.e., condition (c) from
Theorem 2.3.2 is satisfied.
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In order to show that all equivalence classes ofR are of the same size, we prove thatG acts
transitively onS. Since assumption (a) remained unchanged, formula (2.17) can be shown
as before. This implies that, for allS ∈ S and allg ∈ G, the imageSg is an equivalence
class; henceG acts onS. For this action to be transitive it suffices to establish that G
operates transitively onX. So letx1 andx′1 be arbitrary elements ofX. We infer from
0 < t ≤ #S that there existR-transversalt-tuples(x1, x2, . . . , xt) and(x′1, x

′
2, . . . , x

′
t).

By (c1), there is at least oneg ∈ G which takes the first to the secondt-tuple. Therefore
xg1 = x′1. �

2.3.6 Suppose that a divisible designD is defined according to Theorem 2.3.2 or Corol-
lary 2.3.5. Then the action ofG onS is t-homogeneous ort-transitive, respectively. In both
cases the groupG acts onX as an automorphism group ofD which, by the definition of
B, operates transitively on the set of blocks.

2.3.7 Clearly, Theorem 2.3.2 remains valid if we replace assumption (b) with the follow-
ing:

(b1) G acts transitively onS.

Another possibility to alter the conditions in Theorem 2.3.2 is as follows [94, Remark 2.1]:
Suppose that condition (b) is dropped and that (c) is replaced with

(c2) The groupG acts transitively on the set ofR-transversalt-subsets ofX for some
positive integert < #S..

In this case, lety1, y2, . . . , yw, wherew = #S, be a system of representatives for the
equivalence classes ofR such that#[y1] ≤ #[y2] ≤ · · · ≤ #[yw]. We claim that (c2)
implies

#[y1] = #[y2] = · · · = #[yw]

which in turn is equivalent to (b). By (c2), we have0 < t < w so that

Y := {y1, y2, . . . , yt} andY ′ := {y2, y3, . . . , yt, yw}

areR-transversalt-subsets ofX. By the action ofG onS, thet-tuple
(
#[y2],#[y3], . . . ,#[yt],#[yw]

)

arises from (
#[y1],#[y2], . . . ,#[yt]

)

by re-arranging its entries. Therefore we obtain#[y1] = #[yw], as required.

Finally, we may even just drop assumption (b) if the integert admits the application of
Theorem 2.2.3 which in turn will ensure thatG acts transitively onS.
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2.4 Divisible designs and constant weight codes

2.4.1 There is a close relationship between DDs and certain codes which will be sketched
in this section.

First, we collect some basic notions from coding theory. See, among others, the book [63]
for an introduction to this subject. Let us write2

Zm := {0, 1, . . . ,m} ⊂ Z, wherem ≥ 1.

Also let n be a positive integer. TheHamming distanceof x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) ∈ Z

n
m is defined as the number of indicesi ∈ {1, 2, . . . , n} such that

xi 6= yi. It turnsZ
n
m into a metric space. TheHamming weightof an elementx ∈ Z

n
m

is its Hamming distance from(0, 0, . . . , 0) or, said differently, the number of its non-zero
entries. This terminology is in honour of RICHARD WESLEY HAMMING (1915–1998),
whose fundamental paper on error-detecting and error-correcting codes appeared in 1950.

For our purposes it will be adequate to define anautomorphismof Z
n
m as a product of any

two mappings of the following form: First we apply a bijection

Z
n
m → Z

n
m : (x1, x2, . . . , xn) 7→ (xα1

1 , x
α2

2 , . . . , x
αn

n ),

where eachαi is a permutation ofZm, and then a bijection

Z
n
m → Z

n
m : (x1, x2, . . . , xn) 7→ (x1α , x2α , . . . , xnα),

whereα is a permutation of{1, 2, . . . , n}. All such automorphisms form a group under
composition of mappings. Every automorphism preserves theHamming distance. The
Hamming weight is preserved if, and only if,(0, 0, . . . , 0) remains fixed.

An m-ary codeof lengthn is just a given subsetC ⊂ Z
n
m. Its elements are calledcode-

words. The setZm is called the underlyingalphabetof the codeC. A code is called a
constant weight codeif all codewords have the same (constant) Hamming weight.

Let C1,C2 ⊂ Z
n
m be codes. Anisomorphismis an automorphism ofZn

m takingC1 to C2.
An automorphismof a code is defined similarly.

2.4.2 We now present the essential construction: Suppose thatD = (X,B, S) is a t-
(s, k, λt)-DD with n := v

s
point classes. Also letm := s+ 1. We augmentn ideal points

toX, thus obtaining a set̃X with

#X̃ = v + n = mn.

To each point class we add precisely one ideal point in such a way that distinct point
classes are extended by distinct ideal points. Given a pointclassS ∈ S we writeS̃ for the

2In Chapter 3 we shall use this symbol to denote the ring of integers modulom.
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correspondingextended point class. Any blockB ∈ B hask ≤ s points. We turn it into
anextended block, sayB̃, by adding toB then − k ideal points of those extended point
classes̃S which have empty intersection withB. HenceB̃ meets every extended point
class at precisely one point.

By the above, there exists a bijection

ψ : X̃ → {1, 2, . . . , n} × Zm

such that for each point classS ∈ S there is an indexi ∈ {1, 2, . . . , n} with

Sψ = {i} × (Zm \ {0}) andS̃ψ = {i} × Zm.

This means that underψ the setX̃ \ X of ideal points goes over to
{
(i, 0) | i ∈

{1, 2, . . . , n}
}

. Furthermore, two points of̃X are in the same extended point class if,
and only if, the first entries of theirψ-images coincide.

We are now in a position to define thecode ofD (with respect toψ) as the subset

C(D) = {(j1, j2, . . . , jn) | ∃B ∈ B : B̃ψ = {(1, j1), (2, j2), . . . , (n, jn)}} ⊂ Z
n
m.

According to our construction, all codewords have weightk, whenceC(D) is in fact a
constant weight code.

In general,ψ can be chosen in different ways. However, this will yield isomorphic codes.
So the actual choice ofψ turns out to be immaterial. In [96] the codes arising in this way
are characterized. Also, it is shown that the entire construction can be reversed, i.e., one
can go back from certain codes to divisible designs.

2.4.3 A neat connection exists between the automorphism group of aDD and the auto-
morphism group of its constant weight code. Up to the exceptional case whent = 2 and
v = 2k, the two groups are isomorphic [96, Theorem 3.1]. Also, if the automorphism
group ofD is “large” then its corresponding code is well understood. See [44], [92], and
[96] for a detailed discussion.

2.5 Notes and further references

2.5.1There is a widespread literature on divisible designs, and some particular classes of
DDs have been thoroughly investigated and characterized.

Among them aretranslation divisible designs, i.e. 2-DDs with a groupT of automor-
phisms which acts sharply transitive onX (see 2.2.2) such that the following holds: For
all blocksB ∈ B and allg ∈ T there is eitherBg = B orBg ∩B = ∅. The name of these
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structures is due to the fact the same properties hold, mutatis mutandis, for the action of
the group of translations on the set of points and lines of theEuclidean plane. We refer to
[14], [62], [70], [86], [87], [88], [89], [90], [91], [98], [99], and the references given there.

The more general class of “(s, k, λ1, λ2)-translation DDs” is considered in [93] and [100].

Another construction of these more general DDs uses aSinger groupwith a relative dif-
ference set[71]. As a general theme, each of the preceding constructions is based upon a
group which acts as a group of automorphisms of the DD.

2.5.2While Theorem 2.3.2 and Corollary 2.3.5 pave the way to constructing DDs, the
actual choice ofX, R,G, and a base blockB0 is a subtler question. We collect here some
results:

In [101] the following case is considered:X is the projective line over a finite localK-
algebraR, andG is the general linear groupGL2(R) in two variables overR. All this is
part of our exposition in Chapters 3 and 4. In this way one obtains3-divisible designs.

A higher-dimensional analogue, based upon the projective space over a finite local algebra
can be found in [102]; here, in general, only2-DDs are obtained.

Another approach uses as the setX the set of (affine) lines of a finite translation plane,
R is chosen to be the usual parallelism of lines, andG is a group of affine collineations
which acts2-transitively on the line at infinity and contains all translations. Apart from
the finite Desarguesian planes this leads to Lüneburg planes and Suzuki groups; see [95]
and [104]. A more general setting, whereG acts2-transitively on a subset of the line at
infinity can be found in the papers [37], [40], and [94].

A class of DDs, whereG is an orthogonal group or a unitary group, is determined in
[39]. It was pointed out in [46] that one particular case of this construction is—up to
isomorphism—a Laguerre geometry (see 3.5.13) which, by a completely different ap-
proach, appears already in [101].

In [38] the groupG is chosen to be the classical groupGL3(q) (the general linear group
in 3 variables over the field withq elements) in order to obtain divisible designs.

Finally, we refer to [103] for a discussion of transitive extensions of imprimitive groups.



Chapter 3

Laguerre Geometry

3.1 Real Laguerre geometry

3.1.1 The classicalLaguerre geometryis the geometry of spears and cycles in the Eu-
clidean plane. Aspearis an oriented line and acycleis either an oriented circle or a point
(a “circle with radius zero”). There is atangency relationbetween spears and cycles; see
the first two images in Figure 3.1. Furthermore, there existsaparallelism(written as‖) on
the set of spears which is depicted in the third image. We shall not give formal definitions
of these relations.

For our purposes it is more appropriate to identify a cycle with the set of all its tangent
spears. Then it is intuitively obvious that any cycle contains precisely one spear from
every parallel class, i.e., it is a “‖-transversal set”. Also, given any three non-parallel
spears there is a unique cycle containing them. All this reminds us of a divisible design,
even though the set of spears is infinite.

This geometry is named after the French mathematician EDMOND NICOLAS LAGUERRE

(1834–1886) who used it to solve a famous problem due to APOLLONIUS OF PERGA

(262?–190? BC): Find all circles that touch three given circles (without orientation). See,
for example, [82] and [83].

3.1.2 It was in the year of 1910 that WILHELM BLASCHKE (1885–1962) showed that
the set of spears is in one-one correspondence with the points of a circular cylinder of the
Euclidean3-space [15], now called theBlaschke cylinder1. Under this mapping the cycles
correspond to the ellipses on the cylinder and two spears areparallel if, and only if, their
images are on a common generator of the cylinder. Blaschke also showed that the real

1From the point of view of projective geometry this is a quadratic cone without its vertex, whence it is
also called theBlaschke cone.



20 Chapter 3 Laguerre Geometry

Figure 3.1: Two cycles with tangent spears, and a family of parallel spears

Laguerre geometry can be represented in terms ofdual numbersx+ yε, wherex, y ∈ R,
ε /∈ R, andε2 = 0; see Example 3.5.4 (b) for a concise definition.

3.1.3 There is a wealth of literature on the classical Laguerre geometry. We refer to [5,
Chapter 1,§ 2], [6, Chapter 4], [45, Chapter 15 A], [85], [110], [111], and the survey
article [55]. Note that in [110] the terminversive Galileian plane—named after GALILEO

GALILEI (1564–1642)—is used instead.

3.1.4 Our construction of divisible designs in Chapter 4 can be seenas a generalization
of the classical Laguerre geometry, where a finite local ringtakes over the role of the ring
of dual numbers over the reals.

3.2 The affine and the projective line over a ring

All our rings are associative with a unit element(usually denoted by1), which is inherited
by subrings and acts unitally on modules. The trivial case1 = 0 is excluded.

3.2.1 LetR be a ring. Given an elements ∈ R there are various possibilities:

If there is anl ∈ R with ls = 1 thens is calledleft invertible. Such an elementl is said to
be aleft inverseof s. Right invertibleelements andright inversesare defined analogously.

If s has both a left inversel and a right inverser then

l = l1 = l(sr) = (ls)r = 1r = r. (3.1)

In this case, the elements is said to beinvertible. Moreover, by the above, all left (right)
inverses ofs are equal tor (l) so that it is unambiguous to calll = r =: s−1 the inverse
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of s. The (multiplicative) group of invertible elements (units) of a ringR will be denoted
byR∗. Clearly,0 is neither left nor right invertible.

If s 6= 0 thens is called aleft zero divisorif there exists a non-zero elementr ∈ R such
thatsr = 0. Such ans has no left inverse, sincels = 1 would imply r = (ls)r = l(sr) =
0. However, an element without a left inverse is in general nota left zero divisor.Right
zero divisorsare defined similarly.

Of course the distinction between “left” and “right” is superfluous ifR is a commutative
ring.

3.2.2Suppose that we are given elementsa, b ∈ R with ab = 1. Hencey = y1 = (ya)b
for all y ∈ R. This implies that theright translationρb : R → R : x 7→ xb is surjective.
Moreover,(ba−1)b = b1−b = 0. Thus, whenever we are able to show thatρb is injective
we obtainba− 1 = 0, i.e.,ba = 1. This conclusion can be applied, for example, ifR is a
finite ring or a subring of the endomorphism ring of a finite-dimensional vector space.

Rings with the property that, for alla, b ∈ R, ab = 1 impliesba = 1 are calledDedekind-
finite (see e.g. [73]). In fact, in most of our examples this condition will be satisfied. It
carries the name of RICHARD DEDEKIND (1831–1916).

Exercise 3.2.3Show that the endomorphism ring of an infinite dimensional vector space
is not Dedekind-finite.

3.2.4 Let R be a ring. Then it is fairly obvious how to define theaffine lineoverR. It
is simply the setR, but—as in real or complex analysis—we adopt a geometric point of
view by using the termpoint for the elements ofR. We shall meet again this affine line
as a subset of the projective line overR. However, to define something like a “projective
line” over a ringR is a subtle task. As a matter of fact, various definitions havebeen used
in the literature during the last decades. Some of those definitions are equivalent, some
are equivalent only for certain classes of rings. A short survey on this topic is included in
[75].

3.2.5 Of course, a definition of a projective line over a ring has to include, as a particular
case, the projective line over afield F . Observe that we use the term “field” for what
other authors call askew fieldor adivision ring. Thus multiplication in a field need not be
commutative.

A particular case is well known from complex analysis: Thecomplex projective linecan
be introduced asC ∪ {∞}, where∞ is an arbitrary new element. Intuitively, we think of
∞ as beinga

0
, wherea ∈ C is non-zero. For alla ∈ C, we havea

1
= xa

x
, x 6= 0. Thus

everyfraction a
b

other than “0
0
” determines an element ofC ∪ {∞}.

It is immediate to carry this over to an arbitrary fieldF . However, one has to be careful
when using fractions in case thatF is non-commutative, sincea

b
could meanab−1 or b−1a.
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We avoid ambiguity by representing the elements of theprojective line over an arbitrary
fieldF via

a ↔ F (a, 1) = {x(a, 1) | x ∈ F} for all a ∈ F,
∞ ↔ F (1, 0).

(3.2)

More formally, the projective line overF appears as the set of one-dimensional subspaces
of the left vector spaceF 2. Every non-zero vector inF 2 is a representative of a point. In
terms of the projective line the zero vector(0, 0) ∈ F 2 has no meaning. Of course, we
could also considerF 2 as aright vector space in order to describe this projective line. The
choice of “left” or “right” is just a matter of taste.

3.2.6 Now let us turn to an arbitrary ringR. We consider a (unitary) left moduleM over
R. A family (b1, b2, . . . , bn) of vectorsin M is called abasisprovided that the mapping

Rn → M : (x1, x2, . . . , xn) 7→
n∑

i=1

xibi (3.3)

is a bijection. In this caseM is calledfree of rankn. It is important to notice that this
rankn is in generalnot uniquely determined byM . See, for example, [74, Example 1.4]

In order to define the projective line over a ringR we start with a moduleM overR
which is free of rank2. By virtue of the bijection given in (3.3), we replaceM with R2.
Of course, the leftR-moduleR2 is free of rank2; this is immediate by considering the
standard basis

(
(1, 0), (0, 1)

)
of R2.

It is tempting to define the projective line over a ring just insame way as we did for a
field in (3.2). However, this would not give “enough points”,since we would not get any
“point” of the formR(1, s), wheres 6= 0 has no left inverse. Nevertheless,R(s, 1) would
be a point, i.e., we would not have symmetry with respect to the order of coordinates.
At the other extreme one could say, as in the case of a field, that everypair (a, b) ∈ R2,
(a, b) 6= (0, 0) should be a representative of some point. Yet, also here a problem arises:
In general, we would get “far too much points” for our purposes. Cf., e.g., [36, p. 1128],
where a distinction between “points” and “free points” is made.

It turned out that a “good” definition of the projective line over a ringR is as follows: A
submoduleR(a, b) ⊂ R2 is a point if(a, b) is an element of a basis with two elements. As
in the case of a vector space, thegeneral linear groupGL2(R) of invertible2×2-matrices
with entries inR acts regularly on the set of those ordered bases ofR2 which consist of
two vectors. Therefore, starting at the canonical basis we are lead to the following strict
definition:

Definition 3.2.7 Theprojective line overR is the orbit

P(R) :=
(
R(1, 0)

)GL2(R)
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ofR(1, 0) under the natural action ofGL2(R) on the subsets ofR2. Its elements are called
points.

We refer to [55, Definition 1.2.1] for an equivalent definition which avoids using coordi-
nates. Cf. also [32] for thedualof aprojective line.

3.2.8 Let us describeP(R) in different words: A pair(a, b) ∈ R2 is calledadmissible
(overR) if there existc, d ∈ R such that

(
a b

c d

)
∈ GL2(R). So we have

P(R) = {R(a, b) ⊂ R2 | (a, b) admissible}. (3.4)

Thus our definition of the projective line relies on admissible pairs. However, there may
also be non-admissible pairs(a, b) ∈ R2 such thatR(a, b) ∈ P(R). Strictly speaking, this
phenomenon occurs precisely whenR is not Dedekind-finite (see 3.2.2). We refer to [29],
Propositions 2.1 and 2.2, for further details. We thereforeadopt the following convention:

Points ofP(R) are represented by admissible pairs only.

This brings us in a natural way to the next result:

Theorem 3.2.9 Let (a, b) ∈ R2 and(a′, b′) be admissible pairs. ThenR(a, b) = R(a′, b′)
if, and only if, there exists an elementu ∈ R∗ with (a′, b′) = u(a, b).

Proof. Let R(a, b) = R(a′, b′). By our assumption, there is a matrixγ ∈ GL2(R) with
first row (a, b). Thus

(a, b) · γ−1 = (1, 0), (a′, b′) · γ−1 =: (u, v), and R(1, 0) = R(u, v).

As (a′, b′) is admissible, so is(u, v). Now (u, v) ∈ R(1, 0) impliesx(1, 0) = (u, v) for
somex ∈ R, whencev = 0. Similarly, we obtainy(u, v) = (yu, 0) = (1, 0) for some
y ∈ R. This means thaty is a left inverse ofu. By the above,(u, v) = (u, 0) is admissible.
Hence there exists an invertible matrixδ, say, with first row(u, 0). Then

(
1 0
0 1

)
=

(
u 0
∗ ∗

)

︸ ︷︷ ︸
δ

·

(
z ∗
∗ ∗

)

︸ ︷︷ ︸
δ−1

=

(
uz ∗
∗ ∗

)

shows thatz, i.e. the north-west entry ofδ−1, is a right inverse ofu. Therefore

(a′, b′) = u
(
(1, 0) · γ

)
= u(a, b) with u ∈ R∗,

as required.

Conversely, ifu is a unit with (a′, b′) = u(a, b) thenR = Ru, whenceR(a, b) =
R(ua, ub) = R(a′, b′). �
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3.2.10We note that, for allx ∈ R,
(
x 1
1 0

)
=

(
0 1
1 −x

)−1

∈ GL2(R),

(
1 x
0 1

)
=

(
1 −x
0 1

)−1

∈ GL2(R). (3.5)

Hence the projective line overR contains all pointsR(x, 1) with x ∈ R. If x, y ∈ R
are different thenR(x, 1) 6= R(y, 1). Analogous results hold forR(1, x) ∈ P(R) for
all x ∈ R. However, ifx ∈ R∗ thenR(1, x) = R(x−1, 1), i.e., this point is taken into
account for a second time. This shows that we can restrict ourselves to pointsR(1, x)
with x ∈ R \R∗, and it establishes the estimate

#P(R) ≥ #R + #(R \R∗). (3.6)

We shall see below that for certain rings the projective linecontains even more points. Cf.
however Theorem 3.5.5 and Corollary 3.5.6.

Example 3.2.11Let Z/(6Z) =: Z6 be the (commutative) ring of integers modulo6. We
haveZ

∗
6 = {1, 5}, where5 ≡ −1 (mod 6); the ideals ofZ6 are{0}, 2Z6 = 4Z6, 3Z6,

andZ6. Cf. [69, 2.6] for further details.

As x varies inZ6, we obtain from the first matrix in (3.5) six points

Z6(0, 1), Z6(1, 1), . . . ,Z6(5, 1),

and, forx ∈ Z6 \ Z
∗
6 from the second part of (3.5) four more points

Z6(1, 0), Z6(1, 2),Z6(1, 3), Z6(1, 4).

In this way we reach all pointsZ6(a, b) wherea or b is a unit. Therefore it remains to find
out if there exist elementsa, b ∈ Z6 \ Z

∗
6 andc, d ∈ Z6 such that

(
a b
c d

)
∈ GL2(Z6)

which in turn is equivalent to

det

(
a b
c d

)
= ad− bc ∈ Z

∗
6.

This means that the ideal generated bya andb has to be the entire ringZ6. Consequently,

(a, b) ∈ {(2, 3), (4, 3), (3, 2), (3, 4)}.

Thus the only remaining points in the projective line overZ6 are

Z6(2, 3), Z6(3, 2).

Therefore#P(Z6) = 12. Altogether, we see that among the36 elements ofZ2
6 there are

24 admissible and12 non-admissible pairs.
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3.2.12A pair (a, b) ∈ R2 is calledunimodular(overR) if there existx, y ∈ R with

ax+ by = 1.

This is equivalent to saying that the right ideal generated by a andb is the entire ringR.

Let (a, b) be the first row of a matrixγ ∈ GL2(R) and suppose that the first column of
γ−1 reads(x, y)T. We read off fromγγ−1 = 1, where1 denotes the identity matrix in
GL2(R), that every admissible pair is unimodular. We remark that

(a, b) ∈ R2 unimodular overR ⇒ (a, b) admissible overR (3.7)

is satisfied, in particular, for allcommutativerings, sinceax + by = 1 can be interpreted
as the determinant of an invertible matrix with first row(a, b) and second row(−y, x).
WALTER BENZ in his famous book [5] considers only commutative rings and defines the
projective line using unimodular pairs.

In fact (3.7) holds also for certain non-commutative rings [55, Proposition 1.4.2], namely
for rings ofstable rank2, but we shall not give a definition of this concept here. It wasthe
late Dutch geometer FERDINAND D. VELDKAMP (1931–1999) who first pointed out the
significance for geometry of the stable rank of a ring. We refer to [106,§ 2] and [108] for
excellent surveys on this topic. Let us remark, however, that all finite rings are of stable
rank2.

An example of a ringR, where (3.7) is not true, can be found in [31, Remark 5.1].

3.2.13As the concept of an admissible pair depends on the invertibility of square matrices
over a ringR, one may ask for a criterion which allows to decide whether ornot such a
square matrix is invertible. In the general case, somethinglike this does not seem to exist.
Nevertheless, there are particular cases where we can not only decide invertibility but
also explicitly describe the inverse, as we already did in 3.2.10. Some of the subsequent
examples come from theelementary subgroupof GL2(R), i.e. the subgroup generated
by elementary matrices; see [41] for the algebraic background, and [31] for the geometry
behind.

Examples 3.2.14Let γ be a2 × 2 matrix overR.

(a) If all entries ofγ commute with each other then we can calculate the determinant
det γ in the usual way. The given matrix is invertible if, and only if, det γ ∈ R∗. In
this caseγ−1 can be described in terms ofdet γ and the cofactor matrix ofγ as in
the case of a commutative field.

(b) A diagonal matrixγ = diag(a, b) is invertible if, and only ifa andb are units.
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(c) If we are given a lower triangular2 × 2 matrixγ then

γ =:

(
a 0
c d

)
=

(
a 0
0 1

) (
1 0
c 1

)

︸ ︷︷ ︸
∈GL2(R)

(
1 0
0 d

)
. (3.8)

We know from (3.5) that the second matrix on the right hand side is invertible.

Suppose now thata or d is a unit. By (b) and (3.8),γ is invertible if, and only if,a
andd are units. In this case

γ−1 =

(
a−1 0

−d−1ca−1 d−1

)
. (3.9)

Of course, there is a similar formula for the inverse of an upper triangular matrix
with invertible entries in the main diagonal.

(d) Suppose thata ∈ R is right invertible so thatab = 1 for someb ∈ R. A straightfor-
ward verification shows that

γ :=

(
a 0

1 − ba b

)
∈ GL2(R), with γ−1 =

(
b 1 − ba
0 a

)
.

This means that for rings which are not Dedekind-finite thereare invertiblelower
triangular matrices withboth diagonal entries not inR∗. Also, somewhat surpris-
ingly, the inverse of such a matrix isuppertriangular.

3.3 The distant relation

3.3.1The point setP(R) is endowed with a relationdistant(4) which is defined via the
action ofGL2(R) on the set of pairs of points by

4 :=
(
R(1, 0), R(0, 1)

)GL2(R)
.

Lettingp = R(a, b) andq = R(c, d) and taking into account Theorem 3.2.9 gives then

p 4 q ⇔

(
a b
c d

)
∈ GL2(R). (3.10)

The distant relation is symmetric, since exchanging two rows in an invertible matrix does
not influence its invertibility. In addition,4 is anti-reflexive, becauseR(1, 0) 6= R(0, 1)
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implies that distant points are distinct2. However, in general distinct points need not be
distant. Cf. Theorem 3.3.7 below.

Non-distant points (64) are also calledneighbouringor parallel; see, for example, [5], [55],
[108]. However, in these lectures we shall use the term “parallel” in a different meaning
which will be explained in 5.1.1. The two notions “parallel”and “neighbouring” coincide
precisely whenR is a local ring. See Theorem 5.1.4 and our preliminary definition in
3.5.8.

A crucial property of the distant relation is stated in the following result on the action of
GL2(R) on the projective line.

Theorem 3.3.2 The groupGL2(R) acts3-4-transitivelyon P(R), i.e, transitively on the
set of triples of mutually distant points.

Proof. (a) We consider the pointsR(1, 0),R(0, 1), andR(1, 1). They are mutually distant
by (3.5). Also, letR(a, b) be a point which is distant toR(1, 0) andR(0, 1). Consequently,

(
1 0
a b

)
∈ GL2(R) and

(
a b
0 1

)
∈ GL2(R).

Hencea, b ∈ R∗ by Example 3.2.14 (c). But this means that the matrixdiag(a, b) ∈
GL2(R) takesR(1, 1) toR(a, b), whereasR(1, 0) andR(0, 1) remain unchanged.

(b) Given three mutually distant pointsp, q, r ∈ P(R) there is, by the definition of
the distant relation, a matrixγ ∈ GL2(R) which takes the pair of points(p, q) to(
R(1, 0), R(0, 1)

)
. Then, according to (a), there is also an invertible matrix which takes

rγ to R(1, 1), while R(1, 0) andR(0, 1) remain invariant. Since this property holds for
every triple of mutually distant points, the assertion follows. �

3.3.3 Let us determine the pointwise stabilizerΩ, say, of{R(1, 0), R(0, 1), R(1, 1)}
under the action ofGL2(R) on the projective lineP(R). If γ is in this stabilizer then
γ = diag(a, b), because each ofR(1, 0) andR(0, 1) has to coincide with its image. By
Example 3.2.14 (b),a andb are units inR. Moreover, we infer fromR(1, 1)γ = R(a, b) =
R(1, 1) thata = b. These two conditions are also sufficient. Therefore

Ω = {diag(a, a) | a ∈ R∗}. (3.11)

Now we ask for the kernel of the action ofGL2(R) on the projective lineP(R) which
clearly is contained inΩ. If γ = diag(a, a) ∈ Ω is in this kernel then

R(1, x)γ = R(a, xa) = R(1, a−1xa) for all x ∈ R.

2This is one of the rare occasions where we need that0 6= 1 in R. Over the zero ringR = {0} (which
is excluded from our exposition) we have0 = 1. Therefore, by defining the projective line as above, we
obtainR(0, 0) = R(1, 0) = R(0, 1). This means thatR(0, 0) is the only point of this projective line, and
thatR(0, 0) is distant to itself.
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Recall that
Z(R) := {a ∈ R | ax = xa for all x ∈ R}

is thecentreof R; it is a subring ofR. Thereforea has to be unit in the centre ofR.
Conversely, every matrixdiag(a, a) with a ∈ Z(R)∗ fixes P(R) pointwise. It is easy to
show (as in elementary linear algebra) that the kernel of ourgroup action is equal to the
centreof GL2(R), viz.

Z
(
GL2(R)

)
= {β ∈ GL2(R) | βξ = ξβ for all ξ ∈ GL2(R)}

= {diag(a, a) | a ∈ Z(R)∗}. (3.12)

As usual, the factor groupGL2(R)/Z
(
GL2(R)

)
=: PGL2(R) is called aprojective

linear group; it elements are calledprojectivitiesand can be considered as permutations
of P(R).

Theorem 3.3.4 The following statements are equivalent.

(a) PGL2(R) acts sharply transitive the set of triples of mutually distant points.

(b) The groupR∗ of units inR is contained in the centreZ(R).

Proof.The result is an immediate consequence of (3.11) and (3.12). �

The interested reader should also compare this result with the characterizations given in
[55, Proposition 1.3.4].

3.3.5Given a pointp ∈ P(R) let

4(p) := {x ∈ P(R) | x 4 p}.

If we considerP(R) as the set of vertices of thedistant graph, i.e. the unordered graph of
the symmetric relation4, then4(p) is just theneighbourhoodof p in this graph. Once a
point p has been chosen, the points ofP(R) fall into two classes: The points of4(p) are
calledproper (with respect top), the remaining points are calledimproper(with respect
to p).

As GL2(R) acts transitively onP(R) it suffices to describe the neighbourhood ofR(1, 0),
a point which is also denoted by the symbol∞. By Example 3.2.14 (c), a pointR(a, b)
is in 4(∞) precisely whenb ∈ R∗. But then we may assume w.l.o.g. thatb = 1, because
R(a, b) = R(b−1a, 1). Theembedding

R → P(R) : a 7→ R(a, 1) (3.13)
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maps the affine line overR injectively onto the subset4(∞) of the projective line overR.
We already met this embedding in 3.2.10. It shows that the neighbourhood of any point
has#R elements.

By virtue of (3.13), we may even identify the affine line over the ringR with the subset
4(∞). From (

1 −1
0 1

)

︸ ︷︷ ︸
∈GL2(R)

(
a 1
b 1

)
=

(
a− b 0
b 1

)

follows that—in affine terms—two pointsa, b ∈ R are distant, precisely whena − b is a
unit.

Example 3.3.6 We continue the investigation of the projective lineP(Z6); see Exam-
ple 3.2.11. In Figure 3.2 each point ofP(Z6) is labelled by one of its admissible pairs.

(1, 0) (1, 4) (1, 2) (3, 2)

(1, 3)
(1, 1) (5, 1) (3, 1)

(2, 3) (4, 1) (2, 1) (0, 1)

Figure 3.2: The distant relation onP(Z6)

The distant relation onP(Z6) is illustrated in the following way: Two distinct points are
distant if they arenot on a common line. The six points inside the ellipse comprise the
neighbourhood of∞ = Z6(1, 0) in the distant graph.

As a general theme, one aims at characterizing algebraic properties of a ringR in terms of
the distant relation on the associated projective line. Here is a first result in this direction.

Theorem 3.3.7 A ringR is a field if, and only if, any two distinct points of the projective
line P(R) are distant.

Proof. (a) LetR be a field. Given distinct pointsp = R(a, b) andq = R(c, d) of P(R) we
obtain(0, 0) 6= (a, b) /∈ R(c, d) and(0, 0) 6= (c, d) /∈ R(a, b), since a one-dimensional
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vector space is spanned by each of its non-zero vectors. Thismeans that(a, b) and(c, d)
are linearly independent vectors of the left vector spaceR2, whencep 4 q follows from
(3.10).

(b) Conversely, the pointR(1, 0) is distinct from each pointR(1, x), wherex varies in
R \ {0}. By Example 3.2.14 (c), we obtain that every non-zero elementof R is invertible
or, said differently, thatR is a field. �

3.4 Chain geometries

3.4.1 The only structure on the projective line over a ring we have encountered so far is the
distant relation. Suppose now that a fieldK is contained inR, as a subring. Thus1 ∈ K
is the identity element ofR, andR can be considered as a left or a right vector space over
K. The ringR is, by definition, aK-algebraprecisely when the fieldK belongs to the
centre ofR.

Lemma 3.4.2 The mapping

P(K) → P(R) : K(k, l) 7→ R(k, l) (3.14)

is well defined. It takes distinct points ofP(K) to distant points ofP(R).

Proof.The assertions are immediate fromGL2(K) ⊂ GL2(R). �

The following definition is taken from a paper by CLAUDIO BARTOLONE [2]. For a sys-
tematic account see [28], and for the particular case whenR is an algebra overK the
reader should compare with [5] and [55].

Definition 3.4.3 Let R be a ring containing a fieldK, as a subring. Also, letC0 be the
image of the projective lineP(K) under the embedding (3.14). A subset ofP(R) is called
aK-chain(or shortly achain,K being understood) if it belongs to set

C(K,R) := C
GL2(R)
0 .

Thechain geometryover(K,R) is the structure

Σ(K,R) :=
(
P(R),C(K,R)

)
.

By definition, all chains arise from thestandard chainC0 under the action of the group
GL2(R). Observe that we refrain from excluding the trivial case whenR = K.
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3.4.4 If Σ(K,R) andΣ(K ′, R′) are chain geometries then anisomorphismis a bijec-
tion ϕ : P(R) → P(R′) preserving chains in both directions. By definition, the group
PGL2(R) is a group of automorphisms ofΣ(K,R).

Our first observation is a characterization of the distant relation 4 of P(R) in terms of a
chain geometryΣ(K,R) (see [55, 2.4.2] for the case of algebras):

Theorem 3.4.5 Let p, q ∈ P(R) be distinct points ofΣ(K,R). Thenp 4 q holds if, and
only if, there is a chainD ∈ C(K,R) joining p andq.

Proof. By the definition of the distant relation in 3.3.1, we know thatp 4 q impliesp =
R(1, 0)γ, q = R(0, 1)γ for someγ ∈ GL2(R). Hence in this casep, q ∈ Cγ

0 ∈ C(K,R).

Conversely, ifp, q ∈ Cγ
0 ∈ C(K,R), with γ ∈ GL2(R), thenpγ

−1

andqγ
−1

are distinct
points of the standard chainC0 = P(K). By Lemma 3.4.2, we havepγ

−1

4 qγ
−1

. Sinceγ
preserves4, this proves the assertion. �

Given three mutually distant points we now want to determinethe chains through them.
Note that, by Theorem 3.4.5, any two distinct points on a chain are distant.

Theorem 3.4.6 Let the pointsp, q, r ∈ P(R) be mutually distant. Then there is at least
one chainD ∈ C(K,R) containingp, q, andr.

Proof.As the groupGL2(R) acts3-4-transitively onP(R) by Theorem 3.3.2, there exists
a γ ∈ GL2(R) with p = R(1, 0)γ, q = R(0, 1)γ, andr = R(1, 1)γ. Obviously,D := Cγ

0

is a chain throughp, q, andr. �

The essential result on the group action ofGL2(R) onΣ(K,R) is as follows:

Theorem 3.4.7 LetD,D′ ∈ C(K,R) be chains. Suppose, furthermore, thatp, q, r ∈ D
and p′, q′, r′ ∈ D′ are, respectively, three mutually distinct points. Then there exists a
matrixγ ∈ GL2(R) such thatpγ = p′, qγ = q′, rγ = r′, andDγ = D′.

Proof. There exists a matrixγ1 ∈ GL2(R) mappingD to the standard chainC0. Put
p1 := pγ1, q1 := qγ1, r1 := rγ1 . The groupGL2(K) ⊂ GL2(R) leavesC0 invariant
and acts3-fold transitively onC0. Hence there is aγ2 ∈ GL2(K) with pγ21 = R(1, 0),
qγ21 = R(0, 1), rγ21 = R(1, 1). Then, we also haveCγ2

0 = C0.

Defineγ′1 andγ′2 accordingly. Thenγ = γ1γ2γ
′−1
2 γ′−1

1 has the required properties. �

Now it is easy to determine the number of chains containing three mutually distant points:
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Theorem 3.4.8 Let
N := {n ∈ R∗ | n−1K∗n = K∗}

be thenormalizerofK∗ in R∗. Then the following assertions hold:

(a) The set of chains through any three mutually distant points of Σ(K,R) is in 1-1-
correspondence with the set

{Nr | r ∈ R∗}

of right cosets ofN in the multiplicative groupR∗.

(b) In Σ(K,R) there exists exactly one chain through any three mutually distant points
if, and only if,K∗ is a normal subgroup ofR∗.

Proof.We recall from (3.11) that the subgroup

Ω = {diag(a, a) | a ∈ R∗} ∼= R∗

of GL2(R) is the pointwise stabilizer of the set{R(1, 0), R(0, 1), R(1, 1)}. So, by Theo-
rem 3.4.7, the chains throughR(1, 0),R(0, 1),R(1, 1) are precisely the imagesCω

0 , where
ω ranges inΩ. Since

R(1, x)Ω = {R(1, a−1xa) | a ∈ R∗}

holds, in particular, for allx ∈ K∗, the stabilizer of the standard chainC0 in Ω is

ΩC0
= {diag(n, n) | n ∈ N} ∼= N.

So, by (2.18), assertion (a) follows for the three given points and, by Theorem 3.4.7, for
any three pairwise distant points.

Of course, the condition in (b) just means thatR∗ = N . �

Examples 3.4.9In each of the following examples there is a unique chain through any
three distinct points ofΣ(K,R):

(a) Suppose thatK belongs to the centre ofR, i.e.,R is aK-algebra. Then, sinceK∗

is in the centre ofR∗, its normalizerN coincides withR∗. Most of the examples
which we shall encounter later on will be of this kind.

(b) Let R be a commutative ring. Then the assumptions of Example (a) are satisfied
without imposing a condition onK.

(c) Suppose thatK∗ = R∗. ThenN = R∗ = K∗ is trivially true. Observe thatK∗ = R∗

does not mean thatK = R; take, for example, a polynomial ringK[T ] over a
commutative fieldK in an indeterminateT ; see also [28, Example 2.5 (a)].
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(d) Let Z2 = GF(2) be the field with two elements. Also letR = Z
2×2
2 be the ring of

2 × 2 matrices overZ2. There are six invertible elements in this ring, namely

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
1 1
0 1

)
.

The centre ofR is given byZ(R) = {diag(x, x) | x ∈ Z2}. We put

K :=

{(
x y
y x+ y

) ∣∣∣∣ x, y ∈ Z2

}
.

It is easily seen thatK is a subring ofR which is isomorphic toGF(4), i.e. the field
with 4 elements. Of course,K∗ 6⊂ Z(R). Since#R∗ = 6, the multiplicative group
K∗ has index2 in R∗ and therefore is normal.

We now determine the intersection of all chains through three mutually distant points of
a chain geometryΣ(K,R). To this end we introduce the field

F :=
⋂

a∈R∗

a−1Ka

which is a subring ofR. Consequently, we can embed the projective lineP(F ) in P(R)
and define a chain geometryΣ(F,R) as above. Its chains will be calledF -chainsin order
to distinguish them from the chains which arise fromΣ(K,R).

Theorem 3.4.10Let p, q, r ∈ P(R) be mutually distant points. Then the intersection of
all chains ofΣ(K,R) throughp, q, r is anF -chain.

Proof. We consider w.l.o.g. the pointsR(1, 0), R(0, 1), andR(1, 1). According to Theo-
rem 3.4.7 the chains joining them are exactly the imagesCω

0 , with ω ∈ Ω; compare (3.11).
Given a matrixdiag(a, a) ∈ Ω we compute

Cω
0 = {R(a, 0)} ∪ {R(ka, a) | k ∈ K} = {R(1, 0)} ∪ {R(a−1ka, 1) | k ∈ K}.

Therefore
⋂

ω∈Ω

Cω
0 = {R(1, 0)} ∪

⋂

a∈R∗

{R(a−1ka, 1) | k ∈ K}

= {R(1, 0)} ∪ {R(f, 1) | f ∈ F},

which equalsP(F ), considered as a subset ofP(R). �



34 Chapter 3 Laguerre Geometry

3.5 Local rings, local algebras, and Laguerre algebras

3.5.1LetR be a ring. TheJacobson radicalof a ringR, named after NATHAN JACOBSON

(1910–1999) and denoted byradR, is the intersection of all maximal left (or right) ideals
of R. It is a two sided ideal ofR and its elements can be characterized as follows:

b ∈ rad R ⇔ 1 − ab ∈ R∗ for all a ∈ R ⇔ 1 − ba ∈ R∗ for all a ∈ R;

see [73, pp. 53–54].

Suppose thatR is left artinian—after EMIL ARTIN (1898–1962)—i.e., there does not ex-
ist an infinite strictly descending chain of left ideals ofR. thenradR is the largestnilpo-
tent left ideal, and it is also the largest nilpotent right ideal;this means that(radR)n = 0
for some positive integern [73, Theorem 4.12]. Consequently,radR is actually a nilpo-
tent ideal. All this holds, in particular, ifR is a finite ring. See [72] for further references
on nilpotent rings.

3.5.2A ring R is called alocal ring if R \ R∗ is an ideal3 of R. There are several equiv-
alent definitions of a local ring and the interested reader should compare with [73, The-
orem 19.1]. We just mention that a ringR is local if, and only if, it has an idealJ 6= R
containing all ideals other thanR. This is equivalent to saying thatR has a unique maxi-
mal ideal.

LetR be a local ring. SinceR \R∗ is the only maximal left ideal ofR, we obtain

radR = R \R∗,

SinceradR is an ideal, we can construct the factor ringR := R/ radR based upon the
canonical epimorphismR → R : a 7→ a. If a 6= 0 thena ∈ R∗, whencea is a unit inR.
This means thatR is a field, and we have the property

a ∈ R∗ ⇔ a ∈ R
∗
. (3.15)

Given a matrixγ = (γij) with entries inR we putγ := (γij). Then one can show as above
that

γ ∈ GLm(R) ⇔ γ ∈ GLm(R) (3.16)

holds for all natural numbersm ≥ 1.

3By an “ideal” we always mean a two-sided ideal. The term “local ring” comes from algebraic geometry:
At any pointp of an algebraic variety, the rational functions which are “locally” regular (i.e. regular in some
neighbourhood ofp) form a local ring. The non-units in this ring are those functions which vanish atp.
Compare [97, p. 72].
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3.5.3 A K-algebraR is said to belocal if R is a local ring. Clearly,K andradR are
subspaces of the vector spaceR (overK), and they meet at0 only. If, moreover, the
group(R,+) is the direct sum of its subgroupsK andradR thenR is called aLaguerre
algebraoverK. Here it is important to emphasize the ground field. Each Laguerre algebra
R overK is a local algebra over anypropersubfieldF of K. On the other hand, it is not
a Laguerre algebra overF , becauseF ⊕ radR (direct sum of additive groups) is a proper
subgroup of(R,+).

Examples 3.5.4Here are some examples of local rings and local algebras:

(a) A trivial example of a local ring is a field.

(b) As has been noted before, the classical example of a localring is the ring ofdual
numbersover the reals. There are several ways to define it. For example, we may
start with the polynomial ringR[T ] in the indeterminateT , consider the ideal(T 2)
which is generated byT 2, and define the real dual numbers as the quotient ring
R[T ]/(T 2). Letting ε := T + (T 2) leads to the usual notation of a dual number in
the form

a+ bε with a, b ∈ R, where ε /∈ R, and ε2 = 0.

This example allows several generalizations which are discussed below.

(c) In Example (b) we may replaceR with any commutative fieldK thus obtaining the
ring of dual numbersoverK. Such a ring of dual numbers will be denoted byK[ε].
It is a two-dimensional Laguerre algebra overK with radK[ε] = Kε.

We may even allowK to be a (non-commutative) field if we requireT to be acen-
tral indeterminate. This means that in the polynomial ringK[T ] the indeterminate
T commutes with every element ofK. Even though this ring of dual numbers is of
the formK ⊕Kε, it is not an algebra overK, unlessK is commutative.

(d) LetR = K[ε] be a ring of dual numbers as in (c) and letσ ∈ Aut(K) be an auto-
morphism ofK other than the identity. We keep addition unaltered, but introduce a
new multiplication (denoted by∗) in K[ε] as follows:

(a+ bε) ∗ (c+ dε) := ac+ (ad+ bcσ)ε for all a, b, c, d ∈ K.

This gives a ringK[ε;σ] of twisted dual numbersoverK. It is a local ring withKε
the ideal of all non-invertible elements. It cannot be an algebra overK, even ifK
is commutative, becauseK is not in the centre ofK[ε;σ].

(e) An immediate generalization of (c) is to consider the factor ring K[T ]/(T h) for
some natural numberh ≥ 1. As before, we putε := T + (T h), whence this ring is
of the form

K[ε] := K ⊕Kε⊕Kε2 ⊕ . . .⊕Kεh−1

︸ ︷︷ ︸
= radK[ε]

.
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(f) Let V be ann-dimensional vector space over a commutative fieldK. Then the
exterior algebra ∧

V =
∧0

V
︸ ︷︷ ︸

=K

⊕
∧1

V
︸ ︷︷ ︸

= V

⊕ · · · ⊕
∧n

V (3.17)

is a Laguerre algebra overK with dimension2n; see, for example, [69, 7.2]. Multi-
plication in this algebra is usually denoted by the wedge sign (∧). If (b1, b2, . . . , bn)
is a basis ofV then the family of vectors

bi1 ∧ bi2 ∧ . . . ∧ bik , where 1 ≤ i1 < i2 < · · · < ik ≤ n and k ∈ {0, 1, . . . , n}

is a basis of
∧

V . Of course, whenk = 0 the corresponding empty product is
defined to be1 ∈

∧
V . The product of vectors is alternating and therefore skew

symmetric. Thus we havev ∧ v = 0 andv ∧ w = −w ∧ v for all v,w ∈ V .

In particular, forV = K the exterior algebra
∧
K is just the ring of dual numbers

overK. Here some care has to be taken, since according to (3.17) we get two copies
of K in

∧
K, namely

∧0K (a copy of the fieldK) and
∧1K (a copy of the vector

spaceK), and theymust not be identified.

(g) Let Z be the ring of integers and let1 < q = ph ∈ Z be a power of a primep.
ThenZ/(qZ) =: Zq is a local ring. The idealrad Zq comprises the residue classes
(moduloq) of all integerskp, wherek ∈ Z, so it is the zero ideal precisely when
h = 1. The quotient fieldZq/ radR is the Galois fieldZp = GF(p) which carries
the name of EVARISTE GALOIS (1811–1832).

If h > 1 thenZq is not an algebra over any field, because the smallest positive
integern satisfying

∑n

i=1 1 ≡ 0 (mod q) is n = q. However, the characteristic of
a finite field is a prime, and an infinite field cannot be a subset of Zq.

While for an arbitrary ring it is difficult (or maybe even hopeless) to describe explicitly
the associated projective line, for a local ring this is an easy task:

Theorem 3.5.5 LetR be a local ring. Then

P(R) = {R(x, 1) | x ∈ R} ∪ {R(1, x) | x ∈ R \R∗}. (3.18)

Proof. By 3.2.10, the elements of the sets on the right hand side of (3.18) are points of
P(R). We infer from (3.16) that the mapping

P(R) → P(R) : R(a, b) 7→ R(a, b) (3.19)

is well-defined; moreover, it takes distant points ofP(R) to distinct points of the projective
line over the fieldR. Cf. Theorem 3.3.7. So letR(a, b) be a point ofP(R). By (3.19),
R(a, b) is a point ofP(R). Thus eitherb 6= 0, whenceb ∈ R∗ andR(a, b) = R(b−1a, 1);
or b = 0, whencea 6= 0, b ∈ R \R∗, a ∈ R∗, andR(a, b) = R(1, a−1b). �
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Corollary 3.5.6 The projective line over a local ringR has cardinality

#P(R) = #R + # radR. (3.20)

This improves formula (3.6) for local rings. The following characterization is essential:

Theorem 3.5.7 A ringR is a local ring if, and only if, the relation “non-distant”(64) on
the projective lineP(R) is an equivalence relation.

Proof. (a) Over any ringR, the relation64 on P(R) is reflexive and symmetric, since4 is
anti-reflexive and symmetric according to 3.3.1.

(b) Suppose thatR is local. By the action ofGL2(R), it suffices to show thatp 64 R(1, 0)
andR(1, 0) 64 q impliesp 64 q for all p, q ∈ P(R). With p = R(a, b) andq = R(c, d) we
obtain (

1 0
a b

)
/∈ GL2(R) and

(
1 0
c d

)
/∈ GL2(R).

Thus, by Example 3.2.14 (c),b andd are inR \ R∗ = radR. But thenxb + yd ∈ radR
for all x, y ∈ R, whence

(
∗ ∗
x y

) (
a b
c d

)
6=

(
∗ ∗
∗ 1

)
for all x, y ∈ R.

This impliesp 64 q.

(c) Conversely, let64 be an equivalence relation. We have to show thatJ := R \R∗ 6= ∅ is
an ideal. Givena, b ∈ J we infer from 3.3.5 thatR(1, a) 64R(1, 0) 64R(1, b). So, transitivity
of 64 yields (

1 a
1 b

)
/∈ GL2(R).

From (
1 a
1 b

)
=

(
1 0
1 a− b

) (
1 a
0 −1

)

︸ ︷︷ ︸
∈GL2(R)

/∈ GL2(R)

we read off that the first matrix on the right hand side is not invertible, whencea− b ∈ J .
ThusJ is an additive subgroup ofR.

Next, we show thatab = u, wherea, b ∈ R andu ∈ R∗, implies thata andb are units. It
suffices to treat the caseu = 1: By Example 3.2.14 (d), the matrix

(
a 0

1 − ba b

)
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has an inverse. HenceR(a, 0) andR(1 − ba, b) are points such that

R(1, 0) 64R(a, 0) 4R(1 − ba, b).

AsR(a, 0) andR(1 − ba, b) are in distinct equivalence classes, so areR(1, 0) andR(1 −
ba, b). Therefore (

1 0
1 − ba b

)
∈ GL2(R).

We deduce from Example 3.2.14 (c) thatb is a unit. Thus, finally,a = b−1 is a unit, too.

By the above, a product of two ring elements, with one factor inJ , cannot be a unit.
Altogether, this means thatJ is an ideal. �

3.5.8If R is alocal ring then two pointsp, q ∈ P(R) are said to beparallel, in symbolsp ‖
q, if they are non-distant. By the above this is an equivalence relation and the equivalence
classes ofP(R) are also calledparallel classes. A definition of parallel points on the
projective line over anarbitrary ring will be given in 5.1.1.

The following result is immediate from the proof of Theorem 3.5.7:

Corollary 3.5.9 Let P(R) be the projective line over a local ringR. Then every parallel
class ofP(R) has# radR elements.

The relations “‖” and “=” coincide precisely whenR is a field; see Theorem 3.3.7. In this
case we get the finest equivalence relation onP(R), i.e., parallel classes are singletons.

Our proof of Theorem 3.5.7 could be shortened by using the following characterization
of local rings (see [73, Theorem 19.1]): A ringR is local if, and only if,R \R∗ is a group
under addition.

3.5.10Suppose thatL is a field and thatK ⊂ L is a proper subfield contained in the centre
ofL. Then the chain geometryΣ(K,L) is called aMöbius geometryin honour of AUGUST

FERDINAND M ÖBIUS (1790–1868). Two points ofΣ(K,L) are distant precisely when
they are distinct, sinceL is a local ring andradR = {0}. Hence there is a unique chain
through any three distinct points.

Observe that the terminology in the literature is varying. We follow [55] by assuming
thatK is in the centre ofL. Some authors drop this condition and speak of a Möbius
geometryΣ(K,L) even ifK is just a proper subfield ofL. Also the termgeometry of a
field extensionfor such a chain geometryΣ(K,L) is being used. However, because of our
emphasis on the finite case, this more general point of view isirrelevant for our purposes.
Cf. Theorem 3.5.12.

Examples 3.5.11Here are some examples of Möbius geometries and their generaliza-
tions. The reader should consult [5] for further details.
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(a) The classical example of a M̈obius geometry is based on the fieldsR and C =
R ⊕ Ri of real and complex numbers. In fact,Σ(R,C) can be seen as an algebraic
model of the geometry of circles on a Euclidean2-sphere. There is a unique chain
(circle) through any three distinct points.

(b) LetH = R⊕Ri⊕Rj⊕Rk denote the real quaternions. ThenΣ(R,H) is a Möbius
geometry which is isomorphic to the geometry of circles on the Euclidean4-sphere.
There is a unique chain (circle) through any three distinct points.

(c) Another interesting classical example isΣ(C,H), whereC is identified withR⊕Ri.
It is an algebraic model for the geometry of2-spheres on a Euclidean4-sphere.
Here there is more than one chain through three distinct points. It is not a M̈obius
geometry according to our definition, because the centre of the real quaternions is
R.

Now we turn to the finite case. Finite fields are commutative bya famous theorem due
to JOSEPH HENRY MCLAGAN-WEDDERBURN (1882–1948) for which ERNST WITT

(1911–1991) has given an elegant short proof; cf. [1]. Sincefinite commutative fields are
precisely the well known Galois fields, the finite Möbius geometries are easily described.

Theorem 3.5.12

(a) Each finite M̈obius geometry is of the formΣ
(
GF(q),GF(qh)

)
, whereq ≥ 2 is a

power of a prime andh ≥ 2 is an integer.

(b) Let q ≥ 2 be a power of a prime and leth ≥ 1 be an integer. Then the chain
geometryΣ

(
GF(q),GF(qh)

)
is a3-design if its chains are considered as “blocks”.

The parameters of this design are

v = qh + 1, k = q + 1, andλ3 = 1.

Proof. (a) If K is a proper subfield of a finite fieldL thenK = GF(q), whereq ≥ 2 is a
power of a prime,L = GF(qh), andh ≥ 2 equals the dimension ofL overK, as a vector
space4.

(b) We have#P
(
GF(qh)

)
= qh+1 according to (3.18). By their definition, all chains have

#P
(
GF(q)

)
= q+ 1 elements. SinceL is commutative, every multiplicative subgroup of

L∗ is normal. Thus, by Theorem 3.4.8 (b) applied toK∗ andL∗, there is a unique chain
through any three distinct points. �

In part (b) of the preceding Theorem we did not exclude the trivial caseh = 1, even
though it does not deserve our attention.

4It is worth noting here thatL = GF(qh) contains a unique subfield withq elements.
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3.5.13Suppose thatR is Laguerre algebra overK. ThenΣ(K,R) is called aLaguerre ge-
ometry. If, moreover,R is finite then the chain geometryΣ(K,R) gives rise to a transver-
sal divisible3-design; it will be discussed in detail in Section 4.2.

3.6 Notes and further references

3.6.1 There are several surveys on chain geometries and related concepts. The publica-
tions [4], [5], [7], [8], [9], and [55], together with the references given there, cover these
topics from the very beginning up to the year 1992. Below we restrict our attention to
recent publications.

3.6.2 Various approaches have been made to axiomatize chain geometries, certain classes
of chain geometries, or structures sharing some propertieswith a specific type of chain
geometry.

This has lead to concepts likeBenz planes(see [42, Section 5]),weak chain spaces, chain
spaces, contact spaces(cf. [55, Section 3], [80]), andcircle planes[25]. However, in
general those structures are much more general than chain geometries. Nevertheless they
can sometimes be described algebraically in terms of a ring containing a subfield if some
extra assumptions are made. See [20], [24], [58], [59], and [61].

The investigation oftopological circle planesis part of the book [84]. It contains a wealth
of bibliographical data.

Characterizations of projective groupsPGL2(R), whereR is a ring, are given in [21],
[26] and [57].

3.6.3 On the other hand, it is possible to consider structures being more general than
associative algebras (e.g.alternative algebrasor Jordan systems) in order to obtain a kind
of “chain geometry”. We refer to [10], [16], [17], [18], [19], [26], [35], and [56].

3.6.4 Other papers related with certain chain geometries are [23], [27], [47], [48], [49],
[50], [53], and [54]. Every chain geometry gives rise topartial affine spaces. Such spaces
are investigated in [60], [79], and [81].
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Divisible Designs viaGL2-Actions

4.1 How to choose a base block

4.1.1 LetR be a finite local ring. As before, we writeradR := R \ R∗ for its Jacobson
radical. According to Theorem 3.5.7 and by the definition in 3.5.8, the relation “parallel”
(‖) is an equivalence relation on the projective lineP(R). Also,GL2(R) is a group acting
onP(R). In fact, we are in a position to apply Theorem 2.3.2:

Theorem 4.1.2 LetR be a finite local ring, and letB0 be a‖-transversal subset of the
projective lineP(R) with k ≥ 3 points. Then

(
P(R),B, ‖

)
with B := B

GL2(R)
0

is a3-(s, k, λ3)-divisible design withv = #R + #radR points, ands = #radR.

Proof.By Corollary 3.5.6, the projective line overR has finite cardinality#R+ #radR.
It was shown in Corollary 3.5.9 that all parallel-classes have#radR elements. According
to its definition, the relation4 is aGL2(R)-invariant notion. Recall that, by the definition
in 3.5.8, the relations‖ and 64 coincide for a local ring. Therefore, also the equivalence
relation‖ is GL2(R)-invariant. Hence the assertion follows from Theorem 2.3.2. �

4.1.3 While Theorem 4.1.2 shows that we can construct a wealth of DDsfrom the pro-
jective line over a finite local ring, one essential problem remains open:

What is the number of blocks containing a‖-transversal3-set?

Or, said differently:

What is the value of the parameterλ3?
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We read off from (2.19) that to answer this question amounts to finding two non-negative
integers: Firstly,# GL2(R) and, secondly, the cardinality of the setwise stabilizer ofthe
base blockB0 under the action of the general linear groupGL2(R). It is easy to determine
the order of the groupGL2(R); see the exercise below. However, it seems impossible to
state any result about the size of setwise stabilizer ofB0 without any further information
concerningB0.

Exercise 4.1.4Show that

# GL2

(
GF(q)

)
= (q2 − 1)(q2 − q). (4.1)

Given a finite local ringR with R/ radR ∼= GF(q) verify that

# GL2(R) = (# radR)4(q2 − 1)(q2 − q). (4.2)

4.1.5 If R is a finite local ring, butnot a local algebra (e.g.R = Z4), then the divisible
designs which arise fromP(R) seem to be unknown. We therefore have to exclude them
from our discussion in the next section.

It would be interesting learn more about the DDs which are based upon the projective line
over such a ring. However, it seems to the author as if there would not exist a “natural”
choice for a base block.

4.2 Transversal divisible designs from Laguerre algebras

4.2.1 In applying Theorem 4.1.2, we start with the easiest case, viz. the3-divisible designs
defined by Laguerre geometries. Recall that for a fieldK which is contained in a ringR,
as a subring, we writeC(K,R) for the set ofK-chains of the projective lineP(R).

Theorem 4.2.2 LetR be anh-dimensional Laguerre algebra overGF(q), 1 ≤ h < ∞.
Then (

P(R),C(GF(q), R), ‖
)

is a transversal3-(s, k, 1)-divisible design withv = qh + qh−1 points,s = qh−1, and
k = q + 1.

Proof.The assertions onv ands follow immediately from Theorem 4.1.2,#R = qh, and
# radR = qh−1. Also, we havek = #P

(
GF(q)

)
= q+ 1 = v

s
. Finally, sinceGF(q) is in

the centre ofR, we obtainλ3 = 1 by Example 3.4.9 (a). �

As an immediate consequence we can show that there exist a lotof mutually non-
isomorphic transversal divisible designs:
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Theorem 4.2.3 Letq ≥ 2 be a power of a prime and leth ≥ 1 be a natural number. Then
there is at least oneh-dimensional Laguerre algebra overGF(q). Therefore at least one
transversal3-(s, k, 1)-DD with parameters as in Theorem4.2.2exists.

Proof.The assertion follows from Example 3.5.4 (e), by lettingK := GF(q). �

Exercise 4.2.4Determine the parametersλ2, λ1, andλ0 (the number of chains) of the
DDs from Theorem 4.2.2.

4.3 Divisible designs from local algebras

4.3.1 We shall frequently make use of the following result from algebra. It is known as
theWedderburn principal theorem:

Theorem 4.3.2 LetR be a finite local algebra overK = GF(q). Then there is aGF(q)-
subalgebraL of R which is isomorphic to the fieldR/ radR such thatR = radR⊕ L.

We refer to [78, Theorem VIII.28] for a proof.

4.3.3 Given a finite-dimensional local algebraR overK = GF(q) we have the associated
fieldR/ radR = R. The canonical epimorphismR → R takesK to an isomorphic field
which is a subring ofR. So we obtain that

R ∼= GF(qm) for some natural numberm ≥ 1.

This implies
dimK R = m+ dimK(radR).

By the above and Theorem 4.3.2, there is a fieldL which is isomorphic toR ∼= GF(qm)
such thatK ⊂ L ⊂ R, whenceR is a left vector space overL. We let

h := dimLR ≥ 1.

Hence
dimK R = (dimLR)(dimK L) = hm (4.3)

and
dimK(radR) = (h− 1)m. (4.4)

The next theorem is taken from [101, Example 2.5]. It is a generalization of Theorem
4.2.2 which, of course, is included as a particular case form = 1.
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Theorem 4.3.4 Let R be an finite-dimensional local algebra overK = GF(q), with
R/ radR ∼= GF(qm), whencedimK R = hm for some positive integerh. Then

(
P(R),C(GF(q), R), ‖

)

is a3-(s, k, 1)-divisible design withv = qhm+q(h−1)m points,s = q(h−1)m andk = q+1.

Proof. It suffices to repeat the proof of Theorem 4.2.2, taking into account that now
# radR = q(h−1)m by virtue of (4.4). �

Next, we apply this result to construct DDs:

Theorem 4.3.5 Letq ≥ 2 be a power of a prime. Also, leth andm be a positive integers.
Then there is at least onehm-dimensional local algebraR overGF(q) withR/ radR ∼=
GF(qm). Therefore at least one3-(s, k, 1)-divisible design with parameters as in Theorem
4.3.4exists.

Proof. We infer from Theorem 4.2.3 that there is anh-dimensional Laguerre algebraR
overGF(qm). ThereforeR/ radR is isomorphic toGF(qm). ThisR is anhm-dimensional
local algebra overGF(q) ⊂ GF(qm). �

Observe that forh > 1 non-transversal DDs are obtained in this way.

4.3.6 By the definition of an (arbitrary) chain geometryΣ(K,R), the groupGL2(R) acts
onP(R) as a group of automorphisms ofΣ(K,R) or, said differently, of the corresponding
divisible design. Recall thatPGL2(R) denotes the transformation group onP(R) which
is induced byGL2(R). However, in general this group is only a subgroup of the full
automorphism group.

We shall describe below the full automorphism group of certain chain geometries and
hence of the corresponding DDs. In order to do so we need the following concept carrying
the name of the German physicist PASCUAL JORDAN (1902–1980), who should not be
confused with the French mathematician CAMILLE JORDAN (1839–1922).

4.3.7 LetR andR′ be rings. A mappingσ : R → R′ is calledJordan homomorphismif

(a+ b)σ = aσ + bσ, 1σ = 1 (∈ R′), (aba)σ = aσbσaσ for all a, b ∈ R. (4.5)

See, among others, [68, p. 2] or [55, p. 832]. For such a mapping σ and any element
a ∈ R∗ the equation

1σ = (aa−2a)σ = aσ(a−2)σaσ (4.6)
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shows thataσ has a left and a right inverse, whenceaσ is a unit inR′. Also,

aσ = (aa−1a)σ = aσ(a−1)σaσ (4.7)

implies
(a−1)σ = (aσ)−1 for all a ∈ R∗. (4.8)

As usual, a bijective Jordan homomorphism is called aJordan isomorphism; its inverse
mapping is also a Jordan isomorphism.

4.3.8 Let σ : R → R′ be a mapping. Ifσ is a homomorphism of rings then it is also a
Jordan homomorphism. This remains true ifσ : R → R′ is anantihomomorphism; this
means thatσ is a homomorphism of the additive groups, sends1 ∈ R to 1 ∈ R′, whereas
(ab)σ = bσaσ for all a, b ∈ R. Of course, this antihomomorphismσ is at the same time a
homomorphism ifRσ is a commutative subring ofR′.

Let σ : R → R′ be a Jordan homomorphism of rings. IfR andR′ are commutative and
if 1 + 1 ∈ R∗ thenσ is a homomorphism. IfR′ has no left or right zero divisors then
σ is a homomorphism or an antihomomorphism. See, among others, [3], [51], and [69,
p. 114]. Thus under certain circumstances there will be noproperJordan homomorphisms
for two given rings, i.e. Jordan homomorphisms that are neither a homomorphism nor an
antihomomorphism.

Examples 4.3.9We present some Jordan homomorphisms other than homomorphisms.

(a) A well known example of an antiautomorphism (a bijectiveantihomomorphism of
a ring onto itself) is as follows: LetR commutative ring (or even a commutative
field) and letRm×m be the ring ofm×mmatrices with entries fromR withm ≥ 2.
The transposition of matrices is an antiautomorphismRm×m → Rm×m.

(b) Suppose thatR =
∏

j∈J Rj is the direct product of ringsRj. Similarly, letR′ =∏
j∈J R

′
j. Assume, furthermore, thatσj : Rj → R′

j is a family of mappings, where
eachσj is a homomorphism or an antihomomorphism. Then

σ :=
∏

j∈J

σj : R → R′ : (xj)j∈J 7→
(
x
σj

j

)
j∈J

is Jordan homomorphism.

If among the mappingsσj there is a homomorphism, other than an antihomomor-
phism, and an antihomomorphism, other than a homomorphism,thenσ will be a
proper Jordan homomorphism. Thus proper Jordan homomorphisms can easily be
found.
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(c) LetV be a two-dimensional vector space over a commutative fieldK and letb1, b2

be a basis. Then(1, b1, b2, b1 ∧ b2) is a basis of the exterior algebra
∧

V ; see [69,
Section 7.2]. Hence there exists a uniqueK-linear bijectionσ :

∧
V →

∧
V with

the following properties:σ interchangesb2 with b1 ∧ b2 and fixes the remaining
basis elements1 andb1. In order to show thatσ is a Jordan isomorphism, it suffices
to verify the last condition in (4.5) for the elements of the given basis. As a matter
of fact, that condition is satisfied in a trivial way: Clearly,it is true if a = 1 or b = 1,
otherwise it follows fromv1 ∧ v2 ∧ v3 = 0 for all v1,v2,v3 ∈ V . Because of

(b1 ∧ b2)
σ = b2 6= 0, and bσ1 ∧ bσ2 = b1 ∧ b1 ∧ b2 = 0,

the Jordan isomorphismσ is proper.

4.3.10 If a Jordan homomorphism ofK-algebras is at the same time aK-linear mapping
then it is called aK-Jordan homomorphism. The importance ofK-Jordan isomorphisms
is illustrated by the following result, due to ARMIN HERZER, which is presented with-
out proof. See [55, Theorem 9.2.1], [2], and [33] for generalizations, and compare with
Proposition 2.3 and Proposition 3.6 in the article [52].

Theorem 4.3.11LetR andR′ be a local algebras overK. Then the following assertions
hold:

(a) If σ : R → R′ is aK-Jordan isomorphism then the mapping

P(R) → P(R′) :

{
R(1, a) 7→ R′(1σ, aσ),
R(a, 1) 7→ R′(aσ, 1σ),

is a well defined isomorphism of chain geometries.

(b) If, moreover,#K ≥ 3 then every isomorphism ofΣ(K,R) onto Σ(K,R′) is the
product of a mapping as in(a)and a projectivity ofP(R′).

4.3.12 By the above, we know not only all automorphisms of the DDs fromTheorem
4.3.4, but also all isomorphisms between such DDs, providedthat#K ≥ 3. Of course, “to
know” means that the problem is reduced to finding allK-Jordan isomorphisms between
the underlyingK-algebras.

According to [52, Remark 4.3.2], there exist non-isomorphicLaguerre algebras which
give rise to isomorphic chain geometries and therefore, by Theorem 4.2.2, to isomorphic
divisible designs. However, those Laguerre algebras are Jordan isomorphic.
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4.4 Other kinds of blocks

4.4.1 The construction of a DD from a chain geometry over a finite local algebra, as
described in Theorem 4.3.4, can be generalized by modifyingthe set of blocks as follows.

Theorem 4.4.2 Let R be an finite-dimensional local algebra overK = GF(q), with
R/ radR ∼= GF(qm), whencedimK R = hm for some positive integerh. Furthermore,
letC0 be the standard chain of the chain geometryΣ(K,R), and suppose the base block
B0 to be chosen as follows:

(a) B0 := C0 \ {R(1, 0)}, for q > 2.

(b) B0 := C0 \ {R(1, 0), R(0, 1)}, for q > 3.

(c) B0 := C0 \ {R(1, 0), R(0, 1), R(1, 1)}, for q > 4.

This gives, according to Theorem4.1.2, a 3-(s, k, λ3)-divisible design with

v = qhm + q(h−1)m ands = q(h−1)m.

The remaining parametersk andλ3 are

k = q, λ3 = q − 2, in case(a),

k = q − 1, λ3 = 1
2
(q − 2)(q − 3), in case(b),

k = q − 2, λ3 = 1
6
(q − 2)(q − 3)(q − 4), in case(c).

Proof.Firstly, we observe that#C0 = q + 1 and thatC0 is a‖-transversal subset. So the
assumptions on the cardinality ofq guarantee thatB0 has at least three points.

Next, sinceGL2(R) acts3-4-transitively onP(R), it suffices to determine the number of
blocks throughM := {R(1, 0), R(0, 1), R(1, 1)}. By Theorem 4.2.2, the standard chain
C0 is the only chain containingM . Henceforth any block containingM has to be a subset
of C0. There are

(
q − 2
j

)
possibilities to choose aj-setW in C0 \M , wherej ∈ {1, 2, 3}.

We infer from Theorem 3.4.7 that each suchC0 \W is a chain. This proves the assertions
onλ3. The rest is clear from Theorem 4.3.4. �

4.4.3 The previous theorem is taken from [46]. It suggests to remove four or even more
points from the standard chain in order to obtain a base blockfor a 3-DD. It is possible
to treat the case for four points by considering the number ofcross ratiosthat arise if
those points are written in any order. In general, four distinct points determine six cross
ratios, but for aharmonic, equianharmonic, or superharmonictetrad there are less than
six values; cf. [65, Section 6.1]. Thus several cases have tobe treated separately. We refer
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to [46], and note that the results from there carry over immediately to our slightly more
general setting of a local algebra. Also, the “complementary” setting where a4-subset of
the standard chain is chosen to be the base block is describedin [46]. As before, cross
ratios are the key to calculating the parameterλ3.

4.4.4 Yet another “natural choice” of a base block is the projective line over such a field
L ⊂ R which meets the requirements of the Wedderburn principle theorem (see 4.3.2).
A general treatment of these DDs seems to be missing in the literature, but we are in a
position to present at least one example. It is based on [78, Exercise XIX.1]:

Example 4.4.5 LetL := GF(4) = {0, 1, τ, τ 2} be the field with four elements. Its multi-
plicative group is cyclic of order three. Addition inL is subject tox+x = 0 for all x ∈ L,
and1 + τ = τ 2. The mappingσ : L → L : x 7→ x2 is easily seen to be an automorphism
of order two.

We consider the local ringR := GF(4)[ε;σ] of twisted dual numbers overL. Thus

ε2 = 0 andεx = xσε = x2ε for all x ∈ L;

cf. Example 3.5.4 (d).R is a local algebra overK := GF(2) ⊂ L, but not an algebra
overL, becauseτ is not in the centre ofR. The radical ofR is radR = Lε = εL. An
isomorphismR/ radR → L is given by(x+ yε) + radR 7→ x for all x, y ∈ L.

Following Theorem 3.4.8 we determine the normalizer ofL∗ in R∗. The units inR∗ have
the form

n = x+ yε with x ∈ L∗ andy ∈ L.

Given such ann we clearly haven−11n = 1. By n−1τ 2n = (n−1τn)2, it remains to
calculaten−1τn. We obtain

n−1τn = (x+ yε)−1τ(x+ yε)

= (x−1 − yε)τ(x+ yε)

= τ + x−1τyε− yετx− yετyε

= τ + x−1τyε− x2yτ 2ε− y3τ 2ε2

= τ(1 + x2y(1 − τ)ε).

As x2y can assume all values inL, there are four possibilities, viz.

x2y = 0 : n−1τn = τ ∈ L∗,
x2y = 1 : n−1τn = τ + ε /∈ L∗,
x2y = τ : n−1τn = τ + τε /∈ L∗,
x2y = τ 2 : n−1τn = τ + τ 2ε /∈ L∗.

We infer thatn = x + yε is in the normalizer ofL∗ in R∗ if, and only if, y = 0. Conse-
quently, this normalizer coincides withL∗. By #L∗ = 3 and#R∗ = 16 − 4 = 12, there
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are four chains through any three mutually distant points. Summing up, we have shown
that (

P
(
GF(4)[ε;σ]

)
,C

(
GF(4),GF(4)[ε;σ]

)
, ‖

)

is a transversal3-(4, 5, 4)-DD with v = 20 points andb = 256 blocks. As a matter of
fact, we actually have a4-(4, 5, 1)-DD: Given anyR-transversal4-set, say{p0, p1, p2, p3},
precisely one of the four blocks throughp0, p1, p2 will containp3.

4.5 Notes and further references

4.5.1 All finite chain geometries (not only Laguerre geometries) have nice point models
in finite projective spaces, and models in terms of finite Grassmannians. See the many
references in [55, p. 812], [29], and [30]. Thus, many DDs from this chapter allow—up to
isomorphism—other descriptions from which their connection with finite local algebras
may not be immediate.

For example, the DD which belongs to the algebra of dual numbers overGF(q) arises
also as follows:

(a) The points of the DD are the points of a quadratic cone without its vertex in the
three-dimensional projective space overGF(q). The blocks are the non-degenerate
conic sections of this cone. The point classes are the generators of this cone, the
vertex being removed from them. This is the finite analogue ofthe Blaschke cone.

(b) The points of the DD are the lines of a parabolic linear congruence without its axis
in the three-dimensional projective space overGF(q). The blocks are the reguli
which are entirely contained in this congruence. The point classes are the pencils of
lines which are entirely contained in this congruence, the axis being removed from
them.

The Klein mapping—carrying the name of FELIX KLEIN (1849–1925)—is a one-one
correspondence between the set of lines of the three-dimensional projective space over
a commutative fieldK and the set of points of a certain quadric in a five-dimensional
projective space overK; it is called theKlein quadric. A reader who is familiar with this
mapping will notice immediately that the Klein image of the model in (b) is just the model
described in (a). However, the ambient space of the cone now is a three-dimensional
tangent space of the Klein quadric. Cf. [64, 15.4].



Chapter 5

An Outlook: Finite Chain Geometries

5.1 A parallelism based upon the Jacobson radical

5.1.1 Now we turn our attention to the projective line over an arbitrary ringR, as we
present the announced definition of parallel points in the general case. It is taken from
[34], where the term “radical parallelism” is used instead:A point p ∈ P(R) is called
parallel to a pointq ∈ P(R) if

x 4 p ⇒ x 4 q

holds for allx ∈ P(R). In this case we writep ‖ q. By definition, the distant relation on
P(R) is aGL2(R)-invariant notion. Hence

p ‖ q ⇔ pγ ‖ qγ (5.1)

holds for allp, q ∈ P(R) and allγ ∈ GL2(R).

Clearly, the relation‖ is reflexive and transitive. We shall see below that‖ is in fact
an equivalence relation; also it will become clear that our previous definition of parallel
points (R a local ring) is a particular case of the definition from the above.

5.1.2 The connection between the parallelism onP(R) and the Jacobson radical ofR
(cf. 3.5.1) is as follows: We consider the factor ringR/ radR =: R and the canonical
epimorphismR → R : a 7→ a+ radR =: a. It has the crucial property

a ∈ R∗ ⇔ a ∈ R ∗ (5.2)

for all a ∈ R; cf. [73, Proposition 4.8]. The Jacobson radical of the factor ringR/ radR
is zero [73, Proposition 4.6].

In geometric terms we obtain a mapping

P(R) → P(R) : p = R(a, b) 7→ R(a, b) =: p (5.3)
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which is well defined and surjective [29, Proposition 3.5]. Furthermore, as a geometric
counterpart of (5.2) we have

p 4 q ⇔ p 4 q (5.4)

for all p, q ∈ P(R), where we use the same symbol to denote the distant relationsonP(R)
and onP(R), respectively. See Propositions 3.1 and 3.2 in [29]. Of course, all this is a
generalization of the mapping given in (3.19), whereR was supposed to be local.

The following is taken from Theorem 2.2 and Corollary 2.3 in [34]:

Theorem 5.1.3 The mapping given by(5.3)has the property

p ‖ q ⇔ p = q (5.5)

for all p, q ∈ P(R). Consequently, the parallelism(‖) on the projective line over a ring is
an equivalence relation.

Let us write[p] for theparallel classof p ∈ P(R). It can be derived from (5.5) that

#[p] = # radR (5.6)

for all p ∈ P(R). Thus the cardinality ofradR can be recovered from theP(R) as the
cardinality of an arbitrarily chosen class of parallel points. In particular,‖ is the equality
relation if, and only if,radR = {0}.

An easy consequence of (5.4) and Theorem 5.1.3 is

p ‖ q ⇔ p = q ⇒ p 64 q ⇔ p 64 q (5.7)

for all p, q ∈ P(R). In general, however, the converse of (5.7) is not true:

Theorem 5.1.4 Let R be an arbitrary ring. The relations “parallel”(‖) and “non-
distant” (64) onP(R) coincide if, and only if,R is a local ring.

For a proof we refer to [34, Theorem 2.5]. By the above, our two definitions of parallel
points in 3.5.8 and 5.1.1 coincide in case of a local ring.

5.2 Counting the point set

5.2.1 Let R be a finite ring. The problem to determine the number of pointsof the pro-
jective line overR is intricate. Our approach follows [107, Section 10] and it uses the
following famous theorem on the structure of semisimple rings due to JOSEPHHENRY

MACLAGAN –WEDDERBURN and EMIL ARTIN; cf. [73, Theorem 3.5]. We state it only
for the particular case of a finite ring:



52 Chapter 5 An Outlook: Finite Chain Geometries

Theorem 5.2.2 LetR be a finite ring such thatradR is zero. ThenR is isomorphic to a
direct productR1 ×R2 × · · · ×Rn, where eachRi is a full matrix ringGF(qi)

mi×mi. The
numbern is uniquely determined, as are the pairs(mi, qi) for i ∈ {1, 2, . . . , n}.

5.2.3 It is possible to count the number of points of the projectiveline over the ring
of m × m matrices with entries fromGF(q), because there exists a bijection from this
projective line onto the set ofm-dimensional subspaces of a2m-dimensional vector space
over the same field. This result is due to XAVIER HUBAUT [66, p. 500], who proved it for
an arbitrary commutative fieldK instead ofGF(q). This powerful tool was generalized
by ANDREA BLUNCK [22, Theorem 2.1] to the ring of endomorphisms of a vector space,
without any restriction on its dimension or the ground field.

By virtue of this bijection and by a result of JOSEPH ADOLPHE THAS [105, 3.3], we
obtain

#
(
P(GF(q)m×m)

)
=

m−1∏

i=0

q2m−i − 1

qm−i − 1
. (5.8)

See also [65, Theorem 3.1].

Next, it is easy to see that the projective line over a direct product of rings, say

R1 ×R2 × · · · ×Rn,

is in one-one correspondence with the cartesian product1

P(R1) × P(R2) × · · · × P(Rn).

Hence the Wedderburn–Artin Theorem 5.2.2 and formula (5.8)provide the number of
points on the projective line over a direct product of matrixrings.

Finally, given any finite ringR we infer from (5.6) that

#P(R) =
(
# radR

)(
#P(R)

)
, (5.9)

whereR = R/ radR. SinceradR = 0, we can apply our result from the above to count
the number of points onP(R), thus obtaining a formula for the number of points of the
projective lineP(R).

5.3 Divisible designs vs. finite chain geometries

5.3.1 To end this series of lectures, let us compare the definition of a divisible design
from 2.1.3 with properties of a chain geometryΣ(K,R), whereR is a finite ring. Given
Σ(K,R) we can associate with it the positive integers

v := #P(R), t := 3, s1 := # radR, s2 := v − #R, k := #K + 1, andλt, (5.10)

1The caseZ6
∼= GF(2) × GF(3) is illustrated in Figure 3.2.
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whereλt is the constant number of blocks through anyt = 3 mutually distant points. As
we saw,λt depends on “how” the fieldK is embedded inR, whence we cannot not state
a precise value. We remark thatv ≥ #R + # radR implies the inequality

s2 ≥ #R + # radR− #R = # radR.

5.3.2 Given a finite chain geometry the following assertions hold,where we use the
constants introduced in (5.10):

(A1) #[x] = s1 for all x ∈ P(R).

(A2) #{y ∈ P(R) | y 64 x} = s2 for all x ∈ P(R).

(B1) C(K,R) is a set of subsets ofP(R) with #C = k for all chainsC ∈ C(K,R). The
points of any chain are mutually distant.

(C1) For eacht-subsetY ⊂ P(R) of mutually distant points there exist a exactlyλt
chains ofC(K,R) containingY .

(D1) t ≤ v
s1

.

Thus any finite chain geometries is “almost” a3-divisible design. However, unlessR is
a local ring, a‖-transversal3-subset ofP(R) need not be a subset of any chain, and the
parameters1 need not coincide withs2.

On the other hand, the preceding conditions (A1)–(D1) could serve as a starting point for
the investigation of “divisible design-like structures” in the future.
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[77] H. Lüneburg.Transitive Erweiterungen endlicher Permutationsgruppen. Lecture Notes in
Mathematics, No. 84. Springer, Berlin, 1969.

[78] B. R. McDonald.Finite Rings with Identity. Dekker, New York, 1974.

[79] St. Meuren. Partial affine spaces of dimension≥ 3. J. Geom., 56:113–125, 1996.
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B. Grünbaum, and F. A. Sherk, editors,The Geometric Vein, pages 345–353. Springer, New
York, 1981.



Index

admissible pair, 23
affine line over a ring, 21
affine plane, 6

order of an, 6
algebra, 30

alternative, 40
exterior, 36
local, 35

alphabet, 16
antihomomorphism of rings, 45
automorphism

of Z
n
m

, 16
of a code, 16
of a DD, 9

base block, 13
basis, 22

standard, 22
Benz plane, 40
Blaschke cone, 19, 49
Blaschke cylinder, 19
block, 4

extended, 17
of imprimitivity, 12
starter, 13

central indeterminate, 35
centre

of a group, 28
of a ring, 28

chain, 30
standard, 30

chain geometries
isomorphism of, 31

chain geometry, 30
chain space, 40

weak, 40
circle plane, 40

topological, 40
code

m-ary, 16
automorphism of, 16

code of a DD, 17
codeword, 16
complex projective line, 21
constant weight code, 16
contact space, 40
cross ratio, 47
cycle, 19

DD, 4
automorphism of a, 9
code of a, 17
parameters of a, 4, 8
regular, 5
simple, 4
transversal, 5

DDs
isomorphism of, 9

Dedekind-finite ring, 21
design, 9

divisible, 4
groop-divisible, 5
group-divisible, 5

difference set
relative, 18

4-transitive group action, 27
distant graph, 28
distant points, 26
division ring, 21
dual numbers, 20, 35
dual of a projective line, 23

element
invertible, 20
left invertible, 20
right invertible, 20

elementary subgroup, 25
embedding, 28
equianharmonic tetrad, 47
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extended block, 17
extended point class, 17
exterior algebra, 36

faithful representation, 11
field, 21

skew, 21
field extension

geometry of a, 38
free of rankn, 22

Galileian plane
inversive, 20

general linear group, 22
geometry of a field extension, 38
groop-divisible design, 5
group

centre of a, 28
general linear, 22
projective linear, 28
symmetric, 11

group action, 11
4-transitive, 27
imprimitive, 12
primitive, 12
regular, 11
sharply transitive, 11
t-homogeneous, 12
t-transitive, 11
transitive, 11

group operation, 11
group-divisible design, 5

Hamming distance, 16
Hamming weight, 16
harmonic tetrad, 47

ideal
nilpotent left (right), 34

ideal point, 16
imprimitive group action, 12
imprimitivity

block of, 12
improper point, 28
indeterminate

central, 35
inverse, 20

left, 20
right, 20

inversive Galileian plane, 20

invertible element, 20
isomorphism

of chain geometries, 31
of codes, 16
of DDs, 9

Jacobson radical, 34
Jordan homomorphism, 44

proper, 45
Jordan isomorphism of rings, 45
Jordan system, 40

K-algebra, 30
K-chain, 30
K-Jordan homomorphism, 46
Klein mapping, 49
Klein quadric, 49

Laguerre geometry, 19, 40
left artinian ring, 34
left inverse, 20
left invertible, 20
left invertible element, 20
left zero divisor, 21
length, 16
line, 6

affine, over a ring, 21
complex projective, 21
dual of a projective, 23
projective, over a field, 22
projective, over a ring, 22

lines
parallel, 6

local algebra, 35
local ring, 34

m-ary code, 16
module

free of rankn, 22
Möbius geometry, 38

neighbourhood, 28
neighbouring points, 27
nilpotent left (right) ideal, 34
normalizer, 32
numbers

dual, 20, 35
twisted dual, 35, 48

octahedron
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regular, 6, 10
orbit, 11
order

of a projective plane, 6
of an affine plane, 6

pair
admissible, 23
unimodular, 25

Pappos configuration, 5
parallel class, 51
parallel lines, 6
parallel points, 27, 38, 50
parallel spears, 19
parallelism, 19
parameters of a DD, 4, 8
partial affine space, 40
permutation, 11
permutation representation, 11
plane

affine, 6
projective, 6

point, 4, 21, 23
ideal, 16
improper, 28
proper, 28

point class, 4
extended, 17

point group, 5
points

distant, 26
neighbouring, 27
parallel, 27, 38, 50

pointwise stabilizer, 12
primitive group action, 12
projective line

complex, 21
dual of a, 23
over a field, 22
over a ring, 22

projective linear group, 28
projective plane, 6

order of a, 6
projectivity, 28
proper Jordan homomorphism, 45
proper point, 28

R-transversal subset, 3
R-transversalt-tuple, 14

regular DD, 5
regular group action, 11
regular octahedron, 6, 10
relative difference set, 18
representation, 11

faithful, 11
right inverse, 20
right invertible, 20
right invertible element, 20
right translation, 21
right zero divisor, 21
ring

centre of a, 28
Dedekind-finite, 21
left artinian, 34
local, 34
stable rank of a, 25

rings
antihomomorhism of, 45
Jordan homomorphism of, 44
Jordan isomorphism of, 45

setwise stabilizer, 12
sharply transitive group action, 11
simple DD, 4
Singer group, 18
skew field, 21
space

partial affine, 40
spear, 19
spears

parallel, 19
stabilizer

pointwise, 12
setwise, 12

stable rank of a ring, 25
standard basis, 22
standard chain, 30
starter block, 13
subgroup

elementary, 25
subset

R-transversal, 3
superharmonic tetrad, 47
symmetric group, 11

t-homogeneous group action, 12
t-transitive group action, 11
t-tuple
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R-transversal, 14
tangency relation, 19
tetrad

equianharmonic, 47
harmonic, 47
superharmonic, 47

theorem
of Wedderburn (on finite fields), 39
Wedderburn principal, 43
Wedderburn–Artin, 52

topological circle plane, 40
transitive group action, 11
translation

right, 21
translation DD, 17
transversal DD, 5
twisted dual numbers, 35, 48

unimodular pair, 25
unit, 21

vector, 22

weak chain space, 40
Wedderburn principal theorem, 43
Wedderburn theorem (on finite fields), 39
Wedderburn–Artin theorem, 52

zero divisor
left, 21
right, 21


