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Introduction

These notes take origin from a series of lectures held by Prof. H. Havlicek
at Universita Cattolica del Sacro Cuore of Brescia (Italy) on June 2002.

The aim of these notes is to give an introduction to some basic topics
in Geometry over noncommutative fields and, more in detail, to present the
theory of reguli in projective spaces over such fields. As the title may suggest,
the style of this work would recall the style of Prof. Havlicek who thought
it was better to spend time on comments (the power of human speakers)
rather than on technical details (the power of books), and so, writing these
pages, we try to give the “ideas” and to underline relevant properties or
constructions.

The whole survey will follow the guide of Segre (see [7, 6]) who first deals
with these problems, adding to his foundamental work a bit of innovation
and presenting the last evolutions of his ideas. In particular:

in Section 1 we give the definition of vector space over a skew field and
we present some examples with the aim of underlining the main differences
between the skew and the commutative case, intending to give a short in-
troduction to the reader that (as I was when I take part at the lectures) is
new to these topics.

In Section 2 we recall some important algebric results on skew fields,
but trying not to loose the geometric point of view.



1. Vector spaces over skew fields

Section 3 is explicitely dedicated to present some geometric properties
of vector spaces over skew fields, and another time the aim is to underline
differences with the commutative case. In particular we deal with projective
frames and cross-ratios.

With Section 4 starts the most geometric part of these notes: we in-
troduce the definition of a regulus in a 3-dimensional projective space and
analyse the main properties of this object, in particular, the intersection of
a regulus and a line. We present also briefly some ways to generalize the
definition of regulus in higher dimensional spaces.

Section 5, finally, deals with planar sections of reguli. We distinguish
between sections with planes that contains a generator and planes that do
not, in the first case giving the definition of a C'-configuration, in the second
of a conic, and looking for their properties.

Before starting special thanks go to Hans Havlicek for his enthusiatic
and attractive lectures of course, but also for his help with these notes, that
passed through his clever pen. Many thanks also to Andrea Blunck, who
read and corrected these pages during her stay in Brescia on November 2002
and helped with many useful observations and explanations, and to Silvia
Pianta, who, in some sense, coordinated all this stuff from the backstage
and, with great patience, taught me that a regulus is “made up of these
lines” and not “made with this lines”.

1 Vector spaces over skew fields

1.1 Definition. Let F be a field (not necessarily a commutative one) and
V' a nonempty set. We say that V is a right vector space over the field F

if:
1. On'V there is a binary operation “+” such that (V,+) is a group';

2. there exists a map

L VxF — V
"l (va) — v«

such that, for all a, B € F and for all u,v € V the following conditions
are fulfilled:

(a) (u+v) - a=u-a+v-«

1t is in fact not necessesary to demand that the group is abelian, we can obtain this
by calculating (u + v)(1 + 1) in two different ways.
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1. Vector spaces over skew fields

b) v-(a+B)=v-at+v-p
(c) (v-a)-B=v-(ap)
(d) v-1=v

In a similar way we say V is a left vector space over F' if there are fulfilled
properties 1. and

2’. there exists a map

L) FxVo— vV
|l (,v) — a-wv

such that, for all a, B € F and for all u,v € V the following conditions
are fulfilled:

(a) a-(u+v)=a-ut+a-v
(b) (a+p)-v=a-v+p-v
(c) (af)-v=a-(B-v)

(d) 1-v=wv

The notions of right and left vector space are a natural generalization
of that of vector space to the skew field case, about which these notes deal.
We assume a field F' to be either a skew field or a commutative field and, if
not specified, a vector space to be a right vector space over F'. We omit to
write the multiplication sign for external multiplication.

It is important to observe that, even if the definitions of right and left
vector space are very similar, the structures obtained in the two cases are
not, as to say, “interchangeable”, in the sense that a right vector space
cannot be naturally changed into a left one over the same skew field F,
and, even more, when this is possible, the two structures obtained have
deeply different behaviours, as will be shown in the following examples (see
in particular example 1.3).

1.2 Example. Let F be a field and n € N\{ 0 }; the set F'" can be naturally
equipped with the structure of right or left vector space over itself through
the applications:

F*"x F —y Fm
n { (o1, am),8) — (a1f;..., anp)
and
F x F™ —s Fm
1 { (B, (a1,...,a0)) — (Bai,...,Ban)



1. Vector spaces over skew fields

1.3 Example. Let H be a four-dimensional vector space over the commu-
tative field R of real numbers and let { 1,%,j,k } be a basis of H. Let us
consider the linear application - : H x H — H obtained as the linear exten-
sion of the map defined by the following action on the vectors of the basis
of H:

11 & &k
ili -1 k  —j
ili -k -1
Elk 5 —i -1

It is easy to check that H with this “multiplication” is a field, and in par-

ticular a non commutative one, considering for instance that

ij=k
joi=—k

(H, +, -) is one of the most classical examples of skew field and is called the
real quaternion field (or the real quaternion algebra).

Let us now consider on H? the structures of right and left vector space over
H (as in 1.2). It is immediate to check that some properties deeply bound
with the vector space structure, such as linear dependence and independece
of vectors, are different in these two structures. Let us consider, for instance,
the vectors (1,7) and (4, k); these vectors are linearly dependent if considered
as vectors of the right vector space H?, in fact:

(l,Z)j = (.7’ Z]) = (.7’ k)

while it is easy to see that they are independent in the left vector space H?:

N N T = J
.’I)(].,Z) - (J),.’L‘Z) - (]ak) — { l"L — k‘
but ji = —k # k.

1.4 Definition. Let V and W be two right vector spaces on the same field
F. A map f:V — W is a homomorphism if, for all u,v in V and for all
a in F, the following properties are fulfilled:

1. flu+v) = f(u)+ f(v)
2. f(va) = f(v)a.



1. Vector spaces over skew fields

We will denote by Homp(V, W) the set of all homomorphisms between the
right vector spaces V and W .

1.5 Example. Let V be a right vector space over F. We have already
observed in 1.2 that F' can be thought in a natural way both as right and
left vector space over itself, and so we can consider

V" := Homp(V, F).

For all v € V/, we will denote its action on a vector u of V by (v, u ) € F.
VA can be equipped with the structure of left vector space over F through
the following maps: V a,b" e VA, Vv eV, Va € F
(a+0Nv):=(av)+ (b "0v)
(ad",v):=ala"v).
The choice of considering V" as left vector space is justifyed by necessity

to guarantee the linearity of the multiplication by a scalar, in fact for all
ae VN veV,a B eF, if we define:

(a"a,v ) == (a",v )

we have
(a"e,vB ) =(a" 0B )a=(d",v)fa
(a"o,vB) = (a"a,v)B={a",v)ap

and, in general, these two expressions are different. Neither the idea of
defining

(a"o,v ) :=ala"v)

works fine, in fact in this case we have

(a"(aB),v ) =ap(av)
((a"a)B,v ) =p{a"a,v)=Bala"v)

and also these two expressions are, in general, different.
The vector space V" is called the dual vector space of V. As usual, if

{e1,...,en } is a basis of V' the maps
Vv — F
A n :
e : 1=1,...,n
¢ Zlejaj — ’ ’
j:

belong to V, are linearly independent and form a basis for V.



1. Vector spaces over skew fields

Other differences in comparison with the commutative case, can be found
also dealing with matrices. In particular we can no more define only one
notion of rank of a matrix, but it is necessesary to distinguish between
the maximum number of linear independent rows (row rank) and columns
(column rank), and moreover between right linear independence (right rank)
and left linear independence (left rank). These numbers in general can be
different, as we can see easly considering in Mato(H) the matrix

()

For the observations we have already done in 1.3 this matrix has right row
rank 1, but left row rank 2. More in detail it is possible to prove that the
following equalities hold:

left row rank = right column rank

right row rank = left column rank

Other differences arise also when we search for eigenvalues and eigen-
vectors of an endomorphism f of a vector space V. So if f € Endp(V) :=
Homp(V,V) and v € V'\ {0 } and A € F are respectively an eigenvector of
f and its eigenvalue, we have, for alla € F'\ {0}

fva) = f(v)a = (vA)a = (va)a Aa

and so an eigenvalue is defined up to conjugation by elements of F. More-
over, if now ¢ is an automorphism of V', A is an eigenvalue also for the map
g~ 'fg and the corresponding eigenvectors are g~!(v) for all eigenvectors v
corresponding to X in respect of f, in fact we have:

9 f9 (g7 (W) =g f(v) =g (wA) = g7 (v)A.

Let us conclude this short survey on analogies and differences between
vector spaces on commutative fields and skew fields with another example of
more geometrical nature, which involves projective geometries arising from
vector spaces and the fundamental theorem on projectivities. In particular,
while in the commutative case it is well known that in an n-dimensional
projective space a projectivity that fixes n+2 points in general position is the
identity, this property cannot be extended painless to the non commutative
case. We will check this on a 1-dimensional example in 1.14, but before
doing this we recall briefly what a projective space over a skew field is, and
its main properties (a more detailed presentation can be found in [3]).



1. Vector spaces over skew fields

Let us consider a right vector space V of dimension n + 1 over the skew-
field F' and define the following map:

- V. — V/F*
’ v — vF*

Note that the elements of V/F* are defined up to a right proportional factor
and that 7 is surjective.

1.6 Definition. We call V*/F* = 7 (V*) the right projective space of
dimension n over F associated to V, and we denote it by PG(V). If X
is a subspace of V' of dimension m + 1 we say that w(X*) is a projective
subspace of PG(V) of dimension m. As usual we call point, line, plane

and hyperplane any projective subspace of PG(V') of dimension 0, 1, 2 and
n — 1 respectively. If V.= F"! then we denote PG(V) by PG(n,F).

Many of the “classical” definitions can be extended to projective geome-
tries over skew fields, and many properties of projective spaces are still true;
in particular:

1.7 Definition. A projective frame of PG(V) is an ordered set of n + 2
points such that no n + 1 are contained in a hyperplane.

1.8 Theorem. Let V' be a right vector space of dimension n+1 over F' and
let {vi,...,vp+1} be a basis for V. Then

{m(v1),...,7(vps1), (V1 + ... +Vpt1) }

is a projective frame for PG(V). Viceversa if { e1,...,ent1,u } is a pro-
jective frame of PG(V'), then there ezists a basis { v1,...,vp4+1 } of V such
that e; = m(v1),. .., ent1 = ®(Vpy1), u = w(v1 + ... + Vpy1).

1.9 Definition. An isomorphism between two projective spaces PG(V') and
PG(W) over the same field F is a one-to-one mapping f of the subspaces
of PG(V') onto the subspaces of PG(W) which preserves the containment
relation. If PG(V) = PG(W) then f is called a collineation or an auto-
morphism; we denote the set of all collineations of PG(V') by PTL(V).

Note that an isomorphism between PG (V) and PG(W) can exist only
if V and W have the same dimension.

1.10 Theorem. If V and W are two vector spaces over F of dimension
at least 2, then any isomorphism of the projective space PG(V) onto the



1. Vector spaces over skew fields

projective space PG(W) is induced by a semilinear transformation of V' onto

w.

1.11 Corollary (Foundamental Theorem of Projective Geometry).
If V is a vector space over F of dimension at least 2, then the group of
all collineation of the projective space PG(V') is induced by the group of all
non-singular semilinear transformations of V' onto itself.

1.12 Definition. We call projectivity an isomorphism of PG(V) onto
PG(W) which is induced by a linear transformation of V onto W. We
denote the group of all projectivities of PG(V') onto itself by PGL(V).

1.13 Theorem. Let V be a right vector space of dimension n + 1 over F
and denote by TL(V') the group of all semilinear transformations of V onto
itself and by

N:={yeTL(V) | n(y(v)) =7w(v) forallveV }.
Then PTL(V) = TL(V)/N and PGL(V) = GL(V)/N N GL(V).

This last theorem shows in particular that any projectivity of a projective
space PG(V) onto itself can be represented, as in commutative case, by a
n+ 1 square matrix (n > 2), defined up to a right proportional factor chosen
in the center of F.

We are now ready to show the announced example:

1.14 Example. Let f be a projectivity of the projective line PG(1, F') onto
itself and, for the sake of simplicity, let us suppose that f fixes the three
points (1,0)F*, (0,1)F* and (1,1)F* of a projective frame; as in the com-
mutative case the matrix that represents the map f is, up to a proportional
factor, of the form:

(g 2) where ac F\{0}.

Let us now distinguish between two cases.
If « belongs to the center of F

Z(F):={a€F|VBeF: af=pPa}

we have, for all points (z,y)F*,

(62 ()= (2)- () =€)



2. Some algebraic properties of skew fields

and so f =id.
If « ¢ Z(F) there exists € F such that af # Ba. Let us consider

()02

1
The vector aﬂ cannot be proportional to P on the right side, because
«
an element z of F' that achieves this proportionality would have to fulfil
a=rc
af = Bz

while this is impossible, and so the application f cannot be the identity.

2 Some algebraic properties of skew fields
In this section F' will denote a field and Z(F) its center, i.e. the set
Z(F):={a€F|ab=ba VbeF}.

It is easy to check that Z(F) is a commutative subfield? of F, so F can
always be equipped with the structure of vector space over its center.

2.1 Example. Let H be the algebra of real quaternions as in 1.3. Its center
Z(H) is the field R of real numbers and the dimension of H as vector space
over R is [H: R] = 4.

Let now ¢t € F be a fixed element of the field. We will denote by Zp(t)
the centralizer in F' of the element ¢, i.e. the set

Zp(t):={a€cF |at=ta}.

This set is still a subfield of F, but, in general, it is not commutative,
so it is still possible to consider F' as a vector space over Zp(t), but now
it is necessesary to distinguish between right vector space and left vector
space; we will denote their dimensions respectively with [F' : Zp(t)], and
[F : Zp(t)];, remembering that, in general, they can be different.

We will now state the principal results concerning the characters till now
introduced.

*We will denote substructures with the symbol “<”, so Z(F) < F.

11



2. Some algebraic properties of skew fields

2.2 Theorem (Centralizer Theorem). Let F' be a field, Z(F) its center,
C an intermediate subfield:

Z(F)<CKF
and Zp(C) the set
Zp(C):={a€F |ac=ca Vcel}= ﬂZF(c)
ceC
If at least one of the dimensions [C : Z(F)|, [F : Zp(C)], or [F : Zg(C)),
is finite, then all are finite and, moreover,

[C: Z(F)] = [F : Zp(C)], = [F : Zp(O)]..

This result (a proof can be found in [1, p. 49]) suggests that trying
to find out examples in which the left and right dimensions of F' over the
centralizer of an element are distinct is quite difficult, in fact in all classical
examples the hypothesis of finiteness of theorem 2.2 are always fulfilled.

2.3 Theorem. Let F' be an infinite field; then for all t in F we have (see

12])
| Zr (#)] = oo.

2.4 Theorem (Skolem-Noether Theorem). Let F' be a non commutative
field, E a proper subfield of F' such that

Z(F)<E<F and® [E:Z(F)] <o
and let ¢ : E — E be an automorphism of E such that Pl = id. Then

there exists a ¢ € F different from zero such that

1

VeeFE: ¢(r)=c zc=1z°

and so @ s the restriction to E of an inner automorphism of F'.

A proof of the previous result can be found in [5].

2.5 Example. Let us consider, as usual, the skew field of real quaternions
H, let us denote by C the subfield spanned by { 1,7 } and consider the
automorphism of C given by the conjugation of complex numbers: ¢(1) =1
and (i) = —i. We have Z(H) = R and [C : R] = 2, so the hypothesis of
theorem 2.4 are fulfilled and it turns out ¢ = 7, in fact

="t =5k = —i.

3Let us observe that it is not important to specify if E is a right vector space or a left
one because the subfield Z(F') is commutative.

12



2. Some algebraic properties of skew fields

2.6 Theorem. Let F be a field, t € F and let us denote by t*" the conjugacy

class of t:
th:={cltc|ceF\{0}}.
Then we have that ‘tF‘ =1ifte Z(F), ‘tF‘ = 00 otherwise.

Proof. Ift € Z(F), for allc € F\ {0} we have c"'tc=1¢, and so t/' = { ¢ }
and |¢F| = 1.
Let now be t ¢ Z(F') and let ¢,d belong to F'\ { 0 }. It holds:

=t — cle=d td < dclted =t
— cd e Zpt) <= ce€Zp(t)d

and so, considering F' as a left vector space over the centralizer Zr(t) and
building the corresponding (left) projective space, we can obtain that ¢ and
d are representatives of the same point of the projective space if and only if
they determine the same conjugate element of ¢. Since ¢t ¢ Z(F') there exists
at least an element of F' that does not commutate with ¢, and so that does
not belong to Zp(t), so [F' : Zp(t)] > 2; this implies that in the projective

4. The number of distinct

space introduced above there is (at least) a line
elements of F' conjugate with ¢ is therefore not smaller than the number of
distinct points of a line of the projective space over the field Zp(t), and so,

remebering theorem 2.3,
|t"| > 1Zr ()| + 1 = 0. O

2.7 Remark. In the proof of the last theorem we have underlined a mean-
ingful property of conjugacy classes of elements ¢t € F'\ Z(F'): the elements of
tf" can be put in bijective correspondence with the points of a left projective
space over the centralizer Zp(t).

We conclude this section with two well known theorems:

2.8 Theorem (Gordon-Motzkin Theorem). Let F' be a skew field and
p(x) be a polynomial of degree n of the form

p(z) = apz™ + an—lmnil +...4+a1x+ ap.

The roots of p(x) belong to at most n conjucacy classes of F. Moreover if
two distinct roots of p(x) belong to the same conjugacy class C, then there
are infinitely many elements of C that are roots of p(x).

4In the worst case it is a line itself.

13



3. Some geometric properties of skew fields

2.9 Theorem (Wedderburn’s Theorem). Let F' be a finite field; then

F' is commutative.

A proof of the Gordon-Motzkin Theorem and of the Wedderburn’s The-
orem can be found in [4].

3 Some geometric properties of skew fields

Let us start dealing with the problem of coordinatization of a projective
space on a skew field, in particular concerning with changing the canonical
representants for a projective frame. In the commutative case this, of course,
leaves all coordinates unchanged, but is this still true in the non commutative
case?

Let V be a right vector space of finite dimension k£ + 1 over the skew
field F. Let us consider the projective space PG(k, F') and let

er = (1,0,0,...,0)F*
es = (0,1,0,...,0)F*

Cr+1 = (0,0,...,O,l)F*
w=(1,1,...,1)F*

be a projective frame in PG(k, F'). In such a frame a point p has coordinates
(x1,%2,...,2k41)F* where z; € F, i =1,...,k+ 1. All points of PG(k, F)
have coordinates defined up to a (right) proportional factor, so, as we said,
we can change the canonical representants for our projective frame without
changing the projective structure, i.e. obtaining for ey, ..., ex4+1,u:

e1 = (¢,0,0,...,0)F*

es = (0,¢,0,...,0)F*
exi1 = (0,0,...,0,¢c)F*

u=(cc,...,c)F*

where c lies in F*. To determine the coordinates of the point p with respect
to this new vectors of V' we have to observe that:

(@1, zh1) = (cc o, e mpyn) =
=(c,0,...,0)c 'z 4+ ...+ (0,...,0,¢)c  zpyy

14



3. Some geometric properties of skew fields

so the coordinates of p are:
-1 -1
p=(z1,....2511)F* = (¢ '21c, ..., ¢ tappac) F*

and so they change through an inner automorphism of F'.

Let us now consider a projective line over F', let us fix a projective
frame e, e2,u and a fourth point p that has in this frame coordinates p =
(z,y)F*. We all know the cross-ratio of the four points e, ez, u,p is the
number ¢ := zy~! if p # ey, t := oo if p = e;. Remembering now the
previous observations on the coordinatization, if we change the representants
of the projective frame, we have that the cross-ratio of ey, es,u,p is t =
(c_la:c) (c_ly_lc) = ¢ 't¢, so we must conclude that also ¢~ 'tc for ¢ € F*
can be the cross-ratio for p: if we want to have a consistent definition we must
define the cross-ratio of the four points e, es, u,p as the whole conjugacy
class of ¢, that we have denoted by .

3.1 Definition. Provided three distinct points ey, ea,u of the projective line
PG(1,F) and a fourth point p we define the cross-ratio of the four points
e1,eq, u,p to be the conjugacy class of any element t of F that is the ratio
between the first and the second projective coordinate of p in the projective
frame that has e1, e as base points and u as unit point; we agree to say that
the cross-ratio is infinite when the second coordinate of p is 0.

Viceversa, if t ¢ Z(F), we can have many points (all conjugate with p)
that have cross-ratio t!": we can determine them by considering all projec-
tivities that fix e, e2,u and taking the orbit of p under the action of this
group. So all points of PG(1, F) are identified up to an inner automorphism
by their cross-ratio with three distinct points e, eo, u, and so the cross-ratio
of four points is still a projective invariant.

The projective line can be divided into those point that have cross-ratio
in the center of F' (in fact those points that are fixed by all projectivities that
fix the projective frame) and those points that have cross-ratio ¢ ¢ Z(F),
grouped into conjugacy classes that, for theorem 2.6, have infinitely many
elements. If we now take three distinct points e},ef, u' with cross-ratio
(with respect to e, eg,u) in the center, the cross-ratios ¢ and ¢’ of a point p
with respect to the projective frames defined by eq, es, u and, respectively,
e}, el u' are bound by the relation:

, at+b

Cct+d

where a,b,c,d € Z(F) and ad — bc # 0. This means that points that have
cross-ratio ¢t with respect to e, e, u are those and only those that have cross-

15



4. Reguli over a skew field

ratio ¢’ with respect to €], eh, v/, i.e. if we replace e, ea,u with three distinct
points with cross-ratio in Z(F') we obtain the same structure of conjugacy
classes on PG(1, F).

4 Reguli over a skew field
Let F be a field and PG(3, F') be the right projective space over F.

4.1 Definition. Let D, Do, D3 be three pairwise skew lines; a regulus is
the set of all lines meeting all the lines D1, Dy, D3. The lines of the requlus
are called generators while the lines D1, Dy, D3, together with all lines of
PG(3,F) that meets all generators, are called directrices.

4.2 Remark. A regulus can be obtained also by considering two skew lines
D and D5y and a projectivity m between them: the lines of the regulus are
those lines that join a point p of D; with its image m(p) under the action
of w. In fact, if we take a projectivity = of D1 onto Dy, there always exists
a third line D3 such that the pencil of planes with axis D3 cuts D; and
Dy in corresponding points, and so lines joining corresponding points form
a regulus of directrices D1, Dy and D3. To see this note that the lines Dy
and D are 2-dimensional complementary subspaces of a 4-dimensional right
vector space V over F, and the projectivity 7, remembering theorem 1.11,
is induced by a linear map f from D; to Dy. If we now fix a basis { v1,v9 }
in Dy and define v3 := f(v1) and vy := f(ve) the set { v3,vs } is a basis of
Dy and f is given by

f: (%1,22,0,0) — (0,0, 21, z2)-
Now let D3 be the line
D3 :={ (z1,22,21,22) €V | z1,20 € F }.
Each vector on this line splits naturally into
(1,2, 71,22) = (71, 22,0,0) + (0,0, 21, z2)

and this shows that every line that joins corresponding points of the projec-
tivity also meets Ds.

It is well known that through every point on one of the directrices there
exists a line of the regulus and moreover, in the commutative case, the roles
played by directrices and generators are interchangeable, in the sense that

16



4. Reguli over a skew field

p3 = (07 0) 17 0)

p = (13 1)“’ /U/)F*

(1,1,1,1)F*

D

q=(1,v,1,0)F"

Figure 4.1: Generators and directrices of a regulus.

if we take three distinct generators Gy, Go, G3 and we consider the regulus
defined by these lines, this regulus is independent on the lines we choose.
This means that the three lines D1, Dy and D3 belong to this regulus and
for every point on one of the Gy, G, G3 there exists a (unique) line of this
new regulus (and so a directrix of the old one) through this point. This
situation is no longer true in the skew case, where depending on the three
lines G1, G2, G'3 we choose in general we obtain many reguli, all sharing the
three starting lines D1, Dy and D3. This in particular means that if we take
any point on a generator in general a line through this point that meets all
generators (and so a directrix) does not exist. We will achieve this result by
proving the following statement:

4.3 Theorem. The directrices of a regulus over F' are the generators of a
requlus of PG (3, Z(F)), considered as a subspace of PG(3,F).

Proof. Let D1, D9, D3 be three distinct skew lines and G1, G2, G3 be three
distinct generators of the regulus having D1, D9 and D3 as directrices. With-
out loss of generality we can fix the points of a projective frame in such a
way that the four base points are, in the order, the points D1 NGy, Do NG,
Dy N G2 and Dy N Gy (p1,p2,p3 and ps respectively) and the unit point is
D3 N G3 (see figure 4.1).
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4. Reguli over a skew field

In such a frame the two lines D1 and Dy have equations

Di: z9=0=1mx4

_D2 : r1 = 0= I3
respectively, while the lines G; and G5 have equations

Gi: z23=0=u4

GQZ $1:0:$2

It is easy to check that Dj, which is a line through (1,1,1,1)F* that meets
both G; and G5, has equations

D3y: z1—29=0=123— 14

and so a point p on this line® has coordinates (1, 1, u, u)F*, where u € F, and
the generator through p, being the intersection between the plane (Dq,p)
and the plane (Ds,p), is the line

G: urs—x4=0=uzx; — 3.
Putting u = 1 in the equations of G we obtain for G5 the equations
G3: 371—:173:0:.’172—.’[4

and so a point on G3 has coordinates (1,v,1,v)F*, v € F, and the line
through this point that meets both G; and G is the line of equation:

D: wvxy—29=0=0v13— 24.

It is now easy to check that the condition that this last line D meets the
line G is equivalent to asking

uv = vu.

This implies that a line D of the regulus which has three of the generators as
directrices meets all the generators (and so is a directrix of the first regulus)
if and only if

uv =vu forallu € F,

that is if and only if v € Z(F). O

5In fact not all the points of D3, the point (0,0,1,1)F* is missing.
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4. Reguli over a skew field

G

a1 = (u,0,1,0)F"

Dy (0,0,1,0)F*

(1,0,0,0)F*

as = (u,u, 1,1)F*

D (1,1,1,1)F*

D»

(0,1,0,0)F* az = (0,u,0,1)F~

Figure 4.2:

We can observe that, as a consequence of this theorem, we can give to a
generator G a sort of “structure”, in the sense that its points can be divided
into points through which there exists a line that meets all generators (in
fact points that can be parametrized by a non homogeneous coordinate u
belonging to the center of F'), and points for which this condition is not
fulfilled, grouped into conjugacy classes, as we did in § 3. This argument
cannot be applied to points on a directrix which, in some sense, are “all the
same” because from the point of view of the regulus they have the same
properties (through all points on a directrix there is exactly a generator).

As we do in commutative case, we may also observe that if we take
another line D that meets all generators and we take the point of intersection
of this line with, for instance, G1, we can consider the cross-ratio of this
intersection point with the points p;, po and p; + p2 and prove that this
cross-ratio does not change if we take another generator instead of G;. This
allows us to speak of the cross-ratio of the four lines Dy, Dy, D3, D and, in
the skew case, we can restate the previous result saying that through a point
p on a generator there is a directrix if and only if its cross-ratio belongs to
the center of F'.

Now we want to find out an expression for all points on a regulus (an
hyperbolic quadric in the commutative case); let us consider the picture 4.2,
where we have chosen a projective frame in the same way as we did before
in the proof of theroem 4.3. We have already observed that the points of
the line D3 are those of the form (u,u,1,1)F* (u € F) plus an extra point,
say “o0”, with coordinates (1,1,0,0)F*. If we now take a point ag on D3
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4. Reguli over a skew field

different from co and we consider the generator G passing through this point,
it is easy to check that the points a; and a9, intersection of this generator
with D1 and D, respectively, have coordinates:

a1 = (u,0,1,0)F*
as = (0,u,0,1)F*.

So all points on G can be obtained as a linear combination of a1 and as;
if we take a combination made only by one non homogeneous parameter
t € F, we obtain for these points coordinates of the form:

(ut,u,t,1)F*.

Of course not all points of the regulus can be written in such a form: as we
have already observed, for each directrix we “loose” its point at infinity and,
moreover, choosing to make linear combination only with one parameter,
implies that for each generator we loose another point (corresponding to the
case t = oo; in particular we cannot represent in this form, for instance, the
point a1); don’t care about it for now, just remember that some points are
missing.

Let us also underline the different roles played by w and ¢: both of them
belong to F but changing u corresponds to changing the generator G we are
considering, while changing ¢t means changing the point on such G.

The form (ut,u,t,1)F* we obtained for points on a regulus suggests us
how we can obtain a quadratic homogeneous equation in the four indeter-
minates x1, 2,3 and x4 that characterizes the points of the regulus:

(1) zy23' = zozy "
This works in the same way in the skew case because we take the inverse of
z3 and z4: this allows us not to care about the right proportionality factor
which is bound with coordinate representation of points, in fact if we take
p € F* and we replace the point z; with z;p (1 = 1,2,3,4) we obtain, for
instance for :cla:?jlz

(z1p)(z3p) "t = z1pp 2zt = 2123t
Again some points are missing in the representation (1); even if we forget
we took these points away during our construction, we can see an evidence
of this in the fact that the equation contains an inverse operation which, of
course, is allowed only for non zero element of F.
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4. Reguli over a skew field

As we have already observed in § 3, if we change the coordinates of the
points of the projective frame (but, of course, without changing the points!)
the parameters u and ¢ change by an inner automorphism of F.

Let us now take in PG(3, F') two triplets of pairwise skew lines D1, Do, D3
and G1,G9, 3 such that every line of the first triplet meets all lines of
the second one, consider the two reguli 4 and % having Di, Dy, D3 and
G1, G2, 3 as directrices respectively and fix a projective frame as we have
usually done before. If we take a line G of ¢4 and a line D of &, we
have already proved that, if we denote by v the cross-ratio of the four lines
D1, Dy, D3 and D and by u the cross-ratio of G1, G2, G3 and G, the lines G
and D intersect if and only if v and v commute. Let us now take a new line
of 4, say G', which determines, with respect to G1, Gy and G3, a cross-ratio
u’ conjugate to u and a new line D’ € 2 which has a cross-ratio v’ conjugate
to v; the question is: if we know that u and v commute, what can we say
about u' and v'? Well, if we take ¢,d € F* we cannot always say that u¢
and v? commute (see example 4.5), but this is true if ¢ = d, in fact

uv® = (¢ tuc) (¢ lve) = ¢ luve = ¢ Lvue = véu®

and so we can conclude with the following statement:

4.4 Theorem. If we take the set of all lines of 4 having cross-ratio u and
the set of all lines of & having cross-ratio v, then these two sets are made
up of lines either pairwise skew or such that every line from one set meets
al least one line from the other set; in particular this last condition holds if
UY = VU.

4.5 Example. Let us take F =H, u =71 =v,c=1landd =k — 1. It is
easy to check that

1 1

-1 _ — _1:— — =
d =(k-1) 5 2k
and so
1 1
1. (_ 1 1 . . _
d zd—( 5 2k>z(k 1) =3
We have:

u? =id YNid =14 =k

vl = d~Yidi = ji = —k.
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4.1 Generalization to (odd) dimensions greater than 3

4.1 Generalization to (odd) dimensions greater than 3

Here we want to give an outline on how the notion of regulus can be extended
to dimensions greater than 3; we will only describe two possible constructions
in PG(5, F); the general case can be
obtained from these examples.

Let us take in a 5-dimensional pro-
jective space three planes §1, do, 03 pair-

wise skew; we call a regulus with direc-
tor planes 01,092,053 the set of all lines
of PG(5, F) that meet all these planes.
As we did in § 4 for the 3-dimensional
case, we can observe that for each point
on a director plane there exists only
one line of the regulus through this
point, while if we take a point p on a
generator (G1 a director plane through
p does not always exist. In particular,
if we fix on G1 a projective frame hayv-
ing G1 N d1, G1 N s and G N J3 as ba-
sic points and unit point respectively, Figure 4.3: A regulus in PG(5, F).
a director plane through p exists if and

only if the cross-ratio of p with respect to such a frame® lies in the center
of F'. This implies that, from regulus point of view, a director plane has no
structure (all the points are “the same”) while the points on a generator can
be divided into these points belonging to Z(F') and those that don’t belong
to Z(F'), grouped into conjugacy classes.

This construction is a natural generalization of the definition of reguli in
3-dimensional spaces, in fact if we consider the points p1, po, p3 and g1, g2, q3

as in the figure 4.3, the lines p1, g1, P2, 92 and P3, g3 span a 3-dimensional

projective space and, in this space, they are the directrices of a regulus that,

of course, contains G5 and Gj.

We can also construct the regulus by giving a projectivity between two skew

planes of PG(5, F) and considering the lines joining corresponding points.
A similar construction can be done starting from four lines instead of

three skew planes; we need a definition:

4.6 Definition. Four lines of PG(5, F) are in general position when, if we

6As we did in 3-dimensional case, if we take 4 director planes, we can speak of the
cross-ratio of this four planes; see page 19.
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5. Planar sections of reguli

take arbitrarily three of them, they span the whole space.

So if we take four lines D1, Dy, D3, D4 in general position, we can consider
all planes of PG(5, F) that meet these four lines in exactly one point; this
planes, called generator planes, form a requlus having D1, Dy, D3 and D4 as
directrices. For each point p on a directrix there exists a generator plane
through this point?, and so directrices have “no structure”, while for each
generator plane G directrices exist only for those points that belong to the
subplane over the center Z(F') spanned by the four points G N D; (i =
1,2,3,4).

5 Planar sections of reguli

In this section we deal with the planar sections of a regulus in PG(3, F)). We
will see that, in respect of the commutative case, the situation with skew
fields is a bit more complicated, in fact, besides of the “classical” situation
in which the planar sections are made up of a couple of distinct lines or
of a conic, we have new and different possible configurations. In particular
another time the center Z(F') of the field plays a special role, suggesting if
we will expect to obtain a classical configuration or a new one.

5.1 Planar sections with planes through a generator

Let D1, D5, D3 be the directrices of a regulus ¢, G be a generator and 7 be
a plane of PG(3, F') through G;. Each generator of the regulus ¢ distinct
from G meets the plane 7 in a point.

5.1 Definition. We call C-configuration the set of all points of the plane
7 that are the intersection of a generator distinct from G1 with m and we
denote it by C.

As we have already observed in § 4, without loss of generality we can
assume that the line G1 has equations

G1 I I3 = 0= T4
and so the plane 7 has the equation

(1) m: z3=txy

"We can obtain this plane for instance by intersecting all hyperplanes joining the point
p with two of the other lines.
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5.1 Planar sections with planes through a generator

D1 DS D2

G:

3

Figure 5.1: Cross-ratio of four planes.

where ¢ € F is a non homogeneus parameter®.

5.2 Definition. The element t € F 1is called the parameter of the C-
configuration.

5.3 Remark. The parameter ¢ in equation (1) is on the left even if we
are still in a right vector space; this because in this way we can preserve
the homogeneity of the equation: ¢ won’t “interfere” with the proportional
factor of a point because they are on different side of z4.

This situation is dual with that we have already seen in § 4 for the points
on a generator, so we can do for m the same consideration we did there for
such points. In particular (see figure 5.1) if we denote by 71,79 and 73 the
planes through G and, respectively, D1, Dy and D3, t is the cross-ratio of the
plane 7 with respect to 71, w2, m3. Moreover we can consider all the planes
that have cross-ratio ¢ with respect to these three planes, and, in general, we
won’t obtain only 7 but a family of planes containing m, since, as we have
already observed many times, the cross-ratio is not a single number, but a
whole conjugacy class.

In § 4 we have determined that the points of the regulus are those of the
form

(2) (ut,u,t,1)F* u,t € F

plus an extra line (¢ = co) and an extra point for every line (u = oo). In the
plane 7 the parameter ¢ is constant, and so the same expression defines all

8 Another time something is missing: the plane z4 = 0, that is the plane corresponding
to t = oo.
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5.1 Planar sections with planes through a generator

the points of the C-configuration with free parameter u € F', while ¢, fixed,
is the parameter of the C-configuration. Let us now take two distinct points
m and m’' of the C-configuration, say

m = (ut,u,t,1)F* m' = (W't t,)F*, c:=(u—u)1#0

and let us look for the point n intersection of the line trough m and m' and
the line G;. Remembering that G is the line of equations 3 = 0 = x4, we
obtain for n the following coordinates:

n= (ut—u't,u—u,0,0) F* = ((u—u)t,u—u',0,0) F* =
((u—u)t(u —u')~",1,0,0) F* =

(c"'te,1,0,0) F*.

3)

If we now take two other points 7 and m/ we will obtain a new point 7 of
the form (E_lté, 1,0, O) F* that, if ¢ is not in the center of F', is distinct from
n. We have so proved the following statement:

5.4 Theorem. If the parameter t of the C-configuration lies in the center
Z(F) of the field F the points of the C-configuration lie on a line that inter-
sects the generator G1 in exactly one point having cross-ratio t with respect
to the points p1 = D1 NGy, po = Do NGy and ps = D3 N Gy. If, on the
contrary, t ¢ Z(F'), the points of the configuration do not lie on a single line
of m and the points obtained intersecting G with the lines joining pairs of
distinct points of the C-configuration are those points that have, with respect
to p1,p2 and p3 a cross-ratio which is conjugate to t.

Let us now take the two points of the C-configuration corresponding
to the parameter u = 0 and u = 1, i.e. the points m = (0,0,¢,1)F* and

= (¢,1,t,1)F*; by equation (3) we know that the point of G; that lies
on the line through m and m' is n = (¢,1,0,0)F*. Of course all the points
of the line M through m and m’ can be obtained as a linear combination of
m and n, so, taking a non homogeneous linear combination, they are of the
form

(4) (t7 1’ 07 O)U + (07 0’ t7 ]') = (tu7 u7 t’ 1)'

By comparing this expression with the coordinates (2) we obtain that the
points of M which belong to the C-configuration € are those points for which
ut = tu, and so such that u € Zp(t). We have so proved that such points
together with n are the points of a projective line over the centralizer Zg(t).
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5.2 Planar sections with planes that do not contain a generator

Let us now switch to the affine point of view. The points of € are those
of the form (ut,u) € F2, u € F and form a right vector space V over the
centralizer Zp(t), so we can consider the following function:

) F — &={(ut,u) |ueF}
I u — (ut,u)

This map is bijective and, if we consider F' as a right vector space over the
centralizer Zp(t) of ¢, it is also linear, and so an isomorphism; this implies
that the dimension of V' is the same of the dimension [F' : Zg(t)], even if all
the points of V lie in the plane 7.

5.5 Remark. Let us take a generator G, a plane w through G and a point
pof G. A line L # G through p that lies in 7 fulfils one of the following
conditions:

e L meets the C-configuration in at least two distinct points m and m/,
if and only if the point p is one of the point n we described above;

e [ meets the C-configuration in exactly one point;
e [ meets the C-configuration in no points.

In the classical case (if the parameter ¢ of the C-configuration lies in the
center Z(F')) the C-configuration is a line R of 7 without a point (the point
p), and so the first situation can take place only if L = R, while the third
case cannot take place; in the skew case in general all the situations are
possible.

5.6 Remark. Let us take two distinct generators Gi; and G, a plane 7
through G; and a point » on G; such that its cross-ratio is ¢t ¢ Z(F). If we
assume that the line G meets the plane 7 in a point m such that its cross-
ratio is the same of n, then on the line joining m and n there are infinitely
many points of the C-configuration and these points form a subline over the
centralizer of .

5.2 Planar sections with planes that do not contain a gener-
ator

Let m be a plane that does not contain any generator of the regulus ¢. Let
us start by observing that such a plane cannot contain a directrix either and
that every generator has exactly one intersection point with 7.
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5.2 Planar sections with planes that do not contain a generator

G>

Figure 5.2: A conic € on .

5.7 Definition. We call the set of all common points of the plane m with
the requlus ¢ a conic and we denote it by €.

Let us determine an expression for the points of 4. The three directrices
D1, Dy and D3 of the regulus ¢ meet the plane 7 in three distinct points
(see figure 5.2), through each of this points there exists a generator and all
these generators must be distinct because the plane 7 cannot contain any of
them, so let us denote them by G, G2 and G3. If we fix a projective frame
as we have usually done, i.e.

= (1,0,0,0)F* := G1 N Dy
p2 =(0,1,0,0)F* := Gy N Dy
p3 = (0,0,1,0)F* := Go N Dy
ps = (0,0,0,1)F* := Go N Dy
=(1,1,1,1)F* :=G3 N Ds
we can easly obtain for the plane 7 the equation

T: T2 = 3.
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5.2 Planar sections with planes that do not contain a generator

C-configuration

T

Figure 5.3: Intersection between the conic € and a line L of =.

On the other hand we know that the points of the regulus are those of
coordinates (ut,u,t,1)F™*, u,t € F, so the points of the conic ¥ are those
points for which u = ¢ and so points that have coordinates

(5)  (t%,t,t,1)F*.

As usual a point is missing, in particular the point we obtain when t = oo,
i.e. the point p;. From the expression (5) we can obtain the equation of the
conic on the plane =:

a:lx;l = mgwil.

Let us now take a point n on the conic ¥ and denote by L a line of «
through n. If G is the generator of ¢4 passing through n (G always exists
and cannot lie in 7), let us denote by ¢ the plane determined by G and L.
On such a plane the lines of the regulus determine a C-configuration € and

¢NL=¥YNL=¢&NL.

So if we now take another point m on % and assume L to be the line joining
m and n we have two possibilities:

e m and n are the only points in common between € and L or

e there is at least a third common point, distinct from m and n.
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5.2 Planar sections with planes that do not contain a generator

Remembering 5.6, in the first case we can conclude that the two points
m and n have different cross-ratios, while in the latter we can state that
the cross-ratios of » and m belong to the same conjugacy class of F' and,
moreover, that there are infinitely many points in common between % and
the line L.

5.8 Remark. This last construction suggests us a way to “identify” conju-
gacy classes of F: it is sufficient to find out in a plane 7 not containing any
generator all secant lines to the conic € = 7 N'¥Y (hence all lines that meet
the regulus) in more than two points.

We can obtain this result also by an algebraic point of view. On the
plane 7 the line L has equation

a171 + aszy + agxy =0

for some a1, a3,a4 € F, and so the points of the conic & that belong to the
line L are those that are roots of the quadratic equation

(6) a1t’+ast+as=0, a1 # 0.

Remembering now the Gordon-Motzkin theorem (2.8), we can observe that
if the equation (6) has two non conjugate solutions, then these solutions are
all the roots, while if it has two conjugate solutions, then there are infinitely
many conjugate solutions (in fact a subline over the centralizer of ¢); of
course (6) can also have only one solution, or no one. So the points of the
conic ¥ can be divided into two groups:

points of 15t kind (or regular, central points): they are those points of ¢
that have cross-ratio in the center of F'; through each of these points
there are both a generator and a directrix and any line through it has
at most two intersections with the conic.

points of 279 kind: they are those points that have cross-ratio ¢t ¢ Z(F);
through these points there are no directrices and through any of these
points there is a line that meets € in infinitely many points belonging
to the same conjugacy class of .

5.9 Remark (what is a tangent?). In the skew case there are several
different ways in which we can define what a tangent line is, depending on
which property of the “classical” tangent we want to preserve and obtain-
ing, of course, different objects in each case. We propose three different
definitions.
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5.2 Planar sections with planes that do not contain a generator

1. (Artzy, [13]) The most intuitive idea is, of course, to define a tangent
to be a line that meets the conic only in one point; this will produce
the result that if we have a tangent in a point p, then there are as
many tangents in p as there are elements in the centralizer of p.

2. (Segre, [7]) In the commutative case, if p is a point of a conic ¥
of # and G is the generatrix through p, then it is well defined the
(unique) tangent plane 7 through p as the plane that contains G and
the directrix D through p; the tangent in p to the conic ¥ is the line
7 N w. Moreover it is easy to check that, if pi,po,p3,ps € G, their
cross-ratio is the same as the cross-ratio of their tangent planes (that
belong to the pencil of planes through G).

In the skew case, in general, a directrix through p does not exist, and so
there is not such an obvious definition for the tangent plane as above.
The idea is to consider the cross-ratio of p with respect to the points
G ND;, GN Dy and G N D3, and to take all the planes (in general
there are infinitely many) which have this cross-ratio with respect to
pn(G, D1), pn(G, Dy) and pn(G, D3); we can define a tangent to be
any line cut on 7 by one of these planes.

If we assume this definition, every time the cross-ratio ¢ of p does
not belong to the center Z(F'), we have to renounce to the idea that
the tangent to the conic in p is unique: in this situation, in fact, the
number of tangents is infinite.

3. (Berz) For all points of the first kind there is exactly one line that
meets the conic in one point (as happens in the “classical” case) and
so we decide this is the tangent. For all other points p the tangent
is the (unique) line that has harmonic cross-ratio with respect to the
lines that join this point p with two distinct first kind points p; and
p2 (for instance the points corresponding to the parameters 0 and oo,
which always lie in the center) and with the intersection point of the
two tangents to the conic in these first kind points. This second situa-
tion generalizes a property of tangent lines to a conic in commutative
case and has the advantage that through each point there is exactly
one tangent, but in second kind points a tangent in the sense of this
definiton could meet the conic in infinitely many points.
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