Druckfehler 3. Auflage

Hans Havlicek, Lineare Algebra für Technische Mathematiker,

3. korrigierte und erweiterte Auflage,

Berliner Studienreihe zur Mathematik, Band 16, Heldermann, Lemgo, 2012.

ISBN-13 978-3-88538-116-7.

Im Allgemeinen wird nur der richtige Text angegeben. Dabei steht etwa "457" für "Seite 45, Zeile 7 von oben" und etwa "121₁₂" für "Seite 121, Zeile 12 von unten". Kopfzeile und Fußnoten bleiben bei der Zählung der Zeilen unberücksichtigt. Abgesetzte Formeln und Abbildungen (samt Begleittext) gelten immer als eine Zeile.

Ich darf allen Studierenden, Kolleginnen und Kollegen, die mich auf Fehler hingewiesen haben, sehr herzlich danken.

Diese Datei finden Sie im Internet: www.geometrie.tuwien.ac.at/havlicek/ Hinweise bitte vorzugsweise in elektronischer Form an: havlicek@geometrie.tuwien.ac.at Letzte Änderung am 20. April 2021.

```
xi_6
          gibt es
5_2
          gegebene
56^{14}
           x_i \boldsymbol{m}_i
59^{7}
          mindestens ein
          Erzeugendensystem bzw. eine linear unabhängige Familie ist genau dann eine Basis
           von V, wenn es bzw. sie genau n Elemente besitzt
63_{12}
           sowie Satz 2.6.4.
70^{10}
           wobei u_i \in U_i für alle i \in I und u_i = o für fast alle i \in I.
71^{3-4}
           wobei u_i \in U_i für alle i \in I und u_i = o für fast alle i \in I.
7010-13
           Beweisteil (b) lautet einfacher: Gilt dim f(V) = \dim W, so können wir wegen
           \dim f(V) < \infty die Kontraposition des zweiten Teiles von Satz 2.6.7 auf f(V) und
           W anwenden. Wir erkennen daraus f(V) = W, also die Surjektivität von f. Die Um-
          kehrung ist klar.
9115-16
          ... links-neutrales Element. Gemäß (a) und (b) wird für jede reguläre Matrix A \in K^{n \times n}
          die lineare Bijektion (f_A)^{-1} durch eine reguläre Matrix B \in K^{n \times n} beschrieben, was B
          als ein links-inverses Element von A erweist.
9514-15
          linear isomorphen
100_{12}
          Unterraum T von ker a^*
104_{8}
           Werte \neq 0
104<sub>5</sub>
           Werte \neq 0
123^{8-12}
          Neue Angaben:
          (\alpha) \ R_1 = 2 \ \Omega, \ R_2 = 2 \ \Omega, \ R_3 = 3 \ \Omega, \ R_4 = 1 \ \Omega, \ R_5 = 1 \ \Omega, \ R_6 = 2 \ \Omega, \ U_1 = 14 \ V, \ U_2 = 21 \ V.
           (β) R_1 = 1 Ω, R_2 = 2 Ω, R_3 = 2 Ω, R_4 = 1 Ω, R_5 = 1 Ω, R_6 = 1 Ω, U_1 = 9 ∨, U_2 = 18 ∨.
```

(γ) $R_1 = 1 \Omega$, $R_2 = 1 \Omega$, $R_3 = 1 \Omega$, $R_4 = 1 \Omega$, $R_5 = 2 \Omega$, $R_6 = 2 \Omega$, $U_1 = 3 V$, $U_2 = 6 V$. (δ) $R_1 = 1 \Omega$, $R_2 = 1 \Omega$, $R_3 = 1 \Omega$, $R_4 = 2 \Omega$, $R_5 = 2 \Omega$, $R_6 = 1 \Omega$, $U_1 = 13 V$, $U_2 = 13 V$. (ε) $R_1 = 2 \Omega$, $R_2 = 2 \Omega$, $R_3 = 1 \Omega$, $R_4 = 1 \Omega$, $R_5 = 1 \Omega$, $R_6 = 1 \Omega$, $U_1 = 29 V$, $U_2 = 58 V$.

- 124^{16–17} Satz 4.8.3 Es seien U ein Unterraum von V und $(b_j)_{j\in I}$ eine solche Basis von V, dass $U = [(b_j)_{j\in I_1}]$ für eine gewisse Teilmenge $I_1 \subset I$ erfüllt ist. Schreiben wir $I_2 := I \setminus I_1$, so gilt
- Nach dem Basisergänzungssatz 2.5.8 gibt es für jeden Unterraum U von V eine Basis $(\boldsymbol{b}_i)_{i \in I}$ mit den in Satz 4.8.3 genannten Eigenschaften. Setzen wir . . .
- $140_9 W^*$
- 161¹⁻³ Die Bestimmung des Durchschnitts von m beliebigen Hyperebenen im affinen Raum $K^{n\times 1}$ führt daher auf ein (m,n)-LGS. Satz 6.2.3 über den Durchschnitt affiner Unterräume illustriert, dass die Lösungsmenge dieses LGS ...
- $161_{11} \quad x \in g$
- 170₁₅ $\mathcal{P}(K \times \mathbf{H})$
- 176₉ so, dass f(a), f(b) l. u. sind.
- 178⁶⁻⁷ ... Basis von V. Das zeigt $\mathbf{q} \notin [(\mathbf{q}_0, \ldots, \mathbf{q}_{j-1}, \mathbf{q}_{j+1}, \ldots, \mathbf{q}_n)]$, also muss $c_j \neq 0$ erfüllt sein.
- $184_9 \qquad (n, m \in \mathbb{N})$
- 189¹¹ anschaulichen
- Für n = 0 ist (7.6) offensichtlich richtig. Wir setzen im Folgenden $n \ge 1$ voraus und berechnen
- 230³ d_1 und d_2 Hauptvektoren aus $V_f(t)$
- 233¹²⁻¹³ Wegen $U_1 \subset (f-t \operatorname{id}_V)^{m_2-1}(W_1)$ ist $U_1 \cap U_2 = \{o\}$. Die Vereinigung der zuvor gewählten Basen von U_1 und U_2 ist daher l.u., sodass wir Satz 8.7.5 anwenden können. Es folgt, dass $C_{1,2} := (C_1, C_2)$ eine Basis von $W_1 + W_2$ ist, womit hier eine direkte Summe vorliegt.
- 275^{15} $a \in \mathbb{R}^{3 \times 1}$
- 279^{14-20} Ersetze an allen fünf Stellen $\overline{\sigma}$ durch $\overline{\sigma}_{\mathbb{C}}$
- $287_8 V = \tilde{U}^+ \oplus \tilde{U}^- \oplus V^\perp$
- $288^1 V = \tilde{U}^+ \oplus \tilde{U}^- \oplus V^\perp$
- 291₈ einer radikalfreien indefiniten Form
- 307₁₃ Parabelpunkt $\mathbf{p} \neq (0,0)^{\mathrm{T}}$
- Die Graphiken in den Abbildungen 11.2 und 11.3 gehören vertauscht.
- 327^{10-11} aus den
- $331_{18} \quad \dim V \ge 1$

$$339^{15} = \frac{1}{2} \left(-1 + i, 1 + i, 2 \right)^{\mathrm{T}}$$

- $350^2 \quad w \in W \setminus \{o\}$
- Statt $\hat{\mathbf{B}}^*$ kann einfacher \mathbf{B}^* geschrieben werden.
- 396₄ Eine