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Abstract

We investigate the affine circle geometry arising from a quaternion skew
field and one of its maximal commutative subfields.

1 Introduction

1.1

The present paper is concerned with the chain geometry Σ(K,L) (cf. [1]) on a field
extension L/K, where K is a maximal commutative subfield of a quaternion skew
field L. Thus L is not a K–algebra. This has many geometric consequences. Best
known is probably that three distinct points do not determine a unique chain. As
in ordinary Möbius–geometry, it is possible to obtain an affine plane by deleting one
point, but a more sophisticated technique is necessary in order to define the lines
of this plane. We take a closer look on this construction from two different points
of view, starting either from a spread of lines associated to Σ(K,L) or the point
model of this spread on the Klein quadric. The chains of Σ(K,L) yield the lines,
degenerate circles and non–degenerate circles of such an affine plane. We establish
some properties of these circles and show that degenerate circles are affine Baer
subplanes. If K is Galois over the centre of L then each non–degenerate circle can
be written as intersection of two affine Hermitian varieties.

We encourage the reader to compare our results with the survey article [9] on
chain geometry over an algebra and [10]. There is an extensive literature on the
real quaternions. A lot of references can be found, e.g., in [1], [2], [5], [15], [16].

1.2

Throughout this paper L will denote a quaternion skew field with centre Z and K
will be a maximal commutative subfield of L. The following exposition follows [4],
[8], [13, pp.168–171].

Choose any element a ∈ K \ Z with minimal equation, say

a2 + aλ1 + µ1 = 0 (λ1, µ1 ∈ Z).

If K/Z is Galois then

( ) : K → K, u = ξ + aη 7→ u := ξ − (λ1 + a)η (ξ, η ∈ Z)

is an automorphism of order 2 fixing Z elementwise1. There exists an element
i ∈ L \K such that

i−1ui = u for all u ∈ K,
1By an appropriate choice of a it would be possible to have λ1 = 0 (CharK 6= 2) or λ1 = 1

(CharK = 2).



whence
ui = iu for all u ∈ K. (1)

If K/Z is not Galois then, obviously, CharK = 2 and λ1 = 0. The mapping

D : K → K, u = ξ + aη 7→ uD := aη (ξ, η ∈ Z)

is additive and satisfies (uu′)D = uDu′+uu′D for all u, u′ ∈ K, i.e., D is a derivation
of K. There exists an i ∈ L \K such that

a−1ia = i+ 1

which leads to the rule

ui = iu+ uD for all u ∈ K. (2)

In every case the element i has a minimal equation over Z, say

i2 + iλ2 + µ2 = 0 (λ2, µ2 ∈ Z).

If K/Z is Galois then i2 ∈ Z, whence λ2 = 0. If K/Z is not Galois then i and i+ 1
have the same minimal equation. This implies λ2 = 1. The mapping

A : L→ L, u+ iv 7→
{
u− iv : K/Z Galois,
u+ v + vi : K/Z not Galois,

}
(u, v ∈ K) (3)

is an involutory antiautomorphism of L fixing K. The norm of x ∈ L is given by
N(x) := xAx.

1.3

The mappings ( ) andD allow, respectively, the following geometric interpretations:
Let V be a right vector space over Z, dim V ≥ 2. We are extending V to V⊗ZK

with v ∈ V to be identified with v⊗ 1. Then define a mapping V⊗ZK → V⊗ZK
by ∑

v∈V

v ⊗ kv 7→


∑

v∈V
v ⊗ kv : K/Z Galois,∑

v∈V
v ⊗ kDv : K/Z not Galois,

 (kv ∈ K).

By abuse of notation, this mapping will also be written as ( ) and D, respectively.
In terms of the projective spaces PZ(V) and PK(V ⊗ZK) the first projective

space is being embedded in the second one as a Baer subspace. If xK is a point of
PK(V⊗ZK)\PZ(V) then through this point there is a unique line of PK(V⊗ZK)
containing more than one point of PZ(V). That line is given by

xK ∨ xK and xK ∨ (xD)K,

respectively2. Note that defining a mapping by setting xK 7→ (xD)K is ambiguous,
since

(xu)D = xDu+ xuD for all x ∈ V ⊗ZK, u ∈ K.
We give a second interpretation in terms of affine planes3:

Lemma 1 Let W be a right vector space over K, dim W = 2, and let {u,v} be a
basis of W. Then

{uk + vk | k ∈ K} : K/Z Galois,
{uk + vkD | k ∈ K} : K/Z not Galois,

(4)

is an affine Baer subplane (over Z) of the affine plane on W.
2At least in the first case this is very well known.
3Cf. the concept of ‘Minimalkoordinaten’ described, e.g., in [17, p.35]



Proof. If u′ and v′ are linearly independent vectors of W then the set of all linear
combinations of u′ and v′ with coefficients in Z is an affine Baer subplane over Z.
Write k = ξ + aη with ξ, η ∈ Z.

If K/Z is Galois then

uk + vk = (u + v)ξ + (ua− v(λ1 + a))η.

The vectors u + v and ua− v(λ1 + a) are linearly independent, since otherwise we
would have the contradiction a = −λ1 − a = a.

If K/Z is not Galois then

uk + vkD = uξ + (u + v)aη.

The vectors u and (u + v)a are linearly independent.

2 Projective Chain Geometry on L/K

2.1

Let L/K be given as before. Following [1, p.320ff.] we obtain an incidence structure
Σ(K,L) as follows: The points of Σ(K,L) are the points of the projective line over L,
viz. PL(L2), the blocks, now called chains, are the K-sublines of PL(L2). However,
in contrast to [1], we shall regard L2 as right vector space over K rather than
L. Each s–dimensional subspace of L2 (over L) is 2s–dimensional over K, whence
PK(L2) =: PK is 3–dimensional. The points of Σ(K,L) now appear as lines of a
spread of PK , say SL/K ; cf. [6], [7]. If t is a line of PK not contained in SL/K then
through each point of t there goes exactly one line of SL/K . The subset C of SL/K
arising in this way is a chain of Σ(K,L). We call t a transversal line of the chain C. If
L/K is not Galois then each chain has exactly one transversal line, otherwise exactly
two transversal lines that are interchanged under the non–projective collineation

ι : PK → PK , (l0, l1)K 7→ (l0i, l1i)K. (5)

Cf. [8, Theorem 2], [11].

2.2

Write L for the set of lines of PK and γ : L → P̂K for the Klein mapping. Here P̂K
is the ambient space of the Klein quadric Q := Lγ . The underlying vector space
of P̂K is L2 ∧ L2 (over K). In [8, Theorem 1] it is shown that there is a unique
5–dimensional Baer subspace ΠZ (over Z) of P̂K such that

SL/Kγ = ΠZ ∩Q.

With respect to ΠZ the set SL/Kγ is an oval quadric, i.e. a quadric without lines.
A subset C of SL/K is a chain if, and only if, there exists a 3–dimensional subspace
X of P̂K such that4

X ∩ΠZ is a 3–dimensional subspace of ΠZ , (6)
Cγ = X ∩ SL/Kγ is an elliptic quadric of X ∩ΠZ (over Z), (7)

X ∩Q contains a line of P̂K ; (8)

cf. [8, Theorem 1].
4If L is the skew field of real quaternions then K is a field of complex numbers and Z the field

of real numbers. Here conditions (6) and (7) are already sufficient to characterize the γ–images of
chains.



2.3

The automorphism group of Σ(K,L) is formed by all bijections of SL/K taking
chains to chains in both directions. If κ is a collineation or a duality of PK with
SL/Kκ = SL/K then κ is yielding an automorphism of Σ(K,L). Conversely, accord-
ing to [12] and [8, Theorem 4], each automorphism of Σ(K,L) can be induced by an
automorphic collineation or duality of SL/K , say κ. This κ is uniquely determined
for K/Z not being Galois, otherwise the product of ι (cf. formula (5)) and κ is the
only other solution.

Transferring these results to P̂K establishes that an automorphic collineation µ
of the Klein quadric is the γ–transform of an automorphic collineation or duality of
SL/K if, and only if, ΠZ is invariant under µ. If K/Z is Galois, then the γ–transform
of the collineation ι (cf. (5)) is the Baer involution of P̂K fixing ΠZ pointwise. See
[8, Theorem 4].

2.4

Let C0 and C1 be two chains with a common element, say p ∈ SL/K . We say that
C0 is tangent to C1 at p if there exist transversal lines ti of Ci (i = 0, 1) such that
p, t0, t1 are in one pencil of lines. This is a reflexive and symmetric relation.

If K/Z is Galois then there is also an orthogonality relation on the set of chains:
If Ci (i = 0, 1) are chains with transversal lines ti, tiι, respectively, then C0 is said
to be orthogonal to C1 if t0 intersects both t1 and t1ι. This relation is symmetric,
since ι is an involution. Given two orthogonal chains their transversal lines form a
skew quadrilateral.

The two definitions above are not given in an intrinsic way. However, both
relations are invariant under automorphic collineations and dualities of SL/K and
hence invariant under automorphisms of Σ(K,L).

The proofs of the following results are left to the reader: Chains C0, C1 are
tangent at p ∈ C0 ∩ C1 if, and only if, their images under the Klein mapping are
quadrics with the same tangent plane at the point pγ . A chain C0 is orthogonal to a
chain C1 if, and only if, the subspace of P̂K spanned by C0γ contains the orthogonal
subspace (with respect to the Klein quadric) of C1γ .

3 Affine Circle Geometry on L/K

3.1

With the notations introduced in section 2, select one line of SL/K and label it ∞.
Let Ã be a (projective) plane of PK through ∞ and write A := Ã \ ∞. Then A
can be viewed as an affine plane with ∞ as line at infinity. The mapping

ρ : SL/K \ {∞} → A, s 7→ A ∩ s (9)

is well–defined and bijective. A chain C containing∞ yields an affine line (C\{∞})ρ
if, and only if, C has a transversal line in Ã. Two chains with transversal lines in
Ã yield parallel lines if, and only if, the chains are tangent at ∞.

If Ã′ is any plane through ∞ then, with A′ := Ã′ \∞, the mapping

β : A → A′, A ∩ s 7→ A′ ∩ s (s ∈ SL/K \ {∞})

is a well–defined bijection5. This β is an affinity if either Ã′ = Ã or Ã′ = Ãι [6,
Theorem 5]; the second alternative is only possible when K/Z is Galois.

5One could also select some point A ∈ ∞ and then obtain an affine plane by a dual construction.



3.2

The group of automorphic collineations of SL/K operates 3–fold transitively on the
lines of SL/K [1, p.322]. Thus we may transfer ∞ to the line given by (0, 1)L.
Moreover, for all c ∈ L, c 6= 0

(l0, l1)K 7→ (cl0, cl1)K ((0, 0) 6= (l0, l1) ∈ L2)

is an automorphic collineation of SL/K fixing ∞. Hence, without loss of generality,
we may assume in the sequel that

∞ = PK((0, 1)L) and Ã = (1, 0)K ∨∞.

Then the mapping (9) becomes

PK((l0, l1)L) 7→ (1, l1l−1
0 )K. (10)

We shall identify A with L via6 (1, l)K ≡ l. Thus L gets the structure of an affine
plane over K. We shall emphasize this by writing AK(L) rather than L.

Theorem 1 Let κ be an automorphic collineation or duality of SL/K fixing ∞.
Then there exist elements m0,m1,m ∈ L, m0,m1 6= 0 and an automorphism or
antiautomorphism J of L with KJ = K such that

xρ
−1κρ = m1x

Jm0 +m for all x ∈ L. (11)

The additional conditions

J is an automorphism of L, (12)
m0 ∈ K or, only if K/Z is Galois, m0i

−1 ∈ K (13)

together are necessary and sufficient for ρ−1κρ to be an affinity of AK(L).

Proof. The assertion in formula (11) is obviously true.
Now suppose that ρ−1κρ is an affinity of AK(L). Then κ has to take each chain

with a transversal line in Ã to a chain with a transversal line in Ã. Hence Ãκ = Ã
or, only if K/Z is Galois, Ãκ = Ãι. Therefore κ cannot be a duality, so that J
cannot be an antiautomorphism [8, Theorem 4]. Consequently, g : x 7→ m1x

Jm0
has to be a semilinear mapping of the right vector space L over K. We infer from

xk
g7→ (m1x

Jm0)(m−1
0 kJm0) for all x ∈ L, k ∈ K

that m−1
0 Km0 = K. There are two possibilities: If

m−1
0 km0 = k for all k ∈ K

then m0 is a non–zero element of K, since K is a maximal commutative subfield of
L. On the other hand, however only if K/Z is Galois, also

m−1
0 km0 = k for all k ∈ K

is possible. Now, again using that K is maximal commutative, it follows from (1)
that m0i

−1 ∈ K.
The proof of the converse is a straightforward calculation.

6This is accordance with the inhomogeneous notation used in [1].



3.3

If C is a chain such that (C \ {∞})ρ is not a line of AK(L) then (C \ {∞})ρ will
be named a circle. There are two kinds of circles: If ∞ ∈ C then the circle is
called degenerate, otherwise non–degenerate. The following Lemma shows that
distinct chains cannot define the same circle. In addition it establishes that a circle
cannot be degenerate and non–degenerate at the same time:

Lemma 2 Let C0 and C1 be two chains such that C0 \ {∞} = C1 \ {∞}. Then
C0 = C1.

Proof. According to (6), (7), (8) there exists a 3–dimensional subspace X0 of P̂K
with

C0γ = X0 ∩ΠZ ∩Q.

Since C0γ is an oval quadric of X0∩ΠZ and Z is infinite, (C0\{∞})γ is still spanning
X0. Repeating this, mutatis mutandis, for C1 gives X0 = X1, whence C0 = C1, as
required.

3.4

By Lemma 2, we may unambiguously speak of a line being tangent to a circle at
some point P ∈ AK(L) or of circles touching at P if they arise from chains that
are tangent at P ρ

−1
.

A degenerate circle has no tangent lines. A point P of a non–degenerate circle
is called regular if there exists a tangent line of that circle at P . If such a circle is
given as Cρ, C a chain, then P ∈ Cρ is regular if, and only if, P (regarded as point of
A) is incident with a transversal line of C. Thus a non–degenerate circle has either
one or two regular points.

3.5

If K/Z is Galois then call two lines, or a circle and a line, or two circles of AK(L)
orthogonal if they arise from orthogonal chains.

By virtue of the collineation ι (cf. formula (5)), a line lK +m (l,m ∈ L, l 6= 0)
is orthogonal to all lines being parallel to liK.

We introduce a unitary scalar product ∗ on the right vector space L over K by
setting

(u+ iv) ∗ (u′ + iv′) := uu′ + µ2vv
′ for all u, u′, v, v′ ∈ K. (14)

This scalar product is describing the orthogonality relation on lines from above.
Moreover, (u + iv) ∗ (u + iv) = N(u + iv), whence the norm is a Hermitian form7

on L over K.
It is easily seen that there exists no line orthogonal to a degenerate circle. The

join of the two regular points of a non–degenerate circle is the only line being
orthogonal to that circle. It will be called the midline of the circle. The midline is
orthogonal to both tangent lines.

All affinities described in Theorem 1 are preserving orthogonality.

3.6

Let C be a chain such that ∆ := (C \{∞})ρ is a degenerate circle. Then either there
are two points or there is one point on the line ∞ incident with transversal lines of

7If K/Z is not Galois then the norm does not seem to be a quadratic or Hermitian form on L
over K.



C. We call these points at infinity of AK(L) the absolute points or the absolute
directions of ∆. This terminology will be motivated in 3.10.

The group AGL(1, L) of all transformations (11) with m0 = 1 operates sharply
2-fold transitively on AK(L). Thus each degenerate circle can be transferred under
AGL(1, L) to a degenerate circle through 0 and 1. Write

L◦ :=
{
L \ (K ∪Ki) : K/Z Galois,
L◦ := L \K : K/Z not Galois.

Then, by [1, p.329] and (13), the degenerate circles through 0 and 1 are exactly the
sets

cKc−1 with c ∈ L◦. (15)

From now on assume that a degenerate circle ∆ is given by (15). Let C be the
chain with transversal line (c, 0)K ∨ (0, c)K. Then ∆ = (C \ {∞})ρ, whence cK
is an absolute direction of ∆. Each affinity of AGL(1, L) (cf. formula (11)) with
m1,m ∈ cKc−1 (m1 6= 0, m0 = 1 as before) takes ∆ onto ∆.

Theorem 2 Each degenerate circle of AK(L) is an affine Baer subplane of AK(L)
with the centre of L as underlying field.

Proof. It is sufficient to show this for a degenerate circle given by (15). Set c−1 =:
d+ ie with d, e ∈ K. Then, by (1) and (2),

cKc−1 =
{
{(cd)k + (cie)k | k ∈ K} : K/Z Galois,
{k + (ce)kD | k ∈ K} : K/Z not Galois.

Now the assertion follows by Lemma 1.

3.7

Next we turn to non–degenerate circles.

Theorem 3 All non–degenerate circles of the affine plane AK(L) are in one orbit
of AGL(1, L).

Proof. Let C0 be the chain with transversal line

(1, 0)K ∨ (i, i)K. (16)

Then Γ0:=C0ρ is a non–degenerate circle with regular point 0.
Let K/Z be Galois. Then 1 is the other regular point of Γ0. If Γ1 is a non–

degenerate circle then there exists an affinity α ∈ AGL(1, L) taking the regular
points of Γ1 to 0 and 1, respectively. Hence Γ1

αρ−1
is a chain with one transversal

line through (1, 0)K and the other transversal line through (1, 1)K. Applying the
collineation ι on (1, 1)K establishes that (16) is a transversal line of this chain,
whence Γ0 = Γ1

α.
Now assume that K/Z is not Galois. If Γ1 is a non–degenerate circle then there

exists an affinity α ∈ AGL(1, L) taking the only regular point of Γ1 to 0. The chain
Γ1

αρ−1
has a unique transversal line through (1, 0)K and some point of the plane

(i, 0)K ∨∞, say

(id, e+ if)K with d, e, f ∈ K, d, e+ if 6= 0.

There exists an element m1 ∈ L \ {0} such that m1(e+ if) = id. The collineation
κ of PK given by (l0, l1)K 7→ (l0,m1l1)K leaves SL/K invariant, fixes the point
(1, 0)K as well as the line ∞ and takes (id, e+ if)K to (i, i)K. Hence the induced
affinity ρ−1κρ of AK(L) carries Γ1

α over to Γ0.



3.8

The non–degenerate circle Γ0 arising from the chain C0 with transversal line (16)
has the parametric representation

{ik1(k0 + ik1)−1 | (0, 0) 6= (k0, k1) ∈ K2}; (17)

cf. also [1, Satz 3.2]. Next we establish an equation for Γ0:

Theorem 4 The non–degenerate circle Γ0 given by (17) equals the set of all points
u+ iv (u, v ∈ K) satisfying8

u = N(u+ iv). (18)

Proof. The term ik1(k0 + ik1)−1 in formula (17) can be rewritten as follows: If K/Z
is Galois then

ik1(k0 + ik1)−1 = ik1(k0 − ik1)
(
(k0 + ik1)(k0 − ik1)

)−1

= (µ2k1k1 + ik0k1)(k0k0 + µ2k1k1)−1,

otherwise

ik1(k0 + ik1)−1 = ik1(k0 + k1 + k1i) ((k0 + ik1)(k0 + k1 + k1i))
−1

= (µ2k
2
1 + ik0k1)

(
k2

0 + k0k1 + (k0k1)D + µ2k
2
1
)−1

.

Now, since

N(u+ iv) =
{
uu+ µ2vv : K/Z Galois,
u2 + uv + (uv)D + µ2v

2 : K/Z not Galois,

it is easily seen that all points of Γ0 are satisfying equation (18).
Conversely, let q + ir (q, r ∈ K) be a solution of (18). If q = 0 then r = 0,

whence we have a point of Γ0. Otherwise set

k0 :=
{
µ2rq−1 : K/Z Galois,
µ2rq

−1 : K/Z not Galois,

}
and k1 := 1.

The point of Γ0 with these parameters equals q + ir.

3.9

We are able to say a little bit more about non–degenerate circles provided that K/Z
is Galois. Formula (18) becomes

N(u+ iv)− u = (u− 1 + iv) ∗ (u+ iv) = 0. (19)

Thus, if we intersect each line through 0 with its orthogonal line through 1 then
the set of all such points of intersection equals Γ0. This is a nice analogon to a
well–known property of opposite points on a Euclidean circle9.

Theorem 5 Let K/Z be Galois. Write E := {y ∈ K | y + y = 1} and He (e ∈ E)
for the affine Hermitian variety formed by all points u + iv (u, v ∈ K) subject to
the equation

N(u+ iv) = eu+ eu.

Then the non–degenerate circle Γ0 given by (17) can be written as

Γ0 = He ∩Hf for all e, f ∈ E with e 6= f. (20)
8In the elementary plane of complex numbers the same kind of equation gives a circle through

0 and 1.
9The points 0 and 1 are, however, the only points of Γ0 with this property.



Proof. A straightforward calculation yields

E =
{ 1

2 + (λ1 + 2a)Z : CharK 6= 2,
aλ−1

1 + Z : CharK = 2,

whence E is infinite. Given q + ir ∈ Γ0 (q, r ∈ K) then q ∈ Z implies

Γ0 ⊂
⋂
e∈E
He.

Choose distinct elements e, f ∈ E and q + ir ∈ He ∩Hf (q, r ∈ K). Then

N(q + ir)−N(q + ir) = eq + eq − fq − fq = 0.

But
e− f
f − e

= 1,

so that q = q and therefore q + ir ∈ Γ0.

3.10

There is an alternative approach to AK(L) via the point model of Σ(K,L) on the
Klein quadric Q.

Write I :=∞γ and Z for the γ–image of the ruled plane on Ã; this Z is a plane
on the Klein quadric. Furthermore let F̃ be any plane of P̂K skew to Z and write

π : P̂K \ Z → F̃ (21)

for the projection with centre Z onto the plane F̃ . It is well known from descriptive
line geometry that there exists a collineation ψ of Ã onto F̃ such that

(p ∩ Ã)ψ = pγπ

for all lines p of PK not contained in Ã. Cf., e.g., [3]. We turn F̃ into an affine
plane F , say, by regarding F̃ ∩I⊥ as its line at infinity; here I⊥ denotes the tangent
hyperplane of the Klein quadric at I. Then ∞ψ = F ∩ I⊥.

The bijectivity of ρ implies that SL/Kγ \{I} is mapped bijectively under π onto
the affine plane F . The restriction

π | SL/Kγ \ {I}

can be seen as a generalized stereographic projection of the oval quadric SL/Kγ
of ΠZ onto the affine plane10 F .

Let C be a chain. Then Cγ = X ∩Q∩ΠZ for some 3-dimensional subspace X of
P̂K . We leave it to the reader to show that (C \ {∞})γπ is an affine line if X ∩Z is
a line through I, a degenerate circle if X ∩ Z = {I} and a non–degenerate circle if
X ∩ Z is some point other than I.

Using the mapping γπψ−1 instead of ρ is very convenient to establish results on
the images of traces [1, p.327], since their γ–images are just the regular conics on
SL/Kγ [8, 3.4]. We sketch just one result without proof:

Let C be a chain through ∞ such that (C \ {∞})ρ =: ∆ is a degenerate circle
of AK(L). Then the ρ–images of traces in C are on one hand the lines of the
affine plane ∆ and on the other hand certain ellipses of ∆. If these ellipses are
extended to conics of AK(L) then the absolute directions of ∆ determine their
points at infinity11. This is the well–known concept of absolute circular points. ∆
is a Euclidean plane representing the extension K/Z. Cf. [14].

10A ‘usual’ stereographic projection would map onto a 4–dimensional affine space over Z rather
than an affine plane over K.

11There is only one such point if K/Z is not Galois.
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